
Learning Overlap Optimization for
Domain Decomposition Methods

Steven Burrows1, Jörg Frochte2, Michael Völske1,
Ana Belén Mart́ınez Torres2, and Benno Stein1

1 Web Technology and Information Systems,
Bauhaus-Universität Weimar, 99421 Weimar, Germany,

{steven.burrows|michael.voelske|benno.stein}@uni-weimar.de
2 Electrical Engineering and Computer Science,

Bochum University of Applied Science, 42579 Bochum, Germany,
{joerg.frochte|ana.martinez}@hs-bochum.de

Abstract. The finite element method is a numerical simulation tech-
nique for solving partial differential equations. Domain decomposition
provides a means for parallelizing the expensive simulation with modern
computing architecture. Choosing the sub-domains for domain decom-
position is a non-trivial task, and in this paper we show how this can
be addressed with machine learning. Our method starts with a base-
line decomposition, from which we learn tailored sub-domain overlaps
from localized neighborhoods. An evaluation of 527 partial differential
equations shows that our learned solutions improve the baseline decom-
position with high consistency and by a statistically significant margin.

Keywords: domain decomposition, numerical simulation

1 Introduction

Numerical simulation in product development has become a standard. It is used
in various applications such as semiconductor manufacturing [2], crash-test sim-
ulation [8], and fluidic system design [11]. Numerical simulation can also be sup-
ported by machine learning for the purpose of approximating solutions [14]. In
this setting, a margin of error is tolerated in return for predictions from learned
models that bypass on-the-fly simulation.

A key challenge in numerical simulation concerns the efficiency and stabil-
ity of parameterized numerical simulation methods. These methods are often
difficult to deploy for end-users. As a result, the most robust and parameter-
independent methods (such as direct solvers for linear systems) are often pre-
ferred over the most efficient and parameter-dependent methods (such as do-
main decomposition and iterative solvers) in many engineering contexts. Our
key idea is that the parameters in this latter group (for example, the overlaps
of sub-domains when simulating partial differential equations) can be learned to
converge the ease of use towards the parameter-independent methods. A conse-
quential benefit is that the efficiency of the learned solutions can be increased.

(0,0)

(1,1)

(1,0)

(0,1)

}

Ω1 ...Ω2

Ω36...

P3

P1

P2P4 Ω21

Pn

∆Pn

Unit square

Neighborhood

Polygonal edge
extension

Polygonal edge

Subdomain with
modified boundary

Initial partition

Modified material

(0,0)

(1,1)

(1,0)

(0,1)

Ω3

Ω1 Ω2

Ω4

Ω1∩Ω3

Ω
3∩

Ω
4

Ω
1∩

Ω
2

Ω2∩Ω4

(a) (b)

Fig. 1. (a) Our strategy for implementing a learnable domain decomposition problem.
(b) A smaller problem showing overlaps (e.g., Ω1 ∩Ω2) and boundaries (e.g., ∂Ω1).

Parallelizing the simulation of models using domain decomposition in natural
and engineering sciences is based on partial differential equations on a given
domain. The approach requires the decomposition of a domain Ω ⊂ Rm, m ∈
{1, 2, 3}, into some number of sub-domains Ωi, i = 1..n ∈ N. For overlapping
domain decomposition methods, the size of the sub-domain overlaps influence
the stability and computational cost of the approach. Finding a near-optimal
choice of parameters for optimizing the overlaps is an open problem. In many
applications it is chosen with human intuition and experience using only a global
setting. In this paper, we demonstrate that when using machine learning we can
automate the choice of these parameters with local settings.

Our approach is to improve the efficiency of a default checkerboard sub-
domain pattern such as the example shown in Figure 1a. Here, we consider the
properties of the boundaries of each sub-domain as features. When dealing in
two dimensions, each sub-domain Ωi contains interesting relationships with the
adjacent sub-domains {Ωi, i = 1..36 | ∂Ω21∩Ωi 6= ∅} that we may capture. This
is represented in Figure 1a as the red neighborhood of nine sub-domains. In this
example, a modified material setting passes through most of sub-domain Ω21,
and we should extend some of the sub-domain boundaries such that this material
boundary is not too close to the initial partition. So for example, area bound-
ary P4 has been extended by some amount ∆P4 so that the modified western
sub-domain boundary is not too close to the material boundary.

For the purposes of machine learning, we are interested to learn the relative
computational costs of the neighborhoods and then combine this knowledge to
reduce the computational costs of the whole domain. To do this, the numerical
simulation of the domain is computed for several variations of the neighbor-
hood, and the relative improvement or degradation of the computational cost
is recorded. So in the case of Figure 1a, we have 36 neighborhoods to consider
including some interesting cases around the perimeter. The neighborhood fea-
tures that we wish to capture include material regions that cross sub-domain

boundaries or have close proximity to these boundaries. Therefore the mapping
between these features and the computational cost can be cast as a regression
problem, and we wish to learn solutions that reduce the cost.

Our contributions in this paper are summarized as follows: (1) We propose
a machine learning approach for automating and optimizing the overlap con-
struction for domain decomposition methods. (2) We create a unique problem
set of interest to both novice and expert users. (3) We develop and apply a novel
taxonomy of the feature space in our problem setting. (4) We devise a machine
learning framework for overlap optimization including a training corpus and an
appropriate performance measure.

The remainder of this paper is organized as follows. In Section 2 we provide
the necessary background on partial differential equations and domain decom-
position. In Section 3 we give the details of our methodology including data and
the evaluation measure. In Section 4 we compare the results of our method to
an expert human baseline. Finally in Section 5 we offer concluding remarks.

2 Solving PDEs using Domain Decomposition

Numerical methods for solving any partial differential equation (PDE) [3] tend
to involve a huge number of unknowns, especially in three dimensions. The power
of a single computer is often no longer sufficient to solve the resulting equations.
In this case, parallel computing with domain decomposition is one of the most
successful strategies to solve these equations efficiently [10, 12].

A PDE-based model consists of four components: the equations, the related
parameter sets (or material properties), the domain these equations are solved
on, and the boundary values given for the domain. The goal of domain decompo-
sition is to split the domain into smaller sub-domains and iterate to coordinate
the merging of the solution between these sub-domains.

Schwarz and other domain decomposition methods have overlapping and non-
overlapping variants for solving boundary-value problems [10, 12]. If a domain de-
composition method is overlapping, then some portion of each problem is solved
redundantly. Conversely if a domain decomposition method is non-overlapping,
then the sub-domain boundaries are only touching. Most overlapping methods
are categorized as additive or multiplicative, concerning the transfer data from
one sub-domain to another. Additive methods have better properties concerning
parallelization than multiplicative ones.

The overlapping additive Schwarz method, as utilized in this paper, is a
simple and robust approach for applying domain decomposition. With sufficient
overlap as demonstrated in Figure 1b, it can be applied to nearly every PDE. A
disadvantage of this method is its slow convergence. For example, faster but more
complicated non-overlapping methods such as FETI approaches [12] exist for
some structural mechanic problems. These approaches can work without overlaps
on the application domains, but they are less robust. They are not suitable, for
example, for many fluid mechanic problems where overlapping Schwarz methods
are also applicable. Nevertheless, all overlapping domain decomposition methods

share the same basic demands and requirements that we want to solve in this
paper, so our results are broadly applicable.

The parameters of domain decomposition are the positions of the introduced
artificial boundaries and thus the size of the overlap. This means that the effi-
ciency of domain decomposition is highly parameter-dependent since each new
sub-domain creates artificial boundaries. An artificial boundary introduces er-
rors arising from the domain decomposition procedure, which in turn leads to
more iterations. The numerical effect of an artificial boundary diminishes when
moving from the boundary to the inner part of a sub-domain. Thus, a bigger
overlap leads to more information exchange between the sub-domains and there-
fore to artificial boundary conditions that are more closely related to the solution
of the PDE, which leads to faster and more stable convergence. Beyond this, it
is known that jumps in the material parameters influence convergence behavior
if they occur next to the artificial boundaries.

In summary, a bigger overlap will decrease the number of iterations, however
this will increase the size of the sub-domains and the computational overhead of
the domain decomposition approach. This is a critical trade-off that influences
the division of Ω into sub-domains. Beyond this trade-off, the number of compu-
tation units must be kept in mind when applying parallelization technology. For
a computing cluster with m units, at least m sub-domains are desired, otherwise
domain decomposition is not used to its fullest potential. However, we are less
interested in obeying this technical constraint in this work, as our goal is to
instead evaluate performance with a generalized strategy that is independent of
specific computing infrastructure.

3 Overlap Optimization Learning Approach

In this section, we first describe our general problem specification, and the ap-
proaches for generating the associated data and feature sets. Following this, we
provide the details of our evaluation measure and describe our learning objective
together with the methodology that we deploy.

3.1 Problem Definition

As an example PDE for solving in this paper, we use Poisson’s equation, which
is a prototype of so-called elliptic PDEs of second order, with some Dirichlet
boundary conditions:

−ε(x)∇2u = f(x) on Ω ; u = g(x) on ∂Ω (1)

This equation has application in modeling stationary heat, and we use it as
an example to motivate our work. Consider Ω as the geometry on which we
want so solve the heat equation such as a bar, f(x) ≥ 0 as heat sources, ε(x) as
the material property, and g(x) as known temperatures on the boundary ∂Ω of
the domain Ω. A direct connection of two materials in a model could represent

an ε-jump, and a blending of materials could represent a smoother ε-transition.
We note that Poisson’s equation is a quite simple PDE, but there are additional
applications in Newtonian gravity and electrostatics, which is why we use it in
this paper. The results concerning machine learning and domain decomposition
achieved on this example can easily be transferred to other problems with a
similar behavior, such as stress modeling used in engineering science. However,
there are some models arising in fluid dynamics, for example, that behave dif-
ferently concerning domain decomposition. These are less stable and need more
care concerning parameter fitting. Transferring our approach to these models
might need more work, but there are bigger benefits to gain because it is harder
for humans to fit the model parameters.

For solving PDEs, domain decomposition can be applied to numerical meth-
ods such as spectral methods [5] and finite volumes [13]. We concentrate on the
finite element method (FEM) [3], which is a standard method in most engineer-
ing software solutions. This problem is applied on the unit square using finite
elements with continuous piecewise linear base functions on a regular triangula-
tion, thus in Equation 1 we have Ω = [0, 1]× [0, 1]. Apart from the unit-square
restriction, we only use rectangular partitioning in order to constrain the ini-
tial problem space. Notice that for the unit square with a structured grid, the
checkerboard pattern with equal-size squares is a common and good default
choice for the sub-domains. In this setting, the sub-domains all contain the same
number of unknowns, and they have a good ratio between area and boundary.

3.2 Approach for Generating Diffusion Specifications

Each diffusion specification, or set of material values within the unit square to
solve Poisson’s equation, is a unique problem. This can imply that each problem
must be learned individually and that results cannot carry over between different
diffusion specifications. To address this, we are interested in learning patterns
from neighborhoods of sub-domains as per Figure 1a, so that the knowledge
about common patterns can be reapplied to whole problems. In this respect,
we develop a deterministic algorithm for producing a large dataset of diffusion
specifications for the neighborhood patterns to be learned from.

Our dataset is based on the placement of shapes with different material val-
ues in the domain, whereas in every shape the material value is constant. The
shapes are circles and squares of various sizes that fit within the unit square or
are truncated at the boundary. The shapes are arranged in one of three patterns
with up to four shapes each: The Nested pattern uses a nested arrangement of
shapes where the first shape is the largest and all successive shapes are included
within. The Isolated pattern is comprised of stand-alone shapes without over-
lap or connection. The Sequence pattern uses different shapes arranged from
a start point in a specific straight-line direction that can be just in contact or
overlapping. The patterns, shape positions, and shape sizes are selected with a
pseudo-random number generator with a deterministic sequence and fixed seed
to make the data reproducible. Note also that the last-defined material setting
takes precedence in the case of overlap. In general, one can expect that a skilled

human will often be able to do a better job than machine learning for simple
two-dimensional problems such as the Isolated case. But for more complicated
problems in two dimensions (such as Nested and Sequence problems) and
certainly in three dimensions, which is a typical application area for domain de-
composition, machine learning will be helpful for both novice and expert users.

3.3 Approach for Generating Domain Specifications

Considering any checkerboard organization of sub-domains with uniform overlap,
our goal is to improve on this baseline by learning from various permutations.
Specifically, we can learn from permutations when the boundaries of the sub-
domains are extended, retracted, or left alone in the north, east, south, and west
directions. Since our goal is to learn from individual 9-region neighborhoods by
modifying the boundaries of the central sub-domain, we can apply boundary
modifications to each sub-domain in isolation. For example, when considering
a uniform overlap of 0.4%, we can optionally modify the boundaries by ±0.2%
to create three variations per sub-domain (0.2%, 0.4%, and 0.6%) when the
boundaries are adjusted uniformly therefore creating 3× 16 = 48 combinations
for a 4 × 4 checkerboard. Other combinations are possible, such as adjusting
boundaries in all individual combinations instead of uniformly, but we leave this
for future work.

3.4 Extracting Features from Neighborhoods

In consideration of a 9-region neighborhood as per Figure 1a, we have devel-
oped features that capture interesting changes in the material setting ε around
and within the overlapping region of a pair of sub-domains. Figure 2a provides
an example for a modified sub-domain Ω̂1 and the northern overlapping re-
gion Ω̂1 ∩ Ω2 with Ω2. The example shows nine rows of unknowns surrounding
the boundary ∂northΩ1 and the modified boundary ∂northΩ̂1. In this case the
rows are of key interest but the columns are not, as they capture changes in the
materials that are perpendicular to the overlapping regions, and extending or
shrinking the overlapping region does not affect the measurement.

The features we are interested in come from a single-line or multi-line region
immediately above or below the ∂northΩ̂1 boundary as shown in Figure 2a. The
number of lines in such a region is variable, and for now we simply consider two
lines per region. For example, Figure 2a shows two lines for regions ‘E’ and ‘F’.
In this respect, we propose two feature sets called Fine and Coarse based on
single-line and multi-line features respectively. We also propose a third feature
set called Combined for Fine and Coarse together. For all three feature sets,
we can capture various maximums, minimums, and differences between epsilon
values within the regions of interest. Specifically, we capture (1) the maximum
value in a region, (2) the minimum value in a region, (3) the maximum difference
between values in a region, (4) the maximum difference between values in a
region and the boundary, and (5) the minimum difference between values in
a region and the boundary. Figure 2 provides a worked example where Fine is

1

2

3

4

5

6

7

8

9
A B EC D F

Ω
1

∂northΩ1
ˆ

∂northΩ1

Ω
2

Ω
1∩

Ω
2

ˆ Ω
1

ˆ

R
e
g
io

n

M
a
x

V
a
lu

e

in
R

e
g
io

n

M
in

V
a
lu

e

in
R

e
g
io

n

M
a
x

D
iff

in
R

e
g
io

n

M
a
x

D
iff

to

B
o
u
n
d
a
ry

M
in

D
iff

to

B
o
u
n
d
a
ry

A 10 000 1 000 9 000 9 000 0

B 1 000 100 900 0 0

C 1 000 100 900 900 0

D 10 000 1 000 9 000 9 900 0

E 10 000 100 9 900 9 000 0

F 10 000 100 9 900 9 900 0

(a) (b)

Fig. 2. (a) A fragment of a unit square for two overlapping sub-domains Ω̂1 and Ω2.
Notations ‘A’ to ‘F’ denote our features as the relationship between the rows referenced
with arrows and the ∂northΩ̂1 boundary. (b) Extracted values assuming the pink, gray,
and blue unknowns take ε = 10 000, ε = 1 000, and ε = 100 respectively.

regions A–D (20 features), Coarse is regions E–F (10 features), and Combined
is regions A–F (30 features). Then the full feature sets are realized when the
eastern, southern, and western boundaries are processed.

3.5 The FPO Evaluation Measure

Developing a measure to evaluate the goodness of a sub-domain specification for
any diffusion specification is non-trivial. Key variables such as the number of
iterations and the amount of overlap have a complex relationship between one
another, so these need to be carefully combined. Our approach should optimize
the use of domain decomposition techniques that are designed to speed up sim-
ulation for parallel platforms. In a real-world application, a user is interested in
optimizing the real-world time that a simulation needs, such as the chosen imple-
mentation, the computing network, and the use of cluster computing. Given this
variability, we want to concentrate on the theoretical aspects of the algorithm
together with a given abstract hardware scenario. Our goal is to minimize the
number of floating point operations (FPO).

To justify this choice, first assume that we have a hardware architecture
with s computation nodes. To use this architecture in an optimal way, let s also
represent the number of sub-domains, ni be the number of unknowns in a sub-
domain, and l be the number of domain decomposition iterations. In a single
iteration step, s linear equation systems have to be solved whereas the size of
all equation systems is ni. If one now assumes that a direct solver such as LU
decomposition [9] is used, the first domain decomposition iteration of the matrix
has the complexity of O(n3). For all remaining l iterations, one just has to solve
one upper right and one lower left matrix of the complexity O(n2). Hence, FPO

is defined as:

FPO ≈
s∑

i=1

n3
i

3
+ l · n2

i .

FPO is only meaningful when comparing solutions with the same number of
sub-domains on the same hardware architecture.

3.6 Machine Learning Methodology

In order to learn from 9-region neighborhoods, we must simulate a large number
of diffusion specifications with multiple sub-domain boundary settings in each
neighborhood and derive the corresponding FPO scores. We do not simulate the
neighborhoods of the unit square in isolation, because introduced additional ar-
tificial boundary conditions will influence the numerical behavior and so perturb
the machine learning. Instead, the areas outside the neighborhood of interest are
simply considered constant, and we are interested in relative changes to FPO
when varying the sub-domain boundaries.

With a database of simulation results, we aim to predict the FPO scores
for unseen neighborhoods with regression. Then we adopt the boundary recom-
mendations that minimize FPO for each neighborhood and combine these to
create a new solution. Using 527 diffusion specifications each having 48 domain
decomposition permutations as per Section 3.3, the steps are as follows:

1. Training. For each diffusion file:

(a) Perform feature extraction for all 48 permutations of the neighborhoods.
(b) Compute FPO for all 48 permutations with simulation.
(c) Record the mapping from the set of input features to FPO.

2. Testing. For each diffusion file:

(a) Perform feature extraction for all 48 permutations of the neighborhoods.
(b) Predict FPO for all 48 permutations using a regression model with the

data from Step 1c.
(c) Identify the minimum FPO value for each neighborhood.

3. Evaluation. For each diffusion file:

(a) Create a new domain specification using the best results from Step 2c
and compute FPO with simulation.

(b) Compare the FPO score from Step 3a with that of the baseline.

The training and testing described above is performed with 10-fold cross-
validation. A separate validation set of diffusion specifications was used during
the development of our approach to avoid overfitting.

4 Analysis and Results

In this section we determine an expert human baseline, analyze our data, report
improvements achieved by our method, and offer a forward plan with ideas to
generate further improvements.

4.1 Baseline Overlap Decision

The baseline comparison for our methodology should be a human solution, since
we are aiming to improve the FPO estimator from what humans can achieve.
One solution is to apply a global overlap to all sub-domains. From our expertise
of numerical simulation, the overlapping regions may consume up to around
5% of the available unknowns as a guideline. Guidelines are rarely given in the
literature, but the work of Bjorstad and Hvidsten [1] provides one example based
on 6%. An analysis of several checkerboard grid sizes and global overlap settings
will guide the decision. The required data is given in Table 1 with our highlighted
choice in bold. We adopt this choice because: (1) The 4 × 4 checkerboard gives
a good mixture of center, boundary, and corner neighborhoods, (2) the 0.4%
global overlap avoids extremes, and (3) it is compatible with the literature.

4.2 Data Analysis

We examined the data from all diffusion specifications from our validation and
test sets to better understand the effectiveness of our feature sets. Partial re-
sults for 1 000 diffusion specifications are given in Table 2. The columns show
the number of times the invalid (i.e., outside of unit square), no difference, de-
fault setting, and other measurements are observed. As shown, 25% of all values
are invalid cases, which accounts for attempted measurements outside the unit
square for a 4 × 4 grid — this effect diminishes for larger grids. We could give
special consideration to boundary cases, but we leave this for future work for
now, as many regression algorithms can handle missing values. We also see large
numbers of no difference and default cases, however this redundancy is mitigated
by the fact that our method uses vectors of measurements.

The other cases are where we can learn the most from. However, features (2)
and (4) indicate that we do not have enough data for our problem setting, so we
omit these. Also features (1) and (3) have the same number of measurements,
and our analysis showed that these are correlated in almost all cases, so one
should be omitted here too due to redundancy. In general, relative values (such
as differences) are more interesting than absolute values (such as maximums
and minimums), since the absolute values are dependent on the specific problem
settings. With all the above considerations in mind, we only consider features (3)
and (5), cutting the feature sets to 40% of those proposed in Section 3.4.

Table 1. Baseline choice considering experiment size, global overlap, and the literature.

Global Total overlap for various grid sizes (% of unknowns)
overlap 1× 1 2× 2 3× 3 4× 4 5× 5 6× 6 7× 7 8× 8

minimum 0.00 0.40 0.80 1.19 1.59 1.99 2.38 2.77
0.2% 0.00 1.19 2.38 3.56 4.73 5.90 7.06 8.21
0.4% 0.00 1.99 3.95 5.90 7.82 9.73 11.62 13.48
0.6% 0.00 2.77 5.51 8.21 10.87 13.48 16.06 18.60
0.8% 0.00 3.56 7.06 10.49 13.85 17.16 20.40 23.57

Table 2. The feature extraction data demonstrates some redundancy in the feature
sets. All values shown are for the “north” boundary and the “Fine A” region.

Feature Invalid No Diff Default Other Total

(1) Max Value in Region 12 000 0 34 171 1 829 48 000
(2) Min Value in Region 12 000 0 35 990 10 48 000
(3) Max Diff in Region 12 000 34 171 0 1 829 48 000
(4) Min Diff to Boundary 12 000 36 000 0 0 48 000
(5) Max Diff to Boundary 12 000 35 361 0 639 48 000

4.3 Regression Algorithms and Feature Sets

We now compare the learned FPO scores with the baseline. We consider the
three feature sets, Combined, Fine, and Coarse, and four regression algo-
rithms, namely simple linear regression, nearest neighbor regression, decision
tree regression, and support vector machine regression.3 We found that only the
nearest neighbor regression algorithm offered improvement. Since our interesting
features are sparse (cf. Table 2), this indicates that we only have so many inter-
esting near neighbors to learn from for each prediction, making nearest neighbor
a good choice as the learning algorithm.

The median learned FPO scores for the nearest neighbor regression algorithm
expressed as a fraction of the baseline are 0.9778 for Combined, 0.9791 for Fine,
and 0.9830 for Coarse. This improvement is statistically significant in all cases
(p < 2.2 × 10−16) when using a paired Student’s t-test and the effect size is
large (Cohen’s d = 0.85 for Combined versus baseline, d = 0.79 for Fine versus
baseline, and d = 0.62 for Coarse versus baseline). We also examined the
differences between the features sets, but we found these of little interest as the
effect sizes are small.

We must point out that our baseline is an expert human baseline, which we
consider as the best baseline. In contrast, the novice baseline setting can be con-
sidered the minimum overlap comprising one line of unknowns. This baseline can
lead to extreme behavior in many cases and simulation that does not converge in
a reasonable amount of time. As a result we cannot compute this baseline, but
we note that our approach does not exhibit the behavior of the novice baseline.

So far FPO is reduced to around 0.98 of the baseline and we have statistically
significant improvements with large effect sizes. An explanation for this result is
that our method provides a very consistent improvement for our test instances.
For instance, Figures 3a and 3b show a shift in the score distributions leaving lit-
tle overlap. Specifically, our method improves the baseline score for all instances
except for 33 of 527 as shown in Figure 3c. We would like to further improve the
cost saving to a 0.95 or 0.90 fraction to be completely satisfied, which we aim to
achieve in future work with the following forward plan.

3 Weka 3.7.7 [7]: weka.classifiers.functions.LinearRegression, weka.classifiers.lazy.IBk,
weka.classifiers.trees.M5P, and weka.classifiers.functions.SMOreg respectively.

Baseline

FPO (trillions)

F
re

qu
en

cy

27 28 29 30 31 32 33 34

0
50

10
0

15
0

20
0

25
0 Combined IBk

FPO (trillions)

F
re

qu
en

cy

27 28 29 30 31 32 33 34

0
50

10
0

15
0

20
0

25
0

●●

●
●

●●

●

●

●
●●
●●

●
●

●

●

●

●●
●

●
●
●●●

●

●●

●

●●

●●
●

●

●
●●

●
●

●

●
●

●

●●
●●●●●●●
●●●

●

●

●

●
●●

●

●●
●●●
●

●
●

●●
●

●

●

●
●
●●

●
●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●
●
●●
●

●
●●●●●●●●●●●

●

●●
●

●
●●
●●

●

●●
●

●

●

●●●●●
●

●
●

●
●

●

●●●

●

●

●

●●●

●
●

●
●

●

●
●

●

●
●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●●●●
●
●
●
●

●●
●
●●●
●

●

●●●
●●●●

●

●

●
●

●

●

●

●

●
●

●

●
●●●

●

●
●●●●●
●●
●

●

●
●●

●

●●

●

●
●●●
●●

●
●

●
●
●●
●
●●●
●
●

●
●●

●
●

●

●●●●●●●●

●

●

●

●●
●
●

●

●
●●●
●

●
●●●●

●
●

●

●

●

●● ●
●

●

●●

●

●
●●●●

●

●
●●

●●●●
●
●●●●●
●

●
●

●●
●

●●
●

●
●●

●●●●
●

●●●
●

●
●

●●●

●

●

●

●

●
●●●●

●

●●
●

●●
●

●

●

●●
●●●

●●

●

●

●
●

●

●
●●
●

●

●●●
●

●

●
●

●●●

●

●
●●

●

●●
●●

●

●●●

●

●

●
●●

●

●

●

●●●
●
●●
●

●

●●●●

●

●
●●
●

●●
●
●●

●

●

●●●●●
●

●●
●●

●

●●●
●●
●●
●

●●
●●

●

●

●

●

●

●
●

●

●

●●●●

●
●

●

●

●●
●●●
●
●●

●●
●

●
●

●
●

●
●
●
●●
●●

●
●

●

●
●

●
●●●●

●
●

●●●●
●●
●
●●●●

●
●

●
●
●

●

27 28 29 30 31 32 33 34

27
28

29
30

31
32

33
34

Baseline vs. Combined IBk

Baseline FPO (trillions)

C
om

bi
ne

d
IB

k
F

P
O

 (
tr

ill
io

ns
)

(a) (b) (c)

Fig. 3. The histogram shift and the scatterplot demonstrates consistent improvement.

4.4 Forward Plan

The results presented above are our first for overlap optimization. An end goal
is to consider three-dimensional problems later. First we wish to improve our
approach for two-dimensional problems by implementing and experimenting with
several extensions. For the first extension we wish to increase the checkerboard
size for more fine-grained and precise learning. Second, we want to increase the
training set size with additional diffusion specifications. Third, we wish to apply
non-uniform boundary adjustments with sub-domains. Finally, we would like to
drop the checkerboard constraint in favor of polygonal boundaries. We anticipate
that these items each offer incremental improvements, and the final sum will be
of most interest.

5 Conclusions

In this paper, we proposed a machine learning method for optimizing overlaps of
domain decomposition problems. The key idea proposed was to learn properties
of sub-domain neighborhoods, so that a complete solution can be assembled
automatically and solved more efficiently with domain decomposition. To achieve
this, our method introduced a novel feature set with the purpose of capturing
interesting properties of sub-domain boundaries. When compared with an expert
human baseline, our method offered a consistent and statistically significant
improvement for the Poisson’s equation. In addition, several avenues of future
work have been identified that we expect will offer further improvements.

Finally, we emphasize that this work represents one part of a many-fold ap-
plication of machine learning in a practical numerical simulation setting. Our
earlier work in this field has demonstrated the behavioral learnability of bridge
models [4] in an integrative structural design setting [6] for identifying robust
solutions in civil engineering. Conversely, domain decomposition concerns par-
allelization for efficiency, so the bringing together of both dimensions provides
potency for machine learning to have a high impact in numerical simulation.

References

1. Bjorstad, P., Hvidsten, A.: Iterative Methods for Substructured Elasticity Prob-
lems in Structural Analysis. In Glowinski, R., ed.: Proceedings of the First Inter-
national Symposium on Domain Decomposition Methods for Partial Differential
Equations, Paris, France (January 1987) 301–312

2. Brady, T.F., Yellig, E.: Simulation Data Mining: A New Form of Computer Simu-
lation Output. In Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A., eds.:
Proceedings of the Thirty-Seventh Winter Simulation Conference, Orlando, Florida
(December 2005) 285–289

3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods.
second edn. Springer, Berlin, Germany (April 2002)

4. Burrows, S., Stein, B., Frochte, J., Wiesner, D., Müller, K.: Simulation Data Mining
for Supporting Bridge Design. In Christen, P., Li, J., Ong, K.L., Stranieri, A.,
Vamplew, P., eds.: Proceedings of the Ninth Australasian Data Mining Conference.
Ballarat, Australia, ACM (December 2011) 163–170

5. Canuto, C.G., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods:
Evolution to Complex Geometries and Applications to Fluid Dynamics. first edn.
Scientific computation. Springer, Leipzig, Germany (July 2007)

6. Gerold, F., Beucke, K., Seible, F.: Integrative Structural Design. Journal of Com-
puting in Civil Engineering 26(6) (November 2012) 720–726

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (July
2009) 10–18

8. Mei, L., Thole, C.A.: Data Analysis for Parallel Car-Crash Simulation Results and
Model Optimization. Simulation Modelling Practice and Theory 16(3) (March
2008) 329–337

9. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: LU Decomposition
and its Applications. In: Numerical Recipes in Fortran: The Art of Scientific Com-
puting. second edn. Cambridge University Press, Cambridge, England (September
1992) 34–42

10. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential
Equations. first edn. Numerical Mathematics and Scientific Computation. Oxford
Science Publications, New York City, New York (June 1999)

11. Stein, B., Curatolo, D.: Selection of Numerical Methods in Specific Simulation
Applications. In Mira, J., del Pobil, A., Moonis Ali, eds.: Proceedings of the
Eleventh International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems. Castellón, Spain, Springer (June 1998)
918–927

12. Toselli, A., Widlund, O.: Domain Decomposition Methods – Algorithms and
Theory. first edn. Volume 34 of Springer Series in Computational Mathematics.
Springer, Leipzig, Germany (September 2004)

13. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dy-
namics: The Finite Volume Method. second edn. Pearson Education, Essex, Eng-
land (February 2007)

14. Yang, S.H., Hu, B.G.: Reformulated Parametric Learning based on Ordinary Dif-
ferential Equations. In Huang, D.S., Li, K., Irwin, G.W., eds.: Proceedings of
the Second International Conference on Intelligent Computing, Kunming, China,
Springer-Verlag (August 2006) 256–267

