
FASTWARC: OPTIMIZING LARGE-SCALE WEB ARCHIVE ANALYTICS
Janek Bevendorff∗, Martin Potthast†, Benno Stein∗
∗Bauhaus-Universität Weimar, †Leipzig University

Abstract
Web search and other large-scale web data analytics rely

on processing archives of web pages stored in a standard-
ized and efficient format. Since its introduction in 2008,
the IIPC’s Web ARCive (WARC) format1 has become the
standard format for this purpose. As a list of individually
compressed records of HTTP requests and responses, it al-
lows for constant-time random access to all kinds of web
data via off-the-shelf open source parsers in many program-
ming languages, such as WARCIO,2 the de-facto standard
for Python. When processing web archives at the terabyte or
petabyte scale, however, even small inefficiencies in these
tools add up quickly, resulting in hours, days, or even weeks
of wasted compute time. Reviewing the basic components
of WARCIO and analyzing its bottlenecks, we proceed to
build FastWARC, a new high-performance WARC process-
ing library for Python, written in C++ / Cython, which yields
performance improvements by factors of 1.6–8x.

INTRODUCTION
The earliest open source implementations of the WARC

format were provided for Java, namely Lin’s ClueWeb Tools3

(initially used by the research search engine ChatNoir),4 fol-
lowed by a more standards-compliant reference implementa-
tion from the IIPC.5 Meanwhile, the IR, NLP, and machine
learning communities have largely transitioned to Python, in-
stead adopting WARCIO as a native implementation in that
language. Processing large samples of the Common Crawl
and web archive data from the Internet Archive, however,
we observed that the library did not match our performance
expectations. Even compiling it to native C code using
Cython yielded only marginal improvements. Analyzing its
bottlenecks, three key causes can be discerned: (1) stream
decompression speed, (2) record parsing performance, and
(3) lack of efficient skipping of non-response records. Our
contribution is to rectify these issues with FastWARC, a
rewrite of the entire WARC parsing pipeline from scratch.

FASTWARC VS. WARCIO
FastWARC is a reimplementation of WARCIO in C++

with Cython, making it both fast and perfectly integrated
into the Python ecosystem, yet allowing for more language
bindings if required. Table 1 compiles detailed performance
comparisons: On an uncompressed WARC file, it gains an
overall 6.4x speedup over WARCIO, or 4x over a naively
“cythonized” WARCIO. With an average processing time of
1.2 vs. 8 seconds for a single WARC file, this already saves at
least 115 hours of compute time on a recent Common Crawl
with 64 000 individual WARCs (62.5 TiB compressed). For
1 ISO 28500:2017; https://iipc.github.io/warc-specifications/
2 https://github.com/webrecorder/warcio
3 https://github.com/lintool/clueweb
4 https://chatnoir.eu/
5 https://github.com/iipc/jwarc

Comp. Parser Records/s Speedup

AMD Ryzen Threadripper 2920X (NVMe SSD)

None WARCIO 16 945.5 –
None FastWARC 108 488.0 6.4
None WARCIO+HTTP 11 661.6 –
None FastWARC+HTTP 79 297.0 6.8
None WARCIO+HTTP+Checksum 6 986.7 –
None FastWARC+HTTP+Checksum 21 320.9 3.1

GZip WARCIO 6 460.1 –
GZip FastWARC 10 413.4 1.6
GZip WARCIO+HTTP 5 435.6 –
GZip FastWARC+HTTP 10 101.5 1.9
GZip WARCIO+HTTP+Checksum 4 121.6 –
GZip FastWARC+HTTP+Checksum 7 433.0 1.8

LZ4 FastWARC 49 825.4 7.7∗
LZ4 FastWARC+HTTP 42 394.5 7.8∗
LZ4 FastWARC+HTTP+Checksum 16 992.2 4.1∗

Intel(R) Xeon(R) CPU E5-2620 v2 (remote Ceph storage)

None WARCIO 7 969.1 –
None FastWARC 49 396.5 6.2

GZip WARCIO 3 555.7 –
GZip FastWARC 6 335.1 1.8

LZ4 FastWARC 28 313.8 8.0∗

Table 1: Evaluation of FastWARC and WARCIO on two
systems. Runs are (1) without payload parsing, (2) with
automatic HTTP header parsing, and (3) with record check-
summing. ∗LZ4 speedup is over WARCIO with GZip, since
WARCIO does not support LZ4.
better decompression speed of gzipped streams, FastWARC
interfaces directly with zlib, achieving compute time sav-
ings of roughly 2.1 hours per TiB or 2 200 hours per PiB
over WARCIO. The largest performance penalty, however,
comes from the decompressor itself. While still saving about
135 hours overall on a Common Crawl, the relative speedup
shrinks to only 1.6–1.8x. For this reason, we decided to add
support for the more recent and much faster LZ4 algorithm.
With LZ4, we can save another 168 hours on top (a speedup
of 4.8x over FastWARC with GZip), or 300 hours compared
to WARCIO (speedup of up to 8x).

CONCLUSION
FastWARC can speed up WARC processing significantly,

saving hundreds of hours of compute time on large-scale
web archive analytics. By far the largest speedup, though,
can be gained from using LZ4 over GZip. Considering an
additional storage overhead of only about 30–40 %, recom-
pressing GZip WARCs with LZ4 is certainly an option to
be considered, especially in cases where processing speed
is more important than storage efficiency.

FastWARC is released under the Apache 2.0 license and
can be downloaded from Github6 or PyPi.7
6 https://github.com/chatnoir-eu/chatnoir-resiliparse
7 pip install fastwarc


