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Abstract

The detection of texts generated by LLMs has
quickly become an important research prob-
lem. Many supervised and zero-shot detectors
have already been proposed, yet their effective-
ness and precision remain disputed. Current
research therefore focuses on making detec-
tors robust against domain shifts and on build-
ing corresponding benchmarks. In this paper,
we show that the actual limitations hindering
progress in LLM detection lie elsewhere: LLM
detection is often implicitly modeled as an au-
thorship attribution task, while its true nature
is that of authorship verification. We systemat-
ically analyze the current research with respect
to this misunderstanding, conduct an in-depth
comparative analysis of the benchmarks, and
validate our claim using state-of-the-art LLM
detectors. Our contributions open the realm of
authorship analysis technology for understand-
ing and tackling the problem of LLM detection.

1 Introduction

Generative AI is everywhere. From writing as-
sistants to the generation of complete documents,
texts curated or written by large language models
(LLMs) can now be found in practically all social
structures: LLMs are used in online media (Knibbs,
2024), in education (Adeshola and Adepoju, 2024),
for scientific publications (Glynn, 2024; Lund et al.,
2023; Picazo-Sanchez and Ortiz-Martin, 2024), for
drafting Wikipedia articles (Brooks et al., 2024;
Wikipedia, 2025), and more. Owing to the many
risks of LLM text generation (Bommasani et al.,
2021; Oviedo-Trespalacios et al., 2023), research
into LLM detectors has sparked great interest.

So far, it seems difficult to ascertain the real-
world effectiveness of current detectors. On the
one hand, new detectors quite regularly “beat” the
latest benchmarks (King et al., 2023b; Dugan et al.,
2024b; Bevendorff et al., 2024b), leading us to
believe the problem is easily solved, at least within

fixed domains. On the other hand, serious concerns
are voiced about the readiness of the technology.
Perhaps most strikingly, OpenAI shut down their
own LLM detector just six months after its launch,
citing a lack of accuracy (Kirchner et al., 2023).

In this paper, we show that the conflicting reports
of success or failure are due to a mix-up of two
paradigms of the related research field of author-
ship analytics: authorship attribution and author-
ship verification (Koppel and Schler, 2004). As the
authorship analytics and LLM detection commu-
nities have developed almost independently until
now, neither could learn from the other.

Framed as authorship attribution, LLM detection
considers LLMs and humans as two collective “au-
thors,” each possessing their own distinct writing
style. LLM detection is thereby cast as a closed-
set binary classification problem, relying on both
classes to be sufficiently discriminative. We show
that LLM detection is more realistically cast as an
authorship verification problem—i.e., as an open-
set one-class classification problem (Schölkopf
et al., 2001; Manevitz and Yousef, 2001). However,
our literature review and data analyses show that
LLM detectors are often developed with attribution
in mind, but are evaluated under much broader as-
sumptions on inadequate benchmarks, leading to
unnecessary Type II errors in evaluations.

Our main contributions are as follows: (1) We
reconcile authorship analytics and show that LLM
detection is an authorship verification task (Sec-
tion 3). (2) We conduct a corpus analysis on how
LLM text differs from human text today (Section 4).
(3) We show that state-of-the-art LLM detectors do
indeed solve attribution well (Section 5). (4) We
conclude by discussing the quality and adequacy
of existing benchmarks, and how detectors need at
least special evaluation considerations for success-
ful verification, even within domains (Section 6).1

1Code and data: https://github.com/webis-de/ACL-25.

https://github.com/webis-de/ACL-25


2 Related Work

LLM detection is a young but very popular research
topic. Hundreds of papers and several surveys
(Jawahar et al., 2020; Crothers et al., 2023; Yang
et al., 2023; Tang et al., 2024; Wu et al., 2025),
multiple shared tasks (Merkhofer et al., 2023; King
et al., 2023a; Molla et al., 2023; Sarvazyan et al.,
2023a; Bevendorff et al., 2024a; Wang et al., 2024d,
2025), and an increasing number of large-scale
benchmark datasets (Uchendu et al., 2021; Macko
et al., 2023; Su et al., 2023b; Yu et al., 2023; Dugan
et al., 2024a; Li et al., 2024; Verma et al., 2024;
Wang et al., 2024e,c) have been contributed. Initial
work on authorship attribution for language mod-
els (Uchendu et al., 2020) found GPT-2 was already
more difficult to detect than previous models. Both
LLMs and LLM detectors have come a long way
since. Below, we review the most relevant work.2

LLM Text Differs from Human Text Although
it is unclear how exactly LLM text differs from
human text, observations include that LLMs of-
ten lack lexical diversity (Reviriego et al., 2023;
Martínez et al., 2024), overuse certain adjectives
(Kobak et al., 2024; Liang et al., 2024), and pro-
duce longer, more complex sentences (Su and Wu,
2024; Zanotto and Aroyehun, 2024). Nucleus sam-
pling (Holtzman et al., 2019) has enabled the gen-
eration of text adhering better to human text charac-
teristics, reducing aberration in Zipf’s and Heaps’
law (Meister and Cotterell, 2021; Lai et al., 2023).
Today, LLMs follow Zipf’s law even for invented
languages (Diamond, 2023), but possess stylistic
fingerprints (Kumarage and Liu, 2023; Zahid et al.,
2024; McGovern et al., 2025) and memorize pat-
terns from the training data (Shaib et al., 2024).

Humans as Detectors Humans’ ability to recog-
nize LLM text depends on their prior experience.
As LLMs advanced, the basic heuristics applied by
humans became inaccurate (Ippolito et al., 2020;
Clark et al., 2021; Jakesch et al., 2023) so that LLM
text can even be perceived more human-like than
human text (Rathi et al., 2025). Tools like GLTR
(Gehrmann et al., 2019) and SCARECROW (Dou
et al., 2022) can significantly improve average hu-
man performance, but Russell et al. (2025) found
that experienced ChatGPT users have near-perfect
detection rates, outperforming automatic detectors.

2We omit text and LLM watermarks here (Kamaruddin et al.,
2018; Kirchenbauer et al., 2023), which would go beyond the
scope of this paper.

Supervised LLM Detection A popular method
for LLM detection is to train supervised binary clas-
sifiers. An early approach was OpenAI’s RoBERTa-
based GPT-2 detector (Solaiman et al., 2019). This,
as well as more recent approaches, are usually
found to be highly accurate in-domain, but do not
generalize across domains, nor to newer LLM fam-
ilies (Rodriguez et al., 2022; Elkhatat et al., 2023;
Sarvazyan et al., 2023b; Wang et al., 2024e; Dugan
et al., 2025; Pudasaini et al., 2025), nor to lan-
guage learner texts (Liang et al., 2023). Fine-tuned
versions of BERT, T5, or smaller LLMs are fre-
quently cited as state-of-the-art detectors in the
literature (Macko et al., 2023), e.g., Ghostbuster
(Verma et al., 2024) and GPT-Sentinel (Chen et al.,
2023). Besides classifying entire documents, more
fine-grained approaches are investigated as well
(Tolstykh et al., 2024). Detectors with fewer param-
eters tend to generalize better to unseen LLM fami-
lies (Mireshghallah et al., 2023), and even symbolic
approaches can achieve state-of-the-art results (Su
and Wu, 2024; Lorenz et al., 2024).

Zero-shot LLM Detection Many zero-shot de-
tectors use reference LLMs to measure token per-
plexities: DetectGPT (Mitchell et al., 2023) mea-
sures perplexity degradation due to text perturba-
tions. Likely unbeknownst to the authors, it bears
a resemblance to Koppel and Schler’s (2004) un-
masking. Fast-DetectGPT (Bao et al., 2023) re-
duces DetectGPT’s computational costs by estimat-
ing perturbations, and DetectLLM (Su et al., 2023a)
adapts it to use log ranks for accuracy and speed.
LLMDet (Wu et al., 2023) calculates perplexity
from n-gram profiles for each LLM. Binoculars
(Hans et al., 2024) addresses the limited gener-
alization capabilities of previous models by cali-
brating cross-entropy scores with a second LLM.
Other approaches use GANs (Hu et al., 2023),
token compression ratios (Dubois et al., 2024)—
similar to compression models in authorship ana-
lytics (Oliveira et al., 2013; Halvani et al., 2017)—,
they prompt LLMs directly (Bhattacharjee and Liu,
2024; Huang et al., 2024), or measure the similarity
of responses to reverse-engineered queries (Baradia
et al., 2025) or paraphrasing prompts (Mao et al.,
2024; Hao et al., 2024) with reference texts.

Robustness Besides the mentioned domain adap-
tation issues, detectors are also vulnerable to ad-
versarial attacks. Paraphrasing attacks (Krishna
et al., 2023; Sadasivan et al., 2023) or basic syn-
onym replacements (Wang et al., 2024a) are effec-



tive. Search for adversarial (soft) prompts (Ku-
marage et al., 2023; Shi et al., 2024) or down-
stream “humanizer” models (Wang et al., 2024b)
can further reduce the detection accuracy. These
attacks against detectors are very similar to au-
thorship obfuscation approaches (Bevendorff et al.,
2019a; Mahmood et al., 2019), a fact outlined
only by Uchendu et al. (2023) so far. It is known
that even manual style obfuscation by untrained
writers is quite effective (Brennan and Greenstadt,
2009). However, obfuscations leave detectable
traces (Juola, 2012; Mahmood et al., 2020), which
have been observed for LLM obfuscators, too (Mas-
rour et al., 2025).

3 LLM Detection as a Verification Problem

LLM detection, albeit a relatively new task, shares
many theoretical foundations with the analysis of
human authorship and writing style (Juola, 2007;
Stamatatos, 2016; Tyo et al., 2023). Our work aims
to bridge the gap between the two communities.

3.1 Premise: LLMs Will Become Authors

The core assumption of LLM detection, as it is
often practiced today, is that the language distribu-
tions of human-authored and machine-generated
text are sufficiently distinct (as a consequence of
the technology or training data) and that a sepa-
rating hypersurface can be learned. Put simply,
a representative sample of human writing is con-
ceived of as one single “author,” which is compared
to one, or perhaps multiple, machine “authors.”

Under this assumption, Sadasivan et al. (2023)
postulate a highly cited theoretical upper limit of
the achievable detection efficacy. Their argument
hinges on the assumption that a sufficiently ad-
vanced paraphraser will eventually make machine
text indistinguishable from human text if only it
moves the machine text close enough in the direc-
tion of human text by reducing the total variation
distance between the two distributions. This ar-
gument is inherently tautological and can be gen-
eralized to any classification task, not just LLM
detection. But more importantly, its premise does
not hold for two reasons: First, the total variation
distance depends on the feature space used for rep-
resentation, yet there is no mention of the nature
of the two distributions. The argument thus turns
into a blanket statement about a hypothetical singu-
lar feature of “text.” Second, any variability at the
individual level within the distribution of the hu-

man author is disregarded, assuming a uniformity
of human text, which does not exist in practice.

We argue instead that—as LLMs become more
human-like—their detection will not necessarily
become impossible, but it will increasingly resem-
ble a human authorship classification task. In this
sense, the feasibility of LLM detection is deter-
mined by the frontiers of authorship analytics.

3.2 Background: Attribution vs. Verification
Computational authorship analytics distinguishes
between two basic scenarios: (1) authorship attri-
bution and (2) authorship verification (Koppel and
Schler, 2004; Koppel et al., 2009). Authorship
attribution classifies the author of a disputed text
from a closed set of candidates. Authorship verifi-
cation solves the more general one-class problem
of whether two texts were produced by the same
process. In simple terms, attribution asks: “Who
among these candidates is the author?” whereas
verification asks: “Do these two writing samples
look similar enough?”

Authorship attribution with few (< 20) candidate
authors is typically highly effective, even if only
short writing samples are available and classical
machine learning techniques are applied. However,
with growing numbers of candidates, authorship
attribution deteriorates into a “needle in a haystack”
situation, as Koppel et al. (2009) call it. Yet, with
certain modifications (e.g., if the classifier can “opt
out” of deciding; see Koppel et al. (2006)), it can
be scaled up to several thousand candidates.

By contrast, authorship verification seeks to clar-
ify unknown authorship by comparing disputed
documents only to text samples from a single
known author, ignoring the indeterminate negatives.
Verification thus poses a more difficult one-class
classification problem. Its most salient character-
istic is that the negative class (all human texts not
written by the known author) cannot feasibly be
collected into a representative sample. However,
typically more data and—very importantly—more
attention to the quality and composition of the text
samples are required to avoid over-optimistic re-
sults (Bevendorff et al., 2019b).

3.3 Conclusion: LLM Detection Cannot be
Addressed by Attribution

Attribution, so far, appears to work well for LLM
detection, since (at the time of writing) LLM-
generated text often lies far outside the distribution
of any typical human text. It therefore seems suf-



ficient to compile a corpus with samples for the
two classes (Human, LLM) and train a basic clas-
sifier. With advancing LLM technology, however,
accurate modeling of the human majority class will
become increasingly difficult, as explained below.

Consider a situation in which a disputed text
could have been written by either of two candi-
dates, a human author A or a (hypothetical) per-
fectly human-like LLM. Regardless of the LLM’s
human-like capabilities, we can realistically tackle
this two-class problem using state-of-the-art author-
ship attribution technology. Consider further a text
from a third (human) author B, B ̸= A. With the
classifier trained to distinguish A from the LLM,
B would always be incorrectly assigned to either A
or the LLM; yet, as long as any text B is classified
as A, this solves the LLM recognition task, but not
if B is classified as LLM. To address this error, one
has to narrow the hypersurface around the LLM
class to exclude B. This can be achieved by build-
ing a new corpus with samples from A, B, and the
LLM, and reiterating the issue now as a three-class
attribution problem.

This strategy does not scale: The number of
human candidates classified as LLM will asymptot-
ically approach the rest of humanity; the increasing
number of LLM variants exacerbates the problem.
Not immediately obvious, however, is that this scal-
ing strategy is actually being pursued in the current
research: In an attempt to capture the diversity
of human and machine writing styles, ever larger
corpora are compiled, hoping to obtain a compre-
hensive gold standard for binary LLM attribution.
But, the larger the compiled corpora, the more the
similarity of styles between human individuals will
decrease (due to the increasing number of authors)
and the more the similarity of styles between hu-
mans and LLMs will increase (due to technological
progress). The learnable discriminatory power can
hence only decrease with the corpus size. We can
observe some of this already today, as small text do-
main shifts (Wang et al., 2024e; Dugan et al., 2024a,
2025), trivial paraphrasing attacks (Rodriguez et al.,
2022; Krishna et al., 2023; Sadasivan et al., 2023;
Shi et al., 2024), or just newer LLMs (Elkhatat
et al., 2023; Pudasaini et al., 2025) immediately
translate into classification errors.

Reliable cross-domain authorship attribution and
verification has been a long-standing research issue
(Kestemont et al., 2012). As newer LLMs produce
fewer pathological language artifacts, LLM detec-
tion will face the same problem. This, too, can

already be observed with OpenAI’s latest o1 model,
as we show in the following sections.

4 Properties of LLM Text

We know that LLM attribution is considered (rel-
atively) effective today, so we use this section to
illustrate how texts from LLMs and humans differ
at the surface level. We highlight certain proper-
ties of recent models that render them increasingly
human-like. These observations align with our the-
ory from the previous section that LLM detection is
becoming an authorship verification task. However,
more research will be necessary to compile further
evidence in support of our hypothesis.

4.1 Datasets and Preprocessing

We use the following six popular and publicly
available LLM detection datasets for this analy-
sis: PAN’24 (Bevendorff et al., 2024a), Human
Detectors (HD) (Russell et al., 2025), Ghost-
buster (GB) (Verma et al., 2024), RAID (Dugan
et al., 2024a), MAGE (Li et al., 2024), and
M4 (Wang et al., 2024e). See Appendix E for
dataset statistics. The first three are smaller and
genre-controlled with texts from only one or two
domains (news, essays). The latter three are much
larger and contain many different genres. M4
and RAID would allow building individual subsets
which are also genre-controlled, but we decided to
use them as a whole (which is more in line with
how a typical leaderboard would be evaluated).

Most datasets contain at least GPT-3.x, GPT-4,
Llama2, and Mistral texts. For better coverage of
newer models, we extended the PAN’24 dataset
with texts from GPT-4o, 4o-mini, and OpenAI o1
(using the original prompting method).

To reduce the number of confounders, we pre-
processed all datasets and removed extremely short
texts, texts with adversarial attacks (obfuscations),
and low-quality texts generated by older models
(e.g., GPT-2 and Alpaca). Many texts in M4 still
contained the prompts (BLOOMz texts were 50 %
prompt), which we removed heuristically. We also
dropped the “peer review” genre, due to its incon-
sistent schema and many short texts.

4.2 Observations

Based on these datasets, we made the following
three key observations.

Obs. 1: LLMs Use Complex Language It has
been shown that LLMs tend to use longer sen-
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Figure 1: Mean character 3-gram entropy over increasing text length with 95 % confidence intervals. Shown are
texts from the (a) PAN’24, (b) RAID, and (c) M4 datasets. Curves diverge after around 2,500–4,000 characters.
LLM entropy is consistently lower than human entropy, except for GPT-4o, OpenAI o1, and BLOOMz-176b.
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Figure 2: Mean human character 3-gram entropy on all
datasets. PAN, HD, and GB (Reuters) are very similar,
whereas student essays are much lower. M4, MAGE,
and RAID with mixed genres are in between.

tences (Su et al., 2023b) and lexically and struc-
turally more complex language (Guo et al., 2023;
Su and Wu, 2024), or overuse certain terms such
as “commendable,” “innovative,” or “meticulous”
(Liang et al., 2024; Gray, 2024).

We confirm these findings by measuring the
mean Flesch reading ease scores. On PAN’24 and
GB, we indeed find significantly lower readability
scores for LLM texts with (very) large effect sizes
(Cohen’s d ≫ .8) for almost all models. Some
GPT-3 prompts in GB have effect sizes of more
than three standard deviations (t(1,610) = 78.3,
p < .001, d = 3.9). Differences in the large
datasets (M4, RAID, MAGE) are significant, but
with negligible effect sizes, likely due to the genre
mix. HD has problems with per-LLM sample sizes
but shows an effect for at least some models.

The average word length in human texts across
all datasets is 5.1±0.1 characters, which matches
the expected value for English (Wolfram|Alpha,
2025). Words in LLM texts are significantly longer
(≥ 5.4) in PAN’24, HD, and GB. The most extreme

example is GB with 6.1 characters (t(1,610) =
82.5, p < .001, d = 4.11). On these datasets,
word length alone would yield remarkable detec-
tion accuracy (a finding we have not seen men-
tioned clearly in the literature yet). Effect sizes
in the mixed-genre datasets are again negligible.
RAID and MAGE also have shorter words for both
classes (4.8±0.1 for humans, 5.0 for LLMs).

While the text lengths are genre-dependent, we
observe that human texts generally have a long-
tailed distribution (see Appendix F). LLMs, on
the other hand, have narrow stopping windows, the
only exception being o1 in PAN’24. RAID has by
far the shortest texts in both classes.

Obs. 2: LLMs are Low-entropy Writers De-
spite LLMs using longer words and sentences,
their lexical diversity remains lower than standard
human text. In most datasets, the mean human
type-token diversity, as measured by the length-
invariant MTLD measure (McCarthy and Jarvis,
2010), is significantly above that of any of the mod-
els. The absolute means are genre-dependent (e.g.,
the mean human MTLD of the student essays in the
GB dataset is lower than that of the news articles
from PAN), but in either case, the corresponding
LLM texts are below that. Only the newest models
(GPT-4, 4o, and o1) have MTLD values above that
of humans, some even by a large margin (o1 in
PAN: t(1,964) = 50.3, p < .001, d = 2.27). That
does not mean other LLMs could not also produce
richer vocabulary. Some prompts in the GB dataset
also enabled GPT-3.5 to increase its vocabulary be-
yond the human texts. Given the minor variations
between the prompts (from our understanding of



the dataset’s source code), this is surprising, but
LLMs being able to adjust aspects of their style
has been described before (Malik et al., 2024). Of
course, at the other end of the quality spectrum,
LLMs may boost their vocabulary richness also
by producing a large amount of random gibberish,
which we will discuss in more detail later.

To analyze LLM text diversity further, we calcu-
lated the Shannon entropy of the character 3-gram
distributions at increasing length cutoffs. Charac-
ter n-grams are a robust feature frequently used in
classical computational authorship analysis (Sta-
matatos, 2013). By ergodicity of Heaps’ law, the
mean entropy distribution should have finite vari-
ance and follow a monotonic curve with language-
dependent parameters bounded from above by
− log 1

n−2 for any texts of length n ∈ {3, 4, . . .}.
We grouped texts by model, removed outliers be-
yond the 1.5 × IQR range, and varied the length
cutoff from 700 characters until fewer than 30 texts
were left for each model. Figure 1 shows the curves
from a selection of models from the (extended)
PAN dataset, RAID, and M4.

After about 2,000 characters, we start seeing a
clear separation of the means. The entropy scores
differ primarily by family (Mistral scores higher
than Llama2, GPT scores higher than Mistral)
and within families by parameter count (Llama2-
70b scores higher than Llama2-7b, GPT-4o scores
higher than 4o-mini, etc.). GPT-4o is the first
model to maintain a mean entropy consistent
with human text even beyond 4,000 characters,
which is the maximum length most models cre-
ated. OpenAI o1 is the only model to generate
longer texts (on average 5,000 and up to 19,345
characters) while maintaining a consistently higher-
than-human entropy. The o1 texts from the HD
dataset display the same behavior. Different means
alone are not sufficient for good class separation
but at 4,000–5,000 characters, PaLM2 and the open
source models can be separated (Appendix B). Of
the models tested, BLOOMz-7b produced the short-
est texts and scores by far the lowest. Interestingly,
GPT-4o-mini (said to have around 8 bn parameters)
even outscores Gemini, GPT-3, and GPT-4 (Turbo).

Apart from the newest closed-source models,
LLMs struggle to produce sufficiently many new
words and characters to match the entropy of hu-
man text. Particularly the open source models
appear to reach a high point shortly before their
maximum generation length, after which the curve
slopes down again. This can be explained in two

ways: (1) Some LLMs (especially with quantiza-
tion and poorly chosen sampling parameters) have
a tendency to get stuck in a generation loop, result-
ing in a flat entropy curve towards the end. (2) Over-
all repetitive or looping texts are longer than more
coherent and diverse texts. In sum, this results
in a downward slope of the mean curve for some
models, especially in the RAID dataset, where par-
ticularly the Mistral (non-chat) texts degenerate
profoundly towards the end (see Figure 1b).

Character n-gram entropy alone is a weak dis-
criminator, but it elicits important insights about the
data: (1) it gives an upper bound for the minimum
text length required for separation. (2) It estab-
lishes a baseline for how human text is distributed.
The absolute means, however, are not universal and
depend on the dataset and genre. Figure 2 plots the
mean human entropy for each dataset. HD and PAN
both consist of a smaller number of hand-curated
news articles and high-quality generations thereof.
Their curves are nearly identical. The same applies
to the GB Reuters texts. The GB student essays,
on the other hand, have significantly lower entropy
(which makes sense given the genre) and would
thus be misclassified as machine-generated had we
trained a model on only the curves of news articles.
RAID, M4, and MAGE, which mix a multitude
of different text types and genres, are in between.
Such a regression toward the mean has been a con-
sistent trend for the large datasets in our analyses.

As alluded to above, being more human-like is
not the only strategy for higher entropy. Sampling
strategies play a crucial role here. Above-human
entropy can also be achieved by repetition penalties
or simply by writing nonsensical gibberish, either
due to either unstable logit distributions or a high
temperature setting. We see a bit of both in cer-
tain models. Unlike its smaller sibling, BLOOMz-
176b in M4 (Figure 1c) reproduces several semi-
accurately extracted web pages, LATEX PDFs, or
long strings of nouns or numbers (Appendix C.3).
We find this also for GPT-J and GPT-Neo in MAGE.
Lai et al. (2023) noticed that GPT-Neo had a larger
vocabulary than humans, which would be explained
by this. Mistral texts in RAID with a high repetition
penalty also have high entropy, yet still collapse
toward the end, which hints at output distribution
problems at a deeper level (Appendix C.1).

Obs. 3: LLM Language Variance is Inconsistent
For a deeper understanding of the text distribu-
tions beyond entropy, we ran Koppel and Schler’s
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(2004) authorship unmasking algorithm in the over-
sampling variant for short texts (Bevendorff et al.,
2019c) on the extended PAN’24 dataset. We used
only texts with at least 3,000 characters and to
increase the vocabulary overlap, the texts were low-
ercased and stemmed. We paired texts randomly
as (1) Human / Human (most or all different au-
thors), (2) LLM / LLM, and (3) Human / LLM and
sampled 60 chunks for each pair with replacement.
As features, we chose the relative frequencies of
the 250 (then afterward 500) most-frequent charac-
ter 3-grams in both texts. We then ran 25 iterations,
removing the 4 (resp. 8 for 500 features) most dis-
criminative positive and negative features in each.

In Figure 3, we show the results for four selected
models for 250 and 500 features. We chose Llama2-
70b as representative of a family of (older) open-
source models, GPT-4o and OpenAI o1 as state-of-
the-art, and GPT-3.5 Turbo in between. The graphs
show the curve medians for 200 text pairs (131 for
GPT-3.5) with interquartile ranges.

We compared the results to a simple compression
baseline (Sculley and Brodley, 2006; Halvani et al.,
2017). All LLMs have significantly lower (i.e., bet-
ter) compression-based cosine (CBC) scores when
paired with themselves than any humans paired
with other humans (Bonferroni-corrected p < .001
with effect sizes 0.7 ≤ d ≤ 1.7).

The unmasking curves, however, support high
self-similarity only in the large top-500 3-gram set.
In the top-250 subset, most models are actually
more dissimilar to human texts and even to them-

selves, than two different human authors would
normally be. This inconsistency is pronounced
the most in smaller and older models. Larger and
newer models tend to be more consistent with lower
variance. GPT-4o is the first model with a behavior
consistent with natural human text. OpenAI o1 has
yet lower variance and even higher self-similarity
in the top 250. While this is not sufficient evidence
to conclude that o1 has developed a distinct “style,”
it at least indicates a higher degree of linguistic con-
sistency than in the other models. More curves and
the CBC distributions can be found in Appendix G.

5 LLM Detector Evaluation

We analyze the behavior of three state-of-the-art
detector models: (1) a re-implementation of the
Binoculars (Hans et al., 2024) zero-shot detector,
(2) a set of SVMs trained on 800 TF-IDF word un-
igrams, and (3) a LoRA-fine-tuned Mistral-7B.3

All three were used in the top submissions to
PAN’24 (Lorenz et al., 2024; Tavan and Najafi,
2024). We trained multiple SVMs on several bal-
anced splits of the PAN dataset, each containing
randomly sampled texts from humans and one
LLM family. We tested the models both in-domain,
on identically constructed holdout splits, and out-
of-domain, on mixed random samples from all
datasets (with an equal number of samples from
small and large datasets). We trained two versions
of the Mistral model for binary classification on un-

320M trainable parameters. Trained on 3 A100 for 2×12h.
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Figure 4: (a) FNR and FPR of SVM-based detectors
with TF-IDF features trained on class-balanced samples
of individual model families from the PAN dataset and
tested on mixed samples from all other datasets. FPR
variations within columns are due to different per-model
sample sizes (ranging from 60–8,576). (b) FPR of the
same detectors tested on a PAN holdout set. (d) FPR
of Binoculars on PAN. (d) FNR and FPR of Mistral-7b,
fine-tuned for LLM detection on PAN or RAID.

balanced splits of PAN (976 human, 16,587 LLM)
and RAID (11,740 human, 186,319 LLM).

The false negative rates (FNR) of the SVM LLM-
detector are shown in Figure 4b. As expected, in-
domain detection works best (0–7 % FNR on the
diagonal). False positive rates (FPR, not shown)
are 0–3 % for all models except Gemini (5 %).
Training on GPT-3 and 4(o) texts generalizes to
detecting either. Both can also be detected by de-
tectors trained on other models’ texts, but not vice
versa. Most strikingly, training on o1 texts, we can
detect o1, yet no other detector recognizes it. The
o1 detector generalizes to texts of other models
similarly to the GPT-3 and 4 detectors.

We see a similar picture for the mixed dataset
but at worse detection rates. Detectors trained on
the same model fare slightly better, but o1 is practi-
cally not recognized by any non-o1 detector. FPRs
(Figure 4a) are 10–20 % for all but the o1 detec-
tor, which is less likely to misclassify human text
than any other detector (t(38) = 4.4, p < .001,
d = 2.1). However, the lower FPR translates into a
higher FNR (t(38) = 2.2, p = .034, d = 1.1).

Binoculars manages to keep its FPR close to
zero on all datasets, but suffers in terms of recall
(TPR), especially for GPT-3 and 4 (Figure 4c). The
detection fails completely on the o1 texts at both
operating points (accuracy and low FPR). We tried
a third threshold (“low FNR”) of 0.97, which brings
the FNR down to zero at the cost of a 40 % FPR.

The SVM-based detectors are biased towards the
human class with lower FPR. The Mistral-based
detector seems to work the other way round and
prioritizes a low FNR (Figure 4d). Otherwise, the
results are very similar, which shows that also the
difficult RAID dataset can be learned extremely
well (at least if we remove the shortest and lowest-
quality texts). Training on PAN seems to generalize
better to other datasets than training on RAID, but
the two seem to be incompatible.

6 Discussion

The results from our exploratory data analysis in
Section 4 and model evaluation in Section 5 bring
us to an important debate about the quality and
appropriateness of the data and the conclusions we
can draw from models trained and evaluated on it.

6.1 Detection Needs Sound Benchmarks

We saw in Section 4.2 that there is a non-zero
length limit below which texts are just indistin-
guishable. Yet, RAID, in particular, contains many
extremely short texts. Several machine texts are
only a single character, which cannot be reason-
ably classified. The shortest human text is 71 char-
acters. The shortest paraphrased human text is
“...” (three dots). In total, 3,613 texts are shorter
than 200 characters (46,240 counting obfuscations),
which is a relevant number given a total of 13,371
human texts. We found similar examples in M4 and
MAGE. Moreover, several texts were high-entropy
but low-quality. Such texts may fool detectors but
are at best unpleasant to read.

This questions what these benchmarks actually
measure: Can a 71-character text be uniquely hu-



man? Are automatically paraphrased texts still
human? Do we even need a classifier for bad text
or high-entropy nonsense? The number and diver-
sity of texts in large-scale benchmarks are meant to
make the benchmarks more robust. However, given
the one-class nature of the problem (Section 3), we
argue that benchmarks can never be truly represen-
tative. On the contrary, the uncontrolled variety
and lower quality of examples water down the sta-
tistical power for finding “useful” detectors and
increase the Type-II error rate disproportionately.
A specialized, high-precision GPT-4 news article
detector (which would be of great practical use)
would not fare well. On the other hand, a detector
mastering every aspect of the benchmark may still
not generalize well to unseen genres and authors.

6.2 Evaluation Metrics Need Calibration
Dugan et al. (2024a), the authors of RAID, state
(quite correctly) that maintaining a low FPR for
critical detection tasks may be more desirable than
high accuracy. In the context of LLM detection,
they attribute this paradigm to Krishna et al. (2023)
and Hans et al. (2024). However, the idea is older
than that and forms the core of the well-known
ROC analysis. However, what Dugan et al. (and
any of the detectors today that we know of) failed
to consider, is that a low FPR does not have to come
at the expense of a low accuracy if non-answers
are a valid third option. This third option is used
frequently in authorship analytics. E.g., Koppel
et al. (2006) uses a meta learner to decide when
to answer and Bevendorff et al. (2019c) use SVM
hyperplane distances to calibrate precision thresh-
olds. Peñas and Rodrigo (2011) proposed c@1, an
accuracy metric that considers non-answers.

On the other hand, ROC analysis, as it is used
today in many studies on LLM detection, has only
limited informative value. First, by reducing the
TPR-FPR curve of ROC to a single AUROC num-
ber, the trade-off information of ROC is lost and—
in the absence of a fixed threshold—the metric can
turn into wishful thinking of what could have been.
Second, FPR and TPR are independent of class
prevalence. This aspect of ROC may be desirable.
However, it can also paint an overly optimistic
(sometimes also pessimistic) picture of the evalua-
tion results’ positive or negative predictive values
(i.e., precision of either class) for highly imbal-
anced classes—something we often see in LLM
detection. A precision-recall curve (Appendix A)
would be a suitable tool here, but in either case, a

correct calibration of acceptable FPR / FNR thresh-
olds to the use case at hand is crucial, rather than
blind reliance on averaged measures in which both
are assumed equally important.

6.3 Results Need Interpretation

So where does this leave us in terms of the clas-
sification results from Section 5? Whether an ex-
periment failed or succeeded, comes down to more
than just its accuracy score. None of the detectors
yield perfect results, but some are more useful than
others. Clearly, none of the classifiers learned any-
thing about the “nature of LLMs.” The supervised
classifiers all tried to learn individual aspects of the
datasets but got much lower scores on unfamiliar
test data. However, text genre was not the only
issue. Sufficiently different models, such as o1,
within the same domain also lead to wrong attri-
butions, as unseen LLMs are not necessarily more
similar to their robot colleagues than to human
authors. This is exactly the core of our thought ex-
periment in Section 3.3. To that extent, the Mistral
model is probably the least useful of all, as it (very
poorly) tries to model the human class, leading
to an unnecessarily high FPR. The Falcon-based
Binoculars was the most robust candidate with the
lowest FPR, but it could not identify the output of
the newer OpenAI models. From a pure attribu-
tion standpoint, we might say the model failed to
generalize and misrepresented the negative class.
Yet, we could also conclude quite the opposite: It
worked exactly as intended and is, in fact, an effec-
tive Falcon LLM verifier.

7 Conclusion

In this work, we delineated the parallels between
authorship analytics and LLM detection. We ex-
plicated the two authorship analytics paradigms of
attribution and verification, how they are different,
and how they apply to LLM detection. Through
critical analysis of, and insights from the related
work, and our own experiments, we showed how
LLM detection is often implicitly framed as au-
thorship attribution. Detectors are built under this
paradigm but are evaluated on broad benchmarks
that are in part unsolvable and in part too com-
plex to be approached by means of attribution. We
showed how this modeling approach misses the key
aspect of LLM detection being a one-class problem
and how it fails to scale to better, more diverse, and
linguistically more consistent LLMs already today.



Limitations

A key assumption in our work is that future LLMs
will not be distinguishable by artifacts and will pos-
sess styles that are increasingly more human-like.
This assumption could be wrong, as there are limits
to MLE-based training methods and the availabil-
ity of large-scale training data. It is conceivable
that future LLMs may converge towards a distinct
and predictable “mean style,” which is a kind of
centroid of all human styles but does otherwise
not exist. However, given the increasing variety
of LLM styles already today and the difficulties
of measuring and modeling them precisely, we be-
lieve it is more likely that future LLM styles will
become or at least look increasingly more diverse
and human-like and that LLMs will continue to
learn to imitate existing human styles more per-
fectly. It is also conceivable that humans, being
exposed to LLM-generated writing at an increas-
ing scale, may adopt certain stylistic properties of
LLMs and close a feedback loop where writing
style continues to evolve jointly.

Moreover, we analyzed only a limited number
of datasets and LLM detectors. More experiments
might be needed to further corroborate the practical
implications of our theoretical contribution.

Ethics Statement

LLM detection is a sensitive classification task in
which false accusations (e.g., regarding the aca-
demic integrity of authors), but also failures to de-
tect (e.g., in cases of fraud or disinformation), can
have real consequences for the persons involved or
societal structures as a whole. Previous work has
rightly advised caution regarding the real-world
use of the existing detection technology. Casting
the task as authorship verification instead of attri-
bution does not change that. LLM detection as
authorship verification is a modeling paradigm, not
a solution to inaccurate detection. If anything, the
new framing warrants more caution, not less.
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A ROC vs. Precision-Recall

Following is an example of an ROC curve and a
Precision-Recall curve in direct comparison to fur-
ther illustrate the point made in Section 6.2. The
curves are for an SVM-based detector trained on
a balanced sample of the PAN dataset, which was
evaluated on samples of the HD and GB datasets
at varying levels of class imbalance. With increas-
ing prevalence of negative examples—which is a
more realistic scenario than the reverse situation
we have in many benchmarks—the precision (pos-
itive predictive value) of the detector goes down
substantially, whereas the ROC remains unaffected.
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Figure 5: ROC vs. Precision-Recall at different ratios of
Positives (P) and Negatives (N). While the ROC does
not change, the precision reduces with increasing preva-
lence of negative examples.

B Entropy as Discriminator

Figure 1 in Section 3 shows the mean entropy with
confidence intervals. Following is the spread of the
entropy values at a text length of 4,500 characters
on the PAN dataset.

Hum
an o1

GPT-4o

GPT-4o
-m

ini
GPT-4

Mixtr
al 8

x7b
PaLM

2
Gem

ini

Mistr
al 7

b

Lla
ma2 

70b

9.0
9.2
9.4
9.6
9.8

10.0
10.2

Ch
ar

ac
te

r 3
-g

ra
m

 e
nt

ro
py

 (b
its

) Entropy at 4,500 characters

Figure 6: Entropy as discriminator on the PAN dataset.

C Examples of Low-quality Texts

Here we collect several extreme examples of low-
quality texts found in the large benchmark datasets.
The following sample is neither exhaustive nor rep-
resentative but constitutes a selection of illustrative
examples for certain problems.

C.1 RAID

Author Text
GPT-2 -
GPT-2 (pdf)
GPT-2 [1] [2]
GPT-2 Ingredients
GPT-2 [Read more...]
MPT [Zero-width space]
MPT ...more
MPT "<p id=""eoa"">"
MPT Decccannaswap
Mistral (abstract)
Mistral-Chat "Yes, I have"
Mistral-Chat unknown" />
Mistral-Chat Can Smith succeed in Scottish wonders?
ChatGPT Breastfeeding and HIV
GPT-4 Sorry, but I can’t assist with that. [14×]

Table 1: Examples of short machine texts (without any
attacks / obfuscations).

Author Text
Human ...
Human Let us hear it out:
GPT-2 Sweet Potato with Caviar.
GPT-2 Iop.org/1612.04402
MPT Subreddit rules
MPT XXXIX
Mistral *
Mistral ..
Mistral > >
Mistral (a)
Mistral * * *
Mistral 1985.
Mistral > > > >
Mistral Singing. ’
GPT-3 "Then,"
GPT-3 A chick!
GPT-3 Stephen Crane:
GPT-3 "No, I don’t think so."
GPT-3 Pick not the flowers.

Human pleeeeeeeeeeeeeeeeeeeeeeeeeeee. . . [955 chars]
Human Money Money Money Money Money Money

Money Money. . . [3,019 chars]
Human ***********IIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIII-

IIIIIIIII ***********IIIII. . . [1,611 chars]
multiple AAAAAAAAAAAAAAAAAA. . . [4,080 chars]

Table 2: Examples of short human and machine texts
modified by paraphrase or synonym attacks and low-
quality long texts. The latter are mostly human texts,
but some were reproduced by several models.



C.2 MAGE

Author Text
Human lifts it up to her neck.
Human see a paw’s claw up close.
Human ", the man mows the lawn."
Human kicks the ball into the goal.
GPT-3.5 is using tools as he works.
GPT-3.5 in the blue suit is happy.
GPT-3.5 is doing a clean and jerk.
GPT-3.5 ’s no need for a frisbee

Table 3: Examples of short texts.

C.3 M4

Author Text
Human iframe embed telah tercopy Embed Video
Human "A886 may refer to: Opteron A886 road, Scot-

land"
Human "REPUBLIKA.CO.ID,"
GPT-3.5 ead and good for the waistline too. Enjoy!

Table 4: Examples of short texts.

Text
Enter Gate Area A18/A19/B20/C21/D22/E23/F24/G25/
H26/J27/K28/L29/M30/N31/O32/P33/Q34/R35/S36/T37/
U38/V39/W40/X41/Y42/Z43/AA44/B45/C46/D47/E48/F49/
G50/H51/I52/J53/K54/L55/M56/N57/O58/P59/Q60/R61/
S62/T63/U64/V65/W66/X67/Y68/Z69/AA70/B71/C72/
D73/E74/F75/G76/H77/I78/J79/K80/L81/M82/N83/O84/
P85/Q86/R87/S88/T89/U90/V91/W92/X93/Y94/Z95/AA96/
B97/C98/D99/E100/F101/G102/H103/I104/J105/K106/L107/
M108/N109/O110/P111
Flight attendants may ask passengers to move their seats dur-
ing boarding if they feel uncomfortable due to turbulence....

Ask Santa Claus and/or Mom/Dad for gift cards from stores
such as Target, Walmart, Amazon, Macy’s, Kohl’s, Old Navy,
JCPenny, Hollister, American Eagle Outfitters, Forever 21,
Aeropostale, Hot Topic, Barnes & Noble, Books-A-Million,
Toys R Us, GameStop, BestBuy, Bed Bath & Beyond, Home-
Goods, Dillard’s, NordstromRack, Sears, KMart, JC Pen-
ney, Costco, Sam’s Club, Chapters Indigo, Applebee’s, Pizza
Hut, Starbucks, McDonald’s, Burger King, Wendy’s, Subway,
Domino’s Pizza, Dunkin’ Donuts. . .

It has since expanded to over 100 locations throughout Costa
Rica as well as several other countries including Panama,
Nicaragua, Honduras, Guatemala, Mexico, Spain, France,
Italy, Germany, Austria, Switzerland, Japan, China, Taiwan,
South Korea, United States, Canada, Australia, New Zealand,
England, Ireland, Scotland, Wales, Sweden, Denmark, Nor-
way, Finland, Estonia, Latvia, Lithuania, Czech Republic,
Slovakia, Hungary, Romania, Bulgaria, Ukraine, Russia, Is-
rael, Egypt, Saudi Arabia, Bahrain, Kuwait, Qatar, Oman,
Jordan, Lebanon, Libya, Algeria, Tunisia, Morocco, Senegal,
Ivory Coast, Ghana, Nigeria, Kenya, Tanzania, Zambia, Zim-
babwe.. . .

Table 5: Snippets from high-entropy BLOOMz texts.

D Detector Evaluation

Additional detector evaluation metrics to augment
values in Figure 4 in Section 5.
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E Dataset Statistics

Following are general statistics of the datasets used
in this research. The removed low-quality models
and texts are not included (e.g., the original RAID
dataset has 5.6M texts). MAGE had very many
model labels, but we combined them into four fam-
ilies (GPT-3.5, GPT-3.5 Turbo, GPT-J, GPT-Neo).

Dataset Texts Human Texts LLM # LLMs
PAN 1,359 23,094 15
HD 150 150 5
GB (Essays) 994 6,000 6
GB (Reuters) 1,000 6,000 6

RAID 153,217 2,443,073 6
RAID (no attack) 12,766 202,593 6
M4 59,032 57,253 7
MAGE 152,382 284,224 131*

Table 6: Statistics of the datasets used. (*Combined into
four model families.)
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Figure 10: Text lengths in the extended PAN dataset with original-length, non-downsampled human texts (top).
Word length distribution of the extended PAN dataset (bottom).
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Figure 11: Flesch reading ease scores of the extended PAN dataset (top). MTLD vocabulary richness (bottom).
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Figure 12: Word length distribution on the Human Detectors dataset.
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Figure 13: Flesch reading ease distribution on the Human Detectors dataset.
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Figure 14: MTLD vocabulary richness distribution on the Human Detectors dataset.
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Figure 15: Word length distribution of the RAID dataset.
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Figure 16: Word length distribution of the Ghostbuster dataset (essays).

0.0 %

5.0 %

10.0 %

15.0 % claude
h = 5.1, m = 5.4,

t(1,670) = -29.1, p < .001, d = -1.42

gpt
h = 5.1, m = 5.3,

t(1,649) = -18.4, p < .001, d = -0.9

gpt_prompt1
h = 5.1, m = 5.9,

t(1,650) = -73.4, p < .001, d = -3.61

gpt_prompt2
h = 5.1, m = 6.1,

t(1,650) = -82.6, p < .001, d = -4.06

4 6 8
0.0 %

5.0 %

10.0 %

15.0 % gpt_semantic
h = 5.1, m = 5.8,

t(1,655) = -62.7, p < .001, d = -3.08

4 6 8

gpt_writing
h = 5.1, m = 6.1,

t(1,654) = -86.4, p < .001, d = -4.24

4 6 8 4 6 8

Ghostbuster (Reuters): Mean Word Length (Characters)

Pe
rc

en
t o

f D
at

a

Machine Human

Figure 17: Word length distribution of the Ghostbuster dataset (Reuters).



G Authorship Unmasking and Compression Experiments
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Figure 18: Unmasking curves for 250 and 500 character 3-gram features on the extended PAN’24 dataset.
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Figure 19: Unmasking curves for 250 and 500 character 3-gram features on the Human Detectors dataset. The
curves are less stable than for PAN’24 due to the lower number (n = 15) of text pairs.
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Figure 20: Compression-based cosine (CBC) scores on the extended PAN’24 dataset (lower score means better pair
compression ratio).
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Figure 21: Compression-based cosine (CBC) scores on the Human Detectors dataset (lower score means better pair
compression ratio). The curves are less stable than for PAN’24 due to the lower number (n = 15) of text pairs.
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