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ABSTRACT

Axiomatic approaches to information retrieval have played a key

role in determining basic constraints that characterize good re-

trieval models. Beyond their importance in retrieval theory, ax-

ioms have been operationalized to improve an initial ranking, to

“guide” retrieval, or to explain some model’s rankings. However, re-

cent open-source retrieval frameworks like PyTerrier and Pyserini,

which made it easy to experiment with sparse and dense retrieval

models, have not included any retrieval axiom support so far.

To fill this gap, we propose ir_axioms, an open-source Python

framework that integrates retrieval axioms with common retrieval

frameworks. We include reference implementations for 25 retrieval

axioms, as well as components for preference aggregation, re-

ranking, and evaluation. New axioms can easily be defined by

implementing an abstract data type or by intuitively combining

existing axioms with Python operators or regression. Integration

with PyTerrier and ir_datasets makes standard retrieval models,

corpora, topics, and relevance judgments—including those used at

TREC—immediately accessible for axiomatic experimentation. Our

experiments on the TREC Deep Learning tracks showcase some

potential research questions that ir_axioms can help to address.
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1 INTRODUCTION AND BACKGROUND

In the field of information retrieval, many open-source frameworks

and toolkits are available that provide a convenient way to experi-

ment with all kinds of retrieval models on standard corpora. One

of the early examples is the Terrier platform [29]—open-sourced

in 2004—that supports retrieval and learning-to-rank experiments

onmost of the document collections used at TREC; the recent PyTer-

rier framework [30] builds on it. Also the Lucene-based Java toolkit

Anserini [45, 46] and its Python interface Pyserini [23] were devel-

oped to enable experiments with sparse retrieval models and easy

access to the majority of the data used at TREC. Tightly integrated

with Pyserini, PyGaggle [34] is a toolkit for neural ranking and

question answering (e.g., using BERT-based [12] or T5-based [37]

pairwise and pointwise rankers). Other toolkits and libraries that

implement sparse and dense retrieval include MatchZoo [19], Open-

NIR [26], Capreolus [47], OpenMatch [24], and Tevatron [17].

However, besides the many implemented retrieval models and

evaluation metrics, so far, none of these frameworks, libraries, and

toolkits include components for retrieval axioms. Proposed in the

more theoretical field of axiomatic thinking for information re-

trieval, axioms are constraints that a “good” retrieval model should

fulfill—often in the form of ranking preferences between documents.

Recently, axioms were also practically applied in re-ranking experi-

ments [20], to meta-learn how to combine the scores of different

retrieval models [2], to regularize neural retrieval models [40], or

to analyze and explain rankers [8, 16, 27, 38, 42]. To close the gap of

axiom support in major retrieval toolkits, we develop ir_axioms: a

Python framework to conduct retrieval experiments with axioms.
1

Following the best practices of existing retrieval frameworks and

toolkits, ir_axioms is a modular software that allows to effortlessly

build pipelines and combine axioms using a set of special operators.

Tightly integrated with PyTerrier and ir_datasets [28], ir_axioms

can be used with a wide range of retrieval models, indexers, col-

lections, and evaluation functions. All axioms are implemented as

class objects that can be parameterized (e.g., to change an axiom’s

preconditions). Further axioms can easily be defined by extending

the Axiom class. A KwikSortReranker module helps to implement

axiomatic re-ranking experiments, and the AxiomaticExperiment

module provides functionality for axiomatic analyses. An inter-

esting feature of ir_axioms is to localize document pairs in some

ranking that are incorrectly ordered according to manual relevance

judgments along with the respective axiom preferences. This al-

lows for a deeper analysis and better understanding of a retrieval

model’s incorrect ranking decisions. We demonstrate the function-

ality of ir_axioms on such example use cases in the scenario of the

TREC 2019 and 2020 Deep Learning tracks [10, 11].

1
GitHub: https://github.com/webis-de/ir_axioms/

Python package: https://pypi.org/project/ir_axioms/
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2 AXIOMS FOR INFORMATION RETRIEVAL

Retrieval axioms are basic constraints that a good ranking function

should fulfill. For instance, the axiom TFC1 states that documents

with more query term occurrences should be ranked higher [13].

This constraint obviously can be “wrong” (e.g., if a document with

more occurrences is a near-duplicate of another document already

high in the ranking, a document with fewer occurrences might be

preferable). The term ‘retrieval axiom’ thus needs to be interpreted

a bit different than, for instance, axioms in geometry or probability

theory. Still analyzing how well ranking functions satisfy specific

retrieval axioms has led to improved ranking functions [25]—but

also to the identification of incompatible axiom sets [18].

Table 1 shows a selection of retrieval axioms from the literature.

Making use of term frequency, term discrimination power (e.g., idf),

or term similarity (e.g., WordNet-based), many of these axioms

induce a partial order on documents: a preference 𝑑1 >𝐴 𝑑2 implies

that 𝑑1 should be ranked higher than 𝑑2 according to axiom 𝐴.

More recent studies have tried to integrate axiomatic ideas di-

rectly into the retrieval process: (1) improving an initial retrieval re-

sult via re-ranking according to weighted axiom preferences [6, 20],

(2) using axioms as regularization loss in neural models [40], and

(3) explaining neural rankings [8, 38, 42]. For an easier setup of such

studies, ir_axioms implements 25 axioms and makes them available

for experiments with standard retrieval toolkits.

Table 2 shows the axioms currently implemented in ir_axioms.

Following Hagen et al. [20] and Völske et al. [42], our implemen-

tations try to incorporate an axiom’s formalized idea while also

making it applicable in practical settings. We thus reformulate the

axioms to work for arbitrary queries (e.g., the original TFC1 re-

quires single-term queries), to express pairwise preferences (e.g.,

DIV), etc.
2
Also, we include parameters to relax or strengthen some

pre- and filter conditions (e.g., allowing for some small relative

document length difference in TFC1). For axioms employing term

similarity (REG and STMC1/2), we provide two variants based on

WordNet synsets [32] or on fastText embeddings [4]. Axioms that

cannot be easily reformulated to yield practically usable pairwise

ranking preferences are not included (e.g., TFC2 or LB2).

Most recent among the currently implemented axioms are the

argumentativeness axioms [5, 6] that aim at queries that probably

require more argumentative results (e.g., mercy killing). The ax-

iom ArgUC favors documents with more argument units (premises

and claims), the axioms QTArg and QTPArg favor documents where

the query terms appear closer to the argument units and closer to

the beginning of the document, while the axiom aSLDoc favors

more “readable” documents (average sentence length: 12–20 words).

Finally, we also include the axioms ORIG [20] and ORACLE.

The preferences of ORIG simply follow some original ranking (e.g.,

a ranking returned by BM25 [39] or any other retrieval model).

This enables weighting comparisons of an initial ranking to some

weighted combinations of other axioms. The preferences of ORA-

CLE are intended to follow human judgments if available (e.g., pref-

erences between any documents from different relevance groups

in TREC qrel files). This allows to incorporate “ground-truth” rele-

vance information into experimental axiomatic settings.

2
Complete list of changes to the original axiom formulations: https://github.com/webis-

de/ir_axioms/blob/main/documentation/axioms.md

Table 1: Selected axioms fromprevious studies (intuition, pre-

(in gray) andfilter conditions, concluded ranking preference).

TFC1 [13] “Prefer documents with more query term occurrences.”

Given 𝑞 = {𝑡 } and 𝑑1, 𝑑2 with |𝑑1 | = |𝑑2 |.
If tf (𝑡, 𝑑1) > tf (𝑡, 𝑑2) then 𝑑1 >TFC1

𝑑2

TFC2 [14] “Additional query term occurrences yield smaller retrieval score improvements.”

Given 𝑞 = {𝑡 } and 𝑑1, 𝑑2, 𝑑3 with |𝑑1 | = |𝑑2 | = |𝑑3 | and tf (𝑡, 𝑑1) > 0,

let Δ𝑠𝑖,𝑗 = score(𝑡, 𝑑𝑖 ) − score(𝑡, 𝑑 𝑗 ) .
If tf (𝑡, 𝑑2) − tf (𝑡, 𝑑1) = 1 ∧ tf (𝑡, 𝑑3) − tf (𝑡, 𝑑2) = 1 then Δ𝑠2,1 >TFC2

Δ𝑠3,2

TFC3 [14] “Prefer documents with occurrences of more query terms.”

Given 𝑞 = {𝑡1, 𝑡2 } and 𝑑1, 𝑑2 with |𝑑1 | = |𝑑2 | and idf (𝑡1) = idf (𝑡2) .
If tf (𝑡1, 𝑑2) = tf (𝑡1, 𝑑1) + tf (𝑡2, 𝑑1) ∧

tf (𝑡2, 𝑑2) = 0 ∧ tf (𝑡1, 𝑑1) ≠ 0 ∧ tf (𝑡2, 𝑑1) ≠ 0

then 𝑑1 >TFC3
𝑑2

TDC [14] “Prefer documents with more discriminative query terms.”

Given 𝑞 = {𝑡1, 𝑡2 } and 𝑑1, 𝑑2 with |𝑑1 | = |𝑑2 | , let 𝑑 be some document.

If idf (𝑡1) > idf (𝑡2) ∧ 𝑡1 ∈ 𝑑1 ∧ 𝑡2 ∉ 𝑑1

∧ 𝑡1 ∉ 𝑑2 ∧ 𝑡2 ∈ 𝑑2

then 𝑑 ◦ 𝑑1 >TDC
𝑑 ◦ 𝑑2

LNC1 [14] “Penalize longer documents for non-relevant terms.”

Given 𝑞 and 𝑑1, 𝑑2 , let 𝑡 ∉ 𝑞 and 𝑡′ denote some arbitrary terms.

If tf (𝑡, 𝑑1) + 1 = tf (𝑡, 𝑑2) ∧ ∀𝑡′≠𝑡 tf (𝑡′, 𝑑1) = tf (𝑡′, 𝑑2) then 𝑑1 ≥
LNC1

𝑑2

LNC2 [14] “Do not prefer shorter documents when matched query term ratio is the same.”

Given 𝑞, term 𝑡 ∈ 𝑞, and 𝑑1, 𝑑2 , let 𝑡
′
denote some arbitrary term.

If ∃𝑐>1 ( |𝑑1 | = 𝑐 · |𝑑2 | ∧ tf (𝑡, 𝑑2) > 0 ∧
∀𝑡′ tf (𝑡′, 𝑑1) = 𝑐 · tf (𝑡′, 𝑑2) )

then 𝑑1 ≥
LNC2

𝑑2

TF-LNC [14] “Reward additional query terms more than document length is penalized.”

Given 𝑞 = {𝑡 } and 𝑑1, 𝑑2 .

If tf (𝑡, 𝑑1) > tf (𝑡, 𝑑2) ∧ |𝑑1 | = |𝑑2 | + tf (𝑡, 𝑑1) − tf (𝑡, 𝑑2) then 𝑑1 >TF-LNC
𝑑2

LB1 [25] “Do not override the term presence–absence gap with length normalization.”

Given 𝑡 ∈ 𝑞 and 𝑑1, 𝑑2 with score(𝑞 \ {𝑡 }, 𝑑1) = score(𝑞 \ {𝑡 }, 𝑑2) .
If tf (𝑡, 𝑑1) > 0 ∧ tf (𝑡, 𝑑2) = 0 then 𝑑1 >LB1

𝑑2

LB2 [25] “Repeated query term occurrence is less important than first occurrence.”

Given 𝑞 = {𝑡1, 𝑡2 } and 𝑑1, 𝑑2 with idf (𝑡1) = idf (𝑡2), tf (𝑡2, 𝑑1) = tf (𝑡2, 𝑑2) = 0,

tf (𝑡1, 𝑑1) > 0, tf (𝑡1, 𝑑2) > 0, and let 𝑡 ∈ 𝑑1 and 𝑡′ ∈ 𝑑2 be terms not in 𝑞.

If score(𝑞,𝑑1) = score(𝑞,𝑑2) then 𝑑1 ∪ {𝑡2 } \ {𝑡 } >
LB2

𝑑2 ∪ {𝑡1 } \ {𝑡′ }

REG [48] “Prefer documents covering more different query aspects.”

Given 𝑞 = {𝑡1, 𝑡2, 𝑡3 } and 𝑑1, 𝑑2 with |𝑑1 | = |𝑑2 | , idf (𝑡2) = idf (𝑡3),
sim(𝑡1, 𝑡2) > sim(𝑡1, 𝑡3), and sim(𝑡1, 𝑡2) > sim(𝑡2, 𝑡3) .
If tf (𝑡1, 𝑑1) = tf (𝑡1, 𝑑2) > 0 ∧ tf (𝑡3, 𝑑1) =

tf (𝑡2, 𝑑2) > 0 ∧ tf (𝑡2, 𝑑1) = tf (𝑡3, 𝑑2) = 0

then 𝑑1 >REG
𝑑2

AND [43] “Prefer documents containing all query terms.”

Given 𝑞 = {𝑡1, 𝑡2 } with idf (𝑡1) ≥ idf (𝑡2) .
If tf (𝑡1, 𝑑1) = 1 ∧ tf (𝑡2, 𝑑1) = 1 ∧

tf (𝑡1, 𝑑2) > 1 ∧ tf (𝑡2, 𝑑2) = 0

then 𝑑1 >AND
𝑑2

STMC1 [15] “Prefer documents with terms more similar to query terms.”

Given 𝑞 = {𝑡 }, 𝑑1 = {𝑡1 }, and 𝑑2 = {𝑡2 } with 𝑡 ≠ 𝑡1, 𝑡 ≠ 𝑡2 .

If sim(𝑡, 𝑡1) > sim(𝑡, 𝑡2) then 𝑑1 >STMC1
𝑑2

STMC2 [15] “Do not reward similar terms more than exact matches.”

Given 𝑞 = {𝑡 } and 𝑑1, 𝑑2 with |𝑑1 | = 1, |𝑑2 | = 𝑐 > 0, and term 𝑡′ with sim(𝑡, 𝑡′) > 0.

If tf (𝑡, 𝑑1) = 1 ∧ tf (𝑡′, 𝑑2) = 𝑐 then 𝑑1 ≥
STMC2

𝑑2

PROX1 [20] “Prefer documents with shorter distance between query term pairs.”

Given 𝑞 and 𝑑1, 𝑑2 with 𝑑1 ∩ 𝑞 = 𝑑2 ∩ 𝑞 = 𝑞, let 𝑃 = {(𝑡, 𝑡′) : 𝑡, 𝑡′ ∈ 𝑞, 𝑡 ≠ 𝑡′ } and
let 𝛿 (𝑑, 𝑡, 𝑡′) denote the average number of words between the terms 𝑡 and 𝑡′ in 𝑑 .
If

∑
(𝑡,𝑡′)∈𝑃 𝛿 (𝑑1, 𝑡, 𝑡

′) <
∑

(𝑡,𝑡′)∈𝑃 𝛿 (𝑑2, 𝑡, 𝑡
′) then 𝑑1 >PROX1

𝑑2

PROX2 [20] “Prefer documents with earlier query term occurrences.”

Given 𝑞 and 𝑑1, 𝑑2 with 𝑑1 ∩ 𝑞 = 𝑑2 ∩ 𝑞 = 𝑞, let first(𝑡, 𝑑) denote the position of the first

occurrence of 𝑡 in 𝑑 .

If

∑
𝑡∈𝑞 first(𝑡, 𝑑1) <

∑
𝑡∈𝑞 first(𝑡, 𝑑2) then 𝑑1 >PROX2

𝑑2

PROX3 [20] “Prefer documents where the query occurs earlier as a phrase.”

Given 𝑞 and 𝑑1, 𝑑2 with 𝑑1 ∩ 𝑞 = 𝑑2 ∩ 𝑞 = 𝑞, let 𝜏 (𝑞,𝑑) denote the first position of the

whole query 𝑞 as one phrase in 𝑑 (set to∞ if 𝑞 does not occur as a phrase).

If 𝜏 (𝑑1, 𝑞) < 𝜏 (𝑑2, 𝑞) then 𝑑1 >PROX3
𝑑2

PROX4 [20] “Prefer documents that contain all query terms in a shorter substring.”

Given 𝑞 and 𝑑1, 𝑑2 with 𝑑1 ∩ 𝑞 = 𝑑2 ∩ 𝑞 = 𝑞, let𝜔 (𝑑,𝑞) denote the length of the shortest

substring of 𝑑 that contains all query terms.

If 𝜔 (𝑑1, 𝑞) < 𝜔 (𝑑2, 𝑞) then 𝑑1 >PROX4
𝑑2

PROX5 [20] “Prefer documents where the query terms are closer together on average.”

Given𝑞 and 𝑑1, 𝑑2 with 𝑑1∩𝑞 = 𝑑2∩𝑞 = 𝑞, let 𝑠 (𝑑,𝑞) denote the avg. length of the shortest

substrings of 𝑑 that contain all query terms (average over all occurrences of query terms in 𝑑).

If 𝑠 (𝑑1, 𝑞) < 𝑠 (𝑑2, 𝑞) then 𝑑1 >PROX5
𝑑2

https://github.com/webis-de/ir_axioms/blob/main/documentation/axioms.md
https://github.com/webis-de/ir_axioms/blob/main/documentation/axioms.md


Table 2: The axioms in ir_axioms grouped by their objectives;

the similarity-based axioms (
∗
) are each implemented in two

variants using WordNet synsets or fastText embeddings.

Objective Implemented Axioms

Term frequency TFC1 [13], TFC3 [14], M-TDC [41]

Document length LNC1, TF-LNC [13]

Lower-bounding term freq. LB1 [25]

Query aspects REG
∗
[48], AND [43], DIV [18]

Semantic similarity STMC1
∗
, STMC2

∗
[15]

Term proximity PROX1–PROX5 [20]

Argumentativeness ArgUC, QTArg, QTPArg, aSLDoc [5, 6]

Other ORIG [20], ORACLE

3 THE ir_axioms FRAMEWORK

The ir_axioms framework has a modular architecture. Each axiom

is implemented as a Python class that extends the abstract base

class Axiom. The Axiom class ensures type safety when defining

(new) axioms and is a core element for computing axiom preference

matrices. Each subclass of Axiom models the preference >𝐴 of an

axiom 𝐴 by returning a numeric preference value pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 )
for a pair of documents 𝑑𝑖 , 𝑑 𝑗 given a query 𝑞 as follows:

pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) > 0 ⇔ 𝑑𝑖 >𝐴 𝑑 𝑗 ,

pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) < 0 ⇔ 𝑑𝑖 <𝐴 𝑑 𝑗 ,

pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = 0 ⇔ 𝑑𝑖 ≯𝐴 𝑑 𝑗 ∧ 𝑑𝑖 ≮𝐴 𝑑 𝑗 .

Note that a ‘zero’ preference is returned when an axiom does not

express a preference (e.g., if the axiom’s preconditions are not met).

Each axiom is registered in a central registry of ir_axioms that

provides a convenient way to search for a specific axiom by its

name. The built-in to_axiom() helper and the AutoAxiom class take

care of parsing the name and create an axiom instance that then

can be directly used for axiomatic experimentation.

Since many axioms rely on statistics like term frequencies (e.g.,

TFC1) or document length (e.g., LNC1), we allow an Axiom instance

to directly access a document index and its statistics (cf. Section 3.1).

When an axiom requires access to a document’s content (i.e., text),

ir_axioms offers three ways in the following order of priority until

available: (1) via a TextDocument object, (2) via a document index,

or (3) via an ir_datasets [28] corpus storage. The index structure

and the required document collection are customizable.

3.1 Integration with Existing IR Frameworks

Deriving an axiom’s ranking preferences often relies on document

collection properties captured in an inverted index. Hence, we

expose an IndexContext interface that specifies all requiredmethods

(e.g., tokenization, term frequencies, etc.) to integrate ir_axioms

with Pyserini [23] and PyTerrier [30]. Both Pyserini’s underlying

Lucene index [3] and PyTerrier’s underlying Terrier index [29] can

be directly accessed by axioms through a unified interface.

Architecturally, ir_axioms largely follows PyTerrier and is fully

compatible allowing to directly call PyTerrier functions that imple-

ment retrieval pipelines in Python ranging from sparse retrieval

(e.g., BM25) to learning to rank (e.g., LambdaMART [7]) and to

dense retrieval (e.g., ColBERT [22]) and neural re-ranking (e.g.,

# Linear combination of TFC1 and TFC3.
tfc = TFC1() + (TFC3() * 2)

# Conjunction of the PROX axioms.
prox = PROX1 () & PROX2() & PROX3 () & PROX4() & PROX5()

# Fallback to the ORIG axiom if STMC1 returns 0.
stmc1_orig = STMC1() | ORIG()

Listing 1: Examples of combining multiple axioms using the

‘add’, ‘multiply’, ‘conjunction’, and ‘cascade’ operators.

monoT5 and duoT5 [36]). Through PyTerrier, ir_axioms also has

easy access to a variety of benchmark datasets and pre-built in-

dices from ir_datasets [28]. PyTerrier’s data model uses a pandas

DataFrame [31] to represent a set of documents, or a set of queries,

or the results retrieved for each query, etc. Functions (called trans-

formers in PyTerrier) can be implemented to transform a DataFrame

(e.g., from queries to ranked documents). Special operators can be

used to combine transformers in a pipeline, passing the output from

one transformer to the next.

Since PyTerrier allows to extend transformers by user-defined

transformer classes, in ir_axiomswe include custom axiom-specific

transformers that can directly be used in retrieval pipelines (cf.

Table 3). For instance, a transformation 𝑅 → 𝑅′
means to re-rank a

ranking 𝑅 by applying somemodification, whereas 𝑅 → 𝑅𝑓 denotes

some feature extraction from 𝑅. This way, ir_axioms deeply inte-

grates with PyTerrier’s declarative definitions of retrieval pipelines

and its transparent data model. As a result, axioms can be con-

veniently applied to the rankings produced by any of the many

retrieval models implemented in PyTerrier.

3.2 Schemes to Combine and Weight Axioms

Each retrieval axiom serves as a proxy for a single important con-

straint that a good ranking function should fulfill. Combining dif-

ferent axioms (i.e., their preference decisions) into ensembles then

can be effective [20]. In ir_axioms, configurable axiom groupings

enable such ensembles and can act as axioms themselves, which

can in turn be combined with other axioms. Combination or ma-

nipulation of axioms is governed by arithmetic and logic Python

operators that are overloaded in ir_axioms to allow for declarative

axiom expressions and intuitive experimentation (cf. Table 4). The

examples in Listing 1 show how axioms can be combined. One pos-

sibility is a weighted linear combination of the preference values

using point-wise addition and scalar multiplication:

pref𝐴+𝐵 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) + pref𝐵 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) ,
pref𝑥 ·𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = 𝑥 · pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) .

Besides linear combinations, axioms can also be combined “conjunc-

tively” in various flavors. By using the &-operator or the aggregation

class AndAxiom, a non-zero preference is returned iff all axioms re-

turn the same non-zero preference (all axioms agree). By using the

VoteAxiom class, the conjunctive agreement can be relaxed so that

each axiom “votes” for the preference individually. The majority

vote is returned iff it reaches a specified threshold (passed as an

argument to the VoteAxiom class; e.g., 50% for the absolute majority

as in the second example in Table 5). Hence, AndAxiom is equivalent



Table 3: Axiom-specific transformer classes, their types, and description. Following the PyTerrier transformer notations,

𝑅 denotes ranking and 𝑓 denotes feature extraction.

Transformer Class Type Description

AggregatedPreferences 𝑅 → 𝑅𝑓 Aggregate axiom preferences for each document (cf. Section 4.3.2).

EstimatorKwikSortReranker 𝑅 → 𝑅′
Train estimator for ORACLE, use it to re-rank with KwikSort (cf. Section 4.3.3).

KwikSortReranker 𝑅 → 𝑅′
Re-rank using axiom preferences aggregated by KwikSort (cf. Section 4.3.1).

PreferenceMatrix 𝑅 → (𝑅 × 𝑅)𝑓 Compute an axiom’s preference matrix (cf. Section 4.1).

Table 4: Operators in ir_axioms that allow to combine, modify,

and cache preferences of retrieval axioms.

Op. Name Description

Binary

+ add Add axiom preferences or constants.

- subtract Subtract axiom preferences or constants.

* multiply Multiply axiom preferences by a weight.

/ divide Divide axiom preferences by a weight.

| cascade Fallback if an axiom preference is 0.

& conjunction Return preference if all axioms agree.

% majority Absolute majority vote of involved axioms.

Unary

∼ cache Cache axiom preferences on disk.

- negate Negate axiom preferences.

+ normalize Normalize axiom preferences to (-1, 0, 1).

to VoteAxiom with a required majority of 100%. When an axiom

returns no preference, a cascade axiom can define a fallback:

pref𝐴 |𝐵 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) =
{
pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) if pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) ≠ 0 ,

pref𝐵 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) otherwise .

The last example in Listing 1 uses the ‘cascade’ operator to return

the ORIG preference in case that STMC1 returns a ‘zero’ preference.

Bondarenko et al. [5] proposed three weighting schemes by

which some axiom set may “overrule” an ORIG preference (i.e., the

initial ranking): equal weights, majority voting, and total agreement.

Table 5 shows formulations of these schemes with the combination

operators and aggregation axiom classes of ir_axioms.

The aggregation of axioms in ir_axioms is optimized for ef-

ficiency by early stopping the preference computation in a cas-

cade (CascadeAxiom) or a logical conjunction (AndAxiom). For exam-

ple, if in a conjunction 𝐴1 & . . . &𝐴𝑛 the 𝐴1-preference is 0, then

the conjunctive preference pref𝐴1 & ...&𝐴𝑛
(𝑞, 𝑑𝑖 , 𝑑 𝑗 ) must also be 0,

and the preference computation can be skipped for all other axioms.

3.3 Preference Normalization and Caching

Besides the above binary operators, ir_axioms also includes unary

operators: negation, normalization, and caching (cf. Table 4). Negat-

ing an axiom (unary ‘-’) simply inverts its preferences:

pref
-𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = − pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) .

Table 5: Weighting schemes for a set of axioms 𝐴1, . . . , 𝐴𝑛 to

overrule ORIG; ir_axioms classes and short operator notation.

Scheme Usage examples

Equal weights SumAxiom([𝐴1,. . .,𝐴𝑛,ORIG()])

(𝐴𝑖 as import. as ORIG) 𝐴1 + . . . + 𝐴𝑛 + ORIG()

Majority vote VoteAxiom([𝐴1,. . .,𝐴𝑛], 0.5) | ORIG()

(>50% need to agree) (𝐴1 % . . . % 𝐴𝑛) | ORIG()

Total agreement AndAxiom([𝐴1,. . .,𝐴𝑛]) | ORIG()

(all 𝐴𝑖 need to agree) (𝐴1 & . . . & 𝐴𝑛) | ORIG()

# Normalizing the combined STMC -preferences.
normalized_stmc = +(STMC1 () + STMC2 ())

# Caching the preferences of ArgUC.
cached_arguc = ~ArgUC ()

Listing 2: Normalize and cache axiom preferences.

Since preference values are not restricted (e.g., pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = 42

and pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = 0.815 both express 𝑑𝑖 >𝐴 𝑑 𝑗 ), it can be advis-

able to sometimes re-calibrate them (e.g., after linear combinations).

In ir_axioms, the preference values of any axiom or combination

can be normalized to 1, 0,−1 using the unary ‘+’:

pref+𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) =


1 if pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) > 0 ,

−1 if pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) < 0 ,

0 if pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ) = 0 .

The first example in Listing 2 normalizes an STMC-combination.

A final unary operator ‘∼’ offers some convenience functionality

for experiments in which the same axioms are applied more than

once on similar document sets (e.g., rankings of different retrieval

models for the same query with many overlapping documents). To

avoid re-computing the same axiom preferences over and over in

such scenarios, ir_axioms provides a caching mechanism using the

diskcache library3 to store preferences in an SQLite database. The

second example in Listing 2 caches ArgUC preferences—quite a

costly axiom due to calls of the external TARGER API [9]. But also
other axioms benefit from caching. For example, in our experiments,

enabling caching speeds up the computation of STMC1 preferences

for the top-20 results of runs from the TREC 2020 Deep Learning

track by 52% for the second run file.

3
https://pypi.org/project/diskcache/

https://pypi.org/project/diskcache/


@dataclass
class NewAxiom(Axiom):

name = "NEW"
# Initialization / parameters.

def preference(self , 𝐶index, 𝑞, 𝑑𝑖 , 𝑑 𝑗 ) → float:
# Preference for 𝑑𝑖 and 𝑑 𝑗 , given a query 𝑞.
# 𝐶index is an IndexContext object that allows to
# access the term frequencies in an index.

Listing 3: Defining a new axiom by extending the Axiom class.

3.4 Defining New Axioms

Adding new axioms to ir_axioms is a straightforward task: the ab-

stract base class Axiom can be extended as shown in Listing 3. Assign-

ing a name (optional) registers the new axiom in the ir_axioms reg-

istry and overriding the preference()method ensures that the new

axiom’s preference values pref
NEW

(𝑞, 𝑑𝑖 , 𝑑 𝑗 ) are returned. Python’s
built-in __repr__()method can be implemented to support caching.

A new axiom can also be parameterized—similar to, for instance,

STMC1 that allows to choose the similarity function or the ar-

gumentative axioms that allow to choose the pre-trained TARGER
model. For newly defined axioms, customizability can be achieved

by adding all parameters as class properties and decorating the class

with the @dataclass decorator. This automatically adds a construc-

tor with the required parameters and implements the __repr__()

method for caching preference values. All axioms in ir_axioms are

implemented as data classes.

4 EXPERIMENTS AND USE CASES

We demonstrate the functionality of ir_axioms on three use cases:

(1) post-hoc axiomatic analyses of rankings and judgments from

shared retrieval tasks, (2) example-based analyses of rankings with

respect to axiom violations, and (3) axiomatic result re-ranking

in several variants. For our experiments, we use the setup of the

TREC 2019 and 2020Deep Learning tracks [10, 11]. All (in-)equalities

in the axioms’ pre- and filter conditions are parameterized with a

10% margin so that equality conditions are “softened” to allow for

some slight differences and inequality conditions are “strengthened”

to require differences of at least 10% to express a preference.

4.1 Post-Hoc Axiomatic Analyses

Post-hoc axiomatic analyses of a shared retrieval task could ask

questions like how consistent the relevance judgments and the

submitted rankings are with axiom preferences. Such analyses

are supported by a range of utility functions in ir_axioms. The

AxiomaticExperiment class provides the entry-point to a post-hoc

analysis. Listing 4 shows how an AxiomaticExperiment is instanti-

ated by passing as parameters the rankings (from run files), the

topics, the relevance judgments, an index location, and the axioms

to use; similar to how an Experiment is instantiated in PyTerrier [30].

The preferences member of an AxiomaticExperiment then provides

access to all axiom preferences in a pandas DataFrame.

4.1.1 Axiom Preference Distributions. To calculate the distribution

of axiom preferences for all rankings that were submitted in the

Deep Learning tracks, we use the preference_distributionmethod

experiment = AxiomaticExperiment(
[bm25 , monot5 , ...],
dataset.get_topics (),
dataset.get_qrels(),
index ,
axioms =[ ArgUC(), QTArg(), QTPArg(), ...]

)

# Pairwise axiom preferences.
experiment.preferences

Listing 4: Example of an experiment returning pairwise ax-

iom preferences with retrieval models passed in a list.

from AxiomaticExperiment that returns the distribution of all prefer-

ences in a pandas DataFrame. Analyzing such distributions provides

an overview of which axioms might be interesting in the context

of a shared task. Table 6 shows the absolute numbers of pairs in

the top-10 results of the submitted runs for which an axiom had

no preference or matched / did not match the preference in the

ranking (i.e., ORIG). Interestingly, most axioms express relatively

few preferences (e.g., TFC1 only for 4–13% of the pairs; reason: pre-

condition ensures that the axiom is applied only to documents of

about the same length). Still, when an axiom expresses a preference,

this preference tends to agree with a ranking more often than not

(exception: DIV). In the extreme cases of TFC3 and M-TDC with

hardly any preferences, their restrictive pre- and filter conditions

are the cause (e.g., hardly any query has terms of approximately

equal inverse document frequency). On the other end of the spec-

trum are the axioms REG, DIV, STMC1, PROX1, and PROX2 that

all rather more often express a preference than not.

4.1.2 Consistency of Rankings or Judgments with Axioms. Contra-

dictions between axiom preferences and rankings or relevance

judgments can be identified by calling the preference_consistency

function of the AxiomaticExperiment class. Table 7 shows the con-

sistency of some selected axioms’ positive preferences with the

preferences of the nDCG@10-wise best Deep Learning track runs

from different categories (columns ‘NNLM’ (neural networks with

language models), ‘NN’ (neural networks), and ‘Trad’ (traditional);

categories from the Deep Learning track organizers) and with the

relevance judgments of a task (column ‘Qrel’). From the axiom

groups with the same objectives, we selected the axioms with the

most non-zero preferences in Table 6. In all tasks of the Deep Learn-

ing tracks, the best language model-based neural runs (NNLM) were

more effective than the best neural runs (NN) and the best neural

runs were more effective than the best traditional runs (Trad).

The positive axiom preferences agree with the relevance judg-

ments in 66–81% of the cases on all tasks, while the agreement

with the best runs usually is lower. This hints at some potential for

possible ranking improvements by deeper axiomatic analyses of a

run’s decisions (cf. Section 4.2). For instance, the REG, DIV, STMC1,

PROX1, and PROX2 axioms have substantially higher agreement

with the judgments than with the best runs and they are the axioms

that most often express preferences (cf. Table 6). It thus seems that

further diversifying a run’s top results and matching the query



Table 6: Absolute numbers of how often an axiom had no preference (A = 0) or returned a preference matching (A = ORIG) or

not matching (A ≠ ORIG) the ranking preference of the pairs in the top-10 results of the runs submitted to the TREC 2019

and 2020 Deep Learning tracks (passage and document retrieval; a ranking with 10 results contributes 45 pairs).

Axiom Passage’19 (43 topics, 37 runs) Document’19 (43 topics, 38 runs) Passage’20 (54 topics, 59 runs) Document’20 (45 topics, 64 runs)

𝐴=0 𝐴=ORIG 𝐴≠ORIG 𝐴=0 𝐴=ORIG 𝐴≠ORIG 𝐴=0 𝐴=ORIG 𝐴≠ORIG 𝐴=0 𝐴=ORIG 𝐴≠ORIG

TFC1 52,692 3,681 2,834 60,193 1,250 1,178 104,568 8,582 6,406 104,133 2,633 2,068

TFC3 59,185 16 6 62,621 0 0 119,473 69 14 108,834 0 0

M-TDC 58,963 124 120 62,621 0 0 119,188 204 164 108,824 7 3

LNC1 57,239 1,106 862 61,862 375 384 115,659 2,131 1,766 108,047 440 347

TF-LNC 56,298 1,594 1,315 62,477 54 90 112,730 3,684 3,142 108,555 155 124

LB1 45,773 8,444 4,990 51,826 6,190 4,605 86,437 20,499 12,620 91,574 10,296 6,964

REG (WordNet) 30,935 15,730 12,542 28,784 19,050 14,787 54,445 36,900 28,211 39,629 39,797 29,408

REG (fastText) 7,524 26,587 25,096 4,699 30,458 27,464 22,273 52,659 44,624 9,368 55,644 43,822

AND 46,165 9,076 3,966 44,394 11,669 6,558 93,102 19,119 7,335 79,073 19,137 10,624

DIV 2,528 24,783 31,896 736 28,625 33,260 4,124 47,922 67,510 1,007 48,856 58,971

STMC1 (WordNet) 3,103 29,493 26,611 3,541 30,386 28,694 2,922 61,163 55,471 3,240 53,386 52,208

STMC1 (fastText) 347 31,820 27,040 647 32,585 29,389 674 65,157 53,725 842 56,278 51,714

STMC2 (WordNet) 54,165 2,710 2,332 60,853 894 874 107,298 6,795 5,463 105,022 1,770 2,042

STMC2 (fastText) 51,904 4,081 3,222 59,222 1,749 1,650 104,647 7,760 7,149 102,819 3,176 2,839

PROX1 30,059 17,035 12,113 26,207 21,664 14,750 69,860 28,647 21,049 38,876 41,558 28,400

PROX2 28,401 18,054 12,752 26,070 21,878 14,673 67,369 30,383 21,804 38,751 41,897 28,186

PROX3 56,610 1,675 922 55,565 4,768 2,288 116,254 1,992 1,310 99,443 6,438 2,953

PROX4 43,212 9,591 6,404 34,231 17,440 10,950 94,600 14,678 10,278 46,255 38,273 24,306

PROX5 40,258 10,565 8,384 33,633 17,266 11,722 91,564 15,587 12,405 45,555 37,678 25,601

ArgUC 51,316 4,145 3,746 58,140 2,357 2,124 100,771 9,890 8,895 100,318 4,141 4,375

QTArg 52,538 4,192 2,477 58,674 2,435 1,512 103,448 9,705 6,403 100,512 5,239 3,083

QTPArg 50,710 5,001 3,496 58,428 2,456 1,737 99,778 11,919 7,859 100,434 5,020 3,380

aSL 54,105 2,649 2,453 61,030 860 731 107,544 6,343 5,669 105,638 1,471 1,725

terms or some semantically similar terms earlier in result docu-

ments that contain the query terms closer to each other might be

good ideas to further improve the best runs’ top ranks.

Among the individual axioms, AND has the highest agreement

rates with the Deep Learning track’s best runs and AND, PROX1,

PROX2, and QTArg have the highest agreement rates with the judg-

ments (i.e., matching all query terms close to each other and close to

argumentative units seems to be good). The axiom with the lowest

agreement rates is DIV. Still, also for DIV, the difference between

the agreement with the judgments compared to the agreement with

the best runs is substantial (24–34 percentage points).

Among the runs, the best traditional runs seem to agree more

with most axioms, while the best neural and language model-based

runs are less consistent with the axioms but achieved better effec-

tiveness values at the Deep Learning tracks. This might hint at

gaps in the current axiom categories. The few axioms and axiom

categories studied so far are definitely not covering all aspects of

relevance. The identification of axioms for other angles of relevance

thus is an interesting direction for future work; also concluded ear-

lier by, for instance, Hagen et al. [20], Rennings et al. [38], Câmara

and Hauff [8], and Völske et al. [42] in their studies on axiomatically

improving, diagnosing, or explaining rankings.

4.2 Example-based Analyses of Rankings

Besides general agreement of some system’s rankings with ax-

ioms, also a deeper inspection of particular ranking errors can

be interesting to better understand the underlying decisions. One

could focus such an analysis on pairs where a ranking violates a

particular axiom or where a ranking disagrees with the “ground-

truth” relevance judgments. The inconsistent_pairsmethod of the

AxiomaticExperiment class can be used to identify pairs that a re-

trieval system ranked incorrectly according to the judgments (i.e., a

less relevant document is ranked higher than a more relevant one).

This is not exactly the diagnostic setup of Rennings et al. [38] or

Câmara and Hauff [8] who created artificial datasets for specific

axioms but can be viewed as close to their underlying idea of using

axioms to diagnose some system’s decisions or problems.

Table 8 shows an example pair along with axioms that express

preferences for it. Such a case-by-case analysis could be a starting

point to better understand causes of ranking errors. In the example,

the run’s underlying BERT-basedmodel (type NNLM) also generally

is not that consistent with TFC1, REG, and STMC1 (50–56%; cf.

column ‘NNLM’ for Passage’19 in Table 7). Hence, specifically fine-

tuning the model on pairs where its ranking violates TFC1, REG,

and STMC1 might be an idea for some effectiveness improvement.

4.3 Axiomatic Result Re-Ranking

Nowadays, retrieval pipelines often re-rank the top-𝑘 results of a

baseline model (e.g., BM25) by using learning-to-rank or neural

methods. Also axiom combinations have been applied as re-rankers

to improve the retrieval effectiveness [20].

4.3.1 KwikSort to Aggregate Rankings from Axiom Preferences. In

their axiomatic re-ranking experiments, Hagen et al. [20] used the



Table 7: Consistency (in percent) of some selected axioms’ positive preferences with the preferences in the top-10 results of the

best submitted run based on neural networks (NN) or on neural networks and large languagemodels (NNLM), the best traditional

run (Trad), and the respective non-negative relevance judgments from the TREC 2019 and 2020 Deep Learning tracks (Qrel);

fastText embeddings used for REG and STMC1, each top-10 ranking contributes 45 preference pairs. A non-negative judgment

preference counts as a match for a positive axiom preference (i.e., axiom preferences within a relevance level are acceptable).

The best runs from the respective tasks are: Passage’19: idst_bert_p1 (NNLM), TUW19-p3-f (NN), srchvrs_ps_run3 (Trad);

Document’19: idst_bert_v3 (NNLM), TUW19-d3-re (NN), srchvrs_run1 (Trad); Passage’20: pash_r3 (NNLM), TUW-TK-Sparse

(NN), bl_bcai_mdl1_vt (Trad); Document’20: d_d2q_duo (NNLM), ndrm3-orc-full (NN), bl_bcai_multfld (Trad).

Axiom Passage’19 (43 topics) Document’19 (43 topics) Passage’20 (54 topics) Document’20 (45 topics)

NNLM NN Trad Qrel NNLM NN Trad Qrel NNLM NN Trad Qrel NNLM NN Trad Qrel

TFC1 56 56 57 78 48 54 66 73 60 56 56 69 56 54 52 76

LB1 66 63 73 78 50 49 60 75 71 65 65 72 59 53 62 76

REG 50 54 57 76 51 53 54 74 55 52 54 71 57 57 56 73

AND 68 78 82 81 62 61 66 75 74 79 77 80 64 66 68 76

DIV 45 42 39 73 46 43 44 73 40 42 38 66 44 45 44 71

STMC1 53 55 56 76 54 52 55 70 57 53 55 71 54 53 51 71

PROX1 58 58 57 79 67 60 59 76 61 57 58 76 59 63 62 78

PROX2 58 59 58 80 65 61 61 76 61 58 60 78 59 63 62 79

ArgUC 47 51 57 75 52 46 59 75 53 52 48 71 46 46 41 71

QTArg 55 65 64 81 57 51 75 81 62 53 61 73 69 61 70 78

Table 8: A pair from a ranking of the most effective run that participated in the TREC 2019 Deep Learning passage retrieval task.

A highly relevant document is returned at rank 5, lower than a less relevant document at rank 3. This pair, for instance, violates

TFC1, REG, and STMC1 but is consistent with PROX1, PROX2, and ArgUC; fastText embeddings used for REG and STMC1.

Run: idst_bert_p1 Query: 207786 how are some sharks warm blooded Selected axioms with preferences

Rank Doc. ID rel Content TFC1 REG
∗

STMC1
∗

PROX1 PROX2 ArgUC

3 7941579 1 Great white sharks are some of the only warm blooded. . . ⇓ ⇓ ⇓ ⇑ ⇑ ⇑
5 2763917 2 These sharks can raise their temperature about the. . . ⇑ ⇑ ⇑ ⇓ ⇓ ⇓

KwikSortmethod [1] from the field of computational social choice

to derive a final ranking from axiom preferences. In ir_axioms,

KwikSort is implemented as a PyTerrier transformer operation.

This way, any KwikSort re-ranking can be directly evaluated on

test collections using the PyTerrier Experiment class [30].

Note, however, that a KwikSort-aggregated ranking can con-

tradict individual axiom preferences (e.g., when combining several

axioms’ preferences, they might differ on some document pair).

The axiom combination and weighting schemes implemented in

ir_axioms (cf. Section 3.2) can help to avoid some such situations.

For example, in Listing 5, three axioms are conjunctively combined

to re-rank the top-20 results of BM25 with the ORIG axiom as a fall-

back when the three axioms do not agree. However, some circular

aggregation issues are still possible. For instance, in the example of

Listing 5, the three axioms could favor 𝑑𝑖 over 𝑑 𝑗 and 𝑑 𝑗 over 𝑑𝑘
but may not agree on a preference for 𝑑𝑖 and 𝑑𝑘 for which the fall-

back ORIG might then favor 𝑑𝑘 over 𝑑𝑖 . In such cases, a KwikSort

aggregation will still contradict at least one of the preferences.

4.3.2 Axiom Preferences as Features for Learning to Rank. Besides

directly aggregating rankings from (weighted) pairwise axiom

bm25 = BatchRetrieve(index , "BM25")

# If ArgUC , QTArg , and QTPArg don't agree , use ORIG.
axiom = (ArgUC () & QTArg () & QTPArg ()) | ORIG()

# Re-rank the BM25 top -20 using KwikSort.
kwiksort = bm25 % 20 >> \

KwikSortReranker(axiom , index)

pipeline = kwiksort ^ bm25

Listing 5: Re-ranking BM25 based on axiomatic preferences.

preferences via KwikSort, the preferences could also be interest-

ing features for arbitrary learning-to-rank approaches like Lamb-

daMART [44]. An axiom 𝐴’s preferences for the top-𝑘 results of

some baseline ranker form a 𝑘 × 𝑘 preference matrix 𝑃𝐴 = [𝑝𝑖 𝑗 ] ∈
R𝑘×𝑘 with 𝑝𝑖 𝑗 = pref𝐴 (𝑞, 𝑑𝑖 , 𝑑 𝑗 ). To create a characteristic prefer-

ence feature for each document 𝑑𝑖 in a to-be-re-ranked top-𝑘 result

list, ir_axioms allows to combine the preferences for 𝑑𝑖 (i.e., the

entries from the 𝑖-th matrix row) using simple functions like the



bm25 = BatchRetrieve(index , "BM25")

# Aggregate ArgUC , QTArg , etc. by mean/median.
axioms = [ArgUC(), QTArg(), ...]
aggs = [mean , median]
# Compute features for top -10 results.
features = bm25 % 10 >> \

AggregatedAxiomaticPreferences(axioms , index , aggs)

# Train LambdaMART re-ranker.
lmart = LGBMRanker(objective="lambdarank")
ltr = features >> apply_learned_model(lmart , "ltr")
ltr.fit(train_topics , train_qrels ,

dev_topics , dev_qrels)

pipeline = ltr ^ bm25

Listing 6: Re-ranking BM25 with LambdaMART using mean-

and median-aggregated axiom preferences as features.

median or the arithmetic mean:

𝑓mean (𝑑𝑖 ) =
∑𝑘

𝑗=1
𝑝𝑖 𝑗

𝑘
.

In a feature vector, aggregated preferences from multiple axioms

and/or multiple aggregation functions can be combined.

In ir_axioms, the aggregation of preferences to learning-to-rank

features is implemented as a PyTerrier transformer operator. List-

ing 6 shows an example in which a LambdaMART re-ranker is

trained on mean- and median-aggregated axiom preferences as fea-

tures to re-rank the top-10 results of BM25.

4.3.3 Re-Ranking by Estimating the ORACLE Axiom. The ORACLE

axiom represents the ranking preferences implicitly stated in the

human relevance judgments of a shared retrieval task. Formally, if

rel(𝑞, 𝑑𝑖 ) > rel(𝑞, 𝑑 𝑗 ) then 𝑑𝑖 >ORACLE 𝑑 𝑗 ; informally, documents

with better relevance judgments should be preferred. Re-ranking

a baseline’s top-𝑘 results using KwikSort on the ORACLE pref-

erences would yield a perfect ranking of the 𝑘 documents (but

not necessarily an overall perfect ranking since the top-𝑘 might

miss some highly relevant documents). However, in practical sce-

narios without relevance judgments, ORACLE preferences are not

available. Still, the ORACLE preferences from shared tasks and test

collections could be used to train an estimator for unseen document

pairs by combining the preferences of other axioms [20].

In ir_axioms, a special class EstimatorAxiom is implemented that

can be used to predict an arbitrary target axiom’s preferences via a

classification or regression method from scikit-learn [35] with the

preferences of a pre-defined set of other axioms as features. During

training, the target axiom preferences need to be available (e.g.,

judgments for some test collections in case of the ORACLE ax-

iom) but in the later estimation phase for unseen pairs, only the

preferences of the other axioms are needed as input to the esti-

mator. On the estimated preferences, KwikSort can be run to

generate a final ranking. Listing 7 shows an example using the

EstimatorKwikSortRanker that combines ORACLE estimation and

KwikSort re-ranking in a single PyTerrier module.

4.3.4 Axiomatic Re-Ranking Experiments on MS MARCO. To eval-

uate axiomatic re-ranking with ir_axioms, we conduct experiments

bm25 = BatchRetrieve(index , "BM25")

# Estimate ORACLE based on ArgUC , QTArg , etc.
axioms = [ArgUC(), QTArg(), ...]
rf = RandomForestClassifier ()

# Train Random Forest classifier on top -20 results.
kwiksort_rf = bm25 % 20 >> \

EstimatorKwikSortReranker(axioms , rf, index)
kwiksort_rf.fit(train_topics , train_qrels)

pipeline = kwiksort_rf ^ bm25

Listing 7: Re-ranking BM25 using KwikSort aggregation on

a trained estimator for the ORACLE preferences.

on the MS MARCO passage retrieval dataset [33] using the rele-

vance judgments from the TREC 2019 Deep Learning track [11] for

training and the ones from the TREC 2020 Deep Learning track [10]

for testing. In the experiments, we re-rank the top-20 BM25 re-

sults using three different strategies: (1) KwikSort with all ax-

ioms, (2) KwikSort on an estimated ORACLE axiom, and (3) Lamb-

daMART with preferences from all axioms as features.

For the first KwikSort re-ranker, all 25 axioms (cf. Table 2) are

combined in an absolute majority voting scheme with a fallback

option to the ORIG axiom (like in the second example in Table 5). In

the second KwikSort re-ranker, the ORACLE axiom’s preferences

are estimated by a random forest classifier that uses all 25 axioms

as features (training on the TREC 2019 Deep Learning track for

100 iterations, tree depth set to 3).

For the LambdaMART re-ranker, we aggregate the preferences of

each axiom𝐴 for each document using three aggregation functions:

𝑓
hi
(𝑑𝑖 ) =

��{𝑑 𝑗 : 𝑑𝑖 ≥𝐴 𝑑 𝑗 , 𝑗 = 1, . . . , 𝑘}
��

𝑘
,

𝑓
lo
(𝑑𝑖 ) =

��{𝑑 𝑗 : 𝑑𝑖 ≤𝐴 𝑑 𝑗 , 𝑗 = 1, . . . , 𝑘}
��

𝑘
,

𝑓eq (𝑑𝑖 ) =
��{𝑑 𝑗 : 𝑑𝑖 =𝐴 𝑑 𝑗 , 𝑗 = 1, . . . , 𝑘}

��
𝑘

.

These features represent the number of documents above or below

which 𝑑𝑖 could be ranked according to𝐴, and how often𝐴 does not

express a preference. The LambdaMART re-ranker is trained on

the topics of the TREC 2019 Deep Learning track for 1000 iterations

(no tuning of the LambdaMART parameters, though).

Table 9 shows the retrieval effectiveness of the baseline and

the re-rankers as measured by normalized discounted cumulative

gain (nDCG) [21] that was also used at the TREC 2020 Deep Learn-

ing track. Since KwikSort and LambdaMART are not deterministic,

we let the re-rankers each create 10 rankings per query and apply

5-fold cross-validation to obtain average evaluation results.

Our basic experiments are meant to demonstrate the functional-

ity of ir_axioms (i.e., no parameter tuning, etc.). Still, the results of

the KwikSort-RF and LambdaMART re-rankers show the poten-

tial of axiom preferences for retrieval effectiveness improvements—

none of the differences are statistically significant, though. Using

aggregated axiom preferences as learning-to-rank features and com-

bining them with other common features could be an interesting



Table 9: Retrieval effectiveness on the TREC 2020 Deep Learn-

ing track (passage retrieval task) when re-ranking the top-20

passages of BM25 with the three axiomatic re-ranking strate-

gies: (1) KwikSort with majority voting (KwikSort-MV),

(2) KwikSort with a random forest estimator for the OR-

ACLE axiom (KwikSort-RF), and (3) LambdaMART with

axiom preference features.

(Re-)Ranker nDCG@5 nDCG@10

BM25 (init. rank.) 0.497 0.494

KwikSort-MV 0.496 0.492

KwikSort-RF 0.516 0.498

LambdaMART 0.517 0.498

direction for further axiomatic experiments. Additionally, formu-

lating new axioms that capture different angles of relevance also

seems to be a very promising direction. With ir_axioms at their

fingertips, researchers working on any of these topics can now

simply focus on expressing their respective axiomatic ideas and

then rely on the framework for conducting their experiments.

5 CONCLUSIONS AND FUTUREWORK

With the open-source framework ir_axioms, we provide tools to

experiment with retrieval axioms—basic constraints that are meant

to characterize good ranking functions. Implementations of 25 com-

monly used and well-understood retrieval axioms provide a good

starting point to experiment with axiomatic re-ranking and eval-

uation. Since ir_axioms is tightly integrated with PyTerrier, it can

be combined with a wide range of retrieval models, test collec-

tions, and evaluation functions. This makes it easy to incorporate

axiomatic approaches into state-of-the-art retrieval pipelines.

Our use cases show the potential of conducting axiomatic re-

trieval experiments with ir_axioms in a declarative, easy-to-under-

stand way. Further use cases could be to actually reproduce some

of the results of recent axiomatic studies like the re-ranking ex-

periments of Hagen et al. [20] and Bondarenko et al. [6], the meta-

learning experiments of Arora and Yates [2], the regularization

experiments of Rosset et al. [40], or the diagnosis and explanation

experiments of Rennings et al. [38], Câmara and Hauff [8], Formal

et al. [16], Völske et al. [42], and MacAvaney et al. [27]. However,

so far, not all of these experiments are supported in ir_axioms (ex-

ception: re-ranking). Still, other types of experiments can further

be added to ir_axioms, and we gratefully accept contributions.
4

Previous studies and also our experiments indicate that the cur-

rent axioms are somewhat limited in their expressiveness. Axiomati-

cally capturing further angles of relevance is an interesting direction

for future work. Similar to new experiments, also new axioms can

be directly added to ir_axioms. On the technical side, we plan to add

parallelization to speed up axiomatic analyses (e.g., for computing

axiom preference matrices), and we plan to simplify axiomatic con-

sistency checks at various points in multi-stage retrieval pipelines.

4
GitHub: https://github.com/webis-de/ir_axioms/

Python package: https://pypi.org/project/ir_axioms/
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