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Preface

Cultivating debate and argumentation as a means of finding consensus and solutions that
are acceptable compromises for many seems essential, in particular in times of perceived
crises and public division. As public debates are to a large extent carried out online, they
are often unmanageable, difficult to trace, and difficult to oversee. Understanding the
key positions of diverse stakeholders, their key points or arguments, and how they are
justified is key to identifying points and opportunities for compromises.

This is where computational argumentation analysis comes in, providing methods to
aid the automatic retrieval, analysis, summarization, ranking, and assessment of argu-
ments. The field of argumentation mining and analysis is relatively young. The 1st
Workshop on Argument Mining took place ten years ago, in June 2014 in Baltimore,
collocated with the 52nd Annual Meeting of the Association for Computational Lin-
guistics. Since this 1st edition of the Argument Mining Workshop, we have witnessed
significant advances in the development of approaches that support the automated anal-
ysis, summarization, aggregation, retrieval, and ranking of arguments exchanged “in the
wild” at large scale. By “in the wild”, we mean arguments that are exchanged on the
WorldWideWeb, in discussion portals or other online formats in which users share opin-
ions and viewpoints on topics that are relevant to them. The methods of argumentation
analysis have now reached a level of maturity and robustness that makes them applicable
to the analysis of real online debates. They enable systems to identify the most important
arguments exchanged, summarize and group arguments, or even automatically generate
arguments to present different viewpoints and perspectives.

This volume presents recent advances in the development of robust argumentation
machines, i.e. systems capable of systematically, efficiently, and adequately summarizing
public debates in terms of arguments, positions, key points, stakeholder groups, tracing
them back to groups, etc.

The contributions to this volume can be grouped into six areas: (I) ArgumentMining,
(II) Persuasion and Deliberation, (III) Argument Acquisition, Annotation, and Quality
Assessment, (IV) Computational Models of Argumentation, (V) Interactive Argumen-
tation, Recommendation, and Personalization, and (VI) Argument Search and Retrieval.
In the following we summarize the contributions of the papers in this volume.

I Argument Mining

The main challenge of Argument Mining is how to identify, extract, and formalize argu-
ments that are exchanged by key stakeholders and actors. The approaches described
in this volume consider a wide spectrum of genres ranging from argumentation in
social media through to argumentation in scientific texts. An interesting and novel
method consists in the application of sequential patternmining to identify argumentation
schemes.
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In their paper “Natural Language Hypotheses in Scientific Papers and How to
Tame Them: Suggested Steps for Formalizing Complex Scientific Claims”, Heger
et al. are concerned with the formalization of hypotheses as key elements of argumenta-
tion in scientific texts. Specifically, they develop a framework for formalizing hypothe-
ses in the research field of invasion biology. According to their framework, hypotheses
consist of three essential elements: a subject, an object, and a hypothesized relationship
between them. The framework not only facilitates argumentation analysis, but also helps
to convert scientific publications into a machine-readable format.

In their paper “Weakly Supervised Claim Localization in Scientific Abstracts”,
Brinner et al. present a weak supervision approach that requires only abstract-level
supervision to identify and localize arguments in scientific texts. Their approach uses
information about the general presence of a claim in a given abstract to extract sec-
tions of text that indicate that specific claim. The method is evaluated on the SciFact
claim verification and INAS datasets, showing that significant performance in the claim
localization task can be achieved without any explicit supervision.

In their paper “Argument Mining of Attack and Support Patterns in Dialogical
Conversations with Sequential Pattern Mining”, Ruckdeschel et al. apply Sequential
Pattern Mining – a common method for finding patterns in large databases – to identify
how typical argumentation schemes in user debates develop over time. They investigate
a German Twitter corpus on nuclear energy that they divide into different time slices.
When applied to the time slices, the approach reveals distinct patterns of support and
attack relations between pro and contra arguments in conversational threads. The pro-
posed method can thus be used to analyze diachronic changes in patterns and show how
discourses on certain topics can evolve over time.

Following a related approach, in their paper “Cluster-Specific Rule Mining for
Argumentation-Based Classification”, Klein et al. present a method that combines
machine learning with computational models for (structured) argumentation. In this
approach, the data set is clustered and then a rule-learning algorithm is used to extract
frequent patterns and rules from the resulting clusters. Experiments show that themethod
significantly improves the baseline approach.

II Debate Analysis and Deliberation

By developing methods for analyzing political discourse and debates, argument mining
also plays a central role in developing methods that can support the analysis of political
discourse and opinions on important current issues in order to promote deliberation. The
present volume features a number of contributions along these lines.

In their paper “Automatic Analysis of Political Debates and Manifestos: Suc-
cesses and Challenges”, Ceron et al. note that political actors typically communicate
via different channels: While the parties communicate their core ideas via published
manifestos, individual players use the media to express themselves on a daily basis. On
the one hand, manifestos are useful to characterize the positions of parties at a global
ideological level over time. On the other hand, individual statements can be collected
to analyze debates in specific policy areas at a fine-grained level, in terms of individ-
ual actors and demands. The authors suggest using NLP-based analysis for these two
different channels to highlight the advantages and challenges of both approaches.
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In their paper “PAKT: Perspectivized Argumentation Knowledge Graph and
Tool for Deliberation Analysis”, Plenz et al. present PAKT, a model for deliberation
analysis at a structural level that leverages argumentation mining and knowledge graph
construction methods. Beyond individual arguments, PAKT uncovers structural patterns
in the way participants argue and shows how to characterize the argumentative perspec-
tives of different stakeholder groups using frames, values, and conceptual analysis. In
several case studies, the authors show how their perspective argumentation analysis can
identify key points for initiating deliberative solutions to facilitate constructive discourse
and informed decision-making.

In their paper “PolArg: Unsupervised Polarity Prediction of Arguments in Real-
TimeOnlineConversations”, Lenz andBergmann point out that conversations in social
networks often involve numerous participants and take place at a fast pace. They conclude
from this that real-time analysis is an important prerequisite for systems for analyzing
online conversations. They propose to address this issue using Large Language Models
and investigate unsupervised prompting strategies for detecting argumentation polarity in
datasets from Kialo, X/Twitter, and Hacker News. The authors show that their approach
is more effective for X posts than a model tuned to Kialo debates, and less effective for
Hacker News posts, which are less argumentative.

III Argument Acquisition, Annotation, and Quality Assessment

An important topic within argument mining is to evaluate the quality of arguments.
This includes the development of models that can automatically predict the quality of
arguments.

Mirzakhmedova et al. explore this question in their paper “Are Large Language
Models Reliable Argument Quality Annotators?”, where they focus in particular
on the question of how to reliably annotate arguments for quality. The authors note
that due to the high subjectivity involved in the annotation of argument quality, there
is often high disagreement and thus inconsistency between human annotators. In this
context, the authors investigate the potential of using state-of-the-art large language
models as proxies for argument quality annotators. Analyzing the agreement between
human experts and novice annotators in comparison to the LLM-based annotations, the
authors show that LLMs can produce consistent annotations, with a moderately high
agreement with human experts across most of the quality dimensions. Moreover, they
show that using LLMs as additional annotators can significantly improve the agreement
between annotators.

Continuing the topic of evaluating the quality of arguments, Knaebel et al., in their
paper entitled “The Impact ofArgumentArrangement onEssayScoring”, investigate
whether the quality of student essays can be algorithmically predicted. To this end, they
propose a model that aims to capture the “flows” of semantic types of argumentative
units. The authors train linear classification models on flow features and find that flows
based on semantic types are better predictors of essay quality compared to flows of
coarse argument components.
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In their paper “Finding Argument Fragments on Social Media with Corpus
Queries and LLMs”, Dykes et al. address the challenge of compiling a gold standard of
high precision for argumentative fragments. To circumvent the need for manual anno-
tation, they present a pattern-based approach that queries a corpus of patterns to extract
argumentative fragments. They apply their approach to a large corpus of English tweets
on the subject of the UK Brexit referendum in 2016. The authors show how queries can
be combined to extract complex nested statements that are relevant for a given argument.
The approach further allows adjustment of the trade-off between precision and recall,
by setting a cutoff threshold to match the needs of specific applications.

IV Computational Models of Argumentation

In addition to identifying and extracting arguments, an important aspect of a robust
argumentation analysis is to evaluate the identified arguments, e.g. to determine the most
relevant, strongest, or best arguments in a debate. For this purpose, formal computational
models are needed to represent and formalize arguments so that we can reasonwith them.
The papers in this volume take different approaches. On the one hand, they follow the
paradigm of abstract argumentation where sets of arguments are encoded as graphs
consisting of arguments as nodes and edges representing attack relations. Others follow
assumption-based reasoning (ABA) as well as Pearl’s probabilistic causal model or
Bayesian networks and present clear scientific and methodological advances for each of
these paradigms.

The paper “Enhancing Abstract Argumentation Solvers with Machine
Learning-Guided Heuristics: A Feasibility Study”, by Hoffmann et al. is located
in the paradigm of abstract argumentation and focuses on the determination of admissi-
ble sets, i.e. sets of arguments that can defend themselves against (external) attacks. The
determination of such admissible sets, which depend on a certain semantics, is known to
be an NP-hard problem. Building on recent research demonstrating the efficacy of using
machine learning to provide approximative solutions, the authors propose a new app-
roach that leverages a random forest classifier to predict acceptability, and subsequently
use the predictions to form a heuristic that guides a search-based solver.

The work of Skiba et al. “Ranking Transition-based Medical Recommendations
usingAssumption-basedArgumentation” builds on theAssumption-BasedArgumen-
tation (ABA) framework and introduces as a new contribution an approach to categoriz-
ing assumptions that relies on their relationship to other assumptions and the syntactic
structure of the ABA framework. The authors propose a new family of semantics for
ABA frameworks that rely on reductions to the abstract argumentation setting and uti-
lize existing rank-based semantics for abstract argumentation. The suitability of the
approach is shown in a case study for generating recommendations for patients with
multiple health conditions.

In their paper “Argumentation-based Probabilistic Causal Reasoning”, Bengel
et al. propose a reformulation of Pearl’s causal models for probabilistic causal and coun-
terfactual reasoning in terms of an argumentation-based framework: Causal statements
are interpreted as arguments in an abstract argumentation framework and the attack
relation represents contradicting causal inferences, allowing the reasoning process to be
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questioned during a query. The framework can then be used to generate argumentative
explanations for the (non-)acceptance of the causal statement.

The starting point of the paper “FromNetworks to Narratives: Bayes Nets and the
Problems of Argumentation” by Keshmirian et al. is the observation of a tight concep-
tual connection between the argumentative structure of a problem and its representation
as a Bayesian Belief Network (BBN). The primary challenge addressed by the authors
is the representation of an argumentative structure that renders the BBN inference trans-
parent to non-experts. In particular, the authors investigate how argument structures can
be extracted from BBNs. They show why existing algorithmic approaches to extracting
arguments still fall short when it comes to elucidating intricate features of BBNs, such
as “explaining away” or other complex interactions between variables. Building on this
analysis they suggest future developments to improve the representation of the extracted
arguments.

In the paper “Enhancing Argument Generation Using Bayesian Networks”, Cao
et al. examine algorithms that utilize factor graphs fromBayesianBeliefNetworks to gen-
erate and evaluate arguments. Based on an assessment of the strengths and weaknesses
of existing algorithms, they propose an improved algorithm that addresses the identified
issues. The proposed algorithmic improvements yield an improved performance on the
creation of more robust arguments.

The paper “Do not disturb my circles!” Identifying the Type of Counterfac-
tual at Hand by Willig et al. explores the use of causal models to derive explanations.
The minimal explanation is a causal chain that does not need any intervention. Pos-
sible interventions can be counterfactual interventions, which presuppose intentional
interventions, and retrospective counterfactual interventions, which attribute changes to
external factors. The approach can decide whether and which measures are required.

VInteractiveArgumentation,Recommendation, andPersonalization

An important question addressed also in this volume is how users will effectively be
able to interact with argumentative systems. In this respect, the paper “BEA: Building
Engaging Argumentation” by Aicher et al. presents the cooperative argumentative
dialog system BEA, which aims to involve the user in a critical discussion of arguments
presented. BEA aims to engage users in an intuitive and unbiased opinion formation
process, where information can be explored intuitively. Through a virtual agent, BEA
canmaintain deliberative dialogues with humans. BEA shows how to help users increase
their engagement in reflection and conversation.

The paper “Deciphering Personal Argument Styles - A Comprehensive App-
roach to Analyzing Linguistic Properties of Argument Preferences” by Zymla et al.
presents an application for exploring the effect of linguistic features on personalized
argument preferences. The individual preferences are derived by measuring the impact
of linguistic features on pairwise comparisons between arguments. The authors develop
a visual interactive labeling system that structures the annotation process of pairwise
comparisons. Through these annotations, patterns of argument preferences based on lin-
guistic feature vectors are extracted. By training individual models for different users,
the authors show how information can be gained that allows one to compare different
user groups and to identify different argumentation preferences across groups.
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VI Argument Search and Retrieval

Since the emergence of the first argument search engines such as args.me, the topic of
how to support users in finding relevant arguments has received increasing attention in
the field of argument mining.

The paper “Extending the Comparative Argumentative Machine: Multilingual-
ismandStanceDetection”byNikishina et al. advances the state of the art inmultilingual
argument retrieval, focusing on the use case of comparative search, i.e. finding statements
that are for or against a set of specific options to be compared. The authors describe how
the CAM (comparative argumentative machine) system has been equipped with better
answer stance detection capabilities and with system variants to support non-English
requests. In order to turn the system into a multilingual system, the authors compare
two approaches to support Russian requests and answers: (1) translating the original
English CAM data and (2) using an existing replica of CAM on native Russian data.
The comparison of the translation-based and replica-based CAM variants in a user study
shows that the combination of their responses appears to be the most promising.

The paper “Objective Argument Summarization in Search” by Ziegenbein et al.
addresses the problem that arguments retrieved from the Web can be of low quality,
potentially being long and unstructured, subjective and emotional, and containing inap-
propriate language. Building on the hypothesis that “objective snippets” of arguments
are better suited to be displayed in search results than the commonly used extractive
snippets, they develop corresponding methods for two important tasks: snippet genera-
tion and neutralization. For these tasks, two approaches are experimentally examined:
(1) prompt engineering for large language models (LLMs), and (2) supervised models
trained on existing datasets. The authors find that a supervised summarization model
outperforms zero-shot summarization with LLMs for snippet generation.

In the paper “ArgServices: A Microservice-Based Architecture for Argumenta-
tion Machines”, Lenz et al. present a microservices-based architecture for argumenta-
tion machines that provides services. The starting point is the fact that the development
of argumentation machines is hindered by the lack of common standards and appropri-
ate tools, leading to ad hoc solutions with little reuse value. The proposed architecture
provides strongly typed interfaces for the following services: (1) Argument Mining,
(2) Case-Based Reasoning on Arguments, (3) Argument Retrieval and Ranking, and
(4) Quality Assessment of Arguments. The system has been designed to be extensible,
allowing for easy integration of new tasks.

Acknowledgements. The papers collected in this volume collectively represent signifi-
cant advances in a broad range of challenges and topics in the field of argument mining.
Twenty full papers and one short paper were accepted, from twenty-four submissions.
Submissions received an average of three single-blind reviews. Many of the contribu-
tions included in this volume are a result of the Priority Program “Robust Argumentation
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Machines” (RATIO), which was funded by the German Research Foundation (DFG).
The editors of this volume would like to thank the DFG for its support.
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Natural Language Hypotheses in Scientific
Papers and How to Tame Them

Suggested Steps for Formalizing Complex Scientific Claims

Tina Heger1,2,3(B) , Alsayed Algergawy4,5 , Marc Brinner6 ,
Jonathan M. Jeschke1,2 , Birgitta König-Ries4 , Daniel Mietchen1,2,7,8 ,

and Sina Zarrieß6

1 Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
t.heger@tum.de

2 Institute of Biology, Freie Universität Berlin, Berlin, Germany
3 TUM School of Life Sciences, Technical University of Munich, Freising, Germany

4 Institute for Informatics, Friedrich-Schiller-University Jena, Jena, Germany
5 Data and Knowledge Engineering, University of Passau, Passau, Germany

6 Faculty of Linguistics and Literature Studies, University of Bielefeld, Bielefeld, Germany
7 Ronin Institute for Independent Scholarship, Montclair, NJ, USA

8 Institute for Globally Distributed Open Research and Education (IGDORE), Jena, Germany

Abstract. Hypotheses are critical components of scientific argumentation.Know-
ing established hypotheses is often a prerequisite for following and contributing to
scientific arguments in a research field. In scientific publications, hypotheses are
usually presented for specific empirical settings, whereas the related general claim
is assumed to be known. Prerequisites for developing argumentation machines for
assisting scientific workflows are to account for domain-specific concepts needed
to understand established hypotheses, to clarify the relationships between specific
hypotheses and general claims, and to take steps towards formalization. Here, we
develop a framework for formalizing hypotheses in the research field of invasion
biology. We suggest conceiving hypotheses as consisting of three basic build-
ing blocks: a subject, an object, and a hypothesized relationship between them.
We show how the subject-object-relation pattern can be applied to well-known
hypotheses in invasion biology and demonstrate that the contained concepts are
quite diverse, mirroring the complexity of the research field. We suggest a step-
wise approach for modeling them to be machine-understandable using semantic
web ontologies. We use the SuperPattern Ontology to categorize hypothesized
relationships. Further, we recommend treating every hypothesis as part of a hier-
archical system with ‘parents’ and ‘children’. There are three ways of moving
from a higher to a lower level in the hierarchy: (i) specification, (ii) decompo-
sition, and (iii) operationalization. Specification involves exchanging subjects or
objects. Decompositionmeans zooming in andmaking explicit assumptions about
underlying (causal) relationships. Finally, operationalizing a hypothesis means
providing concrete descriptions of what will be empirically tested.

Keywords: Complex claims · invasion biology · ontology · scientific hypotheses
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1 Introduction: Scientific Hypotheses as Complex Claims

In scientific contexts, argumentation is part of established workflows. In an idealized
setting, a research question arises from some applied context or a scientific debate.
Based on this question, the researcher formulates a hypothesis that expresses a rela-
tionship between domain-specific concepts and can be tested empirically. Experiments
or surveys are conducted by measuring the variables or testing the conditions posited
in the hypothesis, and the results are reported together with the empirical methods and
the tested hypothesis in a scientific publication. In such scientific settings, a carefully
developed and thought-through hypothesis (which we see as Toulmin’s [1] “claim” in a
scientific context) is at the core of the argumentation process. This hypothesis must be
specific enough for a researcher to test it empirically. Still, at the same time, it should
also relate to previous general claims made in the community. In actual scientific pub-
lications, the relationship between a hypothesis explicitly formulated for the study’s
context and the general claim it is based on is often neither made explicit nor obvious
[2]. Also, hypotheses are usually given as complex statements that include scientific and
colloquial terms, and the meaning of both can be ambiguous [3]. For instance, the term
“resistance” is used with slightly different meanings by different authors, even within
a given domain, and terms like “often” are interpreted differently by different readers.
Consequently, scientific hypotheses are a challenging case for modeling, as workflows
are required for aligning complex claims with generic structures while at the same time
leaving room for the inclusion of domain-specific concepts and knowledge.

While some suggestions for modeling scientific hypotheses already exist (see
Sect. 2), they are usually hardly accessible to scientists outside the argumentation com-
munity. On the other hand, for experts in formal argumentation, computational linguis-
tics, and semantic modeling, it is not always obvious how best to connect the available
tools and approaches to workflows in empirical sciences. A solution to this challenge is
the formation of interdisciplinary teams. With this publication, we want to share results
from a project that brought together domain experts (in this case, invasion biologists)
with experts from semanticmodeling and computational linguistics [4]. Our project aims
to explore how natural language processing (NLP) and semantic modeling can be lever-
aged to enhance workflows in scientific research. More specifically, our long-term goal
is the automated synthesis of research results testing scientific hypotheses in invasion
biology and other domains. To achieve this goal, it is necessary to develop methods for
linking scientific papers reporting on empirical tests to major hypotheses relevant to the
respective domain.

A prerequisite for such an automated linking of empirical tests to hypotheses is the
formalization of hypothesis statements. In this paper,we introduce a framework for trans-
ferring hypotheses given in scientific papers in the form of natural language statements
into more formalized statements. We use examples from the domain of invasion biology
to demonstrate how the framework can help clarify the relationships between the general
hypotheses put forward in scientific debates and specific, complex hypotheses directly
relating to empirical studies. This paper aims to report on our interdisciplinary efforts
to combine domain-specific knowledge of needs and challenges with expert knowledge
of tools and approaches from semantic modeling and NLP. The resulting framework is
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meant as a guideline to beusedbyexperts in a scientificdomainwhoworkon synthesizing
the knowledge of their field.

In the following, we first give an overview of related work. Next, we introduce
our working example and use that to introduce our suggestion for moving towards a
formalization of scientific hypotheses. We then report on ongoing applications of the
framework. We point out the limitations of our approach and close with an outlook.

2 Related Work

Our suggestions are based on and related to past and ongoing work in the fields of
argumentation modeling, knowledge representation, and invasion biology.

2.1 Argumentation Modeling for Complex Scientific Claims

Argumentation is studied in different fields and disciplines, like philosophy, computer
science, computational linguistics, and more domain-oriented disciplines like biology.
Especially in philosophy, computational linguistics, and NLP, a common approach is
to develop abstract representations of arguments and argumentation processes to under-
stand communication processes and how dissent and consensus form. In this context,
“toy arguments” are often used to demonstrate the applicability of the respective abstract
and formalized argumentation schemes (e.g., [1, 5]). A complementary approach uses
AI-based tools for mining arguments in large amounts of data containing informal, pri-
marily textual statements of real-world arguments (see this survey: [6]). While formal
accounts are often difficult to apply and to scale up to complex real-world arguments,
data-driven argument mining usually does not account for formal aspects of arguments
formulated in text.

Regarding formal argumentation analysis, few studies have focused on scientific
literature. One example is [7], where the authors suggest an explanatory argumentation
framework (EAF) for representing argumentation processes among scientists. In that
case, the goal was to model the conceptual structure of the main arguments brought
forward by different agents in a scientific debate. The focus of this approach is not so
much on the relationship between general and specific claims, nor is the aim to guide
hypothesis formulation or identifying hypotheses in texts.

2.2 Knowledge Representation: Modeling Scientific Language with Knowledge
Graphs

Semantic Web techniques provide ways to formalize knowledge. On the one hand, this
allows machines to act on information; on the other hand, this supports humans in
providing concrete representations (e.g., making hidden assumptions and subtle dif-
ferences in understanding explicit). Knowledge graphs are one such approach that is
widely regarded as very promising. They are successfully used in industry but also
in scientific settings. In knowledge graphs, nodes represent entities of interest, while
edges represent relations between these entities. The graphs are encoded in a (typically
machine-actionable) graph data model [8]. One example of their application to model
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scientific language is [9]. They suggest representing evidence from empirical studies in
neuroscience in the form of Research Maps1. Here, hypothesized causal relationships
are represented as directed graphs, where each node gives the identity and properties of
a biological phenomenon. Experimental evidence can be fed into the graphs, allowing
to visually represent alignment or disagreement between hypotheses and evidence. This
approach, however, focuses on representing the results of empirical work. Consequently,
the scheme does not allow for clarifying hierarchical links between complex hypotheses
tailored to empirical settings and general, major claims. Also, the aim is to provide tem-
plates that researchers can fill out to report their results in a machine-actionable format;
the framework is not intended to enhance argument analysis in textual publications.

With a specific focus on formalizing scientific hypotheses, [10] suggested the DISK
framework and ontology. DISKwas designed to enable automated discovery, hypothesis
testing, and revision. As in the case of the Research Maps framework, the focus is on
modeling results from empirical studies. Therefore, modeling hierarchical relationships
between hypotheses is not straightforward in this setting. Also, as far as we know, the
framework has not been implemented and used. It remains unclear how DISK could be
used to discover complex versions of hypotheses in actual scientific publications.

Since natural language hypothesis statements can be pretty complex, a stepwise
approach towards formalization is practical. TheAIDA language suggested by [11] offers
a first-step method. This method translates natural language statements into atomic,
independent, declarative, and absolute sentences. Such sentences can then derive valid
nodes in a knowledge graph.

2.3 Hypothesis Representation in Invasion Biology

Invasion biology studies human-induced transport, introduction, establishment, spread,
and impact of organisms. Due to global transport and trade, many species have been
translocated to areas outside their natural range [12]. Research in this field is concerned
with identifying mechanisms of invasions, often motivated by the goal of developing
management solutions. The field is of particular interest in the context of argumentation
because numerous major hypotheses have been formulated over time on why species
can establish and spread [13–15] (Table A1). This allows for identifying sets of scientific
publications that argue for or against one of these hypotheses [16]. Such sets can then
be used to develop and test methods for argumentation analysis [17].

In previous work, Heger, Jeschke, and colleagues suggested the hierarchy-of-
hypotheses (HoH) approach, according to which scientific hypotheses can be repre-
sented as hierarchies [2, 16]. In an HoH, a broad, general claim is given as an over-
arching hypothesis at the top level, which branches out into more specific versions
or sub-hypotheses forming the lower levels. These sub-hypotheses either specify how
research on that overarching question has been implemented (‘operational hypotheses’)
or represent conceptual refinements, which can be either specification (e.g., spelling out
factors that could have caused an effect) or decompositions (e.g., illustrating the partial
arguments contained in a broad claim). Concerning the latter, [18] has suggested that it

1 https://researchmaps.org/.

https://researchmaps.org/


Natural Language Hypotheses in Scientific Papers 7

can be helpful to represent mechanistic hypothesis refinements as causal network dia-
grams. Decomposition then means adding nodes to a causal chain or network. In the
following, we build on these ideas for a stepwise formalization of complex scientific
claims.

3 Example: The Biotic Resistance Hypothesis

To demonstrate the challenges connected to treating hypotheses as complex claims in
a real-world setting, we give an example of one of the major hypotheses suggested as
a potential explanation for the successful establishment and spread of invasive species,
namely the Biotic Resistance Hypothesis. In its general version, this hypothesis posits
that “An ecosystem with high biodiversity is more resistant against non-native species
than an ecosystem with lower biodiversity” [19]. In scientific papers, however, such a
general formulation is rarely used [17]. Instead, authors of scientific papers tend to use
formulations that directly account for the particular case they chose to study and the spe-
cific experimental setting. For example, a publication presenting results from empirical
tests of the Biotic Resistance Hypothesis used the following formulations: “…species
already in the community with similar functional traits to those of the invaders should
have the greatest competitive effect on invaders.” “We used experimental communities
in a serpentine grassland in California, USA, to assess the extent to which […] func-
tional diversity influenced success of two different types of invading plants: early-season
annuals (E) and late-season annuals (L)[…]”. [20].

Such complex statements, differing significantly from the general claim they relate
to, can be pretty hard to identify for standard NLP classifiers [17]. Even for scientists,
at least those not familiar with the respective claim and underlying theory (e.g., freshly
starting Ph.D. students), the link of these complex statements to the major hypothesis is
often hard to recognize. An argumentation machine assisting the understanding of such
complex claims and aiding the development of own related hypotheses would therefore
be helpful [4]. However, this requires developing a framework for formalizing scientific
hypotheses and clarifying links between general and specific hypothesis formulations.
In the following, we present a suggestion for such a framework.

4 Towards Formalizing Scientific Hypotheses

Our suggestion involves several steps (Fig. 1). Natural language statements of general
hypotheses are reformulated into AIDA statements [11] by domain experts. These state-
ments are subsequently translated into further formalized statements of the form sub-
ject–relationship–object. A classification scheme allows linking the general statement to
the specific claims, and ontologies specify their components. Further, NLP classifiers are
used to identify general and specific hypothesis statements in texts (this step is described
in [17, 21]).
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Fig. 1. Suggested workflow for developing semi-formal hypothesis statements and clarifying
links between general hypotheses and hypothesis statements in scientific texts.

4.1 A Generic Structure for Scientific Hypotheses

Moving towards a formalized representation of scientific hypotheses in invasion biology,
starting with broad, major hypotheses, is helpful because these are usually less complex
than the refined versions formulated in papers reporting on empirical tests. Taking ten
major hypotheses in invasion biology as examples, the invasion biology experts amongst
the author group translated the textual versions (Table A1) into AIDA statements, fol-
lowing the methodology suggested in [11]. From these, the domain experts developed
formalized versions consisting of a subject, an object, and a hypothesized relationship
between these two (analogously to the familiar format of subject-predicate-object triples
in edge-labeled graphs, e.g., knowledge graphs encoded in the RDF data model). The
subject and the object are often complex in themselves, and we introduced further for-
malization by distinguishing the core variable, a qualifier for cases in which the core
variable has qualitatively distinct states, and a term giving further context concerning
settings in which the statement holds (Table A2).

4.2 Linking Hypothesis Formulations to Semantic Models

A critical element in moving from natural language formulations of hypotheses to for-
malized statements is linking the constituting concepts to entities in machine-actionable
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ontologies. We suggest using the SuperPattern Ontology2 [22] to model the hypothe-
sized relationships between subject and object as well as the qualifiers. It contains a set
of relations useful for describing causal relationships (e.g., “contributes to”, “prevents”,
“inhibits”) and comparisons (e.g., “has smaller value than”, “has larger value than”).

Some invasion biology hypotheses are initially given in a comparative form. This
is the case for the Biotic Resistance Hypothesis but also for Darwin’s Naturalization
Hypothesis, the Disturbance Hypothesis, the Island Susceptibility Hypothesis, the Lim-
iting Similarity Hypothesis, and the Phenotypic Plasticity Hypothesis (Table A1). The
underlying ideas, however, refer to causal relationships. In these cases, we suggest that
both variants can be helpful, the comparative version that is close to the original textual
definition and an additional causal version referring to the underlying causal reasoning
(Table A2). We think of the comparative versions as some kind of operationalization:
In an empirical setting, comparative claims are usually easier to test than causal claims
since the former do not necessarily demand to implement experiments. We suggest for-
malizing the causal variants of the hypotheses in such a way that the subject always
gives the invasion driver, i.e., the factor hypothesized to be the underlying force behind a
biological invasion or its impacts. The object describes the expected invasion outcome.

As Table A2 demonstrates for the ten hypotheses, the variables and the terms giving
context for each subject and object are complex, with little overlap in the used concepts
or terms (an exception being “invasion success”). This mirrors the complexity of the
scientific field of invasion biology, with many potentially influential factors. We, there-
fore, chose a stepwise approach for modeling them in an ontology created explicitly
for this purpose, i.e., the Invasion Biology Ontology INBIO [23]. First, we obtained
expert opinion to identify core terms in each of the ten hypotheses. For the Biotic Resis-
tance Hypothesis, these terms were “ecosystem”, “biodiversity” and “species”. Next, we
searched for existing ontologies containing these terms; where this was successful, we
used a fusion/merge strategy to integrate respective modules into the INBIO [24]. In
further steps, more concepts have been added to provide full conceptual models of the
subjects and objects of the ten hypotheses.

The suggested generic structure does not necessarily capture the structure of all
scientific hypotheses, but we suggest it can be beneficial for hypotheses describing
causal relationships. Hypotheses representing generalized statistical claims (descriptive
or statistical hypotheses [25]) do not necessarily follow this form. In our set of ten
hypotheses, this was the case for the Tens Rule, which posits that “Approximately 10%
of species successfully take consecutive steps of the invasion process” (Tables A1 and
A2).

4.3 Classifying Relationships Between General and Specific Claims

The previous two subsections have described steps toward formalizing broad, overar-
ching hypotheses. A next step that we consider necessary for linking these formalized
versions of major hypotheses to actual hypothesis statements in publications reporting
on empirical tests is to clarify the relationship between the overarching hypotheses and
the refined sub-hypotheses. Building on the HoH approach, we suggest treating every

2 https://larahack.github.io/linkflows_superpattern/doc/sp/index-en.html.

https://larahack.github.io/linkflows_superpattern/doc/sp/index-en.html
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hypothesis as a component of a hierarchical system with ‘parents’ and ‘children’. As
described in [2], we recommend distinguishing between three kinds of refinements: (A)
decomposition, (B) specification, and (C) operationalization (Fig. 2).

Fig. 2. Three approaches for relating general versions of scientific hypotheses to more specific
ones, demonstrated with the example of the Biotic Resistance Hypothesis in invasion biology:
(A) decomposition, (B) specification, and (C) operationalization. See the main text for more
information.

With decomposition, we denote the process of making those causal relationships
explicit, which are implicit parts of the reasoning behind a hypothesis (see [18] for a
worked example of the Enemy Release Hypothesis). Coming back to the Biotic Resis-
tanceHypothesis, the general definition points out thenegative effects of high biodiversity
on invasion success, whereas [20] hypothesizes a competitive effect of native species on
invaders. An expert in invasion biology can draw from background knowledge to make
the connection. For such an expert, it will be evident that intense competition affects
invasion success. The refinement of the Biotic Resistance Hypothesis in [20] thus adds
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nodes to the hypothesized causal graph, making more of the hypothesized mechanism
explicit (Fig. 2A).

In the above example, the authors additionally applied the specification strategy.
Specifying a hypothesis involves exchanging the nodes of the hypothesized causal chain
or networkwithmore concrete versions (Fig. 2B). In the cited example, instead of testing
for a general effect of high biodiversity on the chosen invasive species, the authors tested
for functional diversity effects. By functional diversity, the authors meant the presence
or absence of plant species representing one of four groups that differ in their ecological
behavior, namely early-season plants with an annual life cycle, late-season species with
an annual life cycle, grasses growing in bunches and living longer than one year, and
herbs with the ability to fix atmospheric nitrogen.

The third possibility in which a specific version of a hypothesis can be linked to its
general version is operationalization. To operationalize a hypothesis means to describe
what exactly will be empirically tested. In the described case, the authors chose to exam-
ine the effects of manipulating the composition and diversity of native species of the four
functional groups (early-season annuals, late-season annuals, perennial bunchgrasses,
and nitrogen fixers). Their dependent variable or ‘object’ was the number of established
individuals and the reproductive success of six selected invasive plant species from those
groups (Fig. 2C).

The described operations can also be applied in the other direction. For example,
a hypothetical complex causal chain or network can be simplified, which would be
the inverse of decomposition (Fig. 2A). An existing hypothesis, perhaps derived from
studying a specific context, can be generalized to a broader context (e.g., in terms of taxa
or life stages covered, geographic range or other ecological gradients); this would be the
opposite of specification (Fig. 2B). Finally, from a hypothesis generated, e.g., from an
empirical observation under specified experimental conditions, a broader, more abstract
version can be derived; such an abstractionwould be the opposite of an operationalization
(Fig. 2C).

The suggested scheme can be a basis for linking actual hypothesis statements in
publications reporting on empirical tests to major, more general hypotheses [2, 16]. For
example, in their literature review on the Biotic ResistanceHypothesis, [19] identified 15
empirical studies that focused on functional diversity as a specific form of biodiversity,
whereas 126 empirical tests in their dataset instead studied species richness, which is a
different specification of biodiversity.

To allow for the implementation of the framework in the context of argumentation
analysis, we are currently developing a Hypothesis Ontology containing the concepts
identified as hypothesis components and the possible relationships between general and
specific variants, as just described. Figure 3 depicts the already developed modeling of
types of entities and their relationships; adding concrete instances belonging to these
types (e.g., the Biotic Resistance Hypothesis as one specific Hypothesis) is ongoing
work. In this model, a Hypothesis is linked to a HypothesisDefinition. The definition
“An ecosystem with high biodiversity is more resistant against non-native species than
an ecosystem with lower biodiversity” [19] will be one instance of the type Hypoth-
esisDefinition. The distinction between the Hypothesis and the HypothesisDefinition
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is necessary, as several subtly different definitions exist for many high-level hypothe-
ses. Each of these definitions is further captured in a HypothesisStatement. We model
HypothesisStatements as SuperPatternInstances [22]. They possess a Label, Context,
Subject, Relations, Objects, and Qualifiers. Subjects and Objects can be complex and
consist of Qualifiers, Variables, and Contexts. Hypothesis and HypothesisDefinitions
can have subclass relationships to reflect the hierarchical structure described above. A
Hypothesis can be supported (or refuted) by Evidence and equipped with Provenance
as defined in the Prov-O ontology3.

Fig. 3. Conceptual scheme for the Hypothesis Ontology

5 Applications of the Framework

The current situation in which major scientific research results are mainly published in
PDF format hinders the integration of AI technology in scientific workflows [26]. An
important step towards overcoming this barrier would be to enrich the bibliographic
meta-data of scientific publications with machine-readable information about the pub-
lications’ content, including studied hypotheses. The suggested framework and related
semantic modeling can provide a basis for such endeavors. We are currently explor-
ing two parallel pathways in this direction. The first of these pathways involves using
Wikidata to link entries about publications to entries about hypotheses, while the second
introduces hypotheses as a publication type in its own rights.

The Wikidata pathway builds on community curation workflows under the umbrella
of theWikiCite initiative that collects bibliographic metadata inWikidata [27]. It further
involves the development of tools for exploring the resulting knowledge graph (e.g.
[28]). In this context, we regularly identify invasion biology publications and annotate
them as such, with additional workflows to annotate the identified publications for author

3 https://www.w3.org/TR/prov-o/.

https://www.w3.org/TR/prov-o/
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disambiguation, main subjects, or methods used. For each hypothesis to be used in this
workflow, a dedicated Wikidata entry is required, and we have created such entries for
the most common hypotheses in invasion biology, including those listed in Table A1.
These entries can then be annotated, e.g., in terms of the publications from which they
originated or the concepts they relate to. The aim is to establish links between the
hypotheses and scientific publications testing or discussing them. In the future, this will
allow for better findability of relevant publications in an Open Science environment and
options for on-demand meta-analyses [29].

For the second pathway, we developed a scheme for a new publication type -
Hypothesis Descriptions [30]. Such Hypothesis Descriptions are aimed at formalizing
how invasion biology hypotheses are described (especially in terms of which concepts
and relationships they cover) and how differences between hypothesis variants can be
expressed, both for humans and in a machine-actionable fashion. This scheme is pio-
neered in the open-science journal Research Ideas and Outcomes [31] and builds on the
nanopublication standards beginning to be adopted in biodiversity-related publications
[32].

In the context of invasion biology (and other fields of science), the suggested frame-
work can further be used as a guideline for formulating hypotheses. In invasion biology,
the ambiguity of hypothesis formulations is often considered challenging (see, e.g., [33]).
Still, it is not an established practice to carefully consider the relationship between a spe-
cific, complex claim made in a publication and the general version it has been derived
from or to use consistent language for formulating hypotheses. We suggest that our
framework could offer guidance, thus enhancing research efficiency. For example, in the
case of the Enemy Release Hypothesis, empirical research so far has mainly focused on
only one of its components [33, 34]. However, to establish whether or not this hypothesis
can be regarded as a reasonable explanation for invasion success, it would be necessary
to study the complete hypothesized causal chain. Such gaps are more easily identified
if respective publications clarify which kind of hypothesis refinement is chosen for the
study context.

6 Limitations

Invasion biology, the research domain we used to develop our framework, is a relatively
straightforward example because the domain is characterized by many explicitly formu-
lated major hypotheses repeatedly synthesized by the scientific community [13–16]. In
other disciplines, it might be much harder to even identify such general claims. For the
neighboring discipline of urban ecology, [35] demonstrated how similar lists of major
hypotheses can be collated with a combination of expert involvement and literature anal-
yses. This general approach can, in principle, be applied to any other scientific domain.
Also, we believe that the NLP models we develop based on the introduced hypothe-
sis formalization can be used later for automatic/semi-automatic hypothesis discovery
in other fields as well. The suggestion for linking specific formulations of empirical
tests to general claims is also not limited to an application in invasion biology. [36]
demonstrated how specific claims in medicine can be linked to a general, major claim
by specification and operationalization. Still, future work is needed to clarify for which
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scientific domains it is possible and useful to implement all steps towards hypothesis
formalization outlined above.

Currently, it is an open question how our ontology-based, multi-level formalization
of hypotheses can feed into NLP-based argument mining methods, i.e., hypothesis iden-
tification in particular [21].Whilemuch recent work is on integrating languagemodeling
and knowledge graphs, it is unclear how these methods scale to the complex problem
of hypothesis identification in scientific papers, which requires deep semantic reasoning
and domain-specific knowledge. In future work, relevant ontologies will be integrated
with text-driven approaches to argument mining and enhance the implicit knowledge in
languagemodeling-based approaches with explicit knowledge. This can be achieved, for
instance, with recent methods for so-called “knowledge injection into languagemodels”,
see [25].

Moving towards formalizing scientific hypotheses requires exchanging complex nat-
ural languagewith streamlined and unified terms and concepts. It is necessary to carefully
study under which conditions the gain of formalizing outweighs the potential informa-
tion losses during this process. This challenge can become even more demanding once
the semi-formal statements suggested in Table A2 are further transformed, e.g., into log-
ical statements that provide a foundation for automated reasoning. An annotation study
could be a practical next step to help clarify how well our proposed scheme can capture
complex hypothesis statements in actual scientific texts.

7 Conclusions and Outlook

In this article, we suggested a framework formoving towards a formalization of scientific
hypotheses and clarifying links between general and specific hypothesis formulations.
Developing the framework was an interdisciplinary effort, considering knowledge from
invasion biology, philosophy of science, computational linguistics, and semantic mod-
eling. We suggest our framework can be helpful for argumentation analysis in scientific
publications. Further, it can help in taking steps towards reprocessing scientific pub-
lications and making published research available for AI-based analyses. Finally, the
framework can guide researchers during the hypothesis formulation process. We sug-
gest that domain experts can directly profit from our framework because it motivates to
make intuitions explicit and fosters conceptual analysis, which can directly benefit the
quality of scientific work [37].

Therefore, implementing the framework as a user interaction tool is an essential next
step. A prototype of such a tool already exists, and a first version will soon be available
at hi-knowledge.org4. The tool will help researchers identify major invasion hypotheses
in texts, link to background information necessary for understanding technical terms,
and, in the future, offer guidance to formulate their own specific and complex research
hypothesis tailored to the focal empirical setting. ImplementingAI-based tools in all steps
of the scientific workflow is a timely and urgent need. This would significantly enhance
efficiency [38] and allow for better utilization of knowledge gained in research for
solving current societal challenges. We hope our framework will motivate and facilitate
innovative steps in this direction.

4 https://hi-knowledge.org/.

https://hi-knowledge.org/
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Appendix

Table A1. Ten major hypotheses in invasion biology and their textual definitions as given in [39].

Hypothesis Acronym Definition

Biotic resistance hypothesis BR An ecosystem with high biodiversity is more
resistant against non-native species than an
ecosystem with lower biodiversity

Darwin’s naturalization hypothesis DN Invasion success of non-native species is higher
in areas that are poor in closely related species
than in areas that are rich in closely related
species

Disturbance
Hypothesis

DS Success of non-native species is higher in
highly disturbed than in relatively undisturbed
ecosystems

Enemy release
Hypothesis

ER The absence of enemies in the exotic range is a
cause of invasion success

Invasional meltdown hypothesis IM The presence of non-native species in an
ecosystem facilitates invasion by additional
species, increasing their likelihood of survival
or ecological impact

Island susceptibility hypothesis IS Non-native species are more likely to become
established and have major ecological impacts
on islands than on continents

Limiting similarity hypothesis LS Success of non-native species is high if they
strongly differ from native species, and it is low
if they are similar to native species

Phenotypic plasticity
Hypothesis

PH Invasive species are more phenotypically
plastic than non-invasive or native ones

Propagule pressure hypothesis PP High propagule pressure (a composite measure
consisting of the number of individuals
introduced per introduction event and the
frequency of introduction events) is a cause of
invasion success

Tens rule TEN Approximately 10% of species successfully
take consecutive steps of the invasion process
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Table A2. Semi-formalized representations of ten major hypotheses in invasion biology. For
hypotheses stated as comparisons (Table A1; relationship “has larger value than”), a causal variant
is also given. In the causal hypothesis variants, the subject describes the hypothesized driver and
the object of the invasion outcome. H: Hypothesis, Q: Qualifier. For acronyms, see Table A1.

H Subject Relation-
ship

Object

Q Variable Context Q Variable Context

BR Biodiversity in an ecosys-
tem resistant 
against non-na-
tive species

has larger 
value than

biodiversity in an ecosys-
tem with low 
resistance

High biodiversity in an ecosys-
tem

contributes 
to

low invasibility of that eco-
system

DN Invasion 
success

in ecosystems 
poor in closely 
related species

has larger 
value than

invasion suc-
cess

in ecosys-
tems rich in 
closely re-
lated species

Low number of spe-
cies closely re-
lated to a non-
native species

in an ecosys-
tem

contributes 
to

high invasion suc-
cess

of this spe-
cies in this 
ecosystem

DS Invasion suc-
cess

in highly dis-
turbed ecosys-
tems

has larger 
value than

invasion suc-
cess

in relatively 
undisturbed 
ecosystems

High disturbance of an ecosys-
tem

contributes 
to

high invasion suc-
cess

of non-native 
species in 
that ecosys-
tem

ER No enemies of a species in 
its non-native 
range

contributes 
to

high invasion suc-
cess

of this spe-
cies in the 
new range

IM Invasion suc-
cess 

of previously 
arriving non-
native species 

enables invasion suc-
cess or impact

of new non-
native spe-
cies

IS Invasion suc-
cess and im-
pact of non-na-
tive species

on islands has larger 
value than

Invasion suc-
cess and im-
pact of non-na-
tive species

(continued)



Natural Language Hypotheses in Scientific Papers 17

Table A2. (continued)

H Subject Relation-
ship

Object

Q Variable Context Q Variable Context
Arrival on is-
land and not 
continental 
land

contributes 
to

high invasion suc-
cess and im-
pact

LS Invasion suc-
cess

in ecosystems 
poor in func-
tionally similar 
species

has larger 
value than

invasion suc-
cess

in ecosys-
tems rich in 
functionally 
similar spe-
cies

High functional sim-
ilarity to native 
species

of invasive 
species in an 
ecosystem

contributes 
to

low invasion suc-
cess

of that spe-
cies in that 
ecosystem

PH Phenotypic 
plasticity

of invasive 
species

has larger 
value than

phenotypic 
plasticity

of non-inva-
sive or native 
species

High phenotypic 
plasticity

of a non-native 
species

contributes 
to

high invasion suc-
cess

of this spe-
cies

PP High propagule pres-
sure

of a species in 
its non-native 
range

contributes 
to

high invasion suc-
cess

of this spe-
cies in that 
area

TEN n/a n/a n/a n/a n/a
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Abstract. We explore the possibility of leveraging model explainability
methods for weakly supervised claim localization in scientific abstracts.
The resulting approaches require only abstract-level supervision, i.e.,
information about the general presence of a claim in a given abstract,
to extract spans of text that indicate this specific claim. We evaluate
our methods on the SciFact claim verification dataset, as well as on a
newly created dataset that contains expert-annotated evidence for sci-
entific hypotheses in paper abstracts from the field of invasion biology.
Our results suggest that significant performance in the claim localization
task can be achieved without any explicit supervision, which increases
the transferability to new domains with limited data availability. In the
course of our experiments, we additionally find that injecting information
from human evidence annotations into the training of a neural network
classifier can lead to a significant increase in classification performance.

Keywords: Explainability · Evidence localization · Claim verification

1 Introduction

A claim lies at the center of most scientific publications, as it constitutes the
core proposition that is put forth for consideration and is targeted by the pre-
sented evidence [19]. Detailed knowledge about these claims addressed in scien-
tific publications is essential for tasks like literature search and scientific claim
verification [40], leading to a variety of research targeted at the annotation,
recognition and localization of claims in scientific abstracts and full texts (see
Sect. 2.1). Despite significant progress being made, the reliance on direct super-
vision (e.g., [23,41]) often limits the potential of these approaches, since large
and high-quality datasets are uncommon in general and not present at all in
many specific domains, and since existing models struggle to generalize to differ-
ent domains [36]. Especially for the task of localizing evidence for claims within
a text, the annotation process for creating the dataset is very time-intensive
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and thus more costly, which naturally raises the question of whether a weaker
supervision signal, that could be quicker, easier and more consistent to annotate,
could be sufficient for solving this complex task.

In this study, we explore the possibility of using weak supervision for the
task of claim localization in scientific abstracts. The supervision signal is the
information about the general presence of a specific claim in a given abstract (i.e.,
a textual formulation of that claim or a discrete claim label). This information
is used to train a standard neural network classifier that is able to verify the
presence of such a semantically distinct claim in a given abstract. We then use
model explainability approaches to create a rationale for the classification, which
therefore selects spans or sentences from the input that constitute the evidence
for the given claim. This is, to our knowledge, the first study that explores the
sole use of weak supervision for solving this task.

To test our methods, we evaluate them on two datasets of scientific abstracts
with annotated evidence. The first one is the INAS dataset [3], a dataset con-
sisting of scientific abstracts from the field of invasion biology, annotated with
information about which hypothesis from the field is addressed. Since no evidence
annotations are provided by [3], we perform our own annotation study and anno-
tate 750 abstracts with span-level hypothesis evidence. The second dataset is the
SciFact dataset [35], which consists of hand-written claims for a set of scientific
abstracts, in combination with sentence-level evidence annotations.

To explore the limits of using explainability approaches for evidence local-
ization, we perform an experiment on injecting the information from evidence
annotations into the training process of neural network classifiers. A similar app-
roach has been explored by [38], but we are not aware of such techniques being
used for claim verification. In our testing, we find that our method is able to
drastically increase the classification performance of the resulting classifier.

The rest of our work is structured as follows: In Sect. 2 we provide background
knowledge about scientific claim detection as well as the concept of using input
optimization for model interpretability, while Sect. 3 will describe the datasets
used in this study. Section 4 then explains our approach for localizing claim
evidence as well as a method for injecting evidence information into a stan-
dard neural network classifier, while Sects. 5 and 6 will detail the corresponding
experiments and results. Section 7 concludes this work with final thoughts and
remarks.

The code for the experiments conducted in this study is available at
github.com/inas-argumentation/claim_localization.

2 Background

2.1 Scientific Claim Detection

Scientific claim detection has its root in the field of general argument mining,
which was formally introduced by [22] and is concerned with locating, classifying
and linking argumentative components (so-called argumentative discourse units)
in a given argumentative text. Based on the general theory of argumentation

https://github.com/inas-argumentation/claim_localization
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[8,22,34] determined the claim to be the center of an argument, as it is the
core proposition that is put forth for consideration. A claim, by its nature, is
not inherently true and requires further substantiation, which is provided by
premises, i.e., statements that are generally accepted to be true and do not
require further support [29].

As scientific texts are argumentative in nature, the field of argument min-
ing naturally extends to the scientific domain. Recognizing the argumentative
structure in a scientific text, as well as the main claim in particular, is essential
in tasks like literature search and scientific claim verification [40], leading to the
creation of a variety of annotation schemes and datasets [1,10,31,32], many of
which focus specifically on the scientific claim: [2] creates a detailed annotation
scheme that captures the variety of ways a claim can be formulated in a scientific
abstract, [35] create the scientific claim verification task by creating a dataset of
hand-written scientific claims and by annotating which sentences in a corpus of
scientific abstracts supports or refutes them, and [3] focus on a precise semantic
categorization of scientific claims by annotating and classifying claims according
to a domain-specific hypothesis network.

Given a specific claim, our study addresses the precise localization of evi-
dence for this exact claim in a given scientific abstract. While many approaches
have been proposed to solve similar tasks [2,13,23,41], these methods leverage
data annotated on sentence level for supervised learning, which can limit their
potential due to the rather small available datasets and the unavailability of any
annotated data in many domains. Reasons for this lack of data include the need
for expert annotators caused by the focus on the scientific domain, the time-
intensive annotation process, as well as the complexity of the annotation task
even for domain experts [11].

To our knowledge, no method exists that can reliably detect and locate claims
in scientific texts without access to a dataset of samples with explicit sentence-
level claim annotations, which can be a problem if a model shall be adapted to
a new domain without an existing dataset, as performance has been shown to
significantly decrease on out-of-domain samples [36]. Our study aims at closing
this gap by creating an approach that only requires weak supervision in the
form of abstract-level labels, thus drastically reducing the time and cost needed
to create a training set for a new domain.

2.2 Input Optimization for Model Interpretability

For many datasets, evidence annotations for specific claims constitute a ratio-
nale for a corresponding classification (e.g., for the claim verification task [35],
claim evidence is an explanation for an abstract-level validity label). This char-
acterization of claim evidence creates a natural connection to the field of model
interpretability, which is concerned with creating explanations for decisions (e.g.,
classifications) of black-box machine learning models like neural networks. In the
field of natural language processing, explanations for classifications often take
the form of individual scores assigned to each input token, with a higher score
indicating an increased significance of that token for the predicted score. While
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a variety of methods have been proposed [20], we will focus on a recent study
by [4], as their method called MaRC (Mask-based Rationale Creation) is specif-
ically designed to extract longer, consecutive spans of text as explanations, thus
making the explanations better aligned with human reasoning and annotations.

The MaRC approach relies on the concept of input optimization: As neural
networks are differentiable, it is possible to calculate the gradient of an objec-
tive function with respect to the input features. The MaRC approach uses this
concept to remove words from the input by gradually replacing them by PAD
tokens (in the case of BERT) in a way that maximizes the likelihood of the class
that is to be explained, meaning that the words that remain are highly indicative
of the respective class.

The MaRC approach assigns parameters wi and σi to each input word xi, to
calculate a mask λ in the following way:

wi→j = wi · exp ( − d(i, j)2

σi

)
(1)

λj = sigmoid(
∑

i

wi→j) (2)

The weight wi of a word xi is mainly responsible for its mask value λi, but each
weight wi also influences the mask values of the words around it: d(i, j) denotes
the distance between two words while wi→j denotes the influence of weight wi

towards λj . This mask value λj is simply calculated by applying the sigmoid
to the sum of all influences onto this mask value. This parameterization of the
mask, together with an objective function that encourages large values of σ, leads
to smooth masks with long consecutive spans of texts being selected. Using this
mask, two altered inputs are created:

x̃ = λ · x + (1 − λ) · b (3)

x̃c = (1 − λ) · x + λ · b (4)

b is here an uninformative background (e.g., PAD tokens for BERT), meaning
that x̃ is created by applying the mask to input x which removes low-scoring
words from the input, while x̃c applies the reverse mask. The actual objective
function that is optimized is the following:

arg min
w,σ∈Rn

− L(x̃, c) + L(x̃c, c) + Ωλ + Ωσ (5)

where we optimize our mask to maximize our class probability of desired class c
(given by L(x̃, c)), meaning that we select words that indicate this class, while
minimizing this likelihood for the reverse mask, meaning that words indicative
of c will not be masked. The additional regularizers enforce sparsity (Ωλ) and
smoothness (Ωσ) of the mask. For a more detailed description and derivation,
see [4].



24 M. Brinner et al.

3 Datasets

3.1 The INAS Dataset

We evaluate our claim localization approach on the INAS dataset [3]. The dataset
consists of 954 paper titles and abstracts from the field of invasion biology, a field
concerned with the study of human-induced spread of species outside of their
native ranges, caused by factors like global transport and trade. The samples
are annotated with labels indicating which of the ten main hypotheses in the
field are addressed in a given paper, in combination with an even more fine-
grained categorization about specific sub-hypotheses addressed in them, based on
a hypothesis network created by [14]. We perform our own annotation study and
asked three experts in the field of invasion biology to annotate 750 samples with
span-level evidence. The task was to annotate all spans that, to the trained eye,
indicate which hypothesis is addressed in the given paper, even if the hypothesis
is not explicitly named or stated.

50 samples were annotated by all annotators and we achieved a rather low
F1 score of 0.389, indicating that this is a generally challenging annotation task
even for domain experts. This is in part caused by one annotator having much
lower agreement with the other two, indicating that annotation guidelines were
interpreted slightly differently, which, for such a complex task, can quickly reduce
agreement scores. The higher F1 score of 0.579 between the other two annotators
shows that the general task is well-defined and thus suitable to be tackled by
neural networks.

3.2 The SciFact Dataset

We also evaluate our approach on the SciFact dataset [35]. It consists of 5,183
abstracts from a collection of well-regarded journals, in combination with a set
of 1,409 hand-written claims that are supported or rejected by papers from the
corpus. The papers that verify or reject a claim are annotated on sentence-level
with evidence for the respective classification, so that, in contrast to the span-
level annotations for the INAS dataset, each sentence completely belongs to the
evidence or not.

4 Method

4.1 Span-Level Claim Evidence Localization

We propose a method to perform weakly supervised span-level claim evidence
localization. In this setting, we assume the availability of a training set of
texts labeled with information indicating which claim (from a fixed set of
known claims) is addressed in each of them. Given a text consisting of words
x1, ..., xn, the task of weakly supervised claim localization is now to predict a
set I ⊂ {1, ..., n} of indices of words that are part of the ground truth claim
evidence annotated by a human annotator. We propose to utilize the MaRC
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approach (see Sect. 2.2) to solve this task by first training a classifier to perform
the claim identification task using only abstract-level labels, which is a standard
text classification problem. Afterward, MaRC can be used to create an expla-
nation for the classification of a given sample to produce importance scores for
each word in the abstract.

For improved rationale predictions, we propose to perform the optimization
from Eq. 5 with respect to several models, but for a single set of mask values.
Input optimization is known to overly adapt to the particularities of a given
model, which we hypothesize to be mitigated by optimizing with respect to
multiple models at once.

4.2 Sentence-Level Claim Evidence Localization

We also propose an approach for sentence-level claim evidence localization. The
precise task we consider slightly differs from the one described in the previous
section, as here we assume claims to be present in textual form, and to not
originate from a fixed set of known claims. Given a claim and an abstract, the
task is to predict one of the three labels {Supports, Refutes, Not Enough Info}.

We again start by training a standard text classification model, which now
receives the claim and abstract as inputs and predicts one of the three given
labels as output. While it would be possible to employ the same procedure
as described in Sect. 4.1 and compute sentence scores from the scores for the
individual words, this could lead to uncertainties in the case of only very few
words in a sentence being selected, as these could be highly important (thus
making the whole sentence important) or simple artifacts caused by important
words from a neighboring sentence exerting influence.

For this reason, we directly optimize mask weights w1, ..., wn, with one value
being assigned to each input sentence si ∈ {s1, ..., sn}, and define λi = σ(wi)
as the mask value for the sentence. We also alter the interpretation of the mask
values λ: Before, each input embedding was linearly blended towards an unin-
formative embedding, as the input embedding x̃i of token i was defined to be
x̃i = λi · xi + (1 − λi) · bi. Despite good performance of this approach [4], these
shifted embeddings constitute out-of-domain inputs as they are not encountered
during training, therefore potentially leading to unpredictable behavior of the
network. Therefore, we explore the possibility of treating λ as a set of probabil-
ity distributions, with each λi being the parameter of a Bernoulli distribution
indicating the probability of sentence si belonging to the input. This allows sam-
pling of inputs from this distribution, with each sentence being either completely
present or completely removed (replaced by [PAD] tokens) in a given sample. We
then optimize this distribution to increase the likelihood of samples with high
scores according to our objective, leading to the following optimization problem:

arg min
w∈Rn

Em∼λ [−L(x̃, c) + L(x̃c, c)] + Ωλ (6)

where x̃ and x̃c are computed using the mask m sampled from λ similarly to
Eq. 3 and Eq. 4, but on sentence-level. This equation can not be optimized using
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standard gradient-descent, as it contains an expectation over a probability dis-
tribution. We therefore use the score function estimator [9]:

∂

∂λ
Em∼p(·;λ) [f(m)] = Em∼p(·;λ)

[
f(m)

∂

∂λ
log p(m;λ)

]
(7)

The expectation on the right side can now be approximated by sampling a batch
of masks from λ, with f(m) being our likelihood scores for mask m as defined
in Eq. 6.

For our specific task, only the sentences from the abstract are masked, while
the claim does not receive a mask value to be optimized. Again, we perform the
optimization with respect to multiple trained classifiers as further regularization.

4.3 Evidence Injection

While our general methods aim at using weak supervision only, we also explore
how far the results can be improved by using evidence annotations in the course
of the base classifier training. To do this, we develop a method to inject evi-
dence annotation information into the standard classifier training process. To
our knowledge, something remotely similar has only been explored for the case
of Support Vector Machines [38]. We test this method on the SciFact dataset
and therefore assume the presence of sentence-level evidence annotations.

The altered training paradigm works as follows: Given a training sample x,
this sample will be fed three times into the network (all in the same batch).
Once in its normal form, once with all evidence sentences removed, and once
with all evidence sentences present, but with some other sentences removed. We
then train the model to predict the correct label (Supports or Refutes) for the
first and third versions of the sample, but train it to predict the Not Enough
Info label for the second version. In this way, the classifier learns to differentiate
sentences that actually support the claim from sentences that only address the
same topic.

5 Experiments

5.1 Span-Level Claim Localization

Experimental Setup. We perform experiments on weakly-supervised span-
level evidence localization on the INAS dataset. Given a sample x consisting
of words x1, ..., xn, the task is to predict a score si for every word xi, such
that the words belonging to the ground truth evidence annotated by a human
annotator are assigned the highest scores. We perform our experiments in a
weakly supervised setting, meaning that no method will have access to samples
with actual evidence annotation. Instead, the supervision signal will solely be
the label indicating which hypothesis (from a set of 10 possible hypotheses) is
addressed in a given abstract. This information will be available during training
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and testing, as we explore the setting of localizing evidence for a claim that is
known in advance.

Our proposed method works by training a standard text classification model
to predict the correct hypothesis label for a given sample and to use the MaRC
method to extract an explanation for the given label of interest post hoc (see
Sect. 4.1 for a detailed description). We hypothesize that this method will out-
perform other interpretability methods, as it is explicitly designed to generate
human-like rationales in the form of consecutive spans of text. As we are not
aware of other methods for weakly supervised claim localization, we evaluate this
method against other explainability methods (see Appendix A for an overview)
as well as against a supervised baseline to allow for a relative performance com-
parison. For model and training details, see Appendix A.

We additionally employ a post-processing step in our prediction pipeline:
We split the abstract into individual sentences using ScispaCy [21] and set the
predicted scores of the last token of each sentence to 0. This additional step
improves span-matching performance, since claim evidence annotations in our
particular task do not cross sentence boundaries and do not include punctuation.

Evaluation. We evaluate different measures for the quality of the predicted
scores. To assess the quality of the scores assigned to the individual words (inde-
pendent of their belonging to a longer span of text) we evaluate the area under
the precision-recall-curve (AUC-PR).

We also evaluate the F1 score, which requires a binary prediction (i.e., each
word is either predicted to belong to the evidence or not). Since many methods
do not have an obvious way of determining a score threshold, we select the p · n
highest-scoring words and average over 19 values of p (0.05, 0.10, 0.15, ..., 0.95).

The same technique is used for the IoU-F1 score, which we propose as a
measure for determining the quality of predicted spans of text. Given a binary
prediction for each token, we determine predicted spans as continuous spans of
words that were selected as evidence and calculate the IoU between all pairs
of predicted and ground truth spans. As perfect matches are unlikely for this
challenging task, we define generalized versions of precision and recall that allow
for partial matches. To do so, we determine the highest IoU value of each span
(ground truth and predicted) with anyone from the other set, and define the
precision as the average of these highest values for the ground truth spans, which,
analogous to the usual precision, is a measure for how well the ground truth
spans have been recognized. Similarly, we define the recall as the average over
the highest values for the predicted spans, thus measuring how likely a predicted
span matches any of the ground truth spans. The F1 score is calculated from
these values as usual and is again averaged over all values of p.

The three scores described so far are well-suited for comparing different meth-
ods with each other. To give a better feeling for the absolute quality of the
predictions, we again use the F1 and IoU-F1 scores (now denoted as D-F1 and
D-IoU-F1 ), but for a single selection of words: We select a threshold t as the
score of the k-th highest-scoring word, with k being the number of words in the
ground truth evidence. As ground truth information is used, this is not an objec-
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Fig. 1. Exemplary prediction of the MaRC method for an abstract from the INAS
dataset for the Biotic Resistance Hypothesis label. Green text marks ground truth
annotations, red spans indicate predicted scores.

tive measure of quality, but it nevertheless provides a more interpretable score.
We additionally alter the IoU-F1 from the generalized, continuous version to a
discrete one used in [6]: A ground truth span is counted as correctly recognized
if any predicted span has an IoU of over 0.5, which allows for the calculation of
standard precision and recall scores.

5.2 Sentence-Level Claim Localization

Experimental Setup. We perform experiments on weakly-supervised sentence-
level evidence localization on the SciFact dataset, which is analogous to the task
defined in Sect. 5.1, with the difference that each sentence receives only a single
score. Since most explainability methods do not focus on complete sentences, we
instead focus on testing different versions of the approach described in Sect. 4.2
and compare them to a supervised baseline, which is a RoBERTa-large classifier
[18] that receives a textual claim and a sentence from the abstract and predicts
the likelihood of this sentence belonging to the evidence.

We explore different versions of our approach, which differ in the way the
base-classifier is trained: As a baseline, we test a classifier that is trained as usual
on the SciFact dataset only. We also test a version that is trained with added
spans of PAD tokens between sentences to align the input spaces present during
training and optimization. We also explore the effect of pretraining on five other
datasets (Fever [33], EvidenceInference [7,17], PubmedQA [15], HealthVer [26],
COVIDFact [25]), which has been shown to improve the classifier performance
[37]. Lastly, we also try a supervised version of our approach by employing the
procedure described in Sect. 4.3 during classifier training. For more details on
the training and evaluation, see Appendix A.

Evaluation. We again evaluate the AUC-PR as a holistic measure of the
assigned ranking between the sentences. As for more interpretable measures,
we provide the precision@k with k ∈ {1, 2, 3}, which is defined as the number of
ground truth sentences correctly placed among the top-k scoring sentences by
the classifier, divided by the maximum number possible (the minimum of the
number of available ground truth sentences and k).

For all trained base classifiers, we also provide the F1 score of the abstract-
level classification task (Clf-F1 ) to display the effect the different training
paradigms have on the classifier performance.
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6 Results

6.1 Span-Level Evidence Localization

The results for the span-level evidence localization are displayed in Table 1, while
an exemplary output for the MaRC method is displayed in Fig. 1.

The MaRC method outperforms all other methods tested, both for scores
measuring token-level performance (AUC-PR, F1, D-F1) as well as for scores
evaluating span predictions (IoU-F1, D-IoU-F1). Especially with regards to the
span predictions, we see that the MaRC approach significantly outperforms all
other methods, which can be explained by it being explicitly designed to produce
rationales that mirror human reasoning. The difference to other methods is here,
that complete spans are selected as evidence, including words like “the”, “and”,
etc., if they are directly part of an important span. Other methods, in compar-
ison, mainly select the few rare words that are a more direct hint towards the
hypothesis label, but do therefore not match human-annotated spans. This phe-
nomenon also negatively affects token-level scores for other methods, since only
few words per span are recognized as important. For the occlusion method, we
produce a similar behavior by occluding longer spans of text at a time, leading
to smoothly varying scores and thus to the only method that remotely rivals the
MaRC method.

Notably, some methods barely outperform a random baseline (especially for
span prediction evaluations), thus making them unusable for claim localization.
As a possible explanation, [3] analyzed that classifiers for this task can make use
of individual words like species names or locations as hints for the hypothesis
if these names only occur in the context of this specific hypothesis. These will
not be annotated by the human annotators, though, as hypothesis evidence
(according to our definition) needs to clearly reference parts of the respective
hypothesis. Overall, this shows a limitation of the proposed approach of using
explainability methods for claim localization, as this approach relies on a high
overlap between spans considered by humans as hypothesis evidence and words
actually used by the classifier as the basis for the prediction, which is not always
given.

As is to be expected, though, all methods are outperformed significantly by
the supervised baseline. It is the only method that is explicitly trained to pre-
dict spans of the desired form, and the only method that has knowledge about
the type of information that is to be selected. For weakly supervised methods,
that do not have any of this information, predicting the precise span boundaries
is extremely difficult. This result suggests, that for a smaller prediction space
results could be improved, which we analyzed for the case of sentence-level evi-
dence localization.

6.2 Sentence-Level Evidence Localization

The results for the sentence-level evidence localization are displayed in
Table 2. Even though we altered the existing MaRC approach due to the dif-
ferences between the tasks, our proposed method is still denoted as “MaRC”.
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Table 1. Results for the span-level claim localization task on the INAS dataset.

Method AUC-PR F1 IoU-F1 D-F1 D-IoU-F1

MaRC 0.357 0.331 0.210 0.350 0.151
Occlusion 0.310 0.288 0.148 0.310 0.074
SaliencyL2 0.295 0.311 0.094 0.313 0.019
SaliencySum 0.241 0.265 0.070 0.259 0.002
InXGradL2 0.267 0.304 0.087 0.301 0.013
InXGradSum 0.240 0.258 0.070 0.248 0.002
Int. GradsL2 0.317 0.311 0.091 0.319 0.020
Int. GradsSum 0.320 0.305 0.090 0.322 0.017
LIME 0.271 0.281 0.072 0.273 0.004
Shapley 0.322 0.305 0.086 0.329 0.016
Random 0.221 0.256 0.067 0.223 0.003
Supervised 0.574 0.409 0.231 0.521 0.288

Table 2. Results for the sentence-level claim localization task on the SciFact dataset.

gt pad pre sup Method Clf-F1 AUC-PR Prec@1 Prec@2 Prec@3

X MaRC 0.859 0.546 0.524 0.578 0.659
MaRC 0.859 0.581 0.534 0.617 0.741

X X MaRC 0.842 0.632 0.612 0.675 0.710
X MaRC 0.842 0.655 0.641 0.689 0.736

X X X MaRC 0.877 0.696 0.718 0.738 0.786
X X MaRC 0.877 0.650 0.650 0.699 0.754

X X X X MaRC 0.936 0.720 0.757 0.772 0.780
X X X MaRC 0.936 0.718 0.757 0.777 0.780

X Sent-clf 0.882 0.883 0.893 0.905
X X Sent-clf 0.902 0.883 0.898 0.951
X Sent-clf 0.664 0.650 0.655 0.778

The first four columns in Table 2 provide information about whether the model
had access to the ground truth label during optimization (column gt), whether
the base classifier was trained with added PAD tokens (column pad), whether
the classifier was pretrained (column pre) and whether the classifier was trained
using evidence supervision (column sup).

As, again, no previous study addressed our specific task of weakly supervised
claim localization, and since none of the standard explainability methods tested
on the INAS dataset proved particularly well-suited for the task at hand, we
focus in this section on a comparison of our method with a supervised baseline,
and analyze the challenges and solutions for mitigating the gap in performance.
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Our most basic version of the MaRC approach (rows 1 and 2) uses a classifier
trained without any changes to the standard training procedure. Even for this
case, we already see reasonable performance, as it ranks an evidence sentence at
the top in 52.4% of cases. Notably, if the optimization is done with respect to the
ground truth label (row 1), the performance decreases compared to optimizing
with respect to the predicted label (row 2), which is the case for the two lowest-
performing base classifiers (up to row 4). This suggests, that without pretraining,
the classifier is able to correctly identify the important sentences, but does not
have the necessary capabilities to correctly infer the correct label from them.

Our second base classifier (rows 3 and 4) is trained in the same way as before,
but receives samples with added PAD tokens during training, as these will be
common during optimization, leading to otherwise misaligned input spaces. We
see a significant improvement for the ground truth and the predicted label cases,
so that we train all upcoming classifiers in this way. For this setting, only with
access to the weak supervision labels on the SciFact dataset, the MaRC method
manages to identify an evidence sentence as the most important sentence in
64.1% of cases, which we already consider quite good performance.

For our next classifier, we added additional pretraining on five similar
datasets to the training procedure. This significantly improved the classifier
performance and also led to improved results for evidence localization. Notably,
from this point onward, having access to the ground truth label during optimiza-
tion does improve evidence localization performance, indicating that pretraining
increased the model’s capability of inferring the correct label from the given sen-
tences. Here, we also see the highest performance that we achieved using only
weak supervision, with an evidence sentence being correctly identified as most
important in 71.8% of cases.

Finally, we experiment with incorporating evidence supervision into the clas-
sifier training (as described in Sect. 4.3), to see how far the performance of our
method can be pushed in a supervised setting.

At first, we note a significant improvement in the model’s general classi-
fication performance, which even surpasses the improvement achieved by pre-
training. This shows that the evidence injection strategy helped the model with
actually understanding the rationale behind specific classifications, which seems
to drastically boost the generalization performance.

On the other hand, we also see a significant improvement in the evidence
localization results, which could be explained by the better general understand-
ing of the model. We also hypothesize, that this is caused by the general setting
of this task: Given an abstract and a claim, the model is supposed to predict
one of three labels: Supports, Refutes or Not Enough Info. This means, that
sentences that indicate that the general topic of the given abstract aligns with
the given claim are considered important (even if they do not directly support
or refute the claim) as they affect the likelihood of the Not Enough Info label.
This leads to these sentences being selected by the MaRC approach as well, as
it aims at maximizing the Supports or Refutes label. Our supervision approach
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mitigates this behavior, as it explicitly teaches the model to only take actual
evidence sentences into account for the classification.

As is to be expected, the supervised baseline models with access to supervi-
sion on the SciFact dataset (rows 9 and 10) significantly outperform the weakly
supervised models. For a more fair comparison, we also trained a supervised
model only on the pretraining datasets and applied it to the SciFact dataset
without any supervised training. In this case, the performance of the supervised
classifier actually lags behind the MaRC approach in a similar setting (row 5),
indicating that, if only abstract-level labels are present, the approach proposed
in this work is a valid choice.

In summary, we managed to highlight several problems for our method, rang-
ing from misaligned input spaces and insufficient understanding of the evidence
sentences to the selection of non-evidence sentences due to the particular setup
of the given task. Many problems can be mitigated by altering the training
paradigm of the base classifier, but closing the gap to supervised models still
proves to be a significant challenge.

7 Conclusion

In this work, we explored the possibility of using abstract-level labels about
the general presence of a claim in this abstract to localize corresponding claim
evidence. We proved that this is possible in both the span-level and sentence-level
localization settings, but found that the complexity of precise span prediction
makes achieving good performance challenging. For the sentence-level task, we
found that weakly supervised methods can achieve reasonable performance and
even be competitive in settings with only abstract-level labels available.

Since annotating a large number of samples with evidence annotations is
very time-intensive and costly, we believe this to be an interesting direction for
future research. Especially the fact that evidence supervision during classifier
training can improve the performance of explainability methods on this task
indicates, that creative changes to the training procedure of neural networks
might lead to a substantial improvement of weakly supervised methods, which
provides interesting possibilities for future research.

A Experimental Details

Model Details. We use PubMedBERT [12] and RoBERTa large [18] as the
classification models for the INAS dataset and SciFact dataset, respectively. We
train seven models, and keep the three best performing models with the highest
validation F1 score.

The pretraining for the SciFact model is done on five datasets: Fever [33], Evi-
denceInference [7,17], PubmedQA [15], HealthVer [26], COVIDFact [25]. MaRC
Details. The optimization for the MaRC method is done with respect to all three
trained models. The parameters are set as described in [4], but we employ a new
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sparsity regularizer that actively forces a maximum average mask value. Similar
to [4], we use the following weight regularizer:

Ωλ = αλ

[
1
n

n∑

i=1

λi

]2

but dynamically update αλ at each gradient descent step i using to following
formulas, to reach a maximum average mask value t (set to 0.35):

mi =
1
n

n∑

i=1

λi

Δi = mi−1 − mi

Δtarget = (mi − t)/150

Here, mi is the current mask mean, Δi is the difference in mask means from
the current optimization step to the last, and Δtarget is the desired value for
Δi, which (if it is always optimal) ensures a steady but decelerating trajectory
towards the optimal mask value. We define

ΔΔi,target = Δi − Δtarget

to be the difference between our current single-step mask mean difference and
the desired one, which we want to bring as close to 0 as possible. We then define
our update for αλ at iteration i as follows:

αi
λ = αi−1

λ · (0.8 + 0.2 · γ)

γ = max
(
0.7, 1 − 0.9 · tanh

(
1

0.002

(
ΔΔi,target

2
− (Δi−1 − Δi)

)))

so that γ > 1 leads to an increase in αλ whereas γ < 1 leads to a decrease. The
max operator prevents an overly steep decrease of αλ, while the tanh is used to
keep positive updates limited. The updates are mainly determined by ΔΔi,target,
so that αλ increases when Δi is smaller than Δtarget and vice versa. The term
(Δi−1 − Δi) is a second-order statistic to prevent “overshooting” in the form of
changing αλ further if Δi is already approaching Δtarget (which might take a
while due to the momentum-based optimizer).

To give the optimization process the freedom to determine the optimal aver-
age mask value on its own after falling below t + 0.1, we alter the process of
determining αλ in the following way:

αi
λ = αi−1

λ · (0.8 + 0.2 · γpred · γweight)

γpred = min
( L(x̃, c)i

L(x, c)0
, 0.5 · L(x, c)0

L(x̃c, c)i
, 1.1

)

γweight = 1 + (mi − 0.3)
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Here, γpred pushes mask values further down if the model prediction for the
current masked input is more confident than the initial unmasked prediction
and the prediction for complement mask input is sufficiently less confident than
the initial unmasked prediction, which indicates that more information can be
removed. γweight pushes the average mask value to a value of 0.3, since values
far below that lead to most words having scores close to 0, and thus to no clear
ranking existing among them.

Comparison Methods. The other explainability methods are all used for each
of the three models individually, and the scores are averaged afterward. We make
use of the following methods and hyperparameter settings:

– Occlusion [39]: We chose to mask slightly larger spans of 5 tokens as this
produced smoother masks which resulted in higher IoU F1 scores. Occluded
parts were replaced by PAD-tokens.

– Saliency [28]: No hyperparameter settings required.
– InXGrad (Input times gradient [27]): No hyperparameter settings required.
– Int. Grads (Integrated Gradients [30]): We use a sequence of PAD-tokens as

background and do 50 gradient evaluation steps per sample.
– LIME [24]: We do 50 function evaluations per sample. In each evaluation, we

randomly select 5− 13% of tokens and replace them as well as the next three
tokens with PAD-tokens. We train a linear classifier and use the resulting
weights as rationale.

– Shapley (Shapley value sampling [5]): We evaluate the token contributions for
15 feature permutations per sample. Removed tokens are replaced by PAD-
tokens.

We use the implementations provided by [16] for all methods. All methods have
access to the ground truth label. The InXGrad, Saliency and Int. Grads methods
all predict one score for each element of the embedding vector of a given word,
which is reduced to a single score by using the L2-norm or the sum.

We also compare against a supervised baseline. It is trained on 517 samples
from the INAS dataset annotated with span-level evidence, as well as on 204
samples without annotated evidence. To make use of the samples without evi-
dence annotations we train in a multi-task setting by also training to predict the
general hypothesis labels for the whole abstract.

INAS Evaluation. We evaluate all methods on a test set consisting of 141
samples that cover all ten possible classes. The test set contains all 50 samples
that were annotated by all three annotators, as well as 91 further samples that
were annotated by only one of the three annotators, with samples and annotators
being assigned randomly. For the samples that were annotated by all annotators,
we create a single ground truth by taking the intersection of the set of annotated
tokens between each pair of annotators, followed by the union between the three
resulting annotations of each pair.
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SciFact Evaluation. As the test labels for the SciFact dataset are not publicly
available, we create new splits with 50 claims for validation, 150 claims for testing
and the remaining claims for training. The actual samples for the splits can then
be created from the given claims and linked documents.

For evaluating the AUC-PR and Precision@k scores, we only take samples
from the Supports and Refutes classes into account, as they are the only classes
with corresponding evidence annotations.
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Abstract. Argument mining usually operates on short, decontextual-
ized argumentative units such as main and subordinate clauses, or full
sentences as proxies for arguments. Argumentation in digital media envi-
ronments, however, is embedded in larger contexts. Especially on social
media platforms, argumentation unfolds in dialog threads or tree struc-
tures where users interact with each other. To reveal patterns of such
interactions, we transform 2.5 million tweets from 38k German Twit-
ter conversations concerning nuclear energy from 2017, 2019, and 2021
into an abstract representation encoding their stance, and aspects. We
then apply Sequential Pattern Mining, a common method for finding
patterns in large databases, and explore its capabilities to investigate
typical argumentation schemes in user debates. The approach reveals
distinct patterns of support and attack relations between pro and contra
arguments about nuclear energy in conversational threads when com-
paring different time slices of our corpus. For example, we are seeing
an increasing relevance of the climate aspect in attacks on anti-nuclear
arguments. However, the pro arguments are increasingly being countered
by cost aspects. Analyzing this diachronic change of patterns allows us
to describe the discursive processes of argumentation on a macro level
that drive the slow but steady transformation of a society’s social and
political convictions.

Keywords: Pattern Mining · Computational Social Science ·
Aspect-Based Argument Mining

1 Mining Interactions in Debates

In recent years, there have been many refinements to argument mining (AM), a
natural language processing (NLP) sub-task that deals with the detection and
classification of argumentative structures in text [12]. With the advent of modern
transformer-based language models such as BERT [7] and its numerous succes-
sors, text classification of increasingly abstract categories such as frames [9] or
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☒ Con

Of course it's a good idea,
because nuclear power is too

expensive. New nuclear power
plants easily cost 20 billion in

Europe. And that doesn't
include the cost of 1000 years

of safe storage.

Costs, Waste

☑ Pro Climate Action

The early nuclear phase-out
was a bad idea and is

detrimental to the fight against
climate change.

☑ Pro

So why is Germany alone with
the phase-out? France is miles
ahead in terms of its electricity

mix... and as far as I know,
Germany has the most
expensive electricity in

Europe...

Costs

☑ Pro Reliability

Also, nuclear energy provides
a stable and reliable source of
baseload electricity that does
not depend on the weather.

Transactions (length = 1)
☑ Climate Action
☑ Reliability
☑ Costs
☒ Costs
☒ Waste

Transactions (length = 2)
☑ Climate Action, ☒ Costs
☑ Climate Action, ☒ Waste
☑ Climate Action, ☑ Costs
☑ Climate Action, ☑ Reliability
☒ Costs, ☑ Costs
☒ Waste, ☑ Costs

Transactions (length = 3)
☑ Climate Action, ☒ Costs, ☑ Costs
☑ Climate Action, ☒ Waste, ☑ Costs

support

attack

Fig. 1. Example of a tree structure of a Twitter conversation about nuclear energy.
Vertices are Tweets, directed edges indicate replies. For SPM, argumentative tweets
are converted to abstract representations encoding stance (pro, or contra) and aspects
(one or more labels from a set of 17 aspects describing the German nuclear energy
debate, cf. Table 3). For each tree, a set of transactions of certain lengths for pattern
mining can be derived.

aspects [18] have been introduced. While these new methods are improving our
abilities to capture argument semantics, they still operate with isolated text units
that only approximate the kind of argumentation that occurs in the wild. Among
other things, this can be attributed to the characteristics of the fine-tuning of
language models for text classification: the process operates with limited context
lengths and works best with an abundance of singularly labeled data points. In
real life, however, argumentation regularly takes place as an exchange of argu-
ments. An abundance of those exchanges can nowadays be observed on online
social media platforms, ready to be analyzed. This leads to large datasets of
structured conversations, rich in potential arguments. While interesting findings
can already be found by classifying isolated text units, the information from
dialog structures proves valuable for analyzing argumentative discourses more
closely.

In this paper, we explore a novel approach to combine state-of-the-art argu-
ment mining approaches with sequence pattern mining (SPM), a data mining
approach that is more prominently used in a market research context to answer
the following research question: How can categorical predictions from text classi-
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fication be evaluated together with dialogical structural information to find char-
acteristic argumentative patterns that describe the dynamics of a debate?

To create abstract representations of arguments, we fine-tune language mod-
els on two common classification tasks for arguments: stance, and aspect. We
then apply both classifiers to a large corpus of tweets related to the nuclear
energy debate (cf. Figure 1 for an example graph of an original tweet and its
replies). After mining this dataset for reply chains of various lengths, we can
describe interactions between users as sequences of tuples in the form (aspect,
stance), and look for common patterns in this database. We can then further
examine the conversations that contain the most frequent patterns qualitatively
and see if they allow us to draw conclusions about how people react to different
arguments in online debates. With our method, we aim to support social science
research to conduct discourse analysis of large diachronic datasets that utilize
the technological advances in NLP constructively.

In the upcoming Sect. 2, we give an overview of related work to our app-
roach. In Sect. 3, we describe the dataset that we have used for conducting our
experiments as well as the details regarding the fine-tuned language models that
were used. We also introduce our approach to finding patterns in conversations.
In Sect. 4, we compare the patterns found in our dataset across the different
time slices and conclude in Sect. 5 with a discussion of the potentials as well as
the limitations of our approach as a method for argument mining in the social
sciences.

2 Related Work

Argument mining advanced to the extraction of finer-grained, more qualitative
features from argumentative text. Examples include argument mining with a
novel focus on key points [8], frames [2] or aspects [18,24], which aim to extend
argument mining originally focusing on linguistic structures to more semantic
units that are of interest for (computational) social science research. Analyzing
semantic aspects of arguments is still not widespread in argument mining due
to its challenges to cover the broad range of controversial topics [3], but there is
already a solid foundation of preliminary work. [15] stressed the importance of
context when mining for argument relations, albeit prior to the advancements
of powerful contextual word embeddings. [22] established the task of mining
for argumentation structures as an important link to discourse analysis. Newer
approaches also include larger contexts to better comply with argumentation
patterns in empirical data that often use implicit premises, lack argument mark-
ers, or are elaborated beyond single sentences [17]. Widening the context for text
classification also proved helpful for other text classification tasks such as hate
speech detection [28].

While most work on argument mining focuses on learning from isolated tex-
tual units, some research tries to mine argumentation from dialogue structures
such as online discussion threads [6]. [20] identify distinguishable conversation
types from Twitter conversations that can potentially be exploited for mining
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argument relations. They similarly mined for conversations on Twitter, but have
built a smaller dataset by only considering the longest possible thread from an
initial root tweet to one leaf. We build upon this work by utilizing the structural
information that is available to a greater extent, and include dialogue structures
from the many incomplete conversations on Twitter, too.

Moreover, there has been increased attention on the importance of interdis-
ciplinary approaches to argument mining [25]. The field of computational social
science (CSS) strives to analyze large amounts of digital trace data with compu-
tational methods for social science research questions. Argument mining bears
a high potential for CSS due to its ability to give insights into the use of argu-
mentation in political, or otherwise socially impactful debates. In recent years,
more cooperation between researchers with a strong foundation in both argument
mining and CSS was established. These works often produce data annotated in
a way that is in line with the existing standards from the social sciences and
make supervised machine learning applicable, e.g. [11], and [18]. Such datasets
are important for bringing argument mining closer to CSS researchers as they
enable thorough quantitative research opportunities and give a new dimension
to qualitative research on big data. We build on the work of [18], by using the
methodology of annotating data in tandem with experts from social science to
create a dataset with high utility. [10] describe a methodology of using Discourse
Network Analysis, a network representation obtained from news corpora, where
actors (e.g. politicians) and their claims form two types of nodes in a bipartite
graph. By this, discourse networks combine state-of-the-art AM technology for
claim and stance detection with a social science goal. Our approach differs from
this method by relying on explicit dialog structures from empirical conversation
data instead of modeling abstract discourse representations from large amounts
of news. [14] describe a novel method for predicting argument persuasiveness
from patterns of types of argumentative discourse units mined from individual
posts in online debates which are then clustered with other patterns from the
same discourse. The features used are more structural and context-independent
and patterns are clustered in order to get insights into discussion. While their
approach has a similar goal to ours, namely finding patterns in discussions, it
does not employ data mining on patterns but uses clustering of similar sequences
on the level of single posts.

Sequential Pattern mining is not widely used today, neither in CSS nor in
NLP applications. [26] used SPM for retrieving questions from text in the absence
of common cues like question marks, which is common for online utterances that
may lack the usual grammatical structure. [21] applied SPM to analyze argument
structures for two scientific domains for which they hand-coded argumentative
structures. They annotated argumentative sections in scientific articles and used
SPM to identify typical argument structure models based on the patterns they
found. To our knowledge, our study is the first that utilizes semantic features
from argument mining as input for SPM.



Attack and Support Pattern Mining in Dialogical Conversations 43

Table 1. Dataset statistics of the tweet dataset.

2017 2019 2021 Total

Number of tweets 4869 58984 171098 234951
Number of conversations 645 4699 24014 29358

3 Predicting a Conversational Dataset

Since SPM operates on ordered sets of items, we need to convert the information
of individual utterances of a conversation into elements of sets, creating transac-
tions that represent the conversation. We first created a structured conversation
corpus that contains conversation trees. A conversation tree is a directed tree
graph with tweets as its nodes, and their reply relationship to a previously posted
tweet as edges. An example of a conversation tree is shown in Fig. 1. We can then
mine the tree structures for conversation chains of various length n, which are
sub-graphs of the conversation tree. By classifying each node in a chain with the
two properties of stance and aspect, we encode arguments in tweets as transac-
tions. We perform pattern mining on the ordered sets of these transactions.

3.1 Corpus Creation

In order to create a dataset of conversations that are held on social media, we
mined entire conversations from Twitter (now re-branded as X). For our study,
we focus on the nuclear energy debate in Germany. We first used a key term query
to the Twitter API to retrieve individual tweets related to the nuclear energy
debate in German language from three different years: 2017, 2019, and 2021.1
The resulting tweets were used to retrieve thematically matching conversations
by two strategies. First, we filtered for root tweets only, i.e. keyword-matching
tweets that were posted on Twitter initially, in contrast to replies as reactions to
earlier posted tweets, and requested their entire set of replies via the API. Sec-
ond, for reply-tweets that matched our query within a conversation, we included
these tweets along with their directly connected replies from the conversation
tree. While this proceeding reduced the size of our dataset significantly, it was
necessary to ensure that the dataset remained consistent with our target topic.

Table 1 shows basic statistics of the final dataset, which is heavily skewed
toward the more recent conversations from 2021. This is likely due to an increase
in public attention to the topic of nuclear energy as well as the growing popularity
of Twitter as a public debate forum. Further, the more conversations date back

1 The list of key terms comprised Kernenergie, Atomenergie, Nuklearenergie, Atom-
kraft, Kernkraft, Atomausstieg, and Atomverzicht and their inflected forms. The time
slices were selected, on the one hand, with the requirement to cover a larger period
to capture long-term evolvements of the debate. On the other hand, the selection
should guarantee substantial dataset sizes for statistical analysis which were only
available from the year 2017 onward.
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Table 2. Chain length distribution by year

Length 2017 2019 2021

2 691 (41.2%) 9586 (42.5%) 22948 (39.1%)
3 197 (11.8%) 4027 (17.8%) 10632 (18.1%)
4 165 (9.8%) 2265 (10%) 6585 (11.2%)
5 106 (6.3%) 1508 (6.7%) 4379 (7.5%)
6–10 277 (16.5%) 3607 (16%) 9807 (16.7%)
11+ 240 (14.3%) 1569 (7%) 4314 (7.4%)
Total 1676 22562 58665

in time, the more likely it is that parts or the entire conversation, were deleted
from the platform and, thus, are no longer available via the API.2

3.2 Mining Conversation Chains from Incomplete Graphs

Since many of the conversation trees in our dataset referenced tweets that could
not be retrieved by the API anymore, we opted for mining chains for each tweet
individually as an alternative to the traversal of complete conversation trees.
This ensures that all tweets that are included in any chain also have immedi-
ate neighbors included in the chain, making the mining of relations between
utterances and their responses possible. Table 2 shows the distribution of the
reconstructed maximum chain lengths for each year. Around 40% of all tweets
in the corpus that are predecessors in a dialogical conversation triggered one
single reply only. The longest reply chains we found contain up to 70 messages.
We decided to limit chain lengths in our experiments for several reasons. First,
computational complexity increases significantly for longer chains. Second, from
the low ratio of extremely long chains, it is already evident that the likelihood of
finding common argumentative patterns that include a larger number of items
will be very low.

3.3 Argument Abstraction by Stance and Aspect Prediction

We aim to use established AM methods to derive tuples of information that rep-
resent an abstract version of an argumentative text. Two major semantic pieces
of information of an argument are stance and aspect, which can be classified with
satisfactory performance by fine-tuned transformer language models on labeled
examples. For this, we annotated a dataset of 642 German tweets with their
stance and aspect data following the method described in [18]. Table 3 shows

2 The fact of incomplete conversations makes research on historic data more challeng-
ing. Overall, only around 27% of all retrieved conversations contained a complete
conversation tree. our chain mining procedure addresses this problem by focusing on
sub-trees around matching key terms.
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the aspects that were coded to cover the most prominent aspects of the German
debate. Intercoder-agreement measured by Krippendorff’s α yields very good
agreement for most of the categories. Two aspect categories, temporal dimension,
and reliability, achieved only substantial agreement around 0.6.3 In addition, we
used large publicly available English-language datasets on both tasks for transfer
learning in a multitask learning (MTL) setting. As a language model, we used
the multilingual version xlm-roberta-large of RoBERTa [13] in all our experi-
ments. Further, for all experiments, five models were trained to minimize random
effects in the results. We report the mean performance and standard deviation
of the performance in Table 4. For aspect classification, we used all available
data from the Argument Aspect Corpus (AAC) [19] for transfer learning, which
contains aspect labels for sentences from four topics, and our additionally coded
German-language dataset in a two-task MTL sequence tagging. On the test set
of 10% of the annotated German tweets, our classifier achieved an overall micro
F1-score of 77%.4 For stance classification, we used the Sentential Argument
Mining Corpus (UKP-SAM) [23], which provides stance information on a large
number of sentences across eight topics, as a transfer learning task. We modeled
both tasks, the UKP-SAM dataset and the additional German tweet dataset, as
text classification tasks. The classifier reaches a micro F1-score of around 80%
on the German test data.

3.4 Sequential Pattern Mining on Predicted Data

SPM aims to find reoccurring patterns in databases containing sequentially
ordered transactions [1]. The method is typically employed to identify patterns
for market basket analysis such as ‘customers who bought a PC, and later that
month a digital camera likely will buy a printer next month’. For our analysis,
we conceptualize dialogical argumentation threads analogous to shopping cart
analysis as compilations of abstract augmentations from the ‘market’ of publicly
debated ideas. We build transactions by representing each tweet in a retrieved
chain with a tuple representation containing the predicted aspect and stance
information. We use the PrefixSpan algorithm [16]5, which efficiently finds pat-
terns by recursively building from their prefixes, starting with all prefixes of
length 1. In each step, for each prefix α, the projected database S|a of α is cre-
ated, which contains all postfixes of α, which are all sub-patterns that start with
α.6 The most important metric for evaluating the significance of mined sequences
is the support, which is defined as the proportion of the number of sequences in
which a pattern occurs. As a parameter, PrefixSpan considers in each step only
postfixes with a minimum desired support. After some experimental testing on
3 One category, public opinion, was discarded from the dataset as it did not achieve

substantial agreement.
4 In accordance with [18], we evaluate aspect tagging on the tweet level, since we were

interested in the aspects related to an entire tweet instead of its specific tokens.
5 We used the implementation from https://github.com/chuanconggao/PrefixSp

an-py.
6 A comprehensible example can be found in [27].

https://github.com/chuanconggao/PrefixSpan-py
https://github.com/chuanconggao/PrefixSpan-py
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Table 3. Number of occurrences and intercoder agreement (Krippendorff’s α) for each
aspect in the tweet dataset. In the paper, we refer to aspects using the corresponding
English short labels.

Category English short label N αK

Abfall/Atommüll waste 65 0.91
Autonomie/Abhängigkeit autonomy 50 0.82
Erneuerbare Energien renew(ables) 143 0.90
Fossile Brennstoffe fossil fuels 141 0.88
Gesundheitliche Auswirkungen health 39 0.87
Klimaschutz climate 133 0.83
Kosten costs 117 0.76
Lobbyismus lobbyism 18 0.79
Nachhaligkeit sustainability 33 0.72
Sicherheit und Unfälle safety 127 0.78
Technologische Innovation innovation 61 0.80
Umweltschutz environment 47 0.79
Waffen weapons 12 0.83
Wissenschaftlichkeit science 55 0.81
Zeitliche Dimension temporality 108 0.59
Zuverlässigkeit reliability 109 0.61
All Topics – 1303 0.63 -

our empirical data, we set the minimum support for patterns considered relevant
for our analysis to 1%.7

Figure 2 shows the stance distribution for the predicted dataset. A significant
proportion of the tweets in the dataset were predicted as having no stance.
This is plausible since not all posts for a topic are actually argumentative and
pose a stance. For the pattern mining experiments, chains that contained tweets

Table 4. Overall performance metrics for sentence-level aspect classification and stance
classification on the test dataset of coded tweets concerning the German nuclear energy
debate.

Precision Recall F1-score

Sentence-level aspect classification 0.76 ± 0.03 0.77 ± 0.01 0.77 ± 0.01
Stance classification 0.80 ± 0.03 0.80 ± 0.03 0.80 ± 0.03

7 PrefixSpan does, however, consider non-contiguous patterns, i.e. (a, c) may be a fre-
quent pattern of (a, b, c). While we consider this potentially problematic for attack
and support pattern mining in general databases, our database, consisting of pre-
dominately short patterns should still yield sufficiently relevant patterns.
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Fig. 2. Stance distribution in the predicted dataset, by year

without a stance were excluded. This was due to the fact that including these
posts resulted in a majority of patterns revolving around tweets without a stance,
which were not argumentative, thus revealing no argumentative patterns. It is
also noticeable that a majority of tweets with a stance were predicted as having
a pro stance. While in 2017 there are 2.05 times more pro tweets than con tweets,
this factor increases by almost 50% to 2.94 in 2019 and slightly decreases to 2.79
in 2021. This implies that the discussion on Twitter is generally more in favor
of nuclear energy.

Since we tagged aspects as token spans, one tweet can potentially con-
tain multiple aspects. We investigated two possibilities to resolve multi-
aspect tweets to create transactions. First, concatenation of aspects, e.g.
(costs_reliability, pro) for a tweet with a pro stance which contains costs
and reliability as aspects. Alternatively, we create flat representations, creat-
ing separate transactions for each aspect. We found that concatenating aspects
resulted in fewer significant patterns, as a result of the combinatorial explosion
of possible transactions (see Fig. 5 in the Appendix for a discussion of this pro-
cessing step). Due to these two findings, we limit the mining for patterns on
flat chains to chains that contain only tweets for which a pro or con stance was
predicted.

4 Results

Figures 3 and 4 show the proportions of aspects for pro and con stanced tweets,
i.e. patterns of length 1, by year. For pro arguments, three aspects have a share
of more than 10% of all pro arguments throughout the three years: renewables,
fossil fuels, and climate. Two other aspects, safety and reliability fall below 10%
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Fig. 3. Aspect distribution for pro arguments, by year

of shares, and other aspects generally make up five or less percent of all pro argu-
ments. The most significant increase is seen in the share of arguments addressing
renewables, which make up nearly 20% in 2021. For con arguments, renewables,
costs and safety are strongly represented throughout the years, but a greater
number of aspects are represented between five and ten percent throughout the
years. While climate is steadily rising from six to ten percent, reliability is falling
to 8.3%. An important difference between the two distributions is the prevalence
of nuclear waste as a well-represented con argument while staying below a five
percent proportion throughout the years in contexts of a pro argument.

4.1 Attack and Support Patterns

Table 5 shows the top five patterns for the four possible combinations of pro
and con-stanced tweets over the three time slices. Alteration between pro and
con stances in subsequent tweets of a chain can be interpreted as an attack
relation of arguments while repeated stances indicate a support relation. The
most significant patterns all have a length of two. In total, 327 patterns with
minimum support of 1% were mined, yet only 24 patterns had more than two
items. Due to the chain length distribution in the dataset (cf. Table 2), longer
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Fig. 4. Aspect distribution for contra arguments, by year

chains are hardly found in the dataset. The support of the top patterns of 2017
is significantly higher compared to later years. A possible explanation is that the
smaller overall discourse by number of tweets was more uniform and expanded
over time to more diverse aspects. We further observe the highest support for pro
← pro patterns, which originates from the high prevalence of pro-labeled tweets
in the dataset. Many prevalent patterns address the same aspect in a row. A
possible explanation is that people prefer to reinforce statements they agree
with by repeating them (with variations). Another factor may be self-replies to
construct a longer thread of tweets for making an argument. In the following,
we investigate the results for each combination of pro and con-stanced tweets.

Support Pro ← Pro. There are significant changes of top-patterns among sup-
porting pro arguments. For instance, arguments mentioning renewable energy
are supported by arguments about reliability but with declining relative support
over the years. Further, climate takes the spot as the most important aspect
in 2019 and 2021 answered with, again, climate, and with renewable energies.
Interestingly, pro-nuclear energy arguments referring to renewables are less likely
supported climate-related replies. A possible explanation is that people support-
ive of nuclear energy shifted their framing to nuclear energy being necessary to
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Table 5. Top 5 support and attack patterns with the most support for each aspect
combination, by year. Green arrows indicate a rise in the pattern rank, red arrows
indicate a fall, dashes indicate no change in the position.

Pro ← Pro

2017 2019 2021
Pattern Support Pattern Support Pattern Support
renew, renew 8.94% ↑ climate, climate 6.93% – climate, climate 6.90%
reliability, reliability 8.19% ↓ renew, renew 6.66% – renew, renew 6.65%
renew, reliability 8.19% ↑ climate, renew 4.69% ↑ costs, costs 5.47%
reliability, renew 6.87% ↓ renew, reliability 4.60% ↓ climate, renew 4.69%
fossil fuels, renew 6.16% ↑ costs, costs 4.54% ↓ renew, reliability 4.43%

Con ← Con
2017 2019 2021
Pattern Support Pattern Support Pattern Support
costs, costs 2.34% − costs, costs 1.46% − costs, costs 1.56%
safety, safety 2.14% ↑ renew, renew 1.17%
renew, renew 1.68% ↓ safety, safety 1.05%
renew, costs 1.50%
costs, renew 1.37%

Con ← Pro
2017 2019 2021
Pattern Support Pattern Support Pattern Support
renew, renew 3.71% – renew, renew 2.95% ↑ costs, costs 3.23%
costs, renew 3.36% ↑ costs, costs 2.72% ↓ renew, renew 2.49%
renew, reliability 3.03% ↓ costs, renew 2.16% – costs, renew 2.41%
costs, reliability 2.85% ↑ climate, climate 2.00% – climate, climate 1.87%
waste, reliability 2.74% ↓ renew, reliability 1.90% ↑ costs, climate 1.75%

Pro ← Con
2017 2019 2021
Pattern Support Pattern Support Pattern Support
renew, renew 2.87% – renew, renew 2.55% ↑ costs, costs 2.78%
renew, costs 2.36% ↑ climate, costs 2.43% – climate, costs 2.27%
reliability, reliability 2.23% ↑ costs, costs 2.36% ↓ renew, renew 2.13%
reliability, costs 1.99% ↓ renew, costs 2.24% – renew, costs 1.93%
reliability, renew 1.97% ↑ climate, climate 1.99% – climate, climate 1.76%

combat climate change, yet avoided the expression of support for renewables.
The pattern (costs, costs) steadily climbs up to the top ranks indicating an
increasingly important economic framing of the debate in addition to climate
aspects.

Support Con ← Con. Chains of con–con arguments are seldom found patterns
compared to other combinations. In 2021 the only pattern con-con pattern that
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has a support of more than 1% is (costs, costs). Similarly to pro–pro patterns,
the common patterns tend to reinforce the same aspect.

Attack Con ← Pro. Reliability occurs more frequently in 2017 in the top
patterns, and only as the pro argument. In 2017, waste was part of the most
supported patterns, which is the only time for any combination of pro and con
stanced tweets. Costs is the most occurring con-part of the con-pro patterns, but
over the years, it is countered with different pro arguments. While in 2017 renew-
ables and reliability were used the most for addressing con arguments regarding
costs, this shifted away slightly from reliability to pro arguments regarding costs.

Attack Pro ← Con. For Arguments that are predicted with a pro-stance, it
can be seen that the overall most common aspect of con-predicted responses is
costs. Responding with the same aspect is also a prevalent pattern for renew-
ables, reliability, and climate. Costs seems to be an aspect that can be addressed
regardless of the pro-aspect that is put forth in favor of nuclear energy. Interest-
ingly, in pro–con chains costs only appears in the pro part of the chain starting
in 2019 and increases in support to being part of the number one pattern in 2021.
This suggests that debates about whether or not nuclear energy is a cost-efficient
form of energy production in modern societies intensified significantly.

Longer Patterns. As mentioned earlier, only a small number of patterns longer
than two arguments were found in our dataset. Table 6 in the Appendix displays
the top five patterns of length n = 3 for each year. The table contains exclusively
chains of arguments in favor of nuclear energy that mostly reinforce the previ-
ously argued aspect. This again suggests that supporters of nuclear energy have
a more engaged audience on Twitter compared to opponents of nuclear energy.

4.2 Pattern Mining Vs. Analyzing Distributions

When comparing the aspects of the most common patterns with their distri-
bution, it is evident that the most occurring aspects also occur the most in
the top patterns. The important distinction between the two analyses can be
seen by analyzing the differences: in 2017, safety and reliability had near sim-
ilar occurrence. Safety was, however, not discussed in a pro–pro context. Also
in 2017, nuclear waste was in the top five con–pro patterns, although its pro-
portion among con arguments rose steadily. Costs was the most popular aspect
addressed by con arguments in 2019 and in 2021, surpassing safety. While they
had similar proportions in 2019, safety is only prevalent in one con–con top-
pattern, while pro–con and con-pro chains were more and more overtaken by the
discussion revolving around costs. This shows that our method can add a benefit
to analyzing social media debates by leveraging the structured information of
their conversation trees.
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5 Conclusion

In this paper, we have introduced Sequential Pattern Mining on abstract argu-
ment representations generated by recent argument mining methods. By mining
patterns from a large corpus of German Twitter conversations on nuclear energy,
we demonstrated the usefulness for analyzing structured online debates com-
pared to simpler approaches looking at frequencies of isolated events in the data.
To construct a transaction dataset for SPM from Twitter conversations, we sug-
gest employing a set of argument mining approaches, in our case argument stance
and aspect classification with fine-tuned language models. Combining structural
and abstract semantic information in a set of all possible transactions, we found
distinctive patterns of argumentation that were not evident from analyzing tweet
information in isolation.

5.1 Limitations

While this first application of our method already shows well-interpretable ini-
tial results, more validation is indispensable. A first limitation is the validation
of prediction results, which we have conducted, but have not evaluated in a
structured manner. Since the method relies on the accuracy of the prediction on
the dataset, bad classification will falsify the results of the SPM. We have seen
cases, where the stance classifier was unable to accurately predict the stance of
arguments in their relationship to nuclear energy and also struggling with sar-
casm and jokes. However, we expect to receive mostly valid results from pattern
mining given the large corpus size. Another problem might stem from the fact
that PrefixSpan can find non-contiguous patterns. This might lead to patterns
that do not actually indicate attack or support relationships, especially for cases
with longer sequences. However, we are quite confident that these issues play
a negligible concerning our dataset role given the very large volumes of data
that are analyzed using the method and the fact that a majority of the mined
conversations contain not more than one reply.

5.2 Future Work

Future work will concentrate on the interpretation and validation of the mined
patterns. Since there are many patterns with less support a careful analysis of all
attack and support patterns could reveal more insights into the debate. A thor-
ough qualitative analysis is therefore the next step for establishing the method
and testing its potential for the computational social science community. This
could also be used to verify classification quality and detect potential issues with
classification results. While we assume that training a classifier with labeled data
still is preferable to using commercial Large-Language-Models such as ChatGPT
for highly specific classification tasks, using such LLMs may increase the use of
the method for CSS scholars, as extensive labeling and fine-tuning are not neces-
sary. Further research into alternative, potentially better-suited sequence mining
algorithms should be conducted, too. Analyzing patterns from constraint-based



Attack and Support Pattern Mining in Dialogical Conversations 53

SPM approaches that only allow contiguous patterns is an interesting next step
for attack and support pattern mining as well as quantifying the chance-corrected
statistical significance of the patterns found. Regarding representing and further
analyzing attacking and supporting arguments in formalisms dealing explicitly
with arguments and argumentation, so-called Abstract Dialectical Frameworks
(ADFs) [5] seem to be suitable as they provide sufficient expressive power. Such
an approach was suggested in our FAME-project [4] and will be one future
research line.

Acknowledgements. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG) as part of the project “FAME: A framework for argument mining and evaluation”
(project no. 406289255).

Appendix

Fig. 5. Number of transactions for flat and concatenated aspect resolution, in total,
and only containing transactions, in which every tweet has either a pro or con stance.

Figure 5 shows the number of transactions for flat and concatenated aspect res-
olution when including and excluding transactions containing tweets without
a predicted stance. The number of transactions is vastly reduced by excluding
tweets without a stance. This shows that our method is condensing the dataset
significantly, making it more likely that patterns of interest can be found.
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Table 6. Top five patterns of length n = 3, by year.

Pattern Support

2017
(pro, renew), (pro, renew), (pro, reliability) 2.25%
(pro, renew), (pro, reliability), (pro, reliability) 2.21%
(pro, renew), (pro, renew), (pro, renew) 1.83%
(pro, reliability), (pro, reliability), (pro, reliability) 1.81%
(pro, climate), (pro, renew), (pro, reliability) 1.57%
2019
(pro, renew), (pro, renew), (pro, renew) 1.11%
(pro, climate), (pro, climate), (pro, climate) 0.89%
(pro, renew), (pro, renew), (pro, reliability) 0.77%
(pro, reliability), (pro, renew), (pro, renew) 0.75%
(pro, costs), (pro, costs), (pro, costs) 0.72%
2021
(pro, renew), (pro, renew), (pro, renew) 1.17%
(pro, climate), (pro, climate), (pro, climate) 1.04%
(pro, costs), (pro, costs), (pro, costs) 0.95%
(pro, renew), (pro, renew), (pro, reliability) 0.74%
(pro, fossil fuels), (pro, renew), (pro, renew) 0.73%
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Abstract. We present a multi-step classification approach that com-
bines classical machine learning methods with computational models for
argumentation. In the first step, the dataset is divided into different
groups using a clustering algorithm. In the second step, we employ rule-
learning algorithms to extract frequent patterns and rules from each
resulting cluster. In the last step, we interpret the rules as the input for
structured argumentation approaches. Given a new observation, we first
assign it to one of the previously generated clusters. Subsequently, the
classification of the observation is determined by formulating arguments
based on the respective cluster-specific rules for the different classes.
Finally, the justification status of the arguments is determined using
the argumentative inference method of the structured argumentation
approach.

Keywords: Argumentation · Classification · Rule Mining

1 Introduction

Classification is a widely known problem in the field of artificial intelligence.
In recent years, machine learning approaches, in particular different forms of
neural networks, have made substantial progress in solving classification tasks
for a diverse range of domains—such as computer vision [15], text processing [10],
or graph theory [19]. However, although current machine learning methods for
classification purposes may yield remarkably accurate results, they are still not
guaranteed to be correct, and they are not inherently explainable, i. e., no form of
justification or rationale is provided. On the other hand, the need for explainable
methods is becoming increasingly relevant [4].

To address the problem of lacking explainability in machine learning-based
classification approaches, Thimm and Kersting [16] propose an approach that
combines machine learning with computational models of argumentation [5].
To be precise, the authors suggest a two-step procedure: first, a rule learning
algorithm is applied to extract rules from a given dataset; in the second step,
the learned rules are used as input for a structured argumentation system, which
then yields a justification status for each class, given a new observation. Thus,
this approach does not only deliver classifications but also explanations thereof.
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Further, expert knowledge (in the form of additional arguments) can easily be
incorporated into the reasoning process.

Thimm and Kersting [16] presented some preliminary experimental results
in their study: on the Animals with Attributes (AwA) dataset, about 30%
of the instances were classified correctly, while the remaining 70% were
deemed “undecided”.1 In this paper, we build explicitly on these results and
present an extended approach that likewise includes a rule mining step and an
argumentation-based classification step, which introduces a clustering technique
for more targeted rule mining. More specifically, the clustering step reduces the
number of mined rules to make them more purposeful and additionally coun-
teracts the extraction of contradictory rules. In an experimental analysis, we
show that our method can achieve a significantly higher accuracy of 71% on the
AwA dataset. To corroborate our observations, we consider additional datasets.
Furthermore, we demonstrate that the procedure introduced in this work is
potentially significantly more resource-efficient than the approach proposed by
Thimm and Kersting.

2 Background

The three main ingredients of the approach presented in this paper are (1) a
clustering algorithm, (2) a rule mining algorithm, and (3) a structured argu-
mentation method. Although the choice of each component is generally flexible,
we select some concrete instantiations of each component as an example. For
the clustering part, we use a simple k-modes algorithm [12], which is aimed at
clustering categorical variables. As the rule mining algorithm we use association
rule mining, and as the structured argumentation approach, following [16], we
use defeasible logic programming [9]. Both latter formalisms are outlined below.

Association Rule Mining. Data mining generally encompasses methods for
extracting non-trivial patterns from a given dataset. Association rule min-
ing [3] aims to uncover interesting relationships among items within exten-
sive databases. Consider I = {I1, I2, . . . , Im} as a set comprising m distinct
attributes. Let T be a transaction containing a set of items such that T ⊆ I,
and let D be a database with various transaction records Ts. An association rule
takes the form of X ⇒ Y , where X,Y ⊆ I represent sets of items known as
itemsets, and X ∩Y = ∅. In this context, X is referred to as the antecedent, and
Y is termed the consequent. The rule X ⇒ Y signifies that the presence of X
implies the presence of Y . Association rules rely on two fundamental criteria of
interestingness: support and confidence. These criteria help identify relationships
and rules by revealing frequently occurring if/then patterns. To be considered,
association rules typically must meet both a user-specified minimum support and

1 Note that the authors used defeasible logic programming (DeLP) [9] as the structured
argumentation approach, and DeLP does not only use “yes” and “no” as answers,
but also “undecided”.
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a user-specified minimum confidence simultaneously. The support of an associa-
tion rule is defined as the fraction of records that contain X ∪ Y relative to the
total number of records in the database. The confidence of an association rule is
defined as the fraction of the number of transactions that contain X ∪Y relative
to the total number of records that contain X. For the approach presented here,
we use FP-Growth [11] as a rule miner.

Defeasible Logic Programming. The core idea behind defeasible logic program-
ming (DeLP) [9] is to combine concepts from logic programming and defeasible
argumentation to allow for dealing with incomplete or contradictory data. A
defeasible logic program (de.l.p.) consists of facts and rules which are divided
into strict rules of the form l ← B and defeasible rules of the form l B, with
l being a single literal and B a set of literals. Moreover, a fact is a single literal
(i. e., an atom a or a negated atom ¬a). Thus, formally, a de.l.p. P = (Π,Δ) con-
sists of a set Π of facts and strict rules, and a set Δ of defeasible rules. Further,
a literal l is derivable by some set of rules R (i. e., R |∼ l) if it is derivable follow-
ing the classical rule-based understanding. If both R |∼ l and R |∼ ¬l, then R
is contradictory. Conventionally, Π is non-contradictory. Further, if R |∼ l, and
R 	|∼ ⊥, we call the literal l consistently derivable (denoted as R |∼c l).

For a de.l.p P = (Π,Δ) and a literal l, a tuple 〈A, l〉 (with A ⊆ Δ) is an
argument for l iff Π ∪A|∼c l and A is minimal wrt. set inclusion. Further, 〈B, q〉
is a subargument of 〈A, l〉 iff B ⊆ A. We refer to 〈A1, l1〉 as a counterargument
to 〈A2, l2〉 at literal l, iff there is a subargument 〈A, l〉 of 〈A2, l2〉 with Π ∪{l, l1}
being contradictory. To deal with counterarguments, we use the generalized speci-
ficity relation 
 as a formal comparison criterion among arguments. According
to this criterion, an argument is preferred over another, if (1) it has a greater
information content and is thus more precise, or (2) it uses fewer rules and is thus
more concise (see Garcia and Simari [9] for a formal definition and further dis-
cussion). We call 〈A1, l1〉 a defeater of 〈A2, l2〉 iff there is a subargument 〈A, l〉
of 〈A2, l2〉 such that 〈A1, l1〉 is a counterargument of 〈A2, l2〉 at literal l and
either 〈A1, l1〉 
 〈A, l〉 (proper defeat) or 〈A1, l1〉 	
 〈A, l〉 and 〈A, l〉 	
 〈A1, l1〉
(blocking defeat).

A finite sequence of arguments Λ = [〈A1, l1〉, . . . , 〈Am, lm〉] is an acceptable
argumentation line iff (1) every 〈Ai, li〉 with i > 1 is a defeater of 〈Ai−1, li−1〉
and if 〈Ai, li〉 is a blocking defeater of 〈Ai−1, li−1〉 and 〈Ai+1, li+1〉 exists, then
〈Ai+1, hi+1〉 is a proper defeater of 〈Ai, hi〉, (2) the sets Π ∪ A1 ∪ A3 ∪ . . .
and Π ∪ A2 ∪ A4 ∪ . . . are non-contradictory, and (3) there exists no 〈Ak, lk〉
as a subargument of 〈Ai, li〉 with i < k. Thus, intuitively, an argumentation
line forms a sequence of arguments, in which each 〈Ai, li〉 defeats its predeces-
sor 〈Ai−1, li−1〉. Moreover, since an argument 〈Ai, li〉 defeats 〈Ai−1, li−1〉, and
therefore reinstates 〈Ai−2, li−2〉, the sets Π ∪A1∪A3∪ . . . and Π ∪A2∪A4∪ . . .
must be non-contradictory in order for the argumentation line to be acceptable.
To avoid circular argumentation, we also need to ensure that no subarguments
are reintroduced in the same argumentation line.

Finally, a literal l is warranted if there is an argument 〈A, l〉 which is non-
defeated in the end. To decide whether 〈A, l〉 is defeated or not, every acceptable
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argumentation line starting with 〈A, l〉 has to be considered. The answer is to a
DeLP query is Yes if l is warranted, and No if ¬l is warranted. Otherwise, the
answer is Undecided.

3 Cluster-Specific Rule Mining

The approach proposed in this work is an extension of the argumentation-based
classification approach (AbC) described by Thimm and Kersting [16]. The AbC
approach consists of two steps: (1) Mining of association rules from a given
dateset and (2) performing classification using the generated rules as an input
to a structured argumentation approach. During the initial phase, algorithms for
rule mining are employed to identify frequent patterns and rules from a spec-
ified dataset. The result of this step yields a substantial number of rules [17].
However, these rules cannot be directly applied to classification since they often
exhibit inconsistencies. Hence, in the subsequent phase, these rules are used as
input to structured argumentation methods, such as DeLP. Employing the argu-
mentative inference procedures inherent in these approaches, the classification
of the new observation is executed by formulating arguments based on these
rules and evaluating their justification status. Using argumentation techniques
enables the creation of classifiers explicitly designed to explain their decisions,
thus meeting the contemporary demand for explainable AI. These classifiers are
able to explain the reasons for favoring arguments supporting the conclusion
over counterarguments.

We extend the original two-step argumentation-based classification approach
AbC to a multi-step classification method, that combines traditional machine
learning methods with structured argumentation. To be precise, we introduce
two additional steps. Firstly, we perform a clustering of the input data, resulting
in groups of instances with similar properties. Secondly, a feature selection is
carried out for each cluster to identify the most informative features for the pre-
diction of the target variable. Subsequently, these features are used to generate
cluster-specific association rules for each cluster. Since the number of generated
rules significantly influences the classification time, this approach leads to sig-
nificantly shorter runtimes and is more resource-efficient. In addition, grouping
instances with similar properties leads to discovering relationships that are diffi-
cult to detect when looking at the entire dataset. This improves the capability to
classify datasets where a naive approach may not extract enough rules. Moreover,
the generated rule set is more consistent due to the similarity of the instances
within a cluster and the emphasis on meaningful features, improving the decid-
ability of instances and thus reducing the number of undecidable instances. In
general, the presented approach consists of four steps: (1) Clustering the input
data, (2) cluster-specific feature importance analysis to select the most informa-
tive features, (3) cluster-specific association rule mining based on these features,
and (4) classification of new observations by assigning them to a cluster and
using the cluster-specific rules. Each step is outlined in more detail below.
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Clustering. First, the input data is divided into k groups based on all features
(including the target feature), using the k-modes [12] algorithm. The k-modes
clustering algorithm modifies the well-known k-means clustering method for
partitioning a dataset into distinct groups or clusters based on categorical data.
This step aims to divide the input data into smaller, more manageable groups
with similar properties to reduce the running time of the rule mining algorithm,
reduce the number of rules generated, improve the detection of otherwise hard
to find relations and improve the quality of the rules.

Feature Selection. This step conducts a feature importance analysis to find the
most informative features for classifying the target variable within a cluster
using the mutual information score. Mutual information quantifies the relation-
ship between two random variables with a value that is always non-negative,
indicating their dependency level. This value is zero exclusively when the two
variables are independent, with larger values indicating a greater dependency.
The score calculation is based on entropy estimation using distances from k-
nearest neighbors, as outlined in [13,14]. After calculating the scores for each
feature, the top k features are selected. The selected cluster-specific features are
used as the input for the rule miner in the next step. The association rule mining
step is massively accelerated by reducing the number of features and discarding
features with little expressiveness. Furthermore, only the most relevant features
are used for rule mining, leading to fewer, more meaningful rules.

Association Rule Mining. This step generates cluster-specific association rules
for each previously generated cluster based on the most important selected fea-
tures. In this work, we use the FP-Growth [11] algorithm. In principle, however,
any rule mining algorithm is usable. To generate rules from the truth values
of the features of an instance, these are represented as a set of ground liter-
als. For example, for a dataset of animals with the attributes swims, black,
and arctic, the attributes of a dolphin would be represented as swims(dolphin),
¬black(dolphin), and ¬arctic(dolphin). The output of the rule mining algorithm
is a set of association rules such as flippers(X) → ocean(X), which can be inter-
preted as “animals with flippers live in the ocean”. Subsequently, the created
rules are filtered according to the method of Thimm and Kersting [16]: Rules
with more than one element in the conclusion and more than three elements
in the body are discarded. All rules with confidence value 1 are interpreted as
strict; the remaining rules are interpreted as defeasible.2 Occasionally, no or not
enough cluster-specific rules are generated for the target variable, resulting in
instances assigned to this cluster not being able to be classified. To prevent this,
we implemented an adaptive rule mining process, which iteratively adjusts the
confidence and support values until at least one rule for the target variable is
generated.

2 We followed this procedure to ensure the best comparability with the original app-
roach. A systematic analysis of different rule filtering techniques and strict/defeasible
thresholds is out of the scope of this work and saved for future work.
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Classification. In the classification step, the cluster-specific rules are used as
input to the structured argumentation approach DeLP (see Sect. 2). To classify
a new instance, it is first assigned to a cluster using the previously trained
clustering algorithm to determine the classification rule set. Since the value of
the target variable is unknown, the assignment is performed twice, whereby
(1) the target variable is assumed to be positive and (2) it is assumed to be
negative. If, for example, one aims to classify the edibility of a mushroom with
the classes edible and poisonous, an unseen mushroom is once assumed to be
edible and another time assumed to be poisonous. Two cases can occur: The
mushroom is either assigned to the same cluster in both cases or to different
clusters. In the first case, the rules of the corresponding cluster are applied,
and the classification is carried out. In the second case, two classifications are
performed with the different rules of the respective cluster. Since two different
sets of rules from different clusters are used, and different assumptions are made
about the class of the target variable, conflicting classifications may occur. For
example, a mushroom m is assigned to cluster C0 for the negative assumption
(poisonous) and to cluster C1 for the positive assumption (edible). The query
poisonous(m) returns the answer Undecided for C0. For C1, the answer is
Yes. Since the results do not match, one of the two answers must be selected.
In general, two types of conflicts can arise: (1) The rules of one cluster return
Undecided, and the rules of the other cluster return a concrete answer Yes/No,
or (2) one cluster returns Yes and the other No. The first conflict is resolved
by choosing the concrete answer (Yes/No) as the final result. In the second
case, the answer of the rule set with the higher average confidence is used. If the
average confidence matches, the average support is used as a tiebreaker.

4 Experimental Analysis

In this section, we present the results of an experimental analysis, in which we
compare our approach3 to AbC [16] in terms of the classification performance
on five different datasets. Below, we describe the experimental setup and subse-
quently discuss our findings.

Datasets and Setup. We use five well-known categorical datasets for binary clas-
sification as training and test data: Animals with Attributes, Zoo, Mushrooms,
Car Evaluation, and Congressional Voting Records.

All categorical features that are not already in binary form were one-hot
encoded by converting each feature into as many 0/1 features as there are differ-
ent values. For a dataset with, for example, the feature safety, which has two dif-
ferent values, low and high, two new dummy features, safety low and safety high,
have been introduced. For each instance, the feature’s value was then replaced by
the corresponding one-hot encoding. Records with missing values were excluded.

We make use of the following five datasets.
3 https://github.com/jklein94/Cluster-Specific-Rule-Mining-for-Argumentation-

Based-Classification.

https://github.com/jklein94/Cluster-Specific-Rule-Mining-for-Argumentation-Based-Classification
https://github.com/jklein94/Cluster-Specific-Rule-Mining-for-Argumentation-Based-Classification
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Animals with Attributes. The Animals with Attributes (AwA) dataset consists
of 50 different animals with 85 boolean-valued attributes. The dataset was ran-
domly split into 90% training data and 10% test data. The Zoo [8] dataset is sim-
ilar to the AwA dataset. It contains 101 instances of animals with 16 attributes.
The dataset was randomly split into 80% training data and 20% test data.

Mushrooms. The Mushrooms [2] dataset comprises descriptions of imaginary
samples representing 23 species of mushrooms. Each species is categorized as
either edible, poisonous, or of uncertain edibility. The latter category was merged
with the poisonous one. The dataset initially consists of 8124 instances with 22
categorical features. After the data cleaning and feature encoding, the dataset
contains 5644 instances with 99 features and was randomly split into 90% train-
ing data and 10% test data.

Car Evaluation. The Car Evaluation (Car) [6] dataset was derived from a simple
hierarchical decision model. The original dataset contains 1728 instances with
6 categorical features. After one-hot encoding, a total of 22 features resulted.
No instance was excluded. The classification target is determining whether a car
exhibits a low safety standard. The dataset was randomly split into 80% training
data and 20% test data.

Congressional Voting Records. The Congressional Voting Records (Congress)
dataset [1] consists of 1984 US Congressional Voting Records for each of the
U.S. House of Representatives Congressmen. Initially, it contains 435 instances
and 16 features. After removing the records with missing values and encoding
the features, 232 instances with 33 features remain. The classification target is
to determine which party (Democratic or Republican) a congressman voted for.
The dataset was randomly split into 80% training and 20% test data.

We repeated the classification five times for each dataset according to the
procedure described in Sect. 3. The number of randomly initialized clusters was
set to seven. For each cluster, the top four features were selected. We set the min-
imum support of the rule mining algorithms to 0.7 and the minimum confidence
to 0.9.4 We use the accuracy, percentage of undecided instances, and percentage
of decided, but falsely classified instances to evaluate the performance of the
proposed approach. The mean result of the five runs is reported. Note that we
randomly selected ten attributes for the AwA dataset as target variables. The
average of the metrics across all ten selected attributes is reported. We randomly
selected three target variables for the Zoo dataset. The results for each selected
attribute are reported individually.

Results. The results in Table 1 show that AbC could not classify even one
instance for five of the seven scenarios. To be precise, for the classification of
4 The values used showed promising results in preliminary experiments, achieving a

good balance between the number of generated rules, classification performance, and
runtime. A systematic analysis of the parameters is beyond the scope of this work
and will be part of future work.
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Table 1. Overview of accuracy (ACC), undecidable instances (UNDEC), and decided
but falsely classified instances for our approach and the AbC approach. The results of
AbC for the AwA dataset are those reported in [16].

Name Ours AbC

ACC UNDEC (%) False (%) ACC UNDEC (%) False (%)

AwA 0.71 17.20 12.0 0.30 70.0 0.00

Zoo eggs 1.00 0.00 0.00 0.00 100.0 0.00

Zoo milk 0.96 0.95 2.86 0.00 100.0 0.00

Zoo fins 0.92 2.86 4.76 0.86 9.52 4.76

Mushrooms 0.88 10.80 1.13 - - -

Car 0.82 15.26 2.77 0.0 100.0 0.00

Congress 0.87 4.68 8.09 0.00 100.0 0.00

Zoo eggs, Zoo milk, Car, and Congress all test instances were answered as Unde-
cided, leading to an accuarcy of 0. Our approach, on the other hand, consistently
achieves high accuracies ranging from 0.82 (Cars) to 1.0 (Zoo eggs). For Zoo fins,
both approaches show 4.76% of falsely classified instances. However, our app-
roach exhibits a significantly lower proportion of Undecided instances, reflected
in a higher overall accuracy of 0.92 compared to AbC (0.86). In addition, in our
experiments, AbC created a very large number of rules for the AwA dataset,
which precluded classification in a reasonable time, which is why we rely on the
results reported in [16]. Although the results can only be compared to a limited
extent, our cluster-specific approach shows significantly higher accuracy (0.71
vs. 0.3) and a significantly smaller proportion of undecidable instances (17.2%
to 70%) than AbC. The most extensive dataset Mushrooms could not be classi-
fied by AbC because it ran out of memory in the rule mining step. Our method
achieves an accuracy of 0.88, with 10.8% of instances remaining undecided and
a low 1.13% false classification rate.

5 Limitations

The approach presented in this paper achieves promising results in terms of
accuracy and the reduction of undecidable instances. However, there is still room
for improvement. In the following, we will discuss some main limitations of the
proposed approach.

Rule Generation Control. The classification performance heavily depends on
the generated rules. However, direct control over the rule-generation process is
limited to setting support and confidence thresholds. Another way to influence
rule generation is through clustering and feature selection. Finding the best
parameters for the clustering and feature selection steps is a non-trivial task
that ultimately comes down to trial and error as it is very dataset-dependent.
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Computational Overhead. Compared to traditional machine learning methods,
our approach can result in longer classification times due to its multi-step nature.
Each step has a computational overhead, and the runtime of the clustering algo-
rithm, the rule mining algorithm, and the DeLP implementations significantly
influence our approach’s runtime performance.

Classification Tasks and Data Types. Our method’s design primarily targets
binary classification tasks, focusing on handling categorical variables. In its
current configuration, achieving multi-class classification necessitates multiple
invocations of the classification pipeline—one for each class. This requirement
can significantly heighten computational demands, potentially detracting from
overall performance efficiency. Moreover, the approach’s specialization in cate-
gorical variables necessitates that numeric features undergo a binning process
to be transformed into categorical equivalents. This transformation can lead to
an exponential increase in the number of features, substantially expanding the
feature space.

6 Conclusion

In this work, we presented a new approach to argumentation-based classification.
Building on the preliminary results of Thimm and Kersting [16], we developed
a multi-step classification approach that combines classical machine learning
methods with approaches to (structured) argumentation. In an experimental
analysis, we examined the classification performance on five different dataset
and showed that our cluster-specific rule mining approach achieves significantly
better accuracies and lower numbers of undecidable instances than the origi-
nal AbC approach. In future work, we aim to explore the influence of different
configurations for the clustering, feature selection, and rule mining steps and
their impact on classification performance. Furthermore, broadening the scope
of evaluation to encompass datasets of increased complexity and diversity and a
comparative analysis with other argumentation-based methods like ABALearn
[18] and AA-CBR [7], other symbolic learners and traditional machine learning
approaches would be of great interest. Moreover, efforts to improve scalabil-
ity and computational efficiency are paramount. Optimizing the approach to
handle larger datasets efficiently without sacrificing explainability or classifica-
tion accuracy is critical for practical use. Finally, extending our methodology to
efficiently tackle multi-class classification tasks and accommodate diverse data
types, including continuous and multi-modal datasets, represents a significant
frontier for exploration.
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13. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys.
Rev. E 69(6), 066138 (2004)

14. Ross, B.C.: Mutual information between discrete and continuous data sets. PLoS
ONE 9(2), e87357 (2014)

15. Sharma, S., Guleria, K.: Deep learning models for image classification: comparison
and applications. In: 2022 2nd International Conference on Advance Computing
and Innovative Technologies in Engineering, pp. 1733–1738. IEEE (2022)

16. Thimm, M., Kersting, K.: Towards argumentation-based classification. In: Logical
Foundations of Uncertainty and Machine Learning, Workshop at IJCAI (2017)

17. Thimm, M., Rienstra, T.: Approximate reasoning with ASPIC+ by argument sam-
pling. In: Proceedings of the Third International Workshop on Systems and Algo-
rithms for Formal Argumentation (SAFA 2020), September 2020

18. Tirsi, C., Proietti, M., Toni, F.: ABALearn: an automated logic-based learning
system for ABA frameworks. In: Basili, R., Lembo, D., Limongelli, C., Orlandini,
A. (eds.) AIxIA 2023 – Advances in Artificial Intelligence. AIxIA 2023. LNCS,
vol. 14318, pp. 3–16. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
47546-7 1

19. Xiao, S., Wang, S., Dai, Y., Guo, W.: Graph neural networks in node classification:
survey and evaluation. Mach. Vis. Appl. 33, 1–19 (2022)

https://doi.org/10.24432/C5C01P
https://doi.org/10.24432/C5C01P
https://doi.org/10.24432/C5959T
https://doi.org/10.24432/C5959T
https://doi.org/10.24432/C5JP48
https://doi.org/10.24432/C5JP48
https://doi.org/10.24432/C5R59V
https://doi.org/10.24432/C5R59V
https://doi.org/10.1007/978-3-031-47546-7_1
https://doi.org/10.1007/978-3-031-47546-7_1


Cluster-Specific Rule Mining for Argumentation-Based Classification 67

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Debate Analysis and Deliberation



Automatic Analysis of Political Debates
and Manifestos: Successes and Challenges

Tanise Ceron1(B) , Ana Barić2, André Blessing1 , Sebastian Haunss3 ,
Jonas Kuhn1, Gabriella Lapesa4,5, Sebastian Padó1 , Sean Papay1,

and Patricia F. Zauchner3

1 IMS, University of Stuttgart, Stuttgart, Germany
tanise.ceron@ims.uni-stuttgart.de

2 FER, University of Zagreb, Zagreb, Croatia
3 SOCIUM, University of Bremen, Bremen, Germany

4 GESIS Cologne, Cologne, Germany
5 DIID, HHU Düsseldorf, Düsseldorf, Germany

Abstract. The opinions of political actors (e.g., politicians, parties,
organizations) expressed through claims are the core elements of politi-
cal debates and decision-making. Political actors communicate through
different channels: parties publish manifestos for major elections, while
individual actors make statements on a day-to-day basis as reflected
in the media. These two channels offer different approaches for analy-
sis: Manifestos, on the one hand, are useful to characterize the parties’
positions at a global ideological level over time. In contrast, individ-
ual statements can be collected to analyze debates in particular policy
domains on a fine-grained level, in terms of individual actors and claims.
In this article, we summarize a series of studies we have carried out.
We apply NLP-driven (semi-)automatic analyses on these two channels
and compare their potentials and challenges. The fine-grained analysis
yields rich insights into the communication but comes at the cost of three
challenges: (a) a substantial hunger for manual annotation, introducing
practical hurdles for analysis both within and across languages; (b) diffi-
culties in claim classification arising from the uneven frequency distribu-
tion over the theory-based annotation schemas; (c) the need to map actor
mentions onto canonical versions. Manifesto-based analysis avoids these
challenges to a substantial extent when a more coarse-grained analysis of
party positions is sufficient. We highlight the benefits and challenges of
both approaches, and conclude by outlining perspectives for addressing
the challenges in future research.

Keywords: Claim identification · discourse network analysis · party
positioning · argument mining

1 Introduction

Political decision-making in democracies is generally preceded by political
debates taking place in parliamentary forums (committees, plenary debates),
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different public spheres (e.g., newspapers, television, social media), and in the
exposition of political ideologies in party manifestos [44,46]. In these debates,
various actors voice their positions and beliefs, make claims and try to advance
their agendas. Political scientists have therefore developed a range of methods
to analyze these debates in the dual goal of understanding democratic decision-
making and identifying influential actors and important arguments driving the
development of these debates. Two prominent ones are as follows:

(a.) To obtain a maximally informative picture, we can identify the claims and
actors involved in a given debate, combining political claims analysis [23] and
network science, and represent them as discourse networks [26,27]. This per-
mits researchers to capture structural aspects of political debates, investigat-
ing and reconstructing debates in a fine-grained manner and understanding
the reasons why some claims prevail and others fail.

(b.) The more traditional approach in the political science tradition is to abstract
away from the details of a given debate and assess positions and beliefs of
political actors at the aggregate level of party positions, namely analyzing
manifestos. This provides much less detail but focuses on the arguably most
important group of political actors and their respective ideologies. Shifts in
ideology allow understanding the change of opinions within a party and their
electorate [3]. This approach also allows for direct access to actors’ opinions as
in comparison with news that goes through a selection of actors and decisions
when reported in the media outlets.

In this article, we present an overview of the main contributions from a series
of studies that aimed at assessing whether these two approaches can be con-
ducted more efficiently using methods from natural language processing (NLP).
We start in Sect. 2 with the more complex approach (a), conceptualizing dis-
cursive exchanges as discourse networks. Our goal here is to assess how NLP
can help to overcome the roadblocks that studies in this perspective are facing
because of the time- and labor-intensive annotation required by detailed anal-
yses of political discourse. Then, in Sect. 3, we switch perspective to approach
(b), adopting instead the goal of characterizing party positions at the global,
ideological level. We demonstrate that this task does not require a full-fledged
discourse network analysis, can do with very coarse-grained content categories,
and that hardly any manual annotation is necessary. We highlight the benefits
and challenges of both approaches, and conclude by outlining perspectives for
addressing the challenges in future research.

2 Fine-Grained Analysis of Political Discourse

Our starting point for the first approach is political debates as they are repre-
sented in newspaper articles. In these articles, journalists report on claims and
positions of all kinds of actors participating in public debates. We conceptual-
ize these discursive interactions as discourse networks [26] — (dynamic) bipartite
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Fig. 1. Discourse Network Example

Fig. 2. From newspaper articles to affiliation networks (adapted from [32])

graphs with two types of nodes, namely (a) actors (politicians, parties, organiza-
tions, but also groups of citizens such as protesters); and (b) fine-grained cate-
gories of claims (purposeful communicative acts in the public sphere by which an
actor tries to influence a specific policy or political debate). Edges link actor nodes
with the claim nodes that they communicate about and are tagged with a polar-
ity: actors can either support or oppose specific claims. Figure 1 shows an example
where actors are ovals, claim categories are rectangles, and green and red edges
denote support and opposition. Figure 2 presents a step-by-step guide to devel-
oping such a network based on newspaper articles: Given a document, we need
to detect text spans that express claims and actors (Tasks 1 and 2), we need to
map these text spans onto canonical actors (e.g., “Merkel”, “the chancellor”, “Mrs.
Merkel” are mentions of the canonical actor Angela Merkel) and claim categories,
respectively (Tasks 3 and 4), and finally we need to establish actor-claim dyads
with correct polarities (Task 5) and construct the actual network (Task 6). Until
recently, to construct these networks, one needed to meticulously perform these
tasks by hand; which costs time and hence money. Therefore, we aim to use NLP
to develop predictive models capable of automating this process. This results in a
fairly complex computational setup which gives rise to three main challenges:

(1) Annotation takes long and is costly. Traditional supervised learning
demands a substantial number of annotated datapoints, but annotation of
actors and claims calls for expert annotation. This leads to a ‘slow start’ sit-
uation: a sizable amount of manual annotation has to be carried out before
computational modeling can proceed. Once models are in place, they can
speed up future annotation, but this comes with its own set of challenges [18].
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In practice, this means that a combination of time, money, and expertise is
necessary to reach that point which might not always be available. Further-
more, carrying out comparative studies requires annotation to be available
for multiple languages, even if only for evaluation purposes.

(2) Political claims are difficult to process on a fine-grained level.
The codebooks developed by political science experts to describe the rele-
vant claim categories in societal debates need to be sufficiently fine-grained
to permit the characterization of competing positions in terms of the dis-
course network. This consideration often leads to codebooks with anywhere
between 50 and over 100 claim categories [4,17,22]. As usual for language
data, a few categories are frequent, while the majority are rare. This further
exacerbates the problem mentioned in point (1) when learning claim identi-
fications and claim classifiers (cf. Tasks 1 and 4 in Fig. 2): even a relatively
large corpus will hardly provide enough examples of the infrequent categories
for straightforward learning.

(3) Actor mentions are difficult to aggregate. Most of the mentions of
actors in any discourse do not use their canonical name (“Angela Merkel”), but
instead short versions (“Mrs. Merkel”), roles (“the chancellor”), or even just
personal or possessive pronouns (“she”, “her”, compare Fig. 1). The mapping of
such mentions onto the right actor node in the discourse network is essentially
equivalent, in the general, to coreference resolution which is known to be a
hard task. While shortcuts exist for some instances, notably the use of entity
linking [36] for actors which are represented in some database, there are many
actors for which this is not the case – including politicians at the local or
regional levels as well as ‘ad-hoc’ actors such as “several ministers”.

In the following Sects. (2.1–2.4), we discuss a series of studies addressing tasks
1–4 from Fig. 2 and responding to these challenges. As gold standard for our stud-
ies we use DEbateNet [4], which is a large corpus resource that we created for
the analysis of the German domestic debate on migration in 2015. After domain
experts from political science developed a codebook for the policy domain, roughly
1000 newspaper articles from the German left-wing quality newspaper ‘taz - die
tageszeigung’ with a total of over 550.000 tokens were annotated for actors, claims,
and their relations, and finally used for computational modeling.

2.1 Less Annotation Is More: Few-Shot Claim Classification

As noted in Challenge 1, NLP models that (partially) automate claim detection
and classification traditionally require relatively large manually annotated data
sets for training or fine-tuning, since the required domain-specific semantic dis-
tinctions are hard to recover directly from plain text. Since for most political
topics no annotated data exists, research projects usually needed to start with
a substantial amount of classical qualitative text analysis. The situation has
changed substantially in the last two years, with the advent of large language
models and their capacity for transfer learning and few-shot learning [5], that is,
the ability to learn new tasks ad hoc, from very small numbers of examples.
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To assess the potential of few-shot learning, we have carried out a study
to assess whether we are able to replicate the manual annotation in one policy
domain – the debate about the exit from nuclear energy in Germany in the
year 2013 [19] – based on our models trained on migration debates and with a
minimal amount of additional training data [17]. We thus try to process claims
on the exit from nuclear energy use like “The Greens want to introduce a bill in
the Bundestag for the immediate and final decommissioning of Germany’s seven
oldest nuclear power plants” with a model trained on claims from the migration
debate like “The basic right to asylum for politically persecuted persons knows
no upper limit, Merkel also announced in an interview”. In this overview, we
focus on the tasks of claim identification and claim classification (cf. Figure 2).

We work with a corpus of articles sampled with a keyword-based approach
which still contains about as many relevant as irrelevant articles. Claims are
identified by a binary sentence classifier. We start by calculating sentence embed-
dings using a sentence-BERT model (paraphrase-multilingual-mpnet-base-v2;
[35]). We then use the manually annotated DEbateNet dataset (cf. Section 2)
to train a multi-layer perceptron as claim identifier. Even though trained on
data from a completely different topic area, our classifier obtains an F1 score of
0.78 on nuclear energy claims (precision: 0.77, recall: 0.79). This is remarkable,
especially considering the large number of irrelevant articles in the corpus.

For claim classification, the model requires some information about the rele-
vant claim categories. In our case, we use the category labels (i.e., names) from
the codebook that was used to annotate the claims in the original study as
minimal input for a few-shot learning approach. Again, each sentence is embed-
ded with an SBERT model (using the same model as for claim identification).
Analogously, the category labels from the codebook are encoded by SBERT. We
then compute cosine similarity between all claim candidates and all category
labels. Manually checking the top-ranked sentences for each label leads to seed
sentences for each category. In the next step, we classify each claim candidate
by assigning it to the category of the most similar seed sentence. To control the
precision of claim classification, we introduce a threshold for similarity scores:
Claim candidates with higher similarity scores are retained, while those below it
are filtered out as potentially irrelevant.

When we evaluate whether the model correctly predicts categories for indi-
vidual claims by computing F1 scores for each category, the model reaches F1
scores ranging from 0.23 to 0.45 for the more frequent claim categories (n >
20). Results for infrequent categories are unreliable. When evaluating whether
the model correctly predicts the claims in the eight n-core networks of the orig-
inal study, the results are better, with F1 scores between 0.29 and 0.69. In both
cases, the variation of F1 scores across categories shows that especially infre-
quent categories pose a major challenge to our few-shot approach of generating
discourse networks. In the next section, we therefore discuss options to increase
the precision of predicting infrequent claim categories.
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Fig. 3. Codebook excerpt: Supercategory residency

Table 1. Claim classification: Precision, Recall, F-Scores on DebateNet newspaper
corpus. Simplified from [13].

Freq band Base HLE CRR HLE+CRR
P R F1 P R F1 P R F1 P R F1

Overall 61.2 41.9 47.0 75.2 52.2 59.0 70.4 49.0 55.2 76.5 54.3 60.8

Low 10.2 9.7 9.6 58.3 30.6 37.4 31.2 16.1 18.7 54.8 29.0 35.8
Mid 58.0 36.0 41.8 77.4 55.3 62.2 75.8 49.1 55.8 85.1 58.8 66.2
High 73.1 50.8 56.7 77.8 55.6 62.3 76.4 55.9 62.6 77.7 57.9 64.0

2.2 Improving Claim Classification with Hierarchical Information

As Challenge 2 formulated above, the many infrequent claim categories are very
difficult to recognize accurately. We now describe a study on how to combat this
challenge [13]. We start from the observation that political science codebooks
are typically structured hierarchically into (at least) two levels, with an upper
level that corresponds to broad political supercategories and a lower level that
defines specific policies (claim categories). Figure 3 shows an example of the
supercategory of residency, which is split up into about a dozen specific claim
categories. When we have insufficient amounts of training data available, we can
use this information to formulate a prior for the claim category embeddings that
are learnt by our model’s classifier: in the embedding space, claim categories
should be located closer to other categories within the same supercategory than
to claim categories of other supercategories. This leads us into the general area
of hierarchy-aware classification methods.

While we evaluated various methods [13], we focus here on two approaches.
The first one is hierarchical label encoding (HLE) [37] which decomposes the
parameters for the specific claim categories into a (shared) supercategory part
and a category-specific part, and a regularization approach which we call Class
Representation Regularization (CRR) and which encourages the model to min-
imize the distances among the representations for each specific claim category
within the same supercategory. For an experiment, we set up a base classifier
based on BERT and combined it with HLE and CRR, training and testing on
the DEbateNet gold standard (Sect. 2). The results in Table 1 shows that both
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Table 2. Cross-lingual modeling: F1 scores for Claim class for claim identification
(Id), macro average for claim classification (Class) on two datasets: DebateNet and
Guardian. Simplified from [45].

Model Train Test DebateNet Guardian
Id F1 Class F1 Id F1 Class F1

Baseline (mono) de de 56.2 70.5 – –
Translate-test de de (via en) 55.8 69.5 20.6 53.4
Translate-train en en 57.3 67.8 25.5 51.0
Multilingual de en 45.8 50.3 20.0 39.0

strategies, HLE and CRR, lead to a clear improvement in overall micro-F1 score
over the base classifier (F1=47.0) to F1 scores of 59.0 and 55.2, respectively. A
combination of the two leads to a further improvement to F1=60.8. The improve-
ment is most striking for the low frequency band (corresponding to the lowest
frequency tercile), improving from F1=9.6 to F1=35.8. The developments for
the two other frequency terciles are less dramatic, but still substantial (mid:
41.8 → 66.2, high: 56.7 → 64.0). A second study shows similar, albeit smaller,
effects for claim classification on party manifestos with categories from MAR-
POR, a domain-independent claim classification schema [41] discussed in more
detail below in Sect. 3.1. This bolsters the interpretation that our improvements
are not tied to the specific codebook we used. We conclude that there is con-
siderable space to improve the prediction quality for infrequent claim categories
with dedicated methods.

2.3 Multilingual Claim Processing

When we move to another language while staying in the same policy domain
– for example, for the purpose of comparative analyses across countries – we
find ourselves faced with a specific case of Challenges 1 and 2: Do we have to
start over with creating manual annotations? For argument mining, for which
the identification of claims is a core task, the potential of machine translation
for cross-lingual projection has already been established [16].

We report on a pilot study in claim identification and classification in other
languages [45], machine-translating the German DEbateNet articles into English
and French (this overview focuses on English). We compared three strategies: (a)
backtranslating the foreign-language texts into German and analyzing them with
a monolingual German BERT-based claim identifier and classifiers (‘translate-
test’); (b) building monolingual BERT-based foreign-language models from the
translated DebateNet and using them to analyze the data in the respective lan-
guages (‘translate-train’); (c) training multilingual models based on multilingual
BERT on the original German data and then applying it to translated data
(‘multilingual’).

The ‘DebateNet’ column of Table 2 shows that dealing with multilingual
claims with machine translation works well: results are almost identical to the
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Table 3. Actor mentions and their canonicalizations in newswire article (https://
shorturl.at/WZ159)

Local mention of actor Canonical version

1 President Joe Biden pleaded with Republicans . . . Joe Biden
2 Biden signaled a willingness to make significant changes . . . Joe Biden
3 “We can’t let Putin win”, he said Joe Biden

monolingual setup. In contrast, using multilingual embeddings incurs a substan-
tial performance penalty. This is in line with previous analyses arguing that mul-
tilingual embeddings attempt to solve a harder, more open-ended task than MT
systems do [2,34]. Also, claim identification in the multilingual embedding setup
drops only ≈10 points F1 compared to the baseline, while claim classification
drops 20 points F1 – the limiting factor seems to be the embeddings’ (in-)ability
to account for fine-grained topic distinctions consistently across languages.

This looks like machine translation is, indeed, sufficient to transfer political
claims analysis across languages. However, the question is whether machine-
translated text is a reasonable proxy for original text in a language. To test for
this effect, we annotated a small sample of English reporting from the Guardian
on the German migration debate. The results in the ‘Guardian’ column of Table 2
are much lower than those for the machine translated text. Again, we see an
advantage for the MT-based approaches over multilingual embeddings, but less
clearly. Particularly striking is the drop for claim identification with the MT
approach from 56%-57% to 20-26% F1. Indeed, a British newspaper is likely
to report on German domestic affairs differently from a German newspaper,
which leads to differences in claim form and substance: They tend to focus
on the internationally most visible actors and report claims on a more coarse-
grained level. Beyond the linguistic differences that NLP has so far focused on,
therefore, working with newspaper reports from different countries necessitates
bridging the cultural differences in framing [42], which may require some amount
of manual labeling, or at least few-shot learning (cf. Section 2.1) after all.

2.4 Robust Actor Detection and Mapping

As outlined above, a central but difficult part of discourse network analysis is
detecting actors for claims and mapping their textual mentions onto canonical
forms (Tasks 2 and 3 in Fig. 2 and Table 3). We now describe a study comparing
the two currently dominating approaches for this task [1]: (1) a pipeline of tradi-
tional NLP models, and (2) an end-to-end approach based on prompting a large
language model (LLM). Once more, DebateNet, which provides a canonicalized
representation for each actor, serves as dataset.

The pipeline approach comprises two steps. First, a CRF-based model iden-
tifies actor mention spans from the text, given the article with a marked claim as
input. Since each claim has (at least) one actor, we constrain our CRF to always

https://shorturl.at/WZ159
https://shorturl.at/WZ159


Automatic Analysis of Political Debates and Manifestos 79

Table 4. Prompt template instruction paraphrases used for robustness check for zero-
and few-shot setting.

# Instruction templates

1 “Extract only the entity that made the claim in the article. The claim is
surrounded with <claim> and <\claim> tags. Output only the entity
without any additional explanation. Article: [ARTICLE]”

2 “Extract and standardize only the entity that made the marked claim in
the article. The claim is surrounded with <claim> and <\claim> tags.
Output only the standardized entity without any additional explanation.
Article: [ARTICLE]”

3 “Retrieve the party or parties responsible for the statement in the given
article, contained within <claim> and <\claim> tags. Output only the
entity without further elaboration. Article: [ARTICLE]”

4 “Identify and output the entity or entities that made the claim within the
specified article, enclosed by <claim> and <\claim> tags. Do not
include any supplementary information. Article: [ARTICLE]”

predict at least one actor mention per claim [33]. The second step of our pipeline
canonicalizes these actors mentions through classification. We define the classes
of this classifier to be (the string representations of) all canonicalized actors
which appear at least twice in the training set (229, in our case), complemented
by a special class ‘keep-as-is’ which covers all remaining actors mentions and
which – true to its name – does not change the input. This heuristic approach
works since infrequent actors are typically expressed by a linguistic expression
that can serve well as a canonicalized version (either a full name, or a definition
description such as ‘the government secretaries’). The input to the classifier is
the mention text and its article context. For both steps of our pipeline, we use a
pre-trained XLM model [11] as an encoder, which we fine-tune during training.

In the LLM approach, we build on the pre-trained LLama 2 language model
[40], directly predicting canonicalized actor strings as a text generation task,
conditioned on a prompt containing the target claim. We compare zero- and few-
shot prompting settings for base- and instruction-tuned model variants. For both
settings, we construct the prompt following the current best practices [24,28,29].
The few-shot approach involves in-context learning, where the prompt contains a
number of claim-actor pairs from the training set chosen by the cosine similarity
score obtained from SBERT embeddings [35]. In our zero-shot approach, we
do not include any claim-actor pairs in our prompt. Instead, we prompt our
model with a short English-language description of the task. We experiment with
various automatically constructed prompt paraphrases using ChatGPT shown
in Table 4.

We evaluate our models via F1-score. To better comprehend the strengths
and weaknesses of both models, we use three evaluation settings. In our strictest
exact-match setting, predictions are considered correct only if they exactly match
the gold-standard actor string. Correct-up-to-formatting setting is more lenient
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Table 5. Results for the LLM, traditional pipeline and hybrid models in the different
evaluation settings.

Evaluation Pr Re F1

LLM exact match 42.66 43.46 43.06
up to formatting 43.56 44.39 43.98
up to canonic. 62.39 63.55 62.96

dedicated
pipeline

exact match 48.66 59.35 53.47
up to formatting 48.66 59.35 53.47
up to canonic. 54.79 66.82 60.21

hybrid
approach

exact match 54.33 64.49 58.97
up to formatting 54.33 64.48 58.97
up to canonic 64.96 79.39 70.21

by ignoring formatting differences (e.g. whitespaces, capitalization, punctuation)
in the predictions. Lastly, in our correct-up-to-canonicalization setting, predic-
tions are considered correct if they identify the correct entity, allowing variations
in referring expressions For instance, both “the chancellor” and “Merkel” would
be counted as correct predictions for the gold-standard actor “Angela Merkel”.

Table 5 summarizes the results. While, under the strict exact-match setting,
our traditional pipeline outperforms the LLM-based model, the LLM outper-
forms the pipeline when only evaluating up to canonicalization. This implies
that the LLM is actually better than the pipeline at identifying the correct
political actor, but struggles to canonicalize these actors consistently.

Motivated by this observation, we introduce a hybrid model that is struc-
turally similar to our traditional pipeline model but includes the LLM prediction
as an additional input. In this way, the pipeline can learn to delegate to the LLM
when deciding which actor made the claim, and only has to properly canonicalize
the LLM’s prediction. Table 5 shows the hybrid model’s performance under the
same three evaluation settings. We find a substantial increase in performance
across all settings. This suggests that our hybrid approach is able to leverage
additional synergies between our two model architectures, improving upon the
constituent models’ abilities to both identify and canonicalize actors for claims.

3 Coarse-Grained Analysis of Political Discourse

We now proceed to the second approach, the analysis of manifestos to charac-
terize parties. Party competition is a crucial mechanism in democracies. It cre-
ates an arena where a plurality of political viewpoints are given voice, enabling
individuals to select one that aligns with their own beliefs. Analyzing this phe-
nomenon is fundamental to understanding voters’ choices during elections as
well as the decisions taken by governing parties [3]. Researchers analyse party
competition by, for example, placing them in a low-dimensional political space:
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a one-dimensional left-right or libertarian-authoritarian, or conservative-liberal
scale, or in a two-dimensional space formed by combining these scales [20].

We investigate the extent to which the positioning of parties can be captured
through their manifestos – the electoral programs in which parties articulate
their perspectives, plans, and objectives. Manifestos are crafted with the double
intention of conveying information and persuading potential voters [8].

Political researchers analyze party manifestos to explore aspects such as level
of similarity among parties concerning different policies [8], party alliances [15],
and the alignment between voters’ decisions with their worldviews [30]. By offer-
ing direct access to the parties’ viewpoints, they serve as a robust foundation for
comprehending the parties’ ideologies regarding different policies. In contrast to
the newspaper-based approach, manifesto-based analysis does not provide spe-
cific information about what types of decisions were made or articulated. On the
other hand, it is arguably the most direct way of accessing the ideologies shared
by members of the same party. It also avoids the filtering of information (via
actors and their claims) through the lens of media.

3.1 Ideological Characterization

Traditionally, political science has approached the task of identifying party posi-
tioning by manually assigning a label to each sentence of a given manifesto. The
Manifesto Project (MARPOR, [6]) is a well-known example that follows this
method. Its annotations follow a codebook that classifies each sentence into a
broader policy domain such as ‘external relations’ or ‘freedom and democracy’
as well as assigning a fine-grained label related to a specific category of the policy
domain, such as ‘freedom and human rights’. The category sometimes also encodes
the stance, e.g., ‘Constitutionalism: Positive or Negative’. These labels are then
analyzed in terms of saliency, assuming that the most frequently mentioned poli-
cies are the most important ones for a party. A simplified version of saliency-based
analysis is the RILE index, which is a coarse-grained measure that defines lists of
‘left’ and ‘right’ policies and simply calculates parties’ position on the left-right
scale as the relative mention frequency of left vs. right policies [7].

Manual annotations come with a substantial cost and must be carried out
for each country and election. We ask whether we can alleviate this burden
with unsupervised methods drawn from recent advancements in NLP. In [9], we
empirically investigate the following questions with manifestos from Germany:
1) How to create embeddings for parties from their manifestos that yield robust
between-party similarities estimates? 2) What aspects of document structure
can be exploit for this purpose? 3) How well can these embeddings be computed
in a completely unsupervised fashion?

We carry out experiments with six sentence embedding models, all of which
estimate party positions on the basis of sentence similarity. These models range
from a classic distributional model (fasttext) to transformers [35], applying
whitening to ameliorate anisotropy [39] and comparing vanilla and fine-tuned
versions. The results are shown in Table 6. Since we hypothesize that using only
sentences expressing claims (cf. Section 2) might be more informative of the
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Table 6. Correlation between our unsupervised scaling method and the ground truth
(Wahl-o-Mat). Adapted from [9].

Only claims Entire manifestos
Embeddings Domain No domain Domain No domain
fasttextavg *0.54 0.35 *0.44 0.41
BERTgerman 0.37 *0.47 0.36 *0.48
RoBERTaxml 0.39 *0.51 *0.46 *0.54
SBERTvanilla *0.57 *0.50 *0.53 *0.57
SBERTdomain *0.44 *0.45 0.41 *0.52
SBERTparty *0.53 *0.70 *0.50 *0.69

positioning of the parties, we introduce an experimental condition which consid-
ers only automatically identified claims (‘only claims’). Finally, we test whether
computing sentence similarity within each MARPOR domain improves results
(‘Domain’). See [9] for details.

We evaluate our unsupervised scaling method against similarities according
to parties’ answers to the German Wahl-o-Mat questionnaire, a voting advice
application (VAA) [43], generally considered a reliable estimation of party dis-
tances. Table 6 shows the results. The correlations are similar between the setup
with only claims and entire manifestos, suggesting that claims are not much
more informative than all sentences, at least when they are automatically rec-
ognized. The best model overall is based on fine-tuned SBERTparty embeddings
(which was fine-tuned to make statements by the same party more similar to one
another) and computes similarities on an overall level instead of separately for
each domain (column ‘No domain’). The lack of benefit from domain information
might be surprising. One possible explanation is that voters prioritize different
domains and do not simply ‘average’ across them [21].

We believe that these results hold promise for computational political science:
leveraging document structure could potentially reduce the need for domain
experts to annotate extensive amount of data. Our study has clear limitations,
though: first, our experimentation was limited to a single language and dataset.
In a follow-up study [31], we have established that classifiers based on state-of-
the-art multilingual representations perform robustly in this task across countries
and over time. Secondly, we have only considered a few document structure-based
cues for fine-tuning. The range of available cues however is enormous and more
research is needed in order to better understand the strengths and limitations
of sentence embeddings.

3.2 Policy-Domain Characterization

The study from the previous subsection primarily considered the aggregated level
of overall party positions [12,38]. Political scientists are, however, often interested
in specific policy domains. We therefore ask, in [10], how well we can extend the
approach presented above to the level of individual policy domains.
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Fig. 4. Automatic prediction of German party positioning within policy domains
(right-hand numbers: correlation with RILE scale).

Our approach computes distances between parties at the policy domain level
by first training a policy-domain labeller which classifies the sentences of unanno-
tated documents and then computing pairwise distances among sentences of the
same policy domains across parties. We interpret the first principal component
of the aggregated similarity matrix as a policy domain-specific scale.

Our experiments reveal that while the top-performing policy-domain
labeller’s accuracy is moderate (64.5%), the correlation between the predicted
sentences and the ground truth – the RILE index (mentioned in 3.1) – remains
remarkably high (r=0.79) in comparison with the annotated scenario (r=0.87).
Figure 4 shows the positioning of parties per policy domain. In line with estab-
lished observations about the German political landscape, a majority of policy
domains exhibit a strong correlation to the RILE index, indicating a consis-
tent adherence to the left-right scale. Where this is not the case (EU, market,
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government), a cluster of ‘established’ parties is clearly separated from the pop-
ulist AfD. When evaluating the predicted setups against manual annotation, we
find that the higher the accuracy of the policy-domain labeller within a class, the
higher the correlation with the annotated results (Pearson r=0.59, p=0.03). This
suggests that the accuracy of the labeller can be used as an indicator of which
policy domains to reliably include in the analysis of unannotated manifestos.

This study verifies again that our methods perform well at an aggregated
level of information by correlating highly with the RILE index. Moreover, our
proposed workflow supplements the previous studies of party positioning with
further detailed analysis within the sphere of policy domains. The predictions we
obtain align closely with expert assessments, indicating that our workflow pro-
vides a reliable method to automatically compute the similarity between parties
across some policy domains.

4 Conclusions

This paper considered the challenges of applying NLP methods for a text-based
analysis of political debates. We compared two approaches: the first one aims
at a fine-grained representation, taking individual statements (claims) and the
political actors who made them as its building blocks, with the final goal of
extracting discourse network representations from raw texts; the second one
targets a coarse-grained representation of the debates at hand, with parties as
the actors and their positions expressed in manifestos as its building blocks, with
the final goal identifying global ideological positions, across languages and time.

As regards the fine-grained approach, our experiments and analyses show
that current transformer-based language models have the potential to funda-
mentally change the way social scientists can use large text corpora to analyze
political discourse. Whereas so far fine-grained analyses of political discourse
have mostly been limited to short time spans, single countries or had to employ
far-reaching sampling strategies to reduce the amount of texts to be processed.
Following the pipeline from Fig. 1 we now know that claim identification (Task
1) needs to be preceded by a preparatory task to discard irrelevant documents,
but after that, detection models work very well even on topics outside the origi-
nal training data. Actor detection and mapping (Tasks 2 and 3) can be handled
with reasonable success using traditional NLP methods such as entity extractors
and classifiers respectively, but we also saw promising first results in using large
language models to perform these two tasks jointly. However, owing to the inher-
ent challenge in controlling the output generation of LLMs, the most effective
strategy combines their capability to identify the correct actor and subsequently
perform the canonicalization step within the traditional pipeline. For claim clas-
sification (Task 4), few-shot models show high potential, but they need human
curation and re-calibration especially for infrequent claim categories.

While unable to fully automate annotation, current NLP tools go beyond
just speeding up manual annotation processes. Topic agnostic claim detection
models, few-shot learning, accounting for category hierarchies and models for
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actor mapping have the potential to restructure qualitative social sciences text
analysis workflows. Instead of starting from zero with a small set of completely
manually annotated texts, the current tools allow researchers to immediately
focus on relevant text sections and potential claim sentences. With this a tradi-
tionally sequential annotation process can be replaced by a parallel and focused
approach in which human interaction is mainly focusing on curation tasks.

When we turn to the coarse-grained approach, which aims at identifying the
positioning of political parties based on manifestos, the verdict is even more
optimistic. It shows performances similar to human annotators when identifying
the positioning of parties in the well-established left-right scale (RILE index) or
regarding their similarities according to Wahl-o-Mat. These results carry over,
to an extent, to the level of individual policy domains – results for the anno-
tated policy-domains correspond well to human expert judgements – but the
task becomes considerably more difficult for the models. There is a clear need
for further research on assessing the limits of the coarse-grained approach, and
specifically on improving the performance of the classifier across policy-domains.

Thus, both approaches have advantages and disadvantages. The fine-grained
discourse network analysis offers greater insights into what is being articulated
in the public sphere and identifies the key political actors influencing or engaging
in those discussions. However, even though we have shown that the annotation
load can be alleviated with NLP tools, the task still requires extensive labelling,
and it is very domain focused – i.e., each domain demands a new codebook and
round of annotations. Besides that, the generalizations derived from the networks
are dependent on what is reported by the media, where the focused claims and
actors are selected by the news outlets. The coarse-grained approach based on
manifestos, on the other hand, gives direct access to parties’ policies and higher-
level ideological positioning, reaching high quality with little to no annotations.
That being said, the coarse-grained approach cannot provide detailed informa-
tion about individual actors or claims in the political discourse, instead focusing
on the relation among parties either at a policy-domain or at an ideological level.

Ultimately, we contend that the two approaches complement each other by
offering distinct perspectives onto the political process: One illuminates the pre-
cise agreements and disagreements among actors, whereas the other offers an
overview of party relatedness at a level of ideology or policy domains. Both offer
insights and challenges that can be traded off according to the type of data,
resources and analysis requirements at hand.

Limitations. The studies we presented in this paper were carried out primarily
on newspaper text and party manifestos. While these are arguably two important
text types for political discourse, they are by far not the only ones. Future work
is necessary to determine the extent to which our findings carry over to other
text types, notably oral modes such as (parliamentary) debates or intermediate
modes such as social media communication. Similarly, the bulk of our work was
concerned with German language texts. On the methodological perspective, it
could take advantage of the relatively good NLP resource situation for German,
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leaving open the question of how to deal with similar situations in lower-resource
languages. Our pilot studies [31,45] indicate that Machine Translation into a
higher-resource language such as English appears a simple but effective solution
for almost all languages at this point. At the data level instead, the annotations
of German manifestos are recognized for their high quality due to the evaluation
of inter-annotator agreement [25] – which may not be the case with manifestos
from other countries. A crucial aspect to keep in mind are bias issues which
could affect the models and thus result in unfair representations of the political
discourse, i.g., overlooking actors from specific groups and/or their claims. While
in [14] we have addressed frequency bias for claim detection (higher accuracy for
claims by high frequency actors) a broader spectrum of unfairness sources is yet
to be explored, in particular in the light of the use of LLMs.

Acknowledgments. The studies reported in this paper were funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) through the projects
MARDY-1 and MARDY-2 (grant number 375875969) within RATIO.
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Abstract. Deliberative processes play a vital role in shaping opinions,
decisions and policies in our society. In contrast to persuasive debates,
deliberation aims to foster understanding of conflicting perspectives
among interested parties. The exchange of arguments in deliberation
serves to elucidate viewpoints, to raise awareness of conflicting inter-
ests, and to finally converge on a resolution. To better understand and
analyze the underlying processes of deliberation, we propose PAKT, a
Perspectivized Argumentation Knowledge Graph and Tool. The graph
structures the argumentative space across diverse topics, where argu-
ments i) are divided into premises and conclusions, ii) are annotated for
stances, framings and their underlying values and iii) are connected to
background knowledge. We show how to construct PAKT and conduct
case studies on the obtained multifaceted argumentation graph. Our find-
ings show the analytical potential offered by our framework, highlighting
the capability to go beyond individual arguments and to reveal structural
patterns in the way participants and stakeholders argue in a debate. The
overarching goal of our work is to facilitate constructive discourse and
informed decision making as a special form of argumentation. We offer
public access to PAKT and its rich capabilities to support analytics,
visualization, navigation and efficient search, for diverse forms of argu-
mentation (GitHub: www.github.com/Heidelberg-NLP/PAKT Website:
www.webtentacle1.techfak.uni-bielefeld.de/accept/).

Keywords: Argumentation · Deliberation · Knowledge Graph

1 Introduction

Deliberative processes play a vital role in shaping opinions, decisions, and poli-
cies in society. Deliberation is the collaborative process of discussing contested
issues, to collect and form opinions and guide judgment, in order to find consen-
sus among stakeholders. The key underlying idea is that groups are able to make
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better decisions regarding societal problems than individuals.1 Deliberation thus
can change minds and attitudes, provided that participating individuals are will-
ing to communicate, advocate and to become persuaded with and by others [24].
Effective deliberation, whether in person or online, incorporates sustained and
sound modes of argumentation [10] and can take many forms: from (moderated)
discussions to role-playing or formal debates. All these activities aim to explore
differing perspectives and should lead to informed and inclusive decisions.

Deliberative theory is concerned with investigating and theorizing about how
people discuss and come to conclusions. It has been argued that public debates
as available in online debating or discussion fora, or social media platforms such
as Reddit, are black boxes, as we have little knowledge about how people argue
and what their arguments are based upon [24]. Thus, effective tools are needed
to shed light on existing debates to better understand how people argue.

In this work we propose a new framework to support advanced analytics
of argumentative discourse, which we apply to analyze deliberative discussions,
as a special form of argumentation. At the core of our framework is PAKT, a
Perspectivized Argumentation Knowledge Graph and Tool that relies on a data
model suited to formalize and connect argumentative discussions – be it interac-
tive dialogues or exchanges in Web fora – enabling a multi-dimensional analysis
of the content of arguments, their underlying perspectives and values, and their
connection to different stakeholder groups and to background knowledge. PAKT
builds on the theory of argumentation by segmenting arguments into premises
and conclusions, and focuses on their perspectivization by specifying frames and
values which arguments highlight or are based on, and using knowledge graphs
to ground arguments in relevant background knowledge.

By going beyond single arguments, PAKT characterizes debates at a struc-
tural level, revealing patterns in the way specific groups of stakeholders argue
and allowing us to analyze important quality aspects of deliberative discussions.
Hence, PAKT aids in understanding how people argue, including question such as
i) Given a debated issue, are (all) relevant argumentative perspectives covered? ii)
Who provided which argument(s)? and What are common framings, underlying
values and perspectives in presenting them? and iii) How do these perspectives
and values differ between pro and con sides, and stakeholder groups?

We leverage and refine state-of-the-art argument mining and knowledge
graph construction methods to build a rich, perspectivized argumentation knowl-
edge graph, by applying them to debates from debate.org (DDO) as a proof of
concept. We show how to analyze this graph in view of its underlying model, and
how to answer the above questions by applying PAKT as an analytical tool.

Our main contributions are: We i) introduce PAKT, a framework for delib-
eration analysis that we ii) apply to debate.org as a proof of concept. We iii)
demonstrate how to use it to examine deliberative processes, and iv) offer case
studies that leverage PAKT to analyze debates from a deliberative viewpoint.

1 Cf. Habermas, Cohen, Dryzek, Fishkin, see https://tinyurl.com/2p9vsha7.

https://tinyurl.com/2p9vsha7
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Fig. 1. PAKT data model consisting of arguments (w/ premises, conclusions, frames,
values, stance towards topic and concepts) and authors, camps, zeitgeist

2 A Data Model for Perspectivized Argumentation

Debates in the real world are fundamentally driven by the interaction of indi-
viduals. These individuals play various roles in a debate, such as authors or
members of the audience, each bringing unique values, preferred framings and
areas of interest into discussions. The individual characteristics of participants
clearly influence the arguments they formulate and those they engage with.

To unravel the complex interplay between individuals and arguments in real-
world debates, we present a human-centered model (Fig. 1) of a perspec-
tivized argumentation knowledge graph which serves as a structured framework
for capturing dynamics in argumentation. Through this formalization, we aim
to shed light on the intricacies of framed argumentation, to enhance our under-
standing of how individuals engage in discussion, and how they can help shaping
the quality and outcome of debates, to make them deliberative.

Authors, as all individuals, have diverse beliefs, values and issues of interest.
Individuals who share properties naturally coalesce into camps, which may man-
ifest as formal entities, e.g., political parties, or informal gatherings. Importantly,
camps need not adhere to formal memberships, and individuals can participate
in multiple camps, even if they hold partially contradictory positions.

By uniting all individuals or camps within a community, we arrive at the
concept of the zeitgeist-a collective repository of beliefs and norms. It governs the
relevance and controversy of issues, and thereby shapes the landscape of debates.
It also influences the arguments presented within these debates. Arguments that
violate the code of conduct, e.g., are typically avoided by authors or moderated
out. Readers, being part of the community, assess arguments through the lens
of the zeitgeist, which can impact their agreement or conviction levels.

Authors, guided by personal convictions or their camps’ interests, craft argu-
ments on specific issues. Arguments usually comprise a premise and conclusion,
and reflect a particular stance on the issue at hand. Arguments reveal additional
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information by exposing specific framings, values, or concepts that authors (often
deliberately) use to convey their message. Note that these choices can be influ-
enced by the author, their camps, the zeitgeist, or even the audience.

A debate is formed by all arguments on a specific issue put forth by its
participants. A good deliberative debate should cover all relevant aspects of the
issue. This can be achieved by including all interested parties and by exploring
(counter-)arguments of all stances that consider different perspectives and view-
points of individuals and camps, while ensuring the soundness of each argument.

3 Constructing PAKTDDO from debate.org

This section describes, as proof of concept, how we apply PAKT to represent
debates from debate.org (ddo for short) and which methods we apply to con-
struct the graph. Minor implementation details are in our supplementary mate-
rials [21].

3.1 Arguments from debate.org

Figure 1 shows two core components of PAKT: i) a set of arguments discussing
debatable issues and ii) authors of these arguments, who can be related to each
other. While existing argumentative datasets [1,16,33] do not include author
information, a well-known platform that hosts a rich source of arguments along
with author profiles is the former debate portal debate.org (DDO).2 This
debate portal has been crawled and used in the field of argument mining several
times [7,8,34]. To further broaden the extracted data of this portal, we selected
140 controversial issues with at least 25 contributed opinions each, yielding over-
all 24,646 arguments, where a user profile is available for 7,001 arguments.

Stance, Premise and Conclusion of Arguments. The DDO portal presents
controversial issues as questions that users answer with yes (pro) or no (con),
followed by a header and a statement (opinion) that explains the answer in detail.
We construct arguments from this data by interpreting the provided statement
as the premise and automatically generating a conclusion. Consider the example:

Issue Should animal hunting be banned?
Stance pro
Header Sport hunting should be banned
Statement “[...] Hunting for fun or sport should be banned.

How is it fun killing a defenseless animal that’s
harming no one? [...]”

Conclusion Generation. Since conclusions are not given in the DDO data, we
construct conclusions automatically. For this we apply ChatGPT in a few-shot
setting, showing it three examples consisting of i) the question, ii) stance, iii)
header, and iv) a manually created conclusion. For our example, the generated
conclusion is “Sport hunting should be banned in order to protect animals.” The
complete prompt is shown in our supplementary materials [21].
2 The website went offline on 5th of June, 2022. See Fig. 5 for an example screenshot.
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3.2 Characterizing Arguments for Perspectivized Argumentation

We enrich arguments with automatically inferred frames, values and concept
graphs to enable easy analysis and filtering in PAKT.

Frames. To represent specific viewpoints, perspectives, or aspects from which
an argument is made, we adopt the notion of “frames.” While one line of research
tailors frame sets to each issue separately, yielding issue-specific frame sets [1,
27,28], we aim to generalize frames across diverse issues. We therefore apply
the MediaFrames-Set [5], a generic frame set consisting of 15 classes that are
applicable across many issues and topics.

To apply these frames to arguments from DDO, we fine-tune a range of
classifiers on a comprehensive training dataset of more than 10,000 newspaper
articles that discuss immigration, same-sex marriage, and marijuana, containing
146,001 text spans labeled with a single MediaFrame-class per annotator [6].
To apply this dataset to our argumentative domain, we broaden the annotated
spans to sentence level [13]. Since an argument can address more than a sin-
gle frame [26], we design the argument-frame classification task as a multi-label
problem by combining all annotations for a sentence into a frame target set. To
introduce additional samples with more comprehensive text and target frame
sets, we merge existing samples pairwise by combining their text and unifying
their target frame set. As processing architecture, we apply different architec-
tures [14], and determine LLMs (RoBERTa [19]3) as the best-performing ones.

Human Values. Since we aim to analyze arguments not as standalone text,
but as text written by individuals with intentions and goals, it is also important
to analyze the human values [2,15,17,36] underlying a given argument, to infer
the authors’ beliefs, desirable qualities, and general action paradigms [15]. The
shared task “SemEval 2023 Task 4: ValueEval” [16] popularized the Schwartz’
value continuum [30]. This is a hierarchical system with four higher-order cat-
egories: “Openness to change”, “Self-enhancement”, “Conversation”, and “Self-
transcendence”. At the second level, these categories are refined into 12 cat-
egories, including “Self-direction”, “Power”, “Security”, or “Universalism”. To
reduce the complexity of the value classification task, we follow Kiesel et al. [16]
in not using the finest granularity of Schwartz’ value continuum, but rather the
second-smallest level containing 20 classes. For predicting value classes for an
argument, we rely on a fine-tuned ensemble of three LLMs published by the
winning team [29] of the shared task.

Concepts. Humans possess rich commonsense knowledge that allows them
to communicate efficiently, by leaving information implicit that can be easily
inferred in communication by other humans. Also in argumentation, it is often
left implicit how a conclusion follows from a given premise. To uncover which
concepts are covered in a given argument – either explicitly or implicitly – we
link arguments to ConceptNet [32], a popular commonsense knowledge graph.

3 For further studies in this paper, we apply the checkpoint https://huggingface.co/
pheinisch/MediaFrame-Roberta-recall.

https://huggingface.co/pheinisch/MediaFrame-Roberta-recall
https://huggingface.co/pheinisch/MediaFrame-Roberta-recall


94 M. Plenz et al.

To do this we rely on [22] to extract subgraphs from ConceptNet: We split the
premise into individual sentences (cf. [14]), then, for each sentence in the premise
and for the conclusion, we extract relevant ConceptNet concepts. These concepts
represent explicit mentions in the premise and conclusion, but not implicit con-
nections. Hence, we connect the extracted concepts with weighted shortest paths
extracted from ConceptNet. These paths reveal how the conclusion follows from
the premise, along with other potential implicit connections [22].

3.3 Authors and Camps

In DDO, authors could choose to reveal their user profile when posting an argu-
ment. To model stakeholder groups, we group users into camps using their user
profiles. The profiles state distinct categories for traits such as gender, ideology,
religion, income, or education. Users could also fill free-text fields about, e.g.,
personal beliefs or quotes. Users control which parts of their profiles are public,
so the amount of available data differs for each user. To obtain camps, we cluster
the stated categories in coarse groups, e.g. left, right and unknown for ideology.

3.4 Implementation and Tools for Building and Using PAKT

PAKT is designed to aid in future argumentative analysis, so we make it publicly
available in several forms. Our website4 provides a comprehensive overview of
issues in PAKTDDO in a search interface. To enable richer analysis we also make
PAKTDDO available as a Neo4J5 graph database that loosely follows the struc-
ture shown in Fig. 1. Neo4J databases can be queried with Cypher, a powerful,
yet easy-to-learn querying language similar to SQL, but that supports queries on
graphs. Issues, users, arguments, and other entities can efficiently be searched
for and filtered in our database. A detailed description on how to utilize our
database can be found at www.github.com/Heidelberg-NLP/PAKT.

3.5 Preliminary Evaluation

To provide a preliminary evaluation of the quality of the PAKTDDO graph, we
manually labeled 99 arguments on the issue “Should animal hunting be banned? ”
that will be used in our case study (Sect. 5.1). We evaluate the quality of gener-
ated conclusions and annotated labels (frames and values), as well as retrieved
supporting and counter arguments. Each annotation sample includes the stance,
the header, and the full statement (premise). For each argument, three annota-
tors provided judgments on five questions6: (i) Conclusion quality (rating the
appropriateness of the conclusion generated by ChatGPT): 94/99 conclusions
are labeled as appropriate; (ii) Frame identification (identifying all emphasized

4 https://webtentacle1.techfak.uni-bielefeld.de/accept.
5 https://neo4j.com.
6 The labels were aggregated using the majority vote.

www.github.com/Heidelberg-NLP/PAKT
https://webtentacle1.techfak.uni-bielefeld.de/accept
https://neo4j.com
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aspects): the predictions yield 0.40 micro-F1; (iii) Human value detection (detect-
ing all values encouraged by the argument): again the predictions yield 0.40
micro-F1; (iv) Similarity rating (given two further arguments, rating whether
and which argument is more similar): similarity predictions for arguments with
the same stance obtained with S3BERT [20] correlate with annotator judgments
with an accuracy of 42%; (v) Counter rating (given two further arguments, rating
whether and which arguments attack the given argument more): the similarity
predictions for arguments with the opposite stance obtained from S3BERT [20]
correlate with an accuracy of 40%. For detailed analysis of the manual study
including IAA see our supplementary materials [21].

4 Analytics Applied to PAKTDDO

In this section we analyse PAKTDDO at a global level to discover general trends
in our data, by aggregating information across all represented issues.

Frames and Values. Figure 2 (left) shows the distribution of frames and human
values across all arguments from all issues. The frames health and safety, cultural
identity, morality and quality of life are the most frequent, each occurring in
almost 20% of all arguments. The most common values are concern (49%) and
objectivity (45%). We further observe that some frames occur frequently with
certain values and vice versa. The fairness and equality frame, e.g., occurs six
out of seven times in combination with the value concern.

Concepts. For our analysis in this paper, we consider the ratio of arguments
that mention a certain concept. To avoid biases due to the structural properties
of ConceptNet (e.g. some concepts are better connected and hence occur more
often), we report these ratios relative to the ratio computed over all arguments
in PAKTDDO. E.g., when reporting the concept ratios for a specific frame, we
report the ratio relative to the ratio computed over all arguments that we sub-
tract from the former, i.e., Nfc

Nf
− Nc

N , where N is the number of arguments with
a specific frame f or concept c. When comparing two subsets of PAKTDDO
– for example pro and con on a certain topic – we instead normalize by the
complementary subset to obtain more specific concepts.

When linking arguments to commonsense background knowledge we see that
the most frequent concepts are Person and People, indicating that most debates
are – as expected – human-centered. Other commonly occurring concepts are US,
Legal, War, or School which reflect the categories and context that our issues
stem from. These concepts are also frequently used in contemporary debates,
which indicates that issues in PAKTDDO are representative for general debates.

Our analysis also reveals concepts that are specific to certain frames and val-
ues. For example, the concepts religion, god, person, biology, human and chris-
tianity occur between 10 and 24% points (pp) more often in arguments bearing
the morality frame, compared to all arguments across all frames. Similarly, for
the value nature, the most common concepts are animals, animal, zoo, kept in
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Fig. 2. Correlation between frames and values. Left plot is across all topics, right plot
is for the issue Should animal hunting be banned? Arguments labeled with more than
one frame/value are counted multiple times. Numbers are percentages.

zoos, killing and water, which occur between 12 and 39 pp more often than in
all arguments.

Camps. PAKTDDO includes author information that users have decided to pro-
vide for themselves. Using this information, we can group users (i.e. the authors
of arguments) into camps along several dimensions, as described in Sect. 3.3. This
allows us to compare which frames and values are preferred by which camps.
Figure 3a shows these distribution for authors of different ideology. In compari-
son, left-winged authors prefer the objectivity and self-direction: action values,
while right-winged authors consider the values tradition and conformity: rules
more. For frames, the difference between the camps is relatively small, indicat-
ing that one’s ideology is more value-driven. Figure 7 shows the distributions for
other camps, where we observe stronger effects for frames.

However, since different issues have different relevance for single frames and
values, we check whether different distributions of frames and values are caused
by different issue participation dependent on the camp. Here, our analysis shows
that authors from different camps engage in issues from similar categories, with
participation rates differing by at most ∼3 pp for ideology (cf. Fig. 6), showing
that different camps prefer different frames and values while debating on the
same issues.

5 Case Studies

5.1 Should Animal Hunting Be Banned?

For deeper analysis we examine one specific issue, namely Should animal hunting
be banned? PAKTDDO contains 409 arguments on this issue, with a relatively
even parity (∼46% pro and 54% con).
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Camps. Our notion of camps used in Sect. 4 requires user information, which
is scarce at the level of individual issues. For example, for ideology only 17
contributing authors provided user information. Therefore, for the given issue we
consider people in favor and against banning animal hunting as distinct camps.
Separating authors into camps by their stance actually does reflect the friendship
network between authors on DDO, as shown in Fig. 4.

Frames and Values. Figure 2 (right) shows the frames and values for this issue.
86% of arguments address the nature value, which is directly linked to the issue.
Other frequent values occurring in more than 30% of arguments are universalism:
concern, self-direction: action, conformity: rules and security: personal. The most
frequent frames are health and safety and morality.

To better understand how and why these frames and values arise, we look
at how they differ between stances (Fig. 3b). Firstly, we note that the most fre-
quently occurring frames and values are common for both stances. However,
manual inspection of these arguments reveals that these frames and values are
interpreted in different ways. For example, on the pro side the nature value often
refers to species or entire ecosystems being endangered, and that humans should
not diminish them even more. By contrast, on the con side, a common interpre-
tation of nature protection is that balance needs to be maintained by hunting
over-populating species such as deer. Identifying such shared values with differ-
ent interpretations can aid in finding common ground and ultimately satisfying
compromises. Here, a possible compromise could be to ban the hunting of endan-
gered species, but to allow sustainable hunting of certain species.

However, a value or frame can also predominantly be used by a certain stance.
The value universalism: concern expresses that all people and animals deserve
equality, justice, and protection. 71% of all pro arguments support this value,
while only 9% of all con arguments support it. On the pro side, this value means
that we shouldn’t hunt animals, as we also would not hunt humans. Authors on
the con side addressing this value argue that hunted animals have better lives
than farmed animals. Again, the difference lies in the interpretation.

Concepts. For our target issue, we obtain concepts revolving around animals,
hunting, killing, and food. Again, we compare pro and con arguments to each
other: The most prominent pro-concepts are killing animal, killing, bullet, ani-
mals, evil and stabbing to death. On the other hand, the most frequently occur-
ring con-concepts are getting food, fishing, eat, going fishing, meat and food. This
highlights the different foci regarding hunting: people in favor of banning hunting
emphasize the aspect of killing during hunting, while people who oppose a ban
on hunting emphasize the usage of dead animals for food. Hence, the concepts
can be seen as issue-specific framings used by the pro and con sides.

5.2 Comparison to Other Issues

An important aspect of opinion-making, and hence of deliberation, is to learn
from similar debates. Similar issues can be identified with standard similarity
prediction methods like SBERT [20,25], which is already integrated in PAKT.
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Fig. 3. Comparison between frame and value matrices. The left and middle plots show
distributions in percent, and the right plots show their differences in percentage points
(pp).
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Fig. 4. T-SNE embedding of the spectral embeddings of the largest connected com-
ponent of the friendship network of DDO. Users replying to Should animal hunting
be banned? (�), Should animal testing be banned? (•) or Should humans stop eating
animals and become vegetarians? (+) are marked in blue (pro) or red (con). We see
that camps are embedded consistently across similar issues. (Color figure online)

Frames and Values. Beyond the similarity of the content of arguments, we may
be interested in more abstract relations between issues – for example, we may
want to investigate issues with similar frame and value distributions. To detect
such issues, we compute the Frobenius norm of the difference between frame-
value matrices (cf. Fig. 3) of different issues. A small Frobenius norm indicates
a similar distribution of emphasized frames and values between the issues. For
animal hunting, the five most similar issues revolve around animals: “Should the
United States ban the slaughter of horses for meat? ”, “Should humans stop eating
animals and become vegetarians? ”, “Should animals be kept in zoos? ”, “Should
we keep animals in zoos? ” and “Should animal testing be banned? ” The next five
most similar issues are “Should cigarette smoking be banned? ”, “Should Abortion
be illegal in America? ”, “Pro-life (yes) vs. pro-choice (no)? ”, “Should abortion
be illegal? ” and “Does human life begin at conception? ”. Four of them are about
abortion, which shows that animal rights and abortion evoke similar frames and
values (see Fig. 3d), perhaps because both issues concern individuals who are
unable to defend their own rights.

In the following we take a closer look at similarities and differences between
the issues “Should animal hunting be banned? ” and “Should animal testing be
banned? ” We chose these issues, as they seem similar at first glance, but reveal
intriguing differences upon closer inspection. Moreover, Fig. 4 shows they have
comparable camps. As expected, they mostly highlight the same frames and
values (Fig. 3c). But there are also notable differences: In animal testing, the
health and safety frame is expressed more often, while capacity and resources
and cultural identity frames are rare.
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Arguments using a health and safety frame for a ban on animal hunting or
testing often refer to the health and safety of animals, and to the health and
safety of humans when arguing against a ban. Yet, the issues raised for the health
and safety of humans are not the same in arguments against a ban: for animal
hunting, a common argument is that humans need meat for nutrition, which
hunting helps to ensure. For animal testing the health and safety aspect often
revolves around animal tests being necessary to make medicine safe for humans.
This difference has also very different implications for deliberation. Concerning
animal hunting, one could argue that meat for nutrition can be provided by
farmed animals, or can be substituted in vegetarian diet. Finding alternatives
for animal testing is more difficult and hence, needs to be addressed differently.

Concepts. Naturally, similar issues share similar concepts, for instance, animals
in our example, while others are more distinct, e.g., getting food for hunting or
scientists for animal testing. Such differences are often issue-specific and more
fine-grained than differences in frames and values, as discussed above. Hence, a
deeper analysis of concepts and content can help elucidate potential differences
behind shared frames and values, which can be important for deliberation.

5.3 Argument Level

So far, our analysis focused on entire debates, or even collections of debates, to
analyze structural properties, such as similarities and differences among debates.
Yet, PAKT also supports analysis at the level of individual arguments to enable
in-depth analysis. For each argument, PAKT includes abstractions to frames,
values, and concepts which is what we mostly used in our analysis so far.

Beyond this, PAKT allows us to compare and relate arguments based on their
content. We can do this by estimating the similarity between arguments, using
either S3BERT [20] or the concept overlap as another interpretable method [21].

With the computed similarities, it is almost trivial to retrieve supporting
arguments (most similar among the same stance) or counterarguments (most
similar but opposing stance) [31,35]. More complex argument retrieval is also
easy and efficient. For example, to answer the question “How would someone
argue who wants to make a similar argument but from the perspective of value x
instead of value y?,” one can use the following query which runs in ∼5ms:

MATCH (:argument {id: $query_id})-[r:SIMILARITY]-(a:argument)
WHERE x in a.value AND not y in a.value
RETURN a ORDER BY r.similarity DESC

6 Related Work

A number of approaches have been developed with the goal of analyzing delib-
erative debates.

Gold et al. [11] propose an interactive analytical framework that combines
linguistic and visual analytics to analyze the quality of deliberative communica-
tion automatically. Deliberative quality is seen as a latent unobserved variable
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that manifests itself in a number of observable measures and is mainly quanti-
fied based on linguistic cues and topical structure. The degree of deliberation
is measured in four dimensions: i) Participation considers whether proponents
are treated equally, i.e., whether all stakeholders are heard; ii) Mutual Respect
is indicated by linguistic markers and patterns of turn-taking; iii) Argumen-
tation and Justification aims to ensure that arguments are properly justified
and refer to agreed values and understanding of the world. This is analysed
using causal connectors indicating justifications, and discourse particles signal-
ing speaker stance/attitude; iv) Persuasiveness measures deliberative intentions
of stakeholders via types of speech acts. While Gold et al. focus on quality criteria
that are linguistically externalized considering single arguments, our framework
is targeted at revealing structural patterns in the way certain groups argue.

Bergmann et al. [3] are concerned with providing comprehensive overviews
of ongoing debates, to make human decision makers aware of arguments and
opinions related to specific topics. Their approach relies on a case-based reason-
ing (CBR) system that allows them to compute similarity between arguments
in order to retrieve or cluster similar arguments. CBR also supports the syn-
thesis of new arguments by extrapolating and combining existing arguments.
Unlike Bergmann et al. who focus on grouping or retrieving related arguments,
we propose a data model that focuses less on the analysis and retrieval of single
arguments, but aims to provide an aggregate analysis of debates in view of their
deliberative quality aspects.

Bögel et al. [4] have proposed a rule-based processing framework for analyz-
ing argumentation strategies that relies on deep linguistic analysis. Their focus is
on the operationalizaton of argument quality that relies on two central linguistic
features: causal discourse connectives and modal particles. The proposed visual-
ization allows users to zoom into the discourse. However, no aggregate analyses
at the level of the whole debate is proposed, as we do in our paper.

Reed et al. have developed several tools to support the exploration and query-
ing of arguments. ACH-Nav [37], for instance, is a tool for navigating hypotheses
that offers access to contradicting hypotheses/arguments for a given hypothesis.
Polemicist [18] allows users to explore people’s opinions and contributions to the
BBC Radio 4 Moral Maze program. ADD-up [23] is an analytical framework
that analyzes online debates incrementally, allowing users to follow debates in
real time. However, none of these tools are based on a data model that captures
the perspectives of different stakeholders in a debate at a structural level.

VisArgue is an analytical framework by Gold et al. [12] that focuses on the
analysis of debates on a linguistic level, focusing on discourse connectives. A novel
glyph-based visualization is described that is used to represent instances where
similar traits are found among different elements in the dataset. More recently,
this approach has been extended to analytics of multi-party discourse [9]. The
underlying system combines discourse features derived from shallow text mining
with more in-depth, linguistically-motivated annotations from a discourse pro-
cessing pipeline. Rather than revealing structural patterns in the way different
stakeholders argument, the visualisation is designed to give a high-level overview
of the content of the transcripts, based on the concept of lexical chaining.
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7 Conclusion

PAKT, the Perspectivized Argumentation Knowledge Graph and Tool, intro-
duces a pioneering framework for analyzing debates structurally and revealing
patterns in argumentation across diverse stakeholders. It employs premises, con-
clusions, frames, and values to illuminate perspectives, while also enabling the
categorization of individuals into socio-demographic groups.

Our application of PAKT to debate.org underscores its efficacy in conduct-
ing global analyses and offering valuable insights into argumentative perspec-
tives. In our case studies we demonstrated the versatility of combining perspec-
tivizing categories (frames, values) emphasized by different camps, in combi-
nation with concept-level analysis – which enable identification of differences
within overall similarities, at the level of individual and across different issues,
and how such analyses may indicate starting points for deliberation processes.

PAKT offers broad potential applications by automatically detecting imbal-
ances or underrepresentations in arguments or debates through analyzing frames,
values and concepts. Navigation through the PAKT graph via central concepts or
argument-similarity edges enhances argument mining to a comprehensive level.
This accessible tool allows researchers without a computer science background
to explore opinion landscapes at both debate and single-argument levels. Its
extensive applications include informing policy-making by dissecting contentious
issues and fostering constructive discussions. Integrating PAKT into social media
platforms holds promise for highlighting common ground and areas of disagree-
ment among participants, as well as aiding moderators in identifying potentially
radical or offensive content. Thus, PAKT serves as a tool to enhance understand-
ing, and also to improve deliberative debates for all.

Limitations

Our analysis and case study rely on automatically annotated data encompassing
frames, values, and concepts. Consequently, we anticipate some degree of noise
in our dataset, potentially compromising the depth of our analysis. To address
this concern, we employ established methodologies derived from prior research
to mitigate such discrepancies. Additionally, we perform manual annotations to
gauge the quality of our data.

Our focus lies on the unique aspect of perspectivization, which is not largely
explored in prior work. Consequently, we could not directly compare PAKT with
other analysis tools from related studies. We hope that our discussion sparks
further research, and that PAKT can serve as a valuable baseline in future work.

Lastly, our analysis and case study shed light on the practical application of
PAKT in illuminating insights within debates, thereby aiding in opinion forma-
tion and decision-making processes. However, demonstrating PAKT’s utility for
other tasks such as moderation remains an avenue for future exploration.
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Appendix

Fig. 5. Screenshot of an opinion poll on debate.org

Fig. 6. Difference in relative participation between left and right winged authors.
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Fig. 7. Comparison between frame and value matrices. The left and middle plots show
distributions in percent, and the right plots show their differences in percentage points
(pp). All subfigures are aggregated across all issues.
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Abstract. The increasing usage of social networks has led to a grow-
ing number of discussions on the Internet that are a valuable source
of argumentation that occurs in real time. Such conversations are often
made up of a large number of participants and are characterized by a
fast pace. Platforms like X/Twitter and Hacker News (HN) allow users
to respond to other users’ posts, leading to a tree-like structure. Pre-
vious work focused on training supervised models on datasets obtained
from debate portals like Kialo where authors provide polarity labels (i.e.,
support/attack) together with their posts. Such classifiers may yield sub-
optimal predictions for the noisier posts from X or HN, so we propose
unsupervised prompting strategies for large language models instead.
Our experimental evaluation found this approach to be more effective
for X conversations than a model fine-tuned on Kialo debates, but less
effective for HN posts (which are more technical and less argumentative).
Finally, we provide an open-source application for converting discussions
on these platforms into argument graphs.

Keywords: Argumentation · Argument Graphs · Argument Mining ·
Large Language Models · Social Networks · Datasets · Open Source

1 Introduction

Argumentation is a fundamental part of human communication and can be found
in many different forms. Having the best argument in a conversation is often a
key factor to success. Computational Argumentation (CA) consequently has the
potential of supporting a wide range of user types—ranging from journalists
researching for their next article to students writing their thesis. Most argu-
ments are expressed in natural language, which means that machines first need
to parse the argumentative structures within a text through a process called
Argument Mining (AM) [18]. With the advent of the Internet, there is a growing
number of discussions happening on platforms such as X/Twitter, Reddit, and
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Hacker News (HN). These new forms of discourse are characterized by a large
number of participants and a fast pace and share one common trait: Users can
respond directly to other users’ posts, leading to a tree-like structure of the con-
versation. Compared to plain texts, this allows users to focus on certain parts of
the discussion more easily—for instance, by hiding certain parts of the tree.

Discussions on social networks often involve argumentation (e.g., if users try
to convince others of their opinion) [14], thus we argue that these platforms are
a valuable resource for CA. Imagine an emerging event, such as the release of
a new product or a political scandal. In such a situation, it is important to be
able to quickly identify the most important arguments—both for experts like
journalists and laymen. Curated argumentation databases cannot be used for
evolving topics, so this is mostly a manual process at the moment. With the pre-
structured conversations from social networks, only two tasks are left to use them
as argument graphs: (i) Identifying which of the posts are actually argumentative
and (ii) determining the polarity (support or attack) between them. Both have
already been tackled in previous work (see Sect. 3), but existing approaches rely
only on supervised classifiers. This means that they need a large amount of
annotated data to train on, which is not available for social networks like X.
Instead, most datasets are obtained from moderated debate portals like Kialo.
Contrary to most social networks, posts on these platforms are moderated and
users tend to write elaborate replies. The polarity of the replies is explicitly
stated, making it relatively easy to train supervised models. We found that the
resulting models are not directly applicable to other types of data (e.g., social
network posts), requiring the creation of training data from scratch.

To remove the need to annotate social network posts, we propose an unsu-
pervised approach based on prompting strategies for Large Language Models
(LLMs). In our paper, we focus on the polarity prediction task, leaving the
identification of argumentative posts to future work (see Sect. 7). Consequently,
we pursue the following research question: Can unsupervised LLMs match or
even surpass the polarity prediction quality of supervised approaches? Our main
contributions are (i) Four different prompting strategies for different types of
LLMs to predict the polarity between two posts in a conversation, (ii) an exten-
sive experimental evaluation on an existing benchmark corpus as well as two
new datasets obtained from the platforms X and HN, and (iii) an open-source
application that allows users to perform real-time AM on these two platforms.

The remainder of this paper is structured as follows: Sect. 2 introduces fun-
damental concepts, followed by a review of related work in Sect. 3. Section 4
presents the prompting strategies that are evaluated in Sect. 5. We discuss limi-
tations in Sect. 6 and conclude our paper in Sect. 7.

2 Foundations

In the following section, we introduce the most important concepts of CA and
Natural Language Processing (NLP) [2] as well as the conversation platforms
used in this paper.
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2.1 Computational Argumentation

Before dealing with CA, we start with the concept of an argument, often defined
as a single claim and several supporting or attacking premises [21,24]. Both
claims and premises are the fundamental elements of argumentation, also known
as Argumentative Discourse Units (ADUs) [21], and can range from a few words
to complete paragraphs. Most argumentative texts revolve around a primary
claim that the author aims to establish, known as the major claim [25].

A graph-based format is an intuitive way to represent these structures, lead-
ing to the concept of argument graphs. In our paper, we use an extended ver-
sion of the Argument Interchange Format (AIF) [9] and consider it as a triple
G = (V,E,M), where all ADUs are nodes or vertices V , the relationships
between them form the edges E ⊆ V × V , and M representing its major claim.
The graph includes atom nodes A representing individual ADUs and scheme
nodes S denoting the type of connection (i.e., support/attack) between other
nodes. Thus, the set of nodes V can be expressed as V = A ∪ S. In this struc-
ture, edges are not allowed to connect two atom nodes by definition, so the set
of edges E can be defined as E = V × V \ A × A.

The term AM refers to the process of extracting and identifying argumenta-
tive structures from textual data—for instance, detection claims and premises
and predicting relations between them. Our work contributes to the latter task,
which is also known as polarity prediction: “Does a premise support or attack
the claim?” Cayrol and Lagasquie-Schiex [7] introduced a Bipolar Argumenta-
tion Framework to represent these relations. We stick to the AIF standard and
its scheme nodes introduced earlier, so we refer the interested reader to their
work for a more formal definition of this framework. By combining multiple AM
tasks, complex argument graphs can be constructed.

2.2 Natural Language Processing

The field of NLP offers a wide range of techniques to process natural language
texts. When dealing with structured argumentation in the form of graphs, the
aforementioned atom nodes contain texts that can be processed through NLP.
Since the inception of representing words through embeddings, the concept has
evolved to transformer-based models popularized by Bidirectional Encoder Rep-
resentations from Transformers (BERT) [11]. These models are pre-trained on a
large corpus of texts and can then be fine-tuned on a specific task—for instance,
predicting Textual Entailment (TE) [16]. TE—also known as Natural Language
Inference (NLI)—is the task of determining whether a given text entails another
text and is conceptually similar to the investigated polarity prediction task. How-
ever, datasets for TE are not directly applicable to polarity prediction, since the
notion of entailment/contradiction is not the same as support/attack : For exam-
ple, a premise may entail a claim, but does not necessarily support it.

Based on the transformer architecture, LLMs having billions of parameters
have been developed in recent years. In addition to fine-tuning, they can be used
in a chat-based way by prompting them for some output. This approach is also
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Fig. 1. Fragment of a conversation from the platform Hacker News with the text
of the posts replaced by their type. (Source: https://news.ycombinator.com/item?
id=37744339)

known as few-shot learning [27] since the model does not need to be trained on
a large dataset. LLMs differ w.r.t. their maximum context length—that is, the
number of tokens they can process at once. As we will discuss in Sect. 4, this is
an important factor to consider when designing prompts.

2.3 Online Conversation Platforms

Having introduced argumentation, the use of graphs in this context, and the
most important concepts of LLMs, we now detail the unique characteristics of
the different conversation platforms with which we are concerned in this paper:
Kialo, X, and HN. The first is a moderated debate portal, whereas the other two
are social networks. One common feature is that users can respond to the posts
of other users, leading to a tree-like structure of the conversation like the one
shown in Fig. 1. These trees depict a special type of argument graph, where each
scheme node has exactly one incoming and one outgoing connection to some atom
node. The starting post of the conversation can be seen as the major claim of
the argument graph. Therefore, we can specialize the definition of an argument
graph G = (V,E,M) by redefining the set of edges E = A × S ∪ S × A and
setting constraints for the number of outgoing and incoming edges for scheme
nodes ∀s ∈ S : outdegree(s) = indegree(s) = 1.

A central difference between the three platforms is the type of posts they
contain: Kialo1 is a platform that aims to facilitate high-quality debates by pro-
viding a structured environment for users to discuss a wide range of topics. Users
not only reply to another user’s post, but also explicitly state the polarity of their
reply. X2 (formerly known as Twitter) is a social network where users can post
short messages (formerly known as tweets) that are limited to 280 characters.
Similar to Kialo, other users can reply to these tweets, but the polarity or even
the stance of their post is unknown. At the same time, X has additional features

1 https://www.kialo.com/.
2 https://x.com and https://twitter.com.

https://news.ycombinator.com/item?id=37744339
https://news.ycombinator.com/item?id=37744339
https://www.kialo.com/
https://x.com
https://twitter.com
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like quotes, mentions, and hashtags that can be used to refer to other posts. For
example, a reply on X may contain multiple mentions of other users, leading
to a more complex structure than the hierarchical conversations found on Kialo
and HN. In our paper, we focus on the tree-like reply structure and leave the
remaining features for future work. HN3 is a social news website run by the
venture capital firm Y-Combinator where users can submit links to articles or
ask questions and other users can comment on them. The platform is primarily
aimed at developers, and discussions are often more technical in nature.

3 Related Work

In the following section, we highlight some of the most important contributions
to the field of AM and CA concerned with online conversations. This field of
research has received a steady stream of contributions in the last decade, of
which we selected the works that are most relevant to our paper. For readers
more interested in text mining approaches for tweets that have been proposed
in that timeframe, we refer to the study conducted by Karami et al. [15].

The baseline model used in Sect. 5 is based on the work of Agarwal et al. [1].
The core of their contribution is a deep learning architecture dubbed GraphNLI
that predicts the polarity between two posts in a threaded conversation. Instead
of relying solely on the textual content of two posts, graph walks are used to sam-
ple contextual information from nearby nodes in the thread and thus generate
richer embeddings. The authors evaluated their approach on debates obtained
from the Kialo platform and compared it to four baseline approaches—one of
them being a Sentence-BERT (S-BERT) [22] based classifier that only receives
the two posts without any context. The results showed that GraphNLI out-
performed all baselines on the polarity prediction task, although the difference
to the S-BERT classifier in terms of accuracy/precision/recall was rather small
(approximately 3%). In an ablation study, the ancestor nodes were found to be
relevant to the context than the child nodes. With the graph walks being based
on probabilities assigned to nodes, the results are not deterministic. Evaluation
of GraphNLI on Twitter data is left for future work.

Other datasets containing argumentative conversations have been proposed
in the past—for instance, based on the Debatepedia website [5,6]. Bosc et al. [3]
created the DART dataset that contains tweets (among other topics) related to
the Apple Watch release. At that time, it was not possible to fetch the entire con-
versation tree, so the authors resorted to heuristics to predict pairs of tweets—
meaning that the original structure of the conversation is lost. There also exists
a large body of work on AM for social media conversations, ranging from the
identification of ADUs [13] to the detection of opinions given some tweet [13,20].
The mentioned DART dataset has been used to identify argumentative tweets
and predict their polarity [4] and to recognize facts and sources in tweets [12].

3 https://news.ycombinator.com/.

https://news.ycombinator.com/
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Table 1. Matrix with characteristics of our prompting strategies.

Isolated Sequential Contextualized Batched

Includes context × � � �
Parallel predictions � × � �
Usable without JSON schemas � � � ×
Required context length small medium small large
Number of predictions for n pairs n n n 1

4 Prompting Strategies

As mentioned in Sect. 2.2, the use of LLMs shifts the focus from feature engi-
neering and model design to the so-called prompt engineering. In the following
section, we present four different strategies for predicting the polarity between
two posts in a conversation. All of them are zero-shot approaches—that is, no
exemplary cases are given to the model—since we aim at providing a univer-
sally applicable solution for different kinds of conversation. Each strategy is
tailored for a different kind of LLM, depending on its capabilities. To esti-
mate the required context size of a model, we distinguish between categories
small (100–500 tokens), medium (500–5,000 tokens), and large (more than 5,000
tokens). One strategy makes use of JSON-based responses enforcing a given
schema through OpenAI’s function calling feature, rendering it unusable for
other models.

The main difference between the strategies is the amount of context they
provide to the model. While the first two strategies only use the tree struc-
ture to identify premises and their claims—making them applicable to any kind
of conversation—the latter two use it to provide additional information to the
model: The isolated strategy does not use any context at all, while the sequential
one provides the model with all previous requests and responses. The contextu-
alized strategy samples nearby nodes in the conversation tree, and the batched
one passes the entire conversation as context. They are designed to work equally
well for smaller conversations that have only a few posts, as well as for larger
ones that potentially contain hundreds of posts. As part of our evaluation in
Sect. 5, a diverse set of graph sizes is used to verify this. A comparison matrix
can be found in Table 1 and concrete prompts in Appendix A.

4.1 Isolated Prompting

In this rather intuitive approach, we simply feed two posts into the model without
any additional context from the conversation—that is, we assume that they are
self-contained. As part of the system message, the model is instructed to predict
the polarity between a premise and its claim and respond with “support” or
“attack”. This approach can be applied to virtually any LLM and is therefore a
good starting point for our evaluation. Since all predictions are separate from
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each other, one can query the model for all of them in parallel—making inference
faster for multi-GPU setups. We observed that LLMs may produce more text
than the single word it is supposed to output, which we deal with by performing
substring matching. For example, if the model outputs “I support this claim.”,
we would consider this as a prediction of “support”.

4.2 Sequential Prompting

The basic idea is the same as in the previous approach, but we simulate memory
by storing all previous predictions for a single post and passing this conversation
history to the model. This could make it possible for the model to provide pre-
dictions that are consistent with previous decisions, and thus potentially increase
the accuracy. The first prediction for a post still does not have any context—the
difference only becomes apparent from the second prediction onward. Since the
number of messages increases linearly with the number of posts in a conversa-
tion, this strategy is not suitable for LLMs with a limited context size. One can
remedy this by removing some of the earlier posts and their predictions from
the history, but this would also remove the context for the corresponding posts.
Compared to isolated prompting, this strategy cannot be run in parallel.

4.3 Contextualized Prompting

This strategy is an extension of the isolated and sequential prompting approaches
that aims to solve their limitations. The isolated technique misses any kind of
contextual information, potentially leading to wrong predictions. The sequential
approach might be prone to subsequent errors: Wrong predictions for the first
requests may influence the model’s decision for later ones.

To solve these problems, we propose to sample nearby nodes for contextual
information in a similar way to GraphNLI. Agarwal et al. [1] proposed the use
of random graph walks (see Sect. 3), which means that the results can change
between runs. The authors found that providing four nodes as a context yielded
the best results, so we propose the following deterministic sampling technique:
Choose one parent node of the claim, one child node of the premise, and one
sibling node of each (if available), resulting in a maximum of four nearby nodes.
In case there are multiple candidates, choose the one with the longest text—this
should provide the model with the most information available in nearby nodes.
A consequence of this sampling is that some nodes in the graph may have limited
context—most notably leaf nodes without siblings—even in large discussions.

While in theory this approach could be applied to both the isolated and
sequential prompting, we only use it for the former since the latter already
includes context, and we did not find any benefit in combining both techniques.
Contextualized prompting will naturally need a larger context length than the
isolated approach, but the token size does not scale linearly with the number of
posts—consequently, it may be used with LLMs having limited context sizes.
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4.4 Batched Prompting

All previous approaches fed the argument pairs to the model one by one, but with
the development of LLMs having context sizes of more than 100,000 tokens, we
gain the option of passing all pairs in a single request. It would still be possible to
perform a single prediction, but that would be inefficient. Instead, this strategy
uses another feature that some LLMs (e.g., those created by OpenAI): The ability
to handle structured JavaScript Object Notation (JSON) data—also known as
function calling. This enables us to use a single request to predict the polarity
between all pairs in a conversation. We expect this strategy to show the best
efficiency since the model can use the entire conversation as a context.

When querying a LLM with such a complex request, there is a chance of
hallucinations—for instance, the model might predict a polarity between two
posts that are not connected in the conversation or even come up with posts
on its own that are not part of the conversation. In an effort to mitigate these,
we append a unique identifier to each premise and claim and use only those
predictions that match the corresponding identifiers. In case some predictions
are missing, we perform a second request for the missing ones only and provide
the available predictions as a context.

5 Experimental Evaluation

In the next section, we present the datasets used for our evaluation, followed
by the experimental setup. We then proceed with the results of our experiments
and discuss their implications. We start by introducing our hypotheses to answer
our research question formulated in Sect. 1: Can unsupervised LLMs match or
even surpass the polarity prediction quality of supervised approaches?

H1. The prediction quality of supervised models is influenced by the type of
posts in the training data (i.e., debate portals vs. social networks).

H2. Adding context information to the prompts improves the prediction quality
of the model.

H3. At least one of our prompting strategies matches or exceeds the prediction
quality of established supervised approaches.

H1 aims at showcasing the difficulties in transferring models between different
types of posts, whereas H3 checks that our prompting strategies are also appli-
cable to high-quality debates. H2 test which of strategies presented in Sect. 4
performs best on different types of data.

5.1 Experimental Setup

In order to assess our hypotheses, we implemented our approach in Python and
made the source code publicly available on GitHub under the permissive MIT
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license.4 Our application is implemented through a client-server architecture,
which means that other developers can easily integrate it into their own projects.
To demonstrate this, we built another open-source application called xArgue-
buf that enables real-time AM on X and HN.5 Throughout this evaluation, we
use a set of standard classification metrics, namely accuracy A, precision P , and
recall R. Furthermore, we tested the statistical significance of our results using
McNemar’s test [19] (χ2 distribution, continuity correction, significance level
α = 0.01). The test is based on disconcordant pairs in a contingency table and
allows us to assess the difference in prediction quality between two approaches
when using the same data. Its null hypothesis states that the two approaches
are equally good at predicting the polarity between posts.

As LLMs for our evaluation, we use the proprietary ChatGPT developed
by OpenAI and the open Llama 2 [26] developed by Facebook. The prompt-
ing strategies that require small to medium context length were tested on the
gpt-3.5-turbo-1106 model, whereas the batched one requiring a larger con-
text size was tested on the gpt-4-1106-preview model (also known as GPT-4
Turbo). The tests involving Llama all use the model with 13 billion parame-
ters fine-tuned on the chat task. Language models tend to provide unpredictable
output, so for each prompt-based evaluation, we provide the number of missing
predictions (N/A) as a percentage. Due to load-balancing measures implemented
by OpenAI, we could not utilize the full context length of their largest model in a
deterministic manner—some requests would randomly time out. For the batched
strategy, we thus limited one request to 50 claim-premise pairs and performed
multiple requests if necessary.

To compare our prompting strategies with established supervised approaches,
we used the same baseline model as Agarwal et al. [1]: A cross-encoder based on
the S-BERT architecture.6 Compared to a regular bi-encoder where the two posts
are encoded separately, both posts are passed simultaneously to the transformer.
Agarwal et al. [1] report results that almost match their GraphNLI model,
so we expect this baseline to be a good indicator for the effectiveness of our
prompting strategies. We trained multiple variants of this baseline model on
different datasets (see next section) to test H1.

5.2 Datasets

In the following section, we present the three datasets used in our evaluation: Two
new ones containing conversations from X and HN as well as the dataset used by
Agarwal et al. [1] to evaluate their GraphNLI model. One goal of our paper is
to facilitate real-time argument mining, so our methods should be applicable to
conversations of different sizes and shapes, including small ones containing only
a few posts. An overview of the number of posts contained in them is shown
in Fig. 2, showing that a wide range of conversation sizes is covered. The part

4 https://github.com/recap-utr/polarg.
5 https://github.com/recap-utr/xarguebuf.
6 The same pre-trained model (distilroberta-base) is used.

https://github.com/recap-utr/polarg
https://github.com/recap-utr/xarguebuf
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Fig. 2. Distribution of the number of posts in the datasets used in our evaluation.

of the GraphNLI dataset used in our evaluation is rather large—conversations
on average consist of 86 posts, some even having more than 200 posts—whereas
the newly annotated X and HN datasets on average contain 15 and 21 posts,
respectively. Although the X and HN datasets are static snapshots, their diverse
sizes and shapes should therefore approximately resemble the conversations that
would be encountered in a real-time scenario.

The GraphNLI corpus [1] has been crawled from Kialo and contains a total
of 1,560 conversations with 327,579 posts. Since these debates already include
polarity labels, manual annotation was not necessary. They also did not need
to remove non-argumentative posts from the conversations due given that Kialo
is a moderated platform focused on high-quality discourses. Due to the rather
large size of the dataset and the rate limits imposed by OpenAI (see above), we
sampled 10% of the debates from our test dataset to be used for our evaluation.
This test ultimately contains 31 graphs.

The other two datasets containing posts from X and HN have been cre-
ated from scratch for this paper, as we are not aware of any existing ones
that are suitable for our evaluation. After downloading the conversations via
the platform’s Application Programming Interface (API), the conversation trees
were then handed over to two student experts who removed posts that did not
contain argumentative content and assigned a polarity (i.e., support/attack) to
each missing scheme node. These new corpora are available on request from the
authors to other researchers for non-commercial purposes. In the following, we
briefly discuss the queries used to obtain the data, the difficulties we faced during
the annotation process, and the reliability of the resulting datasets.

To train our baseline classification model, each dataset has been divided into
three parts: 80% for training and 20% for testing. The training set was further
divided into 80% for training and 20% for validation. The splits were made at
the conversation level to ensure that all posts of a single conversation were in
the same set to avoid data leakage.

X Dataset. This corpus contains posts related to the 2020 presidential election
in the United States. Our query is based on hashtags identified in previous
studies [8,23]. Here is the complete list of hashtags used in our query:

#2020election, #2020elections, #4moreyears, #americafirst, #biden, #biden2020, #biden-
harris2020, #bluewave2020, #covid19, #debate2020, #donaldtrump, #draintheswamp,
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#election2020, #electionday, #elections_2020, #elections2020, #fourmoreyears, #gop,
#joebiden, #kag, #kag2020, #keepamericagreat, #latinosfortrump, #maga, #maga2020,
#makeamericagreatagain, #mypresident, #november3rd, #novemberiscoming, #patrio-
tismwins, #qanon, #redwave, #stopthesteal, #trump, #trump2020, #trump2020landslide,
#trumphasnoplan, #trumpliespeopledie, #trumppence2020, #trumpvirus, #uselections,
#vote, #vote2020, #votebluetosaveamerica, #votered, #voteredlikeyourlifedependsonit,
#voteredtosaveamerica, #votetrump2020, #votetrumpout, #yourchoice, #americafirst

These hashtags were joined together using the logical or operator (∨). Since
this query was only used to find the starting post of a conversation, we further
restricted the set of results using the following constraints: (i) The post must
be published between 3rd June 2020 (i.e., start of primaries in Iowa) and 2nd
November 2020 (day before election), (ii) is must be written in English, (iii) the
author must be verified by Twitter, and (iv) the post must not be a retweet,
reply, or quote. When downloading the dataset on 8th December 2022, more
than 2,000,000 posts matched these criteria. In other words, we identified over
two million conversations, each containing possibly hundreds or even thousands
of replies. X’s API does not allow filtering by likes, followers, or other metrics,
so we decided to let X order the posts by relevancy and use the best 500 posts
for our annotation process. Our rationale here is that the most relevant posts
for X are likely also those that appear in the For You tab on their website and
app, so this choice should closely mimic the experience of a regular user. For
each of the resulting 500 posts, we recursively fetched all replies (i.e., the entire
conversation) from X’s API, resulting in a file containing more than 2.5 GB of
compressed textual data.

Handing over such a large amount of data to our annotators would have been
impractical, so we decided to further reduce the number of tweets by applying the
following constraints: (i) Each post must have at least 20 characters (otherwise
it is unlikely to contain valuable and argumentative information), (ii) each post
must have at least one interaction (i.e., like, retweet, reply, or quote), (iii) the
depth of a conversation must be at least two (i.e., the distance between the
starting post and a leaf reply must be at least two), and (iv) a conversation must
afterwards have at least three and at most 50 posts left. The last constraint is
necessary to ensure that the annotation process is feasible for our experts. With
these restrictions, we were left with 294 conversations that contain 4,930 posts
in total. During the annotation process, the experts remove all posts that are
not argumentative, leading to a final size of 272 conversations with 4,067 posts.
The relatively low number of posts removed during the process again shows that
social networks contain a good amount of argumentative content.

Hacker News Dataset. We already stated the differences between HN and
X in Sect. 2.3, but it essentially boils down to the fact that HN is a platform
targeted at a more technical audience without restrictions on the number of
characters. This means that we are not faced with the issue of filtering millions
of posts, and thus we used a simpler method to obtain the data. Their API does
not natively support arbitrary queries, so we opt to take snapshots of the best
posts at two different points in time: On 5th October 2023 and 30th October
2023 (about two weeks apart to let enough new posts emerge). We fetched regular
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posts and Ask HN posts separately and merged them afterwards—there was only
one overlapping post between both sets.

But even on HN, this approach resulted in almost 1,000 posts, so we again
settled on some constraints to filter out the most promising conversations: (i)
The starting post must have received a minimum number of 10 upvotes, (ii) each
conversation must have at least ten and at most 100 replies, (iii) each reply must
have at least 20 characters, and (iv) the depth of a conversation must be at least
two (i.e., the distance between the starting post and a leaf reply must be at least
two). These constraints resulted in 206 conversations with 10,596 posts in total.
The conversation depicted in Fig. 1 is an example of the type of discussion we
extracted from the API. After the manual annotation process, we were left with
198 conversations that contained 4,190 posts. This means that more than half
of the posts were deemed not argumentative. From our experience, this seems
to stem mainly from the fact that the posts on HN contain a lot of factual
information instead of opinions. For example, when trying to answer a question
in the format Ask HN, users are likely to provide a direct answer rather than
argue for a certain position. Even if a reply to such a factual post might then
contain some argumentative information, we remove the entire branch from the
conversation tree to be consistent with the annotation process for the X dataset.

Annotation Reliability. During the initial annotation process, each annotator
processed a different set of conversations, which means that no Inter-Annotator
Agreement (IAA) could be calculated. We also did not have the resources to
have each conversation annotated by two experts. To still ensure the reliability
of the annotations, we took a random 30% sample of the unannotated X and
HN datasets and handed them over to a team of three student experts—more
specifically, the team that also labeled the HN dataset. We designed the sampling
process in a way that no expert would annotate a conversation they had already
seen before. Upon completion, a total of 8,938 scheme nodes had labels by two
independent annotators for which we calculated the IAA using Cohen’s κ [10].

During the annotation, the experts were free to remove non-argumentative
relations, thus we consider two different perspectives: (i) The IAA for the entire
dataset (including schemes removed by the annotators), and (ii) the IAA for the
subset of scheme nodes that were labeled as either support or attack by both
annotators (i.e., those considered to be argumentative). We received κ values
of (i) .434 and (ii) .638 for the X dataset and (i) .202 and (ii) .410 for the HN
dataset. Based on the Landis and Koch guidelines [17], we consider the IAA for
perspective one (i.e., the entire dataset) to be moderate for X and fair for HN.
For perspective two (i.e., the subset of argumentative schemes), we consider the
IAA to be substantial for X and moderate for HN. The implications of these
results are twofold: First, the IAA for the subset of argumentative schemes is
higher than for the entire data set, meaning that labeling argumentative content
was easier. Second, the IAA for the X dataset is higher than for the HN dataset,
indicating X posts are more argumentative HN posts. As stated in Sect. 1, we
leave the detection of argumentative content to future work.
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Table 2. Effectiveness results of different variants of the baseline model with the best
metrics for each test dataset marked in bold.

Test Dataset Train Dataset A P R

Kialo Kialo .752 .780 .752

Kialo X ∪ HN .636 .641 .573

Kialo All .782 .785 .762

HN Kialo .708 .642 .554

HN X ∪ HN .700 .612 .612

HN All .715 .628 .643

X Kialo .689 .552 .557

X X ∪ HN .753 .649 .625

X All .748 .628 .671

5.3 Results and Discussion

Having described our experimental setups and the datasets used for our evalua-
tion, we now present our results and discuss them in detail. We start by inves-
tigating the effectiveness of our baseline model using Table 2 to answer H1. For
the Kialo and HN dataset, the difference between a classifier trained on Kialo
graphs and a combination of the three sites is negligible. For posts from X, how-
ever, the effectiveness of the model trained on the Kialo dataset is considerably
worse than the other two: The model trained on the much smaller X and HN
is even the most efficient. Another interesting observation is that this model is
considerably less effective on the Kialo test set than the other two. This means
that we can only partially confirm H1: Although there is an impact for using
Kialo as training data for X posts (and vice versa), HN posts did not show much
difference w.r.t. the training data. This seems to strengthen the assumption that
the HN posts are more similar to Kialo than they are to X.

The remaining hypotheses can be tested with the results presented in Table 3,
starting with the impact of adding context information to the prompts (H2).
First, we check whether the contextualized prompting strategy is more effective
than the isolated one. For four of our six test cases, we observe a small improve-
ment. However, for the other two, the isolated strategy is more effective. Com-
paring the isolated and contextualized strategies using McNemar’s test yields a
p-value of 0.23 across all models and datasets, meaning that the null hypothesis
cannot be rejected. Since Agarwal et al. [1] found that adding nearby nodes is
beneficial, this could be a consequence of our deterministic sampling method.
The results are different for the context-aware batched prompting strategy: For
all test cases, we observed notable improvements across all metrics. The com-
parison of isolated vs. batched and contextualized vs. batched prompting using
McNemar’s test yields a p-value < 0.001 in both cases, meaning that the null
hypothesis can be rejected. This confirms our intuition that passing the whole
conversation as context to the model is indeed beneficial. Since this strategy is
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Table 3. Effectiveness results of different prompting strategies with LLMs with the
best metrics for each test dataset marked in bold.

Test Dataset Model Prompting A P R N/A

Kialo ChatGPT Isolated .593 .564 .720 0.73%

Kialo ChatGPT Contextualized .559 .533 .753 0.15%

Kialo ChatGPT Batched .840 .843 .841 1.57%

Kialo Llama Isolated .540 .516 .881 1.53%

Kialo Llama Contextualized .557 .528 .864 0.04%

HN ChatGPT Isolated .578 .468 .663 0.00%

HN ChatGPT Contextualized .547 .447 .724 0.00%

HN ChatGPT Batched .618 .504 .686 0.13%

HN Llama Isolated .480 .413 .827 0.00%

HN Llama Contextualized .503 .422 .769 0.13%

X ChatGPT Isolated .656 .505 .467 0.34%

X ChatGPT Contextualized .652 .500 .577 0.34%

X ChatGPT Batched .755 .629 .752 2.03%

X Llama Isolated .556 .428 .651 12.77%

X Llama Contextualized .523 .403 .750 4.63%

only possible with the largest GPT model, we cannot compare it to the Llama
model. Therefore, we accept H2.

Finally, we check whether our prompting strategies match the effectiveness of
the baseline model (H3) by comparing the results of the supervised model trained
on all three corpora to the predictions obtained using the batched strategy. For
the X dataset, McNemar’s test yields a p-value of 0.61 and thus shows that
there is no significant difference between the two models. For Kialo and HN,
the test yields a p-value < 0.001, leading to the rejection of the null hypothesis.
Closer inspection of the classification metrics reveals that in case of Kialo, the
batched strategy is more effective than the baseline model, while for HN, the
opposite is true. Bearing its low IAA and weak overall scores in mind, this is yet
another indicator of the rather technical nature of HN posts—potentially leading
to a higher uncertainty in the predictions. Even when considering that ChatGPT
may have been trained on some publicly available Kialo debates and may thus be
biased towards them, the effectiveness on the new X dataset shows the potential
of the batched strategy. Combining all findings, we tend to cautiously confirm
H3—at least for clearly argumentative posts.

5.4 Qualitative Error Analysis

Besides the quantitative results, we also performed a qualitative analysis to
better understand the errors made by the LLMs. The batched one is the most
promising one, so we focus on it in our analysis. Please note that due to copyright
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issues, we cannot provide examples of actual posts, so we discuss the context and
the types of errors made and provide suggestions for improvement.

For the X dataset, we observed that the model often struggles with predic-
tions involving posts that contain insults, sarcasm, or jokes. For example, the
polarity between a factual premise and an insulting claim is often predicted dif-
ferently than by the human annotator. We also identified multiple cases where
replies (i.e., the premises) to posts with a negative sentiment (i.e., the claims)
were predicted as support by the annotator but as attack by the model. This
could be caused by the model comparing the premise to major claim instead of
the directly connected claim. Another common source of errors are posts that
contain emojis—especially if multiple emojis are used in a single post. Although
the experts were able to interpret them correctly, the LLMs may lack the neces-
sary context to do so. One possible solution to this problem could be to encode
the emojis via a textual description.

For the HN dataset, we observed the same issues with posts containing insults
or negative sentiment. In addition, we found multiple instances where the pre-
diction of the LLMs was different from the expert’s opinion, but still plausible or
even a better fit. For example, an expert labeled the relation between a premise
supporting a claim that in turn attacks another claim as attack, while the model
correctly predicted support. This again shows the inherent subjectivity of the
tasks and confirms our finding that the IAA for the HN dataset is lower than for
the X dataset (see Sect. 5.2). For both corpora, we did not observe a correlation
between the length of a premise and its claim and the prediction quality of their
relation.

One challenge in our analysis was the probabilistic nature of LLMs: Even for
the same conversation and prompt, it may happen that the accuracy of the model
changes considerably between runs. In order to achieve better stability between
the runs, one could modify the prompts to include more specific constraints—
potentially at the cost of generalization. This drawback could be mitigated by
using specialized prompts for different types of posts.

6 Limitations

While our prompting strategies show promising results, there are still some lim-
itations to consider. Due to rate limits and timeouts imposed by OpenAI, we
had to apply chunking to the batched strategy, which may have affected the
prediction quality. Additionally, we only consider the text of the posts and do
not take into account other modalities like images or videos and thus are miss-
ing potentially valuable context information. We also do not analyze links that
may be embedded in the posts. In the case of X posts, our current approach
focuses on the replies to some starting post, but other relations like mentions or
quoted tweets are not considered. Finally, an important aspect to consider is the
runtime of the models. While predicting the polarities of a single conversation
is a matter of seconds using the supervised model, the LLMs needed almost a
minute to complete the task. The reason for this is that such generic LLMs have
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billions of parameters, while the smaller S-BERT model has millions only. We
expect this to change in the future—even a model like S-BERT was considered
to be too slow for use in production just a few years ago.

7 Conclusion and Future Work

In this paper, we presented an unsupervised approach to perform AM on posts
from social networks. We introduced multiple prompting strategies for different
context lengths and evaluated them on three different datasets. Our results show
that the batched prompting strategy—when paired with an adequate LLM—is
capable of matching or exceeding the effectiveness of a supervised LLM. Com-
bined with our open-source implementation, this makes it possible to perform
real-time AM on social networks even for emerging topics without appropriate
training data.

In future work, the presented approach could be extended to also handle
the classification of argumentative vs. non-argumentative posts. By adding a
neutral class, posts that have little or no argumentative content could be detected
and removed from the conversation tree. This could help boost the prediction
accuracy, especially for datasets like the HN one where we currently need human
annotators to do the job. Another interesting avenue for future work is the
evaluation of the LLM Grok developed by xAI. Since this model is specifically
trained on posts from X, we expect it to be more effective for this type of data
than the generic LLMs used in this paper.

Acknowledgements. This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG) within the projects ReCAP and ReCAP-II (№ 375342983, 2018–2024)
as part of the priority program RATIO (Robust Argumentation Machines, SPP-1999)
as well as the Studienstiftung.

A Prompting Templates

A.1 Isolated Prompting

System You are a helpful assistant that predicts the relation/polarity between
the premise and the claim of an argument. You shall predict whether the
premise supports or attacks the claim. Answer either support or attack.

User Premise: premise. Claim: claim.

A.2 Sequential Prompting

System You are a helpful assistant that predicts the relation/polarity between
the premise and the claim of an argument. You shall predict whether the
premise supports or attacks the claim. Answer either support or attack.

User Premise: premise. Claim: claim.
Assistant support or attack
User Premise: premise. Claim: claim. And so on. . .
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A.3 Contextualized Prompting

System You are a helpful assistant that predicts the relation/polarity between
the premise and the claim of an argument. You shall predict whether the
premise supports or attacks the claim. Answer either support or attack.User
Premise: premise. Claim: claim. The premise and the claim have the
following neighbors in the conversation: adu_1 ... adu_n

A.4 Batched Prompting

System You are a helpful assistant that predicts the relation/polarity between
the premise and the claim of an argument. You shall predict whether the
premise supports or attacks the claim. Answer either support or attack.
You will be presented with a list of premise-claim pairs containing their text
and id encoded as a JSON array. Provide exactly one prediction for each of
them using the function predict_entailment.

Available Function Calls JSON schema describing predict_entailment as
an array of objects with the following keys: premise_id (string),
claim_id (string), and polarity_type (enum: support/attack).

User JSON array of objects with the following keys: premise_id (string),
premise_text (string), claim_id (string), and claim_text (string).
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Abstract. Evaluating the quality of arguments is a crucial aspect of any
system leveraging argument mining. However, it is a challenge to obtain
reliable and consistent annotations regarding argument quality, as this
usually requires domain-specific expertise of the annotators. Even among
experts, the assessment of argument quality is often inconsistent due to
the inherent subjectivity of this task. In this paper, we study the poten-
tial of using state-of-the-art large language models (LLMs) as proxies for
argument quality annotators. To assess the capability of LLMs in this
regard, we analyze the agreement between model, human expert, and
human novice annotators based on an established taxonomy of argu-
ment quality dimensions. Our findings highlight that LLMs can produce
consistent annotations, with a moderately high agreement with human
experts across most of the quality dimensions. Moreover, we show that
using LLMs as additional annotators can significantly improve the agree-
ment between annotators. These results suggest that LLMs can serve as
a valuable tool for automated argument quality assessment, thus stream-
lining and accelerating the evaluation of large argument datasets.

Keywords: Argumentation quality · Automated argument quality
assessment · Large language models · Argument mining

1 Introduction

Computational argumentation is an interdisciplinary research field that combines
natural language processing with other disciplines such as artificial intelligence.
A central question in computational argumentation is: What makes an argument
good or bad? Depending on the goal of the author of a text, argument quality
can involve a variety of dimensions. Evaluating the quality of an argument across
these diverse dimensions demands a deep understanding of the topic at hand,
often coupled with expertise from the argumentation literature. Hence, manual
assessment of argument quality is a challenging and time-consuming process.

A promising technology to streamline argument quality assessment are large
language models (LLMs) which have demonstrated impressive capabilities in
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tasks that require a profound understanding of semantic nuances and discourse
structures. LLMs have been effectively employed in tasks such as summariza-
tion [32], question answering [16], and relation extraction [31]. Previous research
has also investigated the usefulness of LLMs in argument mining tasks such as
argument component identification [12], evidence detection [15], and stance clas-
sification [4]. Moreover, an emerging trend highlights the adoption of LLMs for
data annotation purposes, such as sentiment analysis [8,24], relevance judgement
[11], and harm measurement [18]. To the best of our knowledge, no prior work
has investigated the potential of LLMs as annotators of argument quality.

In this paper, we analyze the reliability of LLMs as argument quality annota-
tors by comparing automatic quality judgements with human annotations from
both experts and novices.1 We compare these quality ratings not only at an
aggregate level, but also examine the individual components that make up argu-
ment quality. This includes looking at how well models can judge the relevance
and coherence of an argument, the sufficiency of its evidential support, and
the effectiveness of its rhetorical appeal. Ultimately, our objective is to under-
stand whether LLMs can serve as a practical and reliable tool that supports and
enhances human-led effort in argument quality assessment.

Specifically, we ask the following research questions regarding the potential
of employing LLMs as argument quality annotators:

RQ1: Do LLMs provide more consistent evaluations of argument quality com-
pared to human annotators?

RQ2: Do the assessments of argument quality made by LLMs align with those
made by either human experts or human novices?

RQ3: Can integrating LLM annotations with human annotations significantly
improve the resulting agreement in argument quality ratings?

In the following, Sect. 2 reviews the related work, Sect. 3 describes the experi-
mental setup, including the dataset, the annotation procedure, and the employed
models, and Sect. 4 presents the results of these experiments.

2 Related Work

We first review existing literature related to the evaluation and annotation of
argument quality. Following that, we explore the works that examined the capa-
bilities of large language models (LLMs) as data annotators as well as the degree
of alignment between LLMs and human annotators.

2.1 Evaluating Argument Quality

Collecting argument quality annotations is an intricate task that often requires
domain-specific knowledge, a number of annotators, and assured consistency in
annotator reliability. Numerous works have studied argumentation quality across
1 Code and data are available at github.com/webis-de/RATIO-24.

https://github.com/webis-de/RATIO-24
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different domains, employing multiple annotators to classify and evaluate argu-
ments based on various quality criteria. Park and Cardie [22] studied argumen-
tation quality in the domain of web discourse. They employed two annotators
to classify 9,000 web-based propositions into four categories based on their level
of verifiability. Habernal and Gurevych [13] let five crowd-workers annotate a
dataset consisting of 16,000 pairs of arguments with a binary “is more convinc-
ing” label, providing explanations for their decisions. Toledo et al. [27] collected
a dataset of 14,000 pairs of arguments, each annotated with relative argument
quality scores ranging from 0 to 1. They employed between 15 and 17 annotators
for each instance to enhance the reliability of the collected annotations.

In the domain of student essays, Persing and Vincent [23] instructed six
human annotators to evaluate 1,000 essays based on the strength of argumen-
tation on a scale from 1 to 4. Carlile et al. [3] considered persuasiveness as
the most important quality dimension of an argumentative essay. They asked
two native English speakers to annotate 102 essays with argument components,
argument persuasiveness scores, and further attributes such as specificity, evi-
dence, eloquence, relevance, and strength, that determine the persuasiveness of
an argument. Moreover, Marro et al. [19] employed three expert annotators for
the annotation of essay components of Stab and Gurevych [25] for three basic
argument quality dimensions: cogency, rhetoric, and reasonableness.

Aiming to create a unified understanding of argument quality properties,
Wachsmuth et al. [30] proposed a comprehensive taxonomy of 15 argument qual-
ity dimensions derived from the argumentation literature. Three expert anno-
tators were employed to annotate 320 arguments [13]. In Sect. 3, we use their
quality annotations from 1 (low) to 3 (high) as a reference for our experiments.

Despite the multiple attempts and methodologies to evaluate argument qual-
ity, the process remains labor-intensive, time-consuming, and requires a signifi-
cant degree of expertise. To facilitate the task of argument quality annotation,
we propose employing LLMs, as they can potentially provide more reliable and
consistent annotations while significantly reducing the required manual effort.

2.2 LLMs as Annotators

Recent work has expanded the role of LLMs from language generation and
explored the potential of using LLMs as data annotators. Ding et al. [8] assessed
the performance of GPT-3 [2] as a data annotator for sentiment analysis, rela-
tion extraction, named entity recognition, and aspect sentiment triplet extraction.
They compared the efficiency of BERT [7], trained using data annotated by GPT-
3, against BERT trained with human-annotated data. Their findings showed a
noticeably similar performance level with substantially reduced annotation costs,
promising a potentially cost-effective alternative in using GPT-3 for annotation.
A study by Gilardi et al. [11] cross-examined the annotations by ChatGPT [20]
and those by crowd-workers against expert annotations across four tasks: content
relevance assessment, stance detection, topic detection, and general frame detec-
tion. They found that ChatGPT not only outperforms crowd-workers in terms of
accuracy, but also shows a high degree of consistency in annotations.
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The study by Gao et al. [10] explored automatic human-like evaluations of
text summarization using ChatGPT compared to human experts. The model was
prompted to evaluate the quality of summaries based on relevance, coherence, flu-
ency, and consistency of the generated summaries. The authors found that Chat-
GPT’s evaluations were highly correlated with those of human experts.

Zhuo et al. [35] proposed to use LLMs as evaluators of code generation.
The authors used the CoNaLa dataset [34] and reported high example-level and
corpus-level Kendall-Tau, Pearson, and Spearman correlations with human-rated
code usefulness for various programming languages.

In the domain of information retrieval, Faggioli et al. [9] investigated the
performance of GPT-3.5 and YouChat for query-passage relevance judgements.
Given the high subjectivity of the task, their results showed a reasonable correla-
tion between highly-trained human assessors and fully automated judgements.

Closest to our work is that by Chiang et al. [5], who compared the judgments
of GPT-3 on text quality to expert human judgments on a 5-point Likert scale
for four quality attributes: grammaticality, cohesiveness, likability, and relevance.
Their findings revealed varying degrees of positive correlations between GPT-3
and human judgments, ranging from weak to strong.

When compared to existing research, our work pioneers the study of argument
quality annotations generated by LLMs. In order to provide a thorough evalua-
tion, we use an inter-annotator agreement metric to assess the consistency of anno-
tations from these models, human experts and novices. This comparison allows us
to understand the alignment between LLMs and human annotators, and to deter-
mine the potential of using LLMs as argument quality annotators.

3 Experimental Design

To investigate the reliability of large language models (LLMs) as annotators of
argument quality, we conduct an experiment comparing human annotations with
ratings generated automatically by LLMs. We treat LLMs as separate annotators
and analyze the agreement both within and across groups of humans and models.

3.1 Expert Annotation

The goals of argumentation are manifold and include persuading audiences,
resolving disputes, achieving agreement, completing inquiries, or recommending
actions [26]. Due to the variety of these goals, the dimensions of argument qual-
ity are equally diverse. Based on a comprehensive survey of argumentation lit-
erature, Wachsmuth et al. [30] proposed a fine-granular taxonomy of argument
quality dimensions that differentiates logical, rhetorical, and dialectic aspects. An
overview of all quality dimensions is provided in Table 1.

In their work, Wachsmuth et al. [30] employed experts to rate the quality of
arguments according to their proposed taxonomy. Three experts were selected out
of a pool of seven based on their agreement in a pilot annotation study. These three
experts comprised two PhDs and one PhD student (two female, one male) from



Are Large Language Models Reliable Argument Quality Annotators 133

Table 1. Descriptions of argument quality dimensions as per Wachsmuth et al. [29].

Quality Dimension Description

Cogency Argument has (locally) acceptable, relevant, and sufficient
premises

Local acceptability Premises worthy of being believed
Local relevance Premises support/attack conclusion
Local sufficiency Premises enough to draw conclusion
Effectiveness Argument persuades audience
Credibility Makes author worthy of credence
Emotional appeal Makes audience open to arguments
Clarity Avoids deviation from the issue, and uses correct and

unambiguous language
Appropriatness Language proportional to the issue, supports credibility and

emotions
Arrangement Argues in the right order
Reasonableness Argument is (globally) acceptable, relevant, and sufficient
Global acceptability Audience accepts use of argument
Global relevance Argument helps arrive at agreement
Global sufficiency Enough rebuttal of counterarguments
Overall quality Argumentation quality in total

three different countries. To construct the Dagstuhl-15512-ArgQuality corpus, the
selected experts annotated 320 arguments from the UKPConvArgRank dataset
[13]. The resulting corpus contains 15 quality dimensions for each argument, each
rated on a 3-point Likert scale (low, medium, high) or as not assessable. Each
argument in the corpus belongs to one of 16 different topics and takes a stance for
or against the topic. The dataset is balanced and contains 10 supporting and 10
attacking arguments per topic. The annotation guidelines, which define all quality
dimensions in more detail, are publicly available online.2

3.2 Novice Annotation

To provide an additional point of reference for determining the abilities of LLMs
as argument quality annotators, we conducted an annotation study involving
humans with no prior experience with computational argumentation. We asked
undergraduate students to assess the quality of arguments from the Dagstuhl-
15512-ArgQuality corpus using the same taxonomy.

The expert annotation guidelines require that annotators have expertise in
computational argumentation. To make this task accessible for novices, we para-
phrased the annotation guidelines and the definitions of argument quality dimen-

2 https://zenodo.org/records/3973285

https://zenodo.org/records/3973285
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sions to ensure clarity and comprehension. These simplified definitions for each
quality dimension can be found in the Appendix. To illustrate, the expert defini-
tion of local acceptability of an argument is stated as follows:

Definition 1 (Local Acceptability (Expert)). A premise of an argument
should be seen as acceptable if it is worthy of being believed, i.e., if you rationally
think it is true or if you see no reason for not believing that it may be true.

The above definition requires an annotator to distinguish between premises and
arguments. To ease the understanding and reduce the necessary prior knowledge,
we simplify the definition of local acceptability as follows:

Definition 2 (Local Acceptability (Novice)). The reasons are individually
believable: they could be true.

We refer to arguments as “reasons” within the simplified guidelines and combine
the stance with the issue into a “conclusion”. For example, given the issue “Is TV
better than books?” and the stance “No it isn’t”, we state the conclusion as “TV is
not better than books”.

Each novice annotator was presented with an argument, a conclusion, and the
simplified definitions of the quality dimensions. Identical to the annotation pro-
cedure for expert annotations, the annotators were tasked to rate each quality
dimension of the argument on a 3-point Likert scale or as not assessable.

In total, we acquired 108 students to annotate the quality of the 320 arguments
from the dataset. We assigned 10 arguments to each student to annotate in order
to obtain at least three annotations per argument and quality dimension. Since
not all students finished their annotations and some students annotated a wrong
set of arguments, we obtained a minimum of three annotations per argument and
quality dimension only for 248 arguments. We treat the missing annotations of the
72 arguments as non-evaluable. For the 163 arguments for which we collected more
than 3 annotations, we select three annotations that maximize the inter-annotator
agreement measured by Krippendorff’s α.

3.3 Models

Due to the complexity of the task, we focus on state-of-the-art LLMs for the
automatic evaluation of argumentation quality. Building upon previous research
regarding LLMs as annotators (cf. Sect. 2.2), one of the most commonly used mod-
els is GPT-3 [2]. Specifically, we use the gpt-3.5-turbo-0613 accessible via Ope-
nAI’s API.3 Despite the availability of the newer GPT-4 model [21], we do not
employ it in our study due to the significantly higher associated costs.

In addition, we use Google’s recently released PaLM 2 model [1], the successor
to the original PaLM model [6]. The authors report comparable results to GPT-4
in semantic reasoning tasks, which makes it interesting for the evaluation of argu-
ment quality. For PaLM 2, we use the text-bison@001 version of the model.

3 https://platform.openai.com/

https://platform.openai.com/
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Fig. 1. An expert prompt that contains instructions and an example issue, stance, and
argument from the Dagstuhl-15512 ArgQuality corpus. This particular prompt example
asks the model to rate the clarity of the argument. The reasoning variant of this prompt
is colored in gray.

Both PaLM 2 and GPT-3 are closed-source language models. We initially
intended to incorporate Meta’s Llama 2 model [28] in our experiments, in order
to evaluate the performance of open-source LLMs on our task. However, in pilot
experiments, Llama 2 with 7 billion parameters did not follow the instructions and
therefore did not produce quality scores. Even though the 13 billion parameter
version of Llama 2 did generate quality scores, they were seemingly random, with
agreement across the multiple runs close to zero. Due to hardware limitations, we
did not test the largest Llama 2 model with 70 billion parameters.

PaLM 2 and GPT-3 allow to specify a set of parameters such as temperature
to control the diversity of the output, where lowering the temperature reduces
the ‘randomness’ of the output. For our experiments, we choose a reasonably low
temperature of 0.3. Other parameters that we keep constant across models include
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p = 1.0 of the nucleus sampling [14], most probable tokens k = 40, and a maximum
of 256 newly generated tokens.

3.4 Prompting

Two different groups of human annotators, the expert annotators of Wachsmuth
et al. [30] and the novice annotators recruited for this work, had access to differ-
ent knowledge sources in their annotation guidelines. To determine whether the
impact of this difference is similar between humans and LLMs, we created prompts
that reflect the knowledge from the annotation guidelines of experts and novices.
We refer to these prompt types as expert and novice prompts.

Besides instructions, an expert prompt consists of an issue, a stance, and
an argument from the Dagstuhl-15512-ArgQuality corpus. The expert prompt
also contains the name and original definition of the quality dimension from
Wachsmuth et al. [30] as well as the annotation scheme (3-point Likert scale or
“not assessable”). An example of an expert prompt is shown in Fig. 1.

In contrast to the expert prompt type, novice prompts contain a conclusion
(as described in Sect. 3.2) instead of an issue and stance. In the novice prompt,
the definition of the quality dimension to be assessed is replaced by the simplified
definition. However, the textual argument, which is renamed to “reasons”, and the
annotation scheme remain identical to the expert prompt.

Recently, it has been shown that explanation-augmented prompts can elicit
reasoning capabilities in LLMs and improve their performance across various tasks
[17,33]. In pilot experiments, we found that GPT-3 produces more consistent
annotations if we prompt the model to provide an explanation for the chosen score.
We therefore test reasoning prompt variants in which we ask the model to provide
an explanation for the generated quality rating.

To take the randomness of the output of LLMs for the same prompt into
account, each prompt variant is repeated (at least) three times for each argument
and quality dimension. Each prompt repetition is considered as a separate anno-
tator in order to calculate the agreement between the annotations and to draw
conclusions about the consistency of the quality annotations of LLMs.

4 Results

To understand the strengths and weaknesses of large language models (LLMs)
as argument quality assessors and to answer our research questions, we use the
prompting approaches described in Sect. 3.4 to generate LLM annotations for
arguments from the Dagstuhl-15512-ArgQuality corpus. The dataset contains
320 statements, 16 of which were originally judged as non-argumentative by expert
human annotators and therefore are excluded from the analysis.

First, to identify biases in human and LLM argument quality annotations, we
analyze the distribution of assigned labels across all quality dimensions. This dis-
tribution is visualized in Fig. 2. Human annotations show an almost balanced dis-
tribution between low, medium and high quality ratings. However, it is notewor-
thy that human novices show a tendency to assign high ratings more frequently
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Fig. 2. Distribution of the assigned quality ratings across all quality dimensions com-
pared between human annotators and LLMs.

than experts. As for models, GPT-3 with expert prompts displays a much more
skewed distribution, showing a strong bias towards medium ratings, deviating
from the trend observed in human assessors. On the contrary, when GPT-3 is
prompted with novice-level guidelines, it tends to assign high-quality ratings more
frequently. Notably, annotations generated by PaLM 2 have a similar distribution
to that of human annotators which seems promising for the subsequent analysis
of agreement with human assessments.

Overall, it can be stated that not only the choice of model, but also the prompt
type has a major influence on the generated argument quality ratings. Even slight
prompt modifications, such as asking to justify the score, can result in a notable
change in the assigned quality scores, which is especially prominent for PaLM 2
with expert prompts in our case. Another interesting observation is that GPT-3
almost always provides a rating for a given dimension: only in 214 out of 21,120
cases (≈1%) this model did not generate a score. The instances where PaLM 2 did
not assess argument quality sum up to 4,972 (≈23%) and mostly stem from con-
tent policies, particularly in cases where arguments revolve around graphic topics
such as pornography or contain offensive statements.

4.1 Consistency of Argument Quality Annotations

We address our first research question concerning the consistency of argument
quality assessments by comparing the agreement levels within LLM groups with
those of human assessors. To quantify the agreement within each group of annota-
tors, we use Krippendorff’s α. To ensure a fair comparison with human annotators,
we evaluate the agreement between three LLM annotation runs.

Table 2 shows Krippendorff’s α for human experts, human novices, and all
LLM prompt variants across individual quality dimensions as well as overall agree-
ment. Human annotators exhibit generally low agreement, with a maximum of
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Table 2. Inter-annotator agreement per argument quality dimension within each group
of human annotators and LLMs, reported as Krippendorf’s α. The dimension with the
highest agreement within each group is marked in bold.

Quality Dimension Human GPT-3 PaLM 2
Novice Expert Novice Expert Reasoning Novice Expert Reasoning

Novice Expert Novice Expert

Cogency 0.38 0.38 0.72 0.73 0.77 0.72 0.99 0.98 0.73 0.74
Local Acceptability 0.43 0.33 0.64 0.69 0.70 0.75 0.98 0.97 0.60 0.71
Local Relevance 0.36 0.41 0.70 0.59 0.76 0.61 0.98 0.98 0.78 0.68
Local Sufficiency 0.35 0.27 0.74 0.69 0.79 0.72 0.98 0.97 0.63 0.63
Effectiveness 0.41 0.33 0.72 0.70 0.77 0.74 0.98 0.99 0.78 0.79
Credibility 0.36 0.23 0.79 0.79 0.81 0.78 0.99 0.97 0.72 0.67
Emotional Appeal 0.35 0.21 0.73 0.56 0.74 0.70 0.98 0.97 0.64 0.72
Clarity 0.27 0.25 0.72 0.69 0.71 0.69 0.99 0.99 0.82 0.80
Appropriateness 0.39 0.17 0.66 0.50 0.68 0.58 0.99 0.99 0.75 0.81
Arrangement 0.39 0.26 0.68 0.66 0.71 0.69 0.99 0.99 0.69 0.65
Reasonableness 0.35 0.45 0.73 0.78 0.81 0.74 0.97 0.97 0.70 0.76
Global Acceptability 0.37 0.39 0.72 0.77 0.77 0.74 0.98 0.97 0.66 0.70
Global Relevance 0.38 0.26 0.69 0.71 0.81 0.70 0.99 0.98 0.74 0.85
Global Sufficiency 0.27 0.17 0.72 0.69 0.72 0.75 0.98 0.96 0.62 0.47
Overall Quality 0.41 0.44 0.77 0.77 0.82 0.81 0.98 0.97 0.77 0.78
Overall α 0.37 0.40 0.76 0.73 0.78 0.74 0.99 0.98 0.76 0.78

0.43 on the local acceptability dimension for novices and 0.45 on reasonableness for
experts. This low level of agreement between humans emphasizes the subjectiv-
ity and complexity of assessing argument quality in a fine-grained taxonomy. For
most of the quality dimensions, novice annotators show slightly higher agreement
than those of experts, which could be due to the clearer definitions of the quality
dimensions or perhaps due to the optimization of agreement for arguments that
received more than three annotations (cf. Sect. 3.2).

In contrast, LLM agreement between annotation repetitions is substantially
higher. Interestingly, the PaLM 2 model shows near-perfect agreement for both
expert and novice prompts, but shows a notable drop when asked to explain its
reasoning. In contrast to PaLM 2, the GPT-3 model exhibits a slight improvement
in agreement when asked to provide an explanation. Such disparities might be due
to the differences in the underlying architectures and training methodologies of the
two models, which require further exploration beyond the work at hand. Overall,
both models show a high degree of agreement across different runs, with varying
impact of reasoning prompts on the agreement depending on the employed model.

RQ1: Do LLMs provide more consistent evaluations of argument quality compared
to human annotators? The observed low agreement among human annotators
underscores that evaluating argument quality is indeed a subjective and challeng-
ing task. In contrast, the significantly higher agreement among different LLM runs
highlights the potential of these models for providing more consistent argument
quality annotations.
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Table 3. Number of arguments with perfect agreement for each argument dimension
within each group of human annotators (expert, novice).

Quality Dimension Expert Novice

Cogency 122 105
Local Acceptability 82 115
Local Relevance 99 100
Local Sufficiency 113 89
Effectiveness 128 118
Credibility 115 86
Emotional Appeal 130 90
Clarity 89 92
Appropriateness 53 102
Arrangement 81 102
Reasonableness 126 119
Global Acceptability 96 102
Global Relevance 66 96
Global Sufficiency 136 81
Overall Quality 134 130

Fig. 3. Inter-annotator agreement (Krippendorff’s α) between human and LLM anno-
tations for each fine-grained argument quality dimension.

4.2 Agreement Between Humans and LLMs

We discovered that LLMs generate annotations more consistently than humans.
However, to assert that LLMs can reliably evaluate the quality of arguments,
we need to test how the automatic annotations align with the human annota-
tions. Given the low agreement among human annotators, we created subsets of
arguments for each quality dimension, where either all expert annotators or all
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Fig. 4. Inter-annotator agreement
(Krippendorff’s α) between human
and LLM annotations for each coarse-
grained argument quality dimension.

Fig. 5. Overall inter-annotator agreement
(Krippendorff’s α) between each combination
of human expert, novice, and LLM-generated
annotations.

novice annotators unanimously agreed on a score. Table 3 presents the statistics
of the resulting subsets with perfect agreement, which we employ for further inter-
annotator agreement analysis.

Figure 3 shows the agreement for each quality dimension, as measured by Krip-
pendorff’s α, between human annotations and automatically generated quality
ratings by LLMs with different prompts. Overall, we observe moderate agree-
ment across most quality dimensions, with the annotations by PaLM 2 reaching
a maximum of 0.71 for appropriateness and global relevance. Regardless of the
prompt type, PaLM 2 annotations generally achieve higher agreement with human
annotations compared to GPT-3. In the case of local and global sufficiency, there
are even systematic disagreements between the GPT-3 assessments and those of
human experts. Similarly, disagreement is observed between PaLM 2 annotations
and human novices for the global sufficiency dimension.

Overall, there is a large variance in agreement between model and human judg-
ments across different quality dimensions. For example, while the agreement on
credibility and appropriateness is in the range of [0.08, 0.62] and [0.06, 0.71] respec-
tively, the agreement on local and global sufficiency fluctuates even more.

In terms of prompt variants, we can see that GPT-3 with expert prompts shows
a higher agreement with human expert annotations than with human novice anno-
tations, and a similar trend is observed for GPT-3 with novice prompts and human
novices. On the other hand, PaLM 2 with either of the prompt types tends to show
higher agreement with human experts. Similar findings can be inferred from the
agreement between LLMs and human novices and experts on the coarse-grained
quality dimensions that are visualized in Fig. 4.

RQ2: Do the assessments of argument quality made by LLMs align with those made
by either human experts or human novices? We found that LLMs agree most with
human argument quality ratings on fine-grained quality dimensions such as credi-
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Table 4. Change in overall Krippendorf’s α after adding LLM annotations to human
expert or novice annotations. Significant changes (p < 0.05) between the agreement of
the original annotations and the modified annotations set are marked with *.

Annotations Expert Novice Annotations Expert Novice
GPT-3 PaLM 2 GPT-3 PaLM 2 GPT-3 PaLM 2 GPT-3 PaLM 2

Human experts 0.40 0.40 0.40 0.40 Human novices 0.37 0.37 0.37 0.37
+1 annotation 0.32∗ 0.37∗ 0.30∗ 0.37∗ +1 annotation 0.27∗ 0.29∗ 0.27∗ 0.27∗

+2 annotations 0.31∗ 0.40 0.32∗ 0.40 +2 annotations 0.26∗ 0.33 0.29∗ 0.30
+3 annotations 0.33 0.44∗ 0.35 0.44∗ +3 annotations 0.28∗ 0.37∗ 0.33 0.35∗

+4 annotations 0.35 0.47∗ 0.39 0.47∗ +4 annotations 0.30∗ 0.41∗ 0.37 0.39∗

+5 annotations 0.37 0.50∗ 0.42∗ 0.50∗ +5 annotations 0.32∗ 0.45∗ 0.40∗ 0.43∗

bility, emotional appeal, appropriateness, and global relevance or on coarse-grained
dimensions such as reasonableness and overall quality. Overall, we found varying
degrees of agreement between LLMs and human annotators, with PaLM 2 anno-
tations tending to generally align more with those of humans.

4.3 LLMs as Additional Annotators

LLMs can be employed either as independent automatic argument quality raters
or as a source of additional annotations to validate a set of human annotations.
For the second scenario, we analyze the overall agreement between different com-
binations of human (expert or novice) and LLM annotators.

Figure 5 illustrates the overall Krippendorff’s α agreement for each combina-
tion of annotator groups. We can see that there is low to medium agreement for
each combination of annotators, with the lowest value being 0.25 between human
novices and human experts and the highest value being 0.77 between PaLM with
novice and expert prompts. Regardless of the prompt type, the agreement between
PaLM 2 and GPT-3 is moderate, ranging from 0.38 to 0.67. This suggests the
potential efficacy of employing diverse models as supplementary annotators.

We further investigate whether the agreement changes if we incrementally inte-
grate automatically generated annotations into the original set of human annota-
tions. The results reported in Table 4 show that adding PaLM 2 annotations can
significantly improve the agreement of human experts as well as human novices. A
significant increase is already visible after adding three annotations to the annota-
tions of human experts and four to the annotations of human novices. However, the
introduction of GPT-3 annotations leads to a significant decrease in agreement.
This can be attributed to the relatively low level of agreement between GPT-3
and human annotators (cf. Fig. 5).

RQ3: Can integrating LLM annotations with human annotations significantly
improve the resulting agreement in argument quality ratings? The analysis indi-
cates that the impact on agreement levels when incorporating generated quality
assessments with human annotations varies based on the employed LLM. When
using a powerful model such as PaLM 2, the agreement of human annotations can
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be significantly increased by adding three or more generated annotations. These
results underscore LLMs as valuable contributors to the annotator ensemble.

5 Conclusion

In this paper, we investigated the effectiveness of LLMs, specifically GPT-3 and
PaLM 2, in evaluating argument quality. We utilized four distinct prompt types
to solicit quality ratings from these models and compared their assessments with
those made by human novices and experts. The results reveal that LLMs exhibit
greater consistency in evaluating argument quality compared to both novice and
expert human annotators, showcasing their potential reliability. Based on our
empirical analysis, we can recommend two modes of application for LLMs as
annotators of argument quality: (1) a fully automatic annotation procedure with
LLMs as automatic quality raters, for which we found moderately high agree-
ment between PaLM 2 and human expert quality ratings, or (2) a semi-automatic
procedure using LLMs as additional quality annotators, resulting in a signifi-
cant enhancement in agreement when combined with human annotations. In both
Modi, LLMs can serve as a valuable tool for streamlining the argument quality
annotation process on a large scale.

To further minimize annotation expenses, we intend to expand these exper-
iments to various open-source large language models. In addition to the investi-
gated the zero-shot prompting technique, enhancing agreement with human anno-
tations could involve utilizing few-shot prompting technique or fine-tuning LLMs
based on human judgments of argument quality. We see great potential in LLMs
as argument quality raters, which, if further optimized to agree more closely with
human assessments, can reduce manual effort and expenses, establishing them as
valuable tools in argument mining.

6 Limitations

The experiments in this paper are based on the hypothesis that multiple runs
of the same model, prompt, and hyperparameters simulate different annotators
as a result of nucleus sampling. This hypothesis has not yet been proven, and
its validity cannot be inferred from the analysis. The higher inter-model agree-
ment indicates a lower variance in the automatically generated annotations, which
might argue against this hypothesis. Therefore, the agreement between model and
human annotations has been calculated using examples with perfect agreement
only in order to exclude effects of this variance. Further experiments are needed
to determine how to replicate the behavior of different annotators. can be found
in Appendix Although we deeply investigate LLMs as quality assessors for argu-
ments, the generalizability of our results beyond argumentation is not yet clear.
However, due to the complexity and subjectivity of argument quality assessment,
as seen from the low human inter-annotator agreement, we argue that this task
might be a worst-case scenario for LLMs, and we would expect comparable or
even better results in less subjective task domains. However, more experiments
are needed to confirm or reject this hypothesis.
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Appendix

Table 5 lists the adapted definitions of argument quality dimensions employed for
novice annotations.

Table 5. The set of simplified definitions of argument quality dimensions.

Quality Dimension Definition

Local acceptability The reasons are individually believable: they could be true

Local relevance The reasons (assuming they are true) are relevant to the
conclusion: they tell why one could accept the conclusion

Local sufficiency The reasons (assuming they are true) are sufficient to draw the
conclusion: no other reason is necessary to arrive at the conclusion

Credibility The reasons make the author seem trustworthy and knowledgeable

Emotional appeal The reasons can make people feel emotions that make them willing
to agree with the author

Clarity The author uses clear, grammatically correct and unambiguous
language. The author sticks to the main topic and does not make
things overly complicated

Appropriatness The author uses an appropriate style for the reasons and this style
fits to the topic’s importance

Arrangement The reasons are properly organized: coherent, easy to follow,
well-structured

Global acceptability The reasons and conclusion combined are believable: everything
taken together could be true

Global relevance The reasons (assuming they are true) are relevant for resolving a
discussion around the conclusion’s topic

Global sufficiency The reasons (assuming they are true) are sufficient in that they
consider any counter-arguments that may arise
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René Knaebel(B), Robin Schaefer, and Manfred Stede

Applied Computational Linguistics, University of Potsdam, 14476 Potsdam, Germany
{rene.knaebel,robin.schaefer,stede}@uni-potsdam.de

Abstract. We study the question to what extent the task of predicting
the quality of student essays can be supported with computing “flows”
of semantic types of argumentative units. Specifically, we use tagsets for
claim and premise types that were recently applied to the Argument
Annotated Essays corpus (AAE; Stab/Gurevych 2017) by Schaefer et al
(2023). We train argument component and semantic type classification
models on AAE and then use them to label the essays in two corpora that
have numeric essay ratings, viz. FEEDBACK/PERSUADE and ICLE.
We train linear classification models on flow features and find that flows
of our semantic types are a better predictor for essay quality (in a sim-
plified, good/bad dichotomy) than flows of coarse argument components
(major claim, claim, premise). Finally, we calculate feature impact and
perform a qualitative inspection, which shows some tendencies for pat-
tern occurrence in the two essay classes.

Keywords: Argument Mining · Essay Scoring · Argumentation
Strategy

1 Introduction

Over the last decade, the field of Argument Mining (AM) has grown into a fruit-
ful area of study that comprises a set of challenging sub-tasks [16,32]. In our
work, we make use of the automatic identification and extraction of argument
components, i.e., claims [8,25] and premises [23]. This has been studied for dif-
ferent text domains including news editorials [2], Wikipedia articles [23], social
media data like tweets [27], and student essays [31]; the latter are the domain
that we address here.

One application of analyzing argumentation in student essays is in contribut-
ing to assessing the quality of an essay. To this end, a variety of argument-related
features have been studied and found to be useful in the past (see Sect. 2). In
this paper, we add features of “flows” (sequences of occurrence in the text) of
the types of claims and premises. We compare the impact of coarse types (major
claim, claim, premise) to fine-grained semantic types of those components (e.g.,
fact, value and policy claims; see Sect. 3.1). We achieve this by utilizing the
Argument Annotated Essays (AAE) corpus [31] for training ADU identification
c© The Author(s) 2024
P. Cimiano et al. (Eds.): RATIO 2024, LNAI 14638, pp. 147–162, 2024.
https://doi.org/10.1007/978-3-031-63536-6_9
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and semantic type classification models. These models are used to automatically
label our two target essay corpora Feedback [7] and ICLE [11], which have previ-
ously been annotated with essay quality ratings, with ADUs and their types. We
then extract semantic type flows and use them as features in linear classification
models for essay quality prediction.

Our two contributions are (i) the finding that for some dimensions of essay
quality, flows of fine-grained features are more powerful predictors than flows of
the coarse features; and (ii) a qualitative analysis that leads to some observations
on correlations between flow patterns and essay quality.

The next section provides an overview of related work, and Sect. 3 intro-
duces the three corpora we are working with, and the features we use for seman-
tic types. In Sect. 4, we describe our experiments, which involve some “within-
domain transfer” in that we train on an essay corpus annotated for the com-
ponent features but that does not have quality scores [31] and then run those
models on two corpora that offer scores but no (compatible) type annotation
[7,11]. We discuss the findings in Sect. 5 and conclude in Sect. 6.

2 Related Work

Argument Mining in Essays. The AAE corpus, consisting of 402 essays with
claims, premises and relations among them [31], is a widely-used resource for
developing AM techniques. We mention a few, viz. component detection [30],
semantic type annotation and identification [4,26], essay quality assessment
[4,33], and end-to-end AM [21,24]. It was also applied in research on unsu-
pervised AM [22], the analysis of argumentation strategies [26], and multi-scale
AM [34]. The latter utilizes the text units essay, paragraph, and word for major
claim, claim and premise identification, respectively. Another essay corpus that
received attention in AM is ICLE [12]. For example, [5] used its rich annotations
to compare aspects of argumentation strategies across different cultural groups
among English learners.

Argument Component Types. Specific types of argument components have been
used to label claims and premises in a variety of text genres. In Wikipedia
[23], editorials [2], and persuasive essays [4,26] premises have been annotated as,
e.g., study/statistics, expert/testimony, anecdote or common knowledge/common
ground. Other annotated premise types include study, factual, opinion, and rea-
soning in idebate.org data [15]. For claims, fact, value and policy have been
annotated in persuasive essays [4,26], in addition to logos, pathos, and ethos [4],
i.e. Aristotle’s modes of persuasion [14]. Claims in Amazon reviews have been
labeled with the types fact, testimony, policy, and value [6].

Social media text has been a popular target, too. Annotated types include
evidence types typical for social media, e.g. news media accounts, blog posts, or
pictures [1], factual vs opinionated [9], and more recently un/verifiability, rea-
son and external/internal evidence [27]. Furthermore, discussions collected from
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the subreddit Change My View were annotated for the claim types interpre-
tation, evaluation-rational, evaluation-emotional, and agreement/disagreement,
while premises were labeled with logos, pathos, and ethos [13].

In our work, we apply the set of claim and premise types that we described in
our recent work on argument strategy analysis [26]. It was derived and extended
from previous studies [2,4].

Argument Analysis for Essay Scoring. In early work, [18] found correlations
between distributions of argument component types and holistic essay scores. In
contrast, [29] evaluated the contents of the arguments in relation to the argu-
ment scheme present in the essay prompt. Building on their data, [3] turned to
structure and found a moderate positive correlation between holistic essay scores
and distributions of argument components and relations. Similarly, [10] showed
that scoring TOEFL essays benefits from features like the number of claims
and premises, the number of supported claims, and aspects of tree topology.
[20] worked with a broad set of linguistic features and distributions of argument
components to predict scores in the ICLE corpus. Closely related to our work
is the study by [33] who proposed to use linear “flows” of (coarse) premise and
claim units for essay scoring and examined their contribution. We extend this
by attending to the more fine-grained features of units.

3 Data

3.1 Argument-Annotated Essays Corpus

We use the AAE corpus [31] as a starting point. The corpus contains 402 student
essays annotated for argumentative discourse units (ADU) major claim, claim,
and premise and their relations support and attack. Major claim and claim are
linked via stance annotations. Importantly, components can be extracted from
the argumentation structure. Claims always relate to the essay’s major claim,
while premises support or attack claims (or other premises). Also, while claims
and premises can occur in all essay paragraphs, major claims are supposed to
be restricted to the first and last paragraphs.

In previous work [26], we annotated the AAE corpus for semantic claim
and premise types that can be used for the extraction of argumentative flow
patterns. We provided evidence that these flow patterns are suitable for the
analysis of argumentation strategy in essays. Here, we will briefly describe the
semantic types. For more detailed definitions and examples, we refer the reader
to [26]. The following claim types were annotated: policy, value, and fact (see
Table 2 below for proportions). Policy refers to claims arguing in favor of some
action being taken or not being taken. Value claims evaluate a target, e.g. they
may argue towards it being good/bad or important/unimportant. Fact1 claims,

1 Note that in this work fact does not refer to actual factual statements. Rather it
includes claims that the author presents as factual. Determining the actual truth or
falsity of a statement, i.e. fact-checking, is beyond the scope of this paper.
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on the other hand, state that some target is true or false. In addition to the
claim types, we annotated the following premises types: testimony, statistics,
hypothetical-instance, real-example, and common-ground. Testimony gives evi-
dence by referring to some expert. Statistics uses the results of quantitative
research, among others, as evidence. Hypothetical-instance and real-example are
both example categories. The former refers to situations created by the author,
i.e. hypothetical situations, while the latter describes actual historical events or
a specific statement about the world. Finally, common-ground includes common
knowledge, self-evident facts, or similar.

In this work, we use the AAE corpus for training ADU identification and
semantic type classification models, which are then used to automatically label
the Feedback and ICLE corpora with ADUs and their types. Note that we do
not use the original relation and stance annotations.

3.2 Feedback Corpus

The Feedback corpus (n = 3,405) is a subset of the PERSUADE corpus [7], which
consists of 25,996 essays written by students from grades 6 through 12. In total,
15 prompts were used to elicit the essays. The corpus has been annotated for
different ADU types: lead, position, claim, counterclaim, rebuttal, evidence, con-
cluding statement. The corpus was additionally annotated for different quality
dimensions, such as cohesion.

Comparing the argumentative components of the PERSUADE corpus with
those of the AAE corpus reveals an apparent overlap in categories. Both cor-
pora are annotated for claim and premise/evidence. Position and major claim
are defined similarly. However, recall that the ADU types in the AAE corpus
are derived from the overall argumentation structure (via the relations between
components), while in the PERSUADE corpus, ADUs are defined semantically.

Semantic type classification builds on top of previously classified ADU types.
A direct mapping of the ADU types from PERSUADE to AAE would allow us
to learn ADU classification on a much larger corpus with more confidence in the
predictions for out-of-domain data. To test whether the annotations of the AAE
corpus are compatible with those of the PERSUADE corpus, we compare the
predictions of our ADU classifier (trained on the AAE data) for the PERSUADE
corpus with the original component labels. Mapping the output of our model to
the annotations reveals mixed results (see Fig. 1). While evidence and premise
overlap to a good extent, differences in claim conceptualization appear problem-
atic. Both claim and counterclaim are mapped by similar proportions to claim
and premise by our model. Rebuttal, which is defined as “a claim that refutes
a counterclaim” [7], is mostly classified as premise, while concluding statement
corresponds to the whole variety of AAE components. Thus, conceptualizations
of argument components are on the whole different in the two corpora, and there-
fore we decided to not use the component annotations of the Feedback corpus,
and work with our predicted labels instead.
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Fig. 1. Confusion matrix for original PERSUADE corpus labels (y-axis) and the pre-
dictions of our AAE model (x-axis).

For our quality prediction experiments, we use the dimensions cohesion and
conventions. A text with high cohesion is defined as containing a variety of
effective linguistic features such as reference and connectives to link ideas across
sentences and paragraphs. Conventions is defined as the use of common rules,
including spelling, capitalization, and punctuation.

3.3 International Corpus of Learner English

Our second target corpus is derived from the ICLE corpus [11], which contains
more than 6,000 student essays, of which 91% are argumentative. While no argu-
ment component annotations are available, the corpus has been annotated for
different scoring dimensions. In this work, we utilize the subset of the corpus that
has been annotated for organization [19] and argument strength [20] (n = 896).
Previously a high organization score was defined as providing a position with
respect to an introduced topic and supporting that position [28]. As this defini-
tion roughly describes the core aspects of argumentation, we assume this scoring
dimension to be a good candidate for our study. On the other hand, an essay
with high argument strength “presents a strong argument for its thesis and would
convince most readers” [20]. Argument strength is thus tied to persuasiveness,
again one of the core aspects of successful argumentation.

4 Experiments

Our experiments consist of two steps: Labeling the two target corpora with ADUs
and their semantic types (Sect. 4.1), and testing the contribution of type change
flows for the task of essay score prediction (Sect. 4.2). In Sect. 4.3, we undertake
a qualitative inspection of flows associated with essays of different quality.
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4.1 ADU and Sematic Type Classification

We first classify the coarse type of the argumentative components as major claim,
claim, and premise. Afterward, we classify the fine-grained semantic types con-
ditioned on their previously identified coarse type. For the semantic type clas-
sification, however, we do not distinguish between major claims and claims but
regard both of them as claims. As both classification tasks, ADU and seman-
tic type, have been studied previously [26,31,33], we do not conduct extensive
comparative experiments here but provide the performance of our ensembles for
better quality estimation of the projected labels.

We train ensembles of three models each per step. We use 10% of the AAE
corpus for development. The remaining data is used for training. Per run, the
data is split randomly (with a random number seed set to either 1, 2, or 3).

As a classifier, we use a pre-trained language model, roberta-base [17], for
both the coarse and the fine-grained step. Following previous work by [33], we
identify ADUs solely on the sentence level, disregarding smaller units. Our input
to the model is the target sentence plus one additional sentence on the left and
the right, to provide context. The context is separated from the target sentence
by the model’s special tokens. We found that adding this context improves results
compared to processing single sentences. Also, it works better than giving the
model more context information (additional sentences or structural information
such as paragraph breaks).

The ensembles are evaluated on the full AAE corpus. The final classification
result is an averaged softmax, from which the label with the maximum proba-
bility is chosen. See Table 1 for the results on the annotated corpus. We have
further assessed our approach manually on a smaller sample. In particular, we
sampled 15 instances per semantic type, and have obtained satisfactory macro
results (Claims: 95.55 F1, Premises: 91.64 F1). However, during our review, we
noticed some problems with the underlying processed data, e.g. grammatical
inconsistencies within sentences and the resulting problems in understanding
the author’s intentions, which are unfortunately beyond our project’s scope.

We then use the trained classification models to predict argument compo-
nents and semantic types in our two target corpora, Feedback and ICLE. Table 2
shows the distribution of semantic types both for the manually annotated AAE

Table 1. Macro-averaged classification results for the AAE corpus.

Prediction Task Precision Recall F1

ADU Role 82.55 83.24 82.86

Semantic Claim Type 85.23 80.39 81.94

Semantic Premise Type 88.24 69.01 71.30
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Table 2. Proportions of semantic types by corpus.

Annotation Class AAE Feedback ICLE

Policy 0.15 0.12 0.17

Value 0.67 0.83 0.79

Fact 0.18 0.05 0.04

Statistics 0.10 0.01 0.03

Hypothetical-Instance 0.24 0.42 0.20

Real-Example 0.19 0.25 0.23

Common-Ground 0.46 0.33 0.53

corpus and for the automatic predictions in the Feedback and ICLE corpora.
While some types are equally distributed, e.g. policy and statistics, there are
notable differences in others. For instance, fact claims occur more frequently in
the AAE essays, while our models labeled claims in Feedback and ICLE more
often as value. For premises, Feedback contains substantially more hypothetical-
instances, while the majority class in ICLE is common-ground.

4.2 Predicting Essay Quality with Flows of Semantic Types

In this section, we investigate whether essay quality prediction can be improved
by using flows of our fine-grained semantic types, in comparison to flows of
coarse ADU types, as they had been used by [33]. By “flow”, we mean the
linear sequence of type labels that occur in a text unit (paragraph or full text).
Importantly, we work with change flows, which result from collapsing sequences
of identical types into a single label. This way, we ignore the information on the
“length” of a stretch with the same type and focus only on the changes from one
type to another.

To simplify the prediction problem, we group all essays into two classes good
and bad. We normalize all quality scores to the range [0 .. 1], and then label
essays with a score above 0.7 as good and others as bad.

Given the annotations of coarse ADU types and semantic types in the two
target corpora, we extract change flow features, both on the global essay level
and on that of paragraphs, and for ADU and semantic types, respectively. In
Table 3, we show the most common change flows of semantic types in the corpora,
divided into first paragraph, body, and last paragraph.

For predicting the quality class, we trained linear models on all extracted
change flow features, in particular, we chose stochastic gradient descent models.
We set the maximum iteration to 1500, use a balanced class weight, and use grid
search cross-validation to decide on the remaining parameters.
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Table 3. Most common change flows of semantic types for different argument com-
ponents. The first letter refers to the type of the argument component (M = major
claim, C = claim, and P = premise), the following letters denote the semantic type
(e.g. CV = claim-value; PCG = premise-common-ground). Levels are first and last para-
graph of the essay, and everything in-between (body).

Level # Feedback ICLE

Change Flow Freq Change Flow Freq

first 1 (MV) 13.53% (PCG) 22.04%

2 (CV) 9.72% (MV) 6.82%

3 (PCG) 4.62% (PRE) 5.59%

4 (MV,CV) 4.59% (CV) 4.92%

5 (PHI) 3.91% (PHI) 3.47%

6 (MP) 2.82% (PCG,PHI) 3.02%

7 (PRE) 2.44% (CV,PCG) 2.91%

8 (CV,PHI) 2.25% (PCG,CV) 2.57%

9 (MV,PHI) 1.76% (PRE,PCG) 2.35%

10 (PCG,CV) 1.70% (PCG,PRE) 2.35%

body 1 (CV) 7.42% (PCG) 18.81%

2 (PHI) 7.01% (CV,PCG) 5.15%

3 (CV,PHI) 5.93% (PCG,PHI) 4.20%

4 (PRE) 4.56% (PRE) 3.51%

5 (PCG) 4.36% (PHI) 3.12%

6 (CV,PCG) 2.49% (PCG,PHI,PCG) 2.88%

7 (PCG,PHI) 2.14% (CV) 2.80%

8 (CV,PRE) 2.09% (PCG,PRE) 2.43%

9 (CV,PCG,PHI) 2.04% (PHI,PCG) 2.17%

10 (CV,PHI,PCG) 1.99% (PRE,PCG) 2.11%

11 (PHI,PCG) 1.51% (PCG,CV) 1.82%

12 (CV,PHI,CV) 1.28% (PCG,PRE,PCG) 1.74%

13 (PHI,CV) 1.09% (PCG,CV,PCG) 1.40%

14 (PCG,PHI,PCG) 1.04% (MV,PCG) 1.08%

15 (PHI,PCG,PHI) 1.03% (MV) 1.00%

16 (CV,PHI,PCG,PHI) 0.99% (CV,PHI,PCG) 0.98%

17 (PCG,CV) 0.83% (CP,PCG) 0.87%

18 (CV,PRE,PHI) 0.79% (CV,PHI) 0.77%

19 (CV,PCG,PHI,PCG) 0.78% (CV,PCG,PHI) 0.77%

20 (MV) 0.76% (CV,PCG,PHI,PCG) 0.77%

last 1 (MV) 13.92% (MV) 13.87%

2 (CV) 8.95% (PCG) 8.61%

3 (MV,CV) 5.61% (CV) 5.48%

4 (MP) 3.27% (MV,CV) 3.24%

5 (PHI) 2.15% (PCG,CV) 3.02%

6 (CV,MV) 2.08% (CV,PCG) 2.80%

7 (PCG) 1.67% (MP) 2.68%

8 (MP,CV) 1.60% (PCG,MV) 2.46%

9 (CV,PHI) 1.51% (MV,PCG) 2.46%

10 (PHI,CV) 1.44% (PCG,PHI) 2.35%
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We run a comparison on 10-fold cross-validation with optimal parameters.
Table 4 shows our averaged macro scores (precision, recall, and F1) summarized
as mean and standard deviation over 10 runs. We present results for all four essay
scoring dimensions cohesion, conventions, organization, and argument strength.
Baseline refers to a stratified classifier, which performs classification based on
the observed frequency and outperforms a simple majority voting baseline.

Table 4. Essay Scoring Results. Means and standard deviations of 10-fold cross-
validation measured as precision, recall, and F1 scores. As the macro average takes
into account the imbalance of the labels, this can result in the F1 values not being
between the respective macro values for precision and recall.

Corpus Dimension Level Precision Recall F1

Feedback cohesion baseline 0.511 (0.032) 0.509 (0.028) 0.509 (0.029)

adu 0.587 (0.012) 0.631 (0.015) 0.568 (0.027)

sem 0.575 (0.021) 0.606 (0.033) 0.567 (0.028)

Feedback conventions baseline 0.500 (0.022) 0.500 (0.021) 0.499 (0.021)

adu 0.545 (0.020) 0.573 (0.036) 0.528 (0.026)

sem 0.566 (0.024) 0.599 (0.039) 0.559 (0.031)

ICLE organization baseline 0.506 (0.042) 0.505 (0.040) 0.501 (0.039)

adu 0.585 (0.055) 0.585 (0.050) 0.580 (0.051)

sem 0.604 (0.067) 0.607 (0.068) 0.603 (0.068)

ICLE strength baseline 0.504 (0.043) 0.503 (0.030) 0.500 (0.036)

adu 0.522 (0.046) 0.534 (0.065) 0.514 (0.052)

sem 0.532 (0.056) 0.534 (0.069) 0.519 (0.056)

Both ADU and semantic type models outperform the baselines. We achieve
higher F1 scores for the dimensions conventions and organization with models
trained on semantic type change flows instead of coarse ADU type change flows
(conventions: 0.559 vs 0.528; organization: 0.603 vs 0.580). For cohesion and
argument strength, the two types of flows obtain similar results.

4.3 Analysis of Feature Impact

We use the trained linear models to extract semantic change flow features that
are prevalent in good vs bad essays and are thus good predictors for the respective
class. We normalize the coefficients to center them around zero. Thus, positive
coefficients of features in the linear model correlate with yielding a better essay
score, while negative coefficients result in worse scores. We investigated the most
important change flows in good vs bad essays both on the full essay level and
on the paragraph level. We will only present the results from analyses of the
body paragraphs (see Tables 5 and 6), as, presumably, this is where the main
argumentation unfolds.
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With respect to claim-premise change flows in paragraphs, bad essays are
more notably characterized by a lack of claims, thus only premises are utilized.
This is especially the case for the quality dimensions cohesion, organization, and
argument strength. Furthermore, paragraphs of good essays appear to show more
type variety. This is observable for all quality dimensions, but most clearly for
the ICLE corpus, i.e. organization and argument strength.

More patterns emerge in the premise change flows. For instance, both feed-
back dimensions (cohesion and conventions) show the same most dominant flows
in good essays, i.e. PCG-PHI-PCG-PHI and PST-PCG. Also, paragraphs in
essays with a high conventions score tend to begin with common-ground, while
flows exhibit fewer changes than in bad essays. Recall that this does not nec-
essarily imply a less complex argumentation structure, as change flows collapse
sequences of identical semantic types.

ICLE essays with a high organization score show complex premise change
flows, which often include several common-ground units framing hypothetical-
instance, real-example, or combinations of those. Bad essays, on the other hand,
are characterized by example types that are more rarely used in combination with
common-ground. Similar observations can be made for the argument strength
dimension. As the feedback corpus, both ICLE dimensions have identical domi-
nant flows, i.e. PCG-PRE-PCG and PCG-PHI-PCG.

5 Discussion

Transfer across corpora is a complex task. Even corpora that belong to the same
general domain of texts, e.g. persuasive essays, may exhibit notable differences
in argumentation structure and strategies. This is reflected in the distribution of
semantic types across our essay corpora. For instance, the AAE corpus contains
a substantially larger proportion of fact claims compared to both Feedback and
ICLE. The Feedback corpus shows an especially large proportion of hypothetical-
instance, while premises in the ICLE corpus have been predominantly labeled
with common-ground. These differences in semantic types have an impact on the
observable change flows, and thus on argumentation strategies.

To begin with, bad essays with respect to cohesion, organization and argu-
ment strength tend to contain paragraphs without a claim more often than good
essays. This is intuitively plausible, as a full argument typically consists of a
claim and at least one premise. However, important change flows for the predic-
tion of bad essays with respect to the conventions dimension still contain claims.
This may be due to the quality dimension at hand, as conventions is less clearly
linked to argumentation quality than the other dimensions.

Second, the suitability of premise change flow complexity as a predictor for
essay quality depends on the corpus and quality dimension. While ICLE essays
with high organization and argument strength scores tend to show more variety
in premise change flow patterns, Feedback essays with high convention scores
show less variety.
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Table 5. Change Flows on Paragraph Level (Body): Feedback Cohesion & Con-
ventions. The first letter refers to the type of the argument component (M = major
claim, C = claim, and P = premise), the following letters denote the semantic type (e.g.
CV = claim-value; PCG = premise-common-ground).

Feedback: Cohesion

All Coeff Claim Coeff Premise Coeff

1 CV-PHI-PRE-PHI .771 CV .886 PCG-PHI-PCG-PHI .966

2 CV-PHI-CV-PCG .725 CP-CV .865 PST-PCG .912

3 CP-PCG-CV .717 CV-CP .622 PCG-PHI-PRE-PHI-PRE .826

4 CV-PCG-CV-PRE-PCG .702 CV-MV-CV .621 PCG-PRE-PHI-PRE-PHI .742

5 PHI-PCG-PHI-PCG .699 MP .551 PCG-PHI-PCG-PRE-PHI .727

6 PHI-CV-PCG .671 CV-CP-CV .532 PST-PCG-PHI .638

7 PRE-PHI-PCG .658 MV-CP .445 PCG-PST-PCG .592

8 CV-PCG-CV-PHI .656 CF-CV-CF .426 PCG-PRE-PHI-PRE .585

9 CV-PHI-PCG-CV .637 CF-MV .408 PCG-PRE-PCG-PHI .545

10 CV-PCG-PHI-PCG .633 CV-MP .391 PRE-PCG-PRE-PCG .521

1 PCG-PHI-PRE-PCG −.542 MP-CV-MV −.196 PHI-PCG-PRE-PCG-PHI −.279

2 PRE-CV −.543 MP-CF −.218 PRE-PCG-PHI-PRE-PCG −.295

3 PCG −.557 MV-CF −.248 PRE-PHI-PCG-PHI-PCG −.299

4 CF −.572 MF −.292 PRE-PCG-PHI-PRE −.302

5 PHI-PRE-PHI −.574 MV −.302 PCG-PHI-PRE-PCG −.318

6 CP-PCG −.631 MF-CV −.328 PCG-PHI-PRE-PHI-PCG −.339

7 MV-PRE −.665 MP-MV −.354 PCG-PRE-PCG-PRE −.349

8 PCG-PHI-PCG-PHI-PCG −.681 CP-CF −.399 PRE-PST −.350

9 PHI-PCG-PRE −.701 MP-CP −.512 PCG-PST-PRE-PCG −.379

10 PCG-PHI-PRE −.728 CF-CV −.957 PCG-PHI-PCG-PHI-PCG-PHI-PCG −.545

Feedback: Conventions

All Coeff Claim Coeff Premise Coeff

1 PRE-MV-PRE .783 MP-CV .876 PCG-PHI-PCG-PHI .869

2 MV-PCG-PRE .774 CV .452 PST-PCG .798

3 CV-PCG-PHI-CV-PCG .693 CP-CV .407 PCG-PRE-PHI-PRE-PCG .743

4 PHI-PCG .690 MV-CP-CV .378 PCG-PST-PRE .692

5 CV-PRE-CV .687 CV-CF-CV .364 PCG-PST-PCG .666

6 CV-PHI-PRE-PHI .679 MP-CF .344 PCG-PHI-PRE .661

7 PCG-PRE-PCG-PHI-CV .664 CP-MV .339 PCG-PST-PHI .636

8 CF-PRE-CV .654 CV-CP-CV .274 PRE-PCG-PRE-PCG-PRE .635

9 PCG-PHI-PCG-CV .632 CV-CP-MV .273 PST-PHI .615

10 CV-PRE-PHI-MV .601 CP-MP .257 PHI-PST .612

1 CV-PST −.569 CV-CF −.141 PHI-PST-PHI-PCG −.301

2 CF −.574 CF-CV −.147 PCG-PHI-PCG-PRE −.308

3 CV-PCG-CV-PCG −.592 MP-MV −.152 PHI-PST-PCG −.337

4 MV-PRE −.615 MV-CV-CP −.199 PRE-PHI-PCG-PRE −.348

5 PHI-PRE-CV −.628 CF-CP −.248 PRE-PCG-PHI-PCG-PHI −.378

6 CF-PHI −.646 CV-MV −.306 PRE-PST −.401

7 CV-PRE-PCG −.647 MV-CF −.306 PHI-PCG-PHI-PCG-PRE −.450

8 CV-CP −.750 MF-CV −.339 PRE-PCG-PRE-PHI −.530

9 CV-PCG-CV −.777 CV-MF −.346 PCG-PHI-PRE-PCG −.587

10 PCG-CV-PCG −.783 CV-MP-CV −.513 PHI-PCG-PRE-PHI −.611
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Table 6. Change Flows on Paragraph Level (Body): ICLE Organization & Argument
Strength. The first letter refers to the type of the argument component (M = major
claim, C = claim, and P = premise), and the following letters denote the semantic type
(e.g. CV = claim-value; PCG = premise-common-ground).

ICLE: Organization

All Coeff Claim Coeff Premise Coeff

1 CV-PCG-PHI .010 CP-CV .008 PCG-PRE-PCG .016

2 PCG-PHI-PCG .008 CV .007 PCG-PHI-PCG .013

3 PCG-PRE-PCG .007 CV-CP .003 PHI-PCG .010

4 CV-PHI-PCG .005 CV-CF .003 PCG .008

5 CV-PCG .005 MP-CP .001 PHI-PCG-PHI-PCG .005

6 PCG-PHI-PRE-PCG .004 CV-CF-CP .001 PST-PCG .004

7 CV-PCG-PRE-PCG .004 MF .001 PCG-PST-PCG .003

8 CV-PCG-PHI-PCG .003 CF-CP .001 PCG-PHI-PRE-PCG .003

9 PHI-PCG-PHI-PCG .003 MP-CV .000 PCG-PHI-PCG-PHI-PCG-PHI .003

10 PCG-CV-PCG-PHI-PCG .003 CV-CP-CV .000 PCG-PRE-PCG-PRE-PCG .003

1 PRE-PCG-PRE −.005 CV-CF-CV −.001 PRE-PHI-PRE −.002

2 MV −.006 CV-MV −.001 PRE-PHI −.003

3 CP −.006 CV-MP −.001 PHI-PCG-PHI −.004

4 PRE-PCG −.006 MP −.001 PHI-PRE −.006

5 PCG-PRE −.008 CF-CV −.001 PRE-PCG-PRE −.006

6 PRE −.008 MV-CP −.003 PCG-PHI −.007

7 PCG-PHI −.013 MV-CV −.004 PCG-PRE −.009

8 CV −.014 CF −.006 PHI −.011

9 PHI −.014 MV −.011 PRE −.015

10 PCG −.022 CP −.015 PRE-PCG −.015

ICLE: Argument Strength

All Coeff Claim Coeff Premise Coeff

1 CV-PCG-PHI-PCG .013 CV .009 PCG-PRE-PCG .012

2 CV-PCG .012 MP .005 PCG-PHI-PCG .011

3 PCG-PRE-PCG .006 CP .004 PCG-PHI-PCG-PRE-PCG .006

4 PCG-PHI-CV .005 CV-MV .003 PCG-PST-PCG .006

5 CV-PHI-PCG-PHI .005 CP-CV .002 PCG-PHI-PCG-PHI-PCG .005

6 CP-PHI .004 CV-CF-CV .002 PHI-PRE-PCG .005

7 CP .004 MF .002 PHI-PCG-PHI-PCG .005

8 PRE-PHI-CV .004 CV-CF-CP .001 PRE-PHI-PCG .004

9 CV-PHI-PCG-PHI-PCG .003 MP-CP .001 PCG-PHI-PST .003

10 PCG-PST .003 CV-MV-CV .001 PST-PCG-PHI-PCG .003

1 CV-PCG-PRE −.004 CF-CP .001 PHI-PCG −.003

2 PRE-PHI −.004 CF-CV .000 PCG-PHI −.003

3 PRE −.005 MP-CV −.001 PRE-PCG-PRE-PCG −.003

4 PCG-CV −.005 CV-CP-CV -.001 PCG-PRE-PHI −.004

5 CV-PHI-PCG −.007 CV-CP -.001 PHI-PRE −.005

6 MV −.007 MV-CP −.002 PRE-PCG-PRE −.005

7 CV −.010 CV-CF −.003 PST-PCG −.005

8 PHI −.010 MV-CV −.005 PHI −.007

9 PCG −.012 CF −.006 PRE −.008

10 PCG-PHI −.016 MV −.022 PRE-PCG −.013
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Third, good essays with respect to conventions, organization, and argument
strength show change flows that begin with common-ground or use it as a framing
type, typically in combination with an example type. This is in line with the
argumentation strategy found in the AAE corpus of beginning (and ending) an
argument with a general observation while inserting more concrete premises,
e.g. examples, in between [26]. Overall, we can summarize that semantic change
flows can be indicative of argument strategies applied to produce a persuasive
essay of high quality.

6 Conclusion

In this work, we studied the question to what extent argument arrangement in
the sense of change flows of semantic types can support the prediction of student
essay quality.

To this end, we trained models for ADU and semantic type classification on
the AAE corpus, which has been annotated accordingly in previous work [26,31].
We used these models to label essays in two target corpora: Feedback and ICLE.
We extracted change flows of ADUs and semantic types and used them for
essay quality prediction. Importantly, we showed that some dimensions of essay
quality, i.e. conventions and organization, can be predicted better by using flows
of semantic types rather than by coarse ADU types. This result expands on the
earlier work of [33]. Finally, we identify change flow features that are important
predictors for good vs bad essays.

We find that 1) the distribution of semantic types depends on the corpus at
hand and 2) bad essays tend to lack claims, i.e. contain incomplete arguments.
Further, we observe that 3) the mere complexity of change flows is not a sufficient
predictor for quality and 4) certain change flows of semantic types indicate the
use of argumentation strategies.

In the future, we are interested in investigating more thoroughly the rela-
tionship between argumentation strategies and essay quality. Here, we consid-
ered this topic only briefly in Sect. 5. Also, we plan to extend our analysis to
other out-of-domain corpora (e.g., news editorials and the subreddit Change My
View).

Limitations

Due to the very small number of annotated essays (402 instances), it is only
possible to estimate to a limited extent how the projection of the annotations by
our neural models onto corpora outside the essay domain works. The questions
of how well these models work on out-of-domain data and how well the semantic
type scheme applies to other domains deserve greater attention in future work.

For our study, we decided to follow previous research that simplifies the argu-
ment component classification to the sentence level. Although this is considered
legitimate for the AAE corpus due to the consistently strict essay structure,
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in general, this is a simplification that leads to inexactness in the extracted
components.

Our work is the first attempt to use abstract semantic patterns to measure
the quality of student writing. However, due to the relatively small gains in
performance, we assume that the selected quality dimensions may not ideally
capture the meaning of our semantic types.

Acknowledgement. This research has been supported by the German Research
Foundation (DFG) with grant number 455911521, project “LARGA” in SPP “RATIO”.
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Abstract. We are concerned with extracting argumentative fragments
from social media, exemplified with a case study on a large corpus of
English tweets about the UK Brexit referendum in 2016. Our overall
approach is to parse the corpus using dedicated corpus queries that fill
designated slots in predefined logical patterns. We present an inventory
of logical patterns and corresponding queries, which have been carefully
designed and refined. While a gold standard of substantial size is diffi-
cult to obtain by manual annotation, our queries can retrieve hundreds of
thousands of examples with high precision. We show how queries can be
combined to extract complex nested statements relevant to argumenta-
tion. We also show how to proceed for applications needing higher recall:
high-precision query matches can be used as training data for an LLM
classifier, and the trade-off between precision and recall can be freely
adjusted with its cutoff threshold.

Keywords: Argument extraction · Semantic parsing · Corpus
queries · Social media · LLMs

1 Introduction

We report on a methodology for extracting arguments from posts in social media,
with the overarching aim of gaining an overview of arguments and views being
voiced. Argumentation on social media is characterized by a high degree of infor-
mality, which makes our endeavour, viz. mapping the argumentative landscape
on social media, particularly difficult.

In our central case study, we analyse English tweets about the Brexit refer-
endum in 2016. Tweets are particularly challenging because they are too short to
contain fully structured arguments (i.e., premises, conclusions, and links relating
the argument parts), see e.g. Bhatti, Ahmad, and Park [3]. Therefore, we aim
for a semantically precise method to capture argument fragments by parsing
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them into a pre-defined but extensible set of logical patterns, i.e. formulae with
placeholders in dedicated modal logics. For each logical pattern, we formulate
multiple dedicated corpus queries [11] reflecting different linguistic realizations
of the same type of statement. It is expected that such an approach will have
comparatively low recall but (usually) very high precision. This in fact suits
our intention to map general tendencies in the argumentative landscape and
reconstruct complete arguments from precisely parsed fragments, rather than
extracting each individual instance of an argument type.

In this paper, we demonstrate our overall workflow, query development
and evaluation results; in particular confirming that we arrive at high preci-
sion through corpus queries. In a subsequent extension of the approach, we
experiment with hierarchical patterns and associated queries, where we look
for matches of an inner pattern in the text spans corresponding to placeholders
of an outer pattern. Moreover, we present an approach that uses query results
as training data for an LLM classifier in order to change the precision-recall
trade-off, with promising results.

Related work Work on argument mining in social media often focuses on graph-
ical structure (e.g. [1,15]; see also Lytos et al. [19] for a survey, and Lytos et
al. [20] for an example of a recent, purely data-driven, approach), and has high-
lighted linguistic and logical challenges [4,7,14].

Our high-precision approach based on logical patterns and queries appears
to be new as such, and is distinct in particular from text mining with knowledge
patterns (e.g. [6,23]). Work on the extraction of counterfactuals [32] follows
partly similar methods, but uses regular expressions instead of linguistically
informed corpus queries.

Recent work on argument mining in Twitter has concentrated on identifying
high-level categories such as argumentative vs. non-argumentation, factual vs.
opinion, claim vs. support vs. rebuttal, etc., which specify the general role of
each tweet in an argument (e.g. [2,12,30]). This is much more coarse-grained
than (and also fundamentally different from) our approach of extracting the
content of argumentative fragments in the form of logical patterns.

NLP approaches to argument mining often focus on automatic classification
of such categories by training machine learning algorithms (e.g. a support vector
machine or logistic regression), see e.g. [5] for a survey. However, with only a
handful of positive examples every one hundred tweets (see Sect. 3.2), obtaining a
sufficient amount of training examples is prohibitively expensive. Recent work on
large language models (LLMs), on the other hand, promises to leverage linguistic
knowledge derived from unlabeled data; these models only have to be fine-tuned
on the classification task at hand [see e.g. 25,26]. We will show in this paper that
fine-tuning a general-purpose LLM on a handful of positive examples does not
yield satisfying results. A more competitive approach are frameworks for few-
shot learning. In SetFit [33], a pre-trained Sentence Transformers [27] model is
first fine-tuned on a number of contrastive pairs of labelled texts and then used
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to encode the training data. Finally, a text classification head is trained using
the encoded data.1

Our combined approach outlined below, i.e. leveraging corpus queries for
training an LLM, is in fact similar to data augmentation [13], i.e. increasing
the diversity of training examples without collecting new data. However, data
augmentation usually works by creating artifical examples that are very similar
to the original positive examples (or are made up altogether), while our app-
roach uses only authentic examples as training data. Finally, in the case that
high-quality training data are not available, one could use “weak labeled data”
[31], applying coarse heuristics to extract training examples while allowing for a
significant amount of noise. This also bears similarities to our approach, but is
fundamentally different from our high-precision, low-recall strategy.

2 Argumentative Fragments

Given the complexity of natural language argumentation, we approach argument
mining in a piece-by-piece manner, aiming to parse argument fragments from
our inventory of predefined logical patterns by means of high-precision corpus
queries. This means we define logical patterns expressing forms of propositions
used in arguments which then have multiple corresponding corpus queries each
covering multiple syntactic realizations to express such a proposition.

2.1 An Inventory of Logical Patterns

Starting from an analysis of argument schemes in the style of Reed, and Macagno
[34], we created an initial inventory of logical patterns for argumentation. This
inventory was extended with additional patterns that were common in our data
but outside of the standard catalogue of argumentation schemes, to adapt to the
informality of arguments on social media.

The patterns are formulae with sorted placeholders in dedicated modal logics.
A typical example is the desire pattern D{?0:entity}{?1 : formula} expressing
that entity ?0 wants formula ?1 to become true. Note that the sort entity does
not require the expression to evaluate to a single entity but instead describes
an abstract group of entities in the sense of Humml and Schröder [17]. Patterns
can also go beyond single modality statements to more complicated formulae or
even sets of formulae (or equivalently conjunctions) like, e.g., the group knowledge
pattern K{?0:entity}({?1 : formula}); (?2) =⇒ (?0) expressing that entity ?2 is
part of entity ?0 whose members know that formula ?1 is true. The underlying
semantics of abstract group knowledge then implies that ?2 also knows ?1, i.e.
K{?2:entity}(?1). This pattern could, e.g., be an indicator for an argument from
Position to Know [34]. The logical framework we use has been described in
more detail in earlier work [8,9]. As indicated above, the overall character of the
1 Other state-of-the-art methods such as T-Few [18] might yield even better results,

but SetFit is a convenient and widely-used framework that does not require any
prompt-engineering.
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representation logic is modal in the sense that it features operators expressing
that statements hold in a certain way; e.g. the operators D and K (‘desires’ /
‘knows’) featuring in the above examples are modal operators.

Our motivation for extracting argumentative content in the form of logical
statements is to leverage automated reasoners to aid in reconstructing complete
arguments. In everyday argumentation, it is uncommon and even socially unac-
ceptable to give detailed arguments that mention every reasoning step and every
premise. Instead, dialogical argumentation relies on shared common knowledge
between the dialogue participants to complete the missing parts of arguments.
In our processing pipeline, the logical reasoner and a knowledge base are even-
tually intended to take the place of the human reasoner trying to fill in the
missing pieces of the arguments. For example the reasoner might combine desire
statements into larger desired states of the world. In our corpus of tweets the
queries retrieve two desire statements attributed to Cameron: “PROOF Cameron
WANTS Turkey to join the EU [. . .]” “Ersatz ‘reform deal’ proves Cameron
always wanted the UK to stay in the EU [. . .]” The reasoner would then draw
the conclusion that Cameron wants both the UK and Turkey to be in the EU.

2.2 Nested Patterns

Combining patterns from our inventory can yield many variants of more complex
statements. We follow a recursive approach to extracting relevant information
from selected pattern combinations. Empirically, we apply corpus queries to the
text spans matching placeholders of an “outer” pattern in order to find matches
of further “inner” patterns. The sorting discipline on placeholders then implies a
corresponding sorting discipline on the patterns themselves with different logic
syntaxes used in patterns of different sorts. For example, a formula describing
an entity will employ different modalities than a formula defining an action or a
truth statement. In Fig. 1, the entity slot in the desire pattern is expanded by fill-
ing in a more complicated entity expression from the set of entity patterns; in the
example, this expression denotes the intersection of two entities (remember that
entities are abstract groups). Similarly, the placeholder ?1, which represents a
truth statement, could be expanded with a more concrete pattern, such as mem-
bership [8]. A concrete realization of the doubly extended pattern would be an
expression like “trustworthy economists favour the UK being in the EU”, which

formula patterns D {?0:entity} {?1 : formula}

D {?0:entity ?2:entity} {?1 : formula}

expand
entity

entity patterns

Fig. 1. A nested pattern
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would be expressed as the formula DisTrustworthy∧isEconomist(UK → EU). In practice,
this approach is implemented by hierarchical queries as discussed in Sect. 5.

3 Data

3.1 Corpus and Linguistic Annotation

We use the data set collected by Dykes et al. [9], which consists of tweets contain-
ing the token brexit (case-insensitive, with or without hashtag marker) collected
before and after the UK Brexit referendum in 2016. Our final corpus only includes
original tweets and has been filtered with a deduplication algorithm (which dis-
regards case differences, @-mentions, URLs, and hashtags). It amounts to ca.
4.3 million tweets with a total size of ca. 80 million tokens, most of them posted
close to the actual referendum on June 23, 2016.

The linguistic annotation pipeline follows [8], comprising Ark TweetNLP [22]2
for simple PoS tags, the OSU Twitter NLP tools [28]3 for Penn-style PoS tags
and named entity recognition, and a lemmatizer based on Minnen, Carroll, and
Pearce [21]. Sentence boundaries are inserted using SoMaJo [24]4. Note that
these systems generate different tokenization layers, which are reconciled in
post-processing. The final corpus is indexed using the IMS Open Corpus Work-
bench [10].5

3.2 Manual Annotation of Argument Fragments

Several student assistants were hired to annotate relevant argument fragments
in two random corpus samples: pre contains 785 tweets from before the referen-
dum, post contains 973 tweets from August 21, 2016 (i.e. after the referendum).
Doubtful cases were discussed with the project members, and all disagreements
in annotation were adjudicated on a regular basis. Note that prevalence of pat-
terns is low: only about 5–7% of all tweets contain desire and 7–10% contain
membership, cf. Table 2. Additionally, random samples of query matches (data
sets matches) were annotated, amounting to a total of 3997 tweets for the desire
pattern and 1005 tweets for membership.

Annotation was highly time-consuming, thus it was unrealistic to obtain a
sufficient number of examples to train a machine-learning classifier to detect
patterns automatically. Several factors contributed to this challenge: Firstly,
the aforementioned low prevalence of patterns meant that annotators needed to
check vast numbers of tweets. Secondly, the linguistic realizations that do occur
take many different forms even within the same pattern, which made it easy to
miss relevant cases. Thirdly, despite working with detailed annotation guidelines,
the decision of whether a given expression fits a particular logical formula or not

2 http://www.cs.cmu.edu/~ark/TweetNLP/.
3 https://github.com/aritter/twitter_nlp.
4 https://github.com/tsproisl/SoMaJo.
5 https://cwb.sourceforge.io/.

http://www.cs.cmu.edu/~ark/TweetNLP/
https://github.com/aritter/twitter_nlp
https://github.com/tsproisl/SoMaJo
https://cwb.sourceforge.io/
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still proved difficult. These difficulties are reflected in the (sometimes low) inter-
annotator agreement scores in Table 1. It is worth noting that the annotators
where instructed to err on the side of annotating doubtful cases positively, with
corner cases included in the subsequent adjudication process.

Table 1. Kappa scores for the three most annotated patterns. E, M, and V represent
three independent student assistants, gold was obtained in a subsequent adjudication
process.

(a) desire

E M V

M 0.39 - -
V 0.79 0.39 -

gold 0.46 0.86 0.45

(b) membership

E M V

M 0.66 - -
V 0.59 0.62 -

gold 0.80 0.72 0.63

(c) opposition

E M V

M 0.35 - -
V 0.59 0.42 -

gold 0.36 0.76 0.46

4 Corpus Queries

4.1 Methods

The manually annotated instances of our argument patterns serve as templates
for specialized corpus queries. For the case of desire, recall that our aim is to find
realisations of the formula D{?0:entity}{?1 : formula} . The following statements
are examples of posts expressing a desire according to our guidelines:

1. “without giving u reasons for u to argue with, I think I’m in favour of an
exit !!”

2. “Several key @vote_leave folks on record wanting to privatise #NHS &
#Brexit #Tory ministers never showed any concern for NHS @stariep”

3. “@SadiqKhan Sir, are you in favor of #Brexit?”
4. “eAndrew Neil is chair of @spectator which has come out for #Brexit How

can @afneil still be allowed control of #BBCSDP #BBCDP?”
5. “Bryan Adams is in favour of Brexit.”

While these examples all correspond to our formula, they are clearly not
identical linguistically. Variation occurs in terms of what the entity and the
formula refer to, as well as how each concept is expressed regarding lexis and
syntax. Nevertheless, examples 1, 3 and 5 can be generalised on the linguistic
level to ENTITY is in favour of FORMULA. Based on such similarities, we
constructed the following query to extract further similar instances of desire
from the overall corpus:
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@0[::] /entity_np_actor [] @1[::]
[xpos=‘‘MD’’ | lemma=‘‘be|have ’’ | upos=‘‘ADJ|ADV ’’]*
[lemma=‘‘in ’’] [upos=‘‘ADJ ’’]* [lemma=$nouns_desire]
[lemma=‘‘for|of|pro|that|to ’’]
@2[::] (/ entity_np_all [] | [xpos=‘‘VBG ’’]) (/ lexical_words [])

↪→ * @3[::]

Our queries are written in the query language [11] of the corpus query processor
(CQP) of the IMS Open Corpus Workbench (CWB, [10]), enabling efficient
execution of complex queries in large corpora. The query language is based
on regular expressions over token descriptions, which are Boolean expressions of
attribute-value pairs (where values can again be matched by regular expressions).
For example, [lemma=‘‘be’’] retrieves all forms of BE (be, am, are, is, was, were,
been, being), and [upos=‘‘ADJ’’]* retrieves sequences of adjectives. Additionally,
structural annotation elements (such as tweets, paragraphs or sentences) can be
matched by XML tags, e.g. <tweet>[]* </tweet> for a complete tweet.

The most important parts of this query are the slot fillers. For desire, they
represent the ENTITY and FORMULA slots. In the corresponding query, the
tokens belonging to a given slot are enclosed in target markers: @0[::] ...
↪→ @1[::] (ENTITY) and @2[::] ... @3[::] (FORMULA). The ENTITY is
modelled with a CQP macro /entity_np_actor[], which expands to match noun
phrases containing personal pronouns, proper names, or nouns from a word list
referencing people or organizations (e.g. politician or party). Limiting the noun
phrase in this way ensures that the expression in the ENTITY slot can reason-
ably be expected to express a meaningful desire. While we will necessarily lose
some recall with this restriction, a more flexible ENTITY slot filler would com-
promise precision too much. However, the word lists were extended using word
embeddings, which we used to suggest distributionally similar items to the ones
that had been collected manually. The macro /entity_np_all[] in the FOR-
MULA region matches a much more general noun phrase, since FORMULA can
refer to a wider range of concepts. Alternatively, this slot can be realized with
a verb in gerund form (e.g. to be in favour of exiting), followed by an arbitrary
number of content words within the same tweet. The middle part of the query
provides linguistic structure to ensure that it actually matches an expression
of desire. After optional modifiers, its main part is in favour/hope/support/. . .
for/of/. . . .

Development Environment. There are two major shortcomings to the main
CWB user interface CQPweb [16], which we initially used for query development
(similar limitations apply to other tools like AntConcc6 or Sketch Engine7).
Firstly, when writing a large repertoire of queries, reusable elements like word
lists and macros need to be managed efficiently. While CWB can easily read

6 https://www.laurenceanthony.net/software.
7 https://www.sketchengine.eu/.

https://www.laurenceanthony.net/software
https://www.sketchengine.eu/
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macros and word lists from plain text files, CQPweb does not provide access to
these files.

More importantly, these tools are designed with traditional corpus studies
in mind, which typically use much shorter queries. Accordingly, functionality
for displaying and sorting query results is usually optimised for single words
and short expressions. In our usage scenario, i.e. argument queries, it is crucial
to mark and highlight multiple positions within query matches. Queries that
retrieve surface realizations of the desire pattern need to specify two slots (text
spans) representing the ENTITY and FORMULA placeholders, respectively.

It has only recently become possible in version 3.4.16 of CWB to mark more
than a single position inside a query match (in addition to start and end of
the match), using anchors @0, . . . , @9. This new feature requires support from
a wrapper application, though, which has to run every query up to 5 times,
collecting two anchor positions in each step. We provide the Python library cwb-
ccc8, which includes such a wrapper.9 Anchor positions can also be adjusted by
an integer offset; this is especially helpful if the query contains optional elements
(with quantifiers ?, + or *).

Since developing corpus queries is an iterative hermeneutic process, carefully
balancing precision and recall for the task at hand, it would be very inconvenient
to run a wrapper from the command line and collect its results whenever a query
is modified. We thus developed Spheroscope10, a web app specifically dedicated
to the iterative development of corpus queries.

Here, queries can use an arbitrary number of word lists and macros, which
can be stored and re-used via the user interface. The interface also enables users
to obtain the frequencies of all words from a word list for any given corpus.
Additionally, semantically similar words can be suggested for semi-automatic
extension of word lists. For semantic similarity, we use custom word embeddings
trained on a larger, independent sample of English tweets. Similar items can
be sorted by their corpus frequency or by cosine similarity (by default, up to
200 items are displayed, hapax legomena excluded). Similarly, macros can be
defined, named, stored, inspected (frequency breakdown), and reused via the
user interface.

Iterative Query Development. In order to incorporate feedback from manual
annotation and to reflect our developing understanding of possible realizations
of our continuously refined inventory of argument fragments, query development
is necessarily iterative. This affects evaluation, since precision and recall need
to be reassessed with every change to the queries. Recall can only be measured
on random subsets of tweets; precision can be assessed qualitatively by reading
concordance lines of query matches as well as quantitatively by using labelled
examples. The development environment thus directly indicates for each query

8 https://pypi.org/project/cwb-ccc/.
9 The module provides additional functionality for tradtional corpus linguistic tasks

such as keyword and collocation analysis. It is now the official Python API to CWB.
10 https://github.com/ausgerechnet/spheroscope.

https://pypi.org/project/cwb-ccc/
https://github.com/ausgerechnet/spheroscope
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match whether it is a true positive (if the tweet is contained in any gold stan-
dard), cf. Figure 2.

Fig. 2. Concordance View. For each query result, the actual text of the whole tweet is
displayed, as well as the surface realizations of each defined slot. Additionally, column
TP indicates whether the match is a true positive (True), false positive (False), or
unknown (?) as the tweet is not in the gold standard.

4.2 Evaluation and Discussion

Results for our current version of the queries for desire and membership can be
found in Table 2. Note that the most reliable estimates for precision can be taken
from the annotation of actual query matches, whereas recall is most accurately
estimated from post (since pre was used in the course of developing queries).

Table 2. Pattern-based evaluation of query approach for patterns desire and mem-
bership on different data sets alongside prevalence values. Recall of querying can most
reliably be estimated from post, while precision can most reliably estimated on actual
query matches (indicated in bold).

pattern data set prevalence TN FN TP FP precision recall support

desire pre 0.07 721 31 30 3 0.91 0.49 785
post 0.05 923 25 19 6 0.76 0.43 973
matches 2361 97 0.96 175022

membership pre 0.10 705 62 13 5 0.72 0.17 785
post 0.07 901 65 6 1 0.86 0.08 973
matches 952 53 0.95 54412

As noted above, corpus queries are abstractions of the manually identified
hits for a given pattern in the gold standard (based on pre). While they help
us to find several hundred thousands of instances of desire on the corpus, their



172 N. Dykes et al.

recall is restricted to maximize precision. In this section, we explore the nature
of potential recall issues in more detail.

Statistical measures on precision and recall only show part of the picture:
since our logical patterns are much more abstract than their realizations in the
corpus, it is likely that, for politically relevant statements, even if an individual
instance was missed, we may still have found other tweets containing equivalent
information on the same entities and concepts. We therefore conducted a quali-
tative evaluation of tweets from our gold standard that were marked as desire,
but were not retrieved by any of the queries written for this pattern.

We found a total of 65 false negatives for desire in our gold standard. Slightly
more than half of these instances were excluded from further analysis because
they were either no longer part of the corpus (9), they were assigned to sub-
patterns of desire (6), or because they were categorized as purely situational,
e.g. because the entity was the speaker (22). The remaining 28 tweets were left
as genuinely relevant statements to examine in more detail.

Typical reasons why a tweet was missed by the queries include both syntactic
and lexical properties. On the syntactic side, we found long distances between
the entity and the formula (Banks now call for ‘passporting’; to be ditched
and instead want a ‘hard Brexit’). Similar issues relate to tweets containing
uncommon vocabulary or typos in slots using word lists (Britian want Brexit
to go away).

In order to see whether tweets with equivalent content were present in the
query results, we searched for the ENTITY for each of these false negatives
within the query matches for desire and read the matches. For 23 out of 28
cases, an exact or very close match was found. For instance, while Dennis Skin-
ner for Brexit !!! YASSSSSSS !!!! was missed, our desire queries matched Dennis
Skinner backs Brexit for democracy and Labour MPs Dennis Skinner and John
Mann back Brexit. Occasionally, the ENTITY was expressed in slightly different
ways, but could still be related back to the same referent with contextual under-
standing. This incudes the following tweet, which we missed due to its relative
clause: Andrew Neil is chair of @spectator which has come out for #Brexit.
While our query results for desire did not include the @spectator account as the
ENTITY, several instances referred to The Spectator.

For five relevant false negatives, we could not find a very similar equivalent
in the query results. In some cases, the ENTITY was a relevant actor, but still
infrequent in the corpus ( Globalists R desperate to abolish nations & families).
Alternatively, the FORMULA was too vague to be reconstructed (You can sense
people revelling in it on some level. Desperate for something to come out that
proves Farage or Leave or Brexit did this).

In summary, this evaluation suggests that, at least for statements that have
been expressed by a reasonably large number of users, the queries mostly still find
logically equivalent propositions even where individual realisations are missed
due to unusual wording or syntax.
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5 Hierarchical Queries

5.1 Methods

Besides running on the overall corpus, queries can be nested to find argument
fragments within the slots of larger fragments. For instance, if we run queries
for the membership pattern on the FORMULA slot of our desire queries, we
expect the results to be a hierarchical combination of the two patterns (e.g. I
want Britain to be in the EU ). The technical implementation consists of four
steps:

1. Run queries for a given pattern and extract the text spans matching the slots
of individual placeholders.

2. Form one sub-corpus per placeholder slot containing only these text spans.
3. Run queries for patterns of the correct sort on each sub-corpus.
4. Further instantiate the extracted formulae by substituting placeholders in

the partial formula of the outer query with the formula obtained from the
sub-query.

It is obvious that, in order for the results to be meaningfully interpretable,
the inner query needs to be contained within the relevant slot of the outer query.
However, it is less clear whether one should only consider exact matches (where
the membership statement matches the entire FORMULA slot of desire) or also
accept cases where only a part of the outer slot is matched by the inner query.

5.2 Evaluation

Therefore, we evaluated hierarchical queries for the combined pattern ENTITY
desires MEMBERSHIP.

Table 3. Evaluation of hierarchical queries for ENTITY desires MEMBERSHIP for
different positions of the inner query in the outer slot

inner/outer #matches TP FP correct example

exact 446 48 2 Donald Trump Supports The UK Leaving The European Union
left 260 33 17 he would support Texas leaving the US and becoming an independent state
right 215 11 39 let’s hope we get a strong turnout on the day and we leave the EU
within 163 0 50 —

Table 3 shows the number of matches for each position of the inner query
in the slot of the outer query, as well as the number of true and false posi-
tives in a manual validation of a random sample of 50 tweets for each position.
Exact matches are almost always correct instances of the combined pattern. The
majority of cases where the inner query match is only aligned with the left slot
boundary are also correct, although the precision is considerably lower than for
complete matches.



174 N. Dykes et al.

5.3 Discussion

A common type of false positive in this set of tweets is due to the ambiguity
of the word join, e.g. We wish the Netherlands will join us soon with a #Nexit
and kick out their anti-democratic rulers. Our combined query misinterprets this
tweet as the Netherlands becoming a member of us. Most matches where the end
of the inner query result is aligned with the right slot boundary are mostly false
positives. Even though such cases usually do involve statements about member-
ship, the membership assertion is typically embedded in some other statement
that would also need to be parsed for a meaningful interpretation (e.g. I really
hope the Brits understand how turbulent Europe will be if UK leaves EU).
Finally, none of the cases where the inner query match is strictly contained
within the outer query’s slot were true positives. Similarly to the right overlap,
while the formula was typically related to membership, a multi-step parsing pro-
cess involving additional patterns would have been required (I wished I knew if
UK leaving the EU is good or bad).

6 Fine-Tuning LLMs

6.1 Methods and Evaluation

Supervised Prediction. Due to their low prevalence in the corpus, training an
automatic system to detect individual argumentative fragments is challenging.
The straightforward state-of-the-art approach is to fine-tune a large language
model (LLM) on the manually annotated gold standard. The combined data
set, comprising pre and post, cf. Section 3.2, consists of 1758 annotated tweets
with 105 positive examples of desire (i.e. a prevalence of ca. 6%). Using 70% as
training data and 30% as test data leaves us with 73 positive training examples
(out of 1231 training examples), and 32 positive test examples (out of 527 test
examples).11

In a first attempt, we use distilbert-base-uncased [29] as a base model and
fine-tune using the transformers package with standard settings.12 The trained
model yields scores for both classes (desire and no desire); we focus on the pos-
itive class here. Note that scores for the two classes have a near-perfect negative
correlation. A cut-off value for this score determines the trade-off between pre-
cision and recall; see Fig. 3 for the resulting precision-recall curves. A standard
composite measure is the area under this curve (PR-AUC).13 As can be seen
from Fig. 3b (line LLM (combined)), the trained model performs poorly: preci-
sion values of, say, 50% can only be achieved with less than 25% recall (and vice
11 All train/test splits are stratified random samples, i.e. we take random samples but

make sure that the ratio of positive examples remains the same across splits.
12 AutoModelForSequenceClassification, learning rate 2e-5, 5 epochs, 0.01 weight decay.
13 Alternatively, we could look at the area under the receiver-operating characteristic

(ROC) curve, which plots the true positive rate (precision) against the false positive
rate (1 − specificity). This curve is however more suitable for situations where both
classes (positive and negative) are equally prevalent or at least equally important.
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(a) PR curve of LLM (trained on
matches) on all of combined.

(b) PR curve of different LLMs on test-
split of combined.

Fig. 3. PR curves of LLMs on combined and its test split.

versa). The queries, on the other hand, achieve the expected high precision of
88% on the test set, and a stable trade-off with 47% recall.

As mentioned in the introduction, recent advancements in NLP have brought
forth LLM frameworks that can generalise from very small numbers of training
examples. Here, we use SetFit as such a few-shot classifier, and fine-tune the
paraphrase-multilingual-mpnet-base-v2 model on our training examples. The PR
curve of this approach outperforms the first attempt by a large margin (see
Fig. 3b, line SetFit (combined)) and achieves competitive results compared to
our query-based approach.

Generalizing from Query Matches. Additionally, we present an approach
that leverages our corpus queries as training data for fine-tuning the LLM. We
use all query matches, except for those in the combined gold standard to ensure
comparability. We take 70% of a total of 145,699 matches for the desire pat-
tern as positive training examples and add the same amount of random tweets
(excluding query matches and those in combined) as negative examples. Note
that for training, we assume all query matches to be instances of desire and
randomly selected tweets to be negative examples. This is a reasonable approxi-
mation due to the high precision of the queries (ca. 96%) and the low prevalence
of desire (ca. 6%).

Our approach can likely be improved considerably by optimizing any of the
following parameters: Firstly, we could train on all query results. However, with
the setting at hand, we can also evaluate how well the LLM predicts query results
(see below for results). Secondly, we could provide a dataset with the (estimated)
prevalence of desire. Lastly, we could try different base models and parameter
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settings (learning rate, weight decay, etc.). However, our goal here is a proof of
concept, not engineering the best possible system.

Unsurprisingly, an LLM trained on query matches can accurately distinguish
query matches from other tweets, i.e. it can learn the formal linguistic struc-
tures expressed by the queries. Recall that we only used 70% of the matches
as positive training examples. Evaluating the LLM classifier on the remaining
examples (mixed with random tweets) yields a PR-AUC of 0.9978. However, we
are interested in its performance to detect the desire pattern, not just desire
that is also captured by the queries (whose estimated recall is ca. 43%).

The precision-recall curve of this LLM on combined in Fig. 3a is thus more
interesting. We also indicate the performance of the corpus queries in the graph.
It is no coincidence that this data point lies on the PR curve of the LLM,
which retrievs query matches nearly perfectly. At this point of the curve, the
query matches and LLM predictions are almost identical. By lowering the LLM
decision threshold, we move down the PR curve, improving recall at the cost of
precision. Alternatively, we can further improve precision if we accept an even
lower recall. Many reasonable trade-off points between precision and recall are
available. In the graph, we also the trade-off that maximises F1, i.e. the harmonic
mean between precision and recall. We determine this value ex post for reasons
of simplicity; in practical applications, it can also be determined on a separate
development set.

Table 4. Comparison of different approaches to detect desire on the complete data
set combined (top) and on test-split of combined (bottom). The query approach yields
highest precision, the LLM trained on query matches can yield higher recall with with
still decent precision values (as exemplified by the point of optimal F1, indicated in
bold).

data set prev approach FN FP TN TP precision recall F1

combined 0.06 LLM (matches) 28 33 1620 77 0.70 0.73 0.72
queries 56 9 1644 49 0.84 0.47 0.60

test-split 0.06 LLM (matches) 9 6 489 23 0.79 0.72 0.75
LLM (combined) 19 26 469 13 0.33 0.41 0.37
SetFit (combined) 7 6 489 25 0.81 0.78 0.79
queries 17 2 493 15 0.88 0.47 0.61

Figure 3b shows PR curves on the test set of combined, where we can com-
pare the LLM trained on the train-split of combined (LLM (random2000)) with
the one trained on query matches (LLM (matches)). The LLM trained on query
matches is far superior to the one trained only on a couple of dozen of positive
examples. Table 4 lists detailed results for all approaches on combined and its
test-split (for LLMs, the decision threshold is set at the point of optimal F1).
In terms of precision, the corpus queries yield the best results (as by design).
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However, the LLM trained on query matches can yield better recall, as is exem-
plified at the point of optimal F1 of the PR curve.

6.2 Discussion: Qualitative Comparison of Approaches

As seen in Table 4, at the point of optimal F1, the LLM approach trained on
query matches achieves higher recall than the queries, but lower precision. In
this section, we examine the differences between these two approaches through a
qualitative analysis of tweets in the gold standards that were found by the LLM,
but not by the queries.

The first group of tweets are newly identified true positives, i.e. tweets that
contribute to the LLM achieving higher recall than the queries. The results sug-
gest that the improvement in recall can be attributed to systematic factors. The
main patterns in the true positives unique to the LLM include tweets containing
typos (Britian) or short modifier phrases (Denmark for one will be queuing
up to leave). While it would technically be possible to write queries that handle
such cases, such modifications would either introduce unwarranted complexity
for relatively small improvements, or they would reduce the queries’ precision
by introducing more opportunities for false positives.

Additionally, the queries rely on linguistic pre-processing, in particular on
POS tagging. While this information is helpful in specifying grammatical pat-
terns, tagging errors occasionally prevented the queries from finding relevant
tweets. Thus, the LLM found several nominalizations that the POS tagger misin-
terpreted as adjectives, causing the query to miss a noun phrase (e.g. The British
want EU migrants to stay). Similarly, the queries impose semantic restrictions
via word lists where necessary, which obviously limits the scope of words that
can possibly be matched in a given position. In contrast, the LLM found tweets
with unusual entities like noted Europhile paper backs Brexit.

Finally, some hits found by the LLM contained syntactic patterns for which
we had no queries – either because the expression contained non-standard syntax
(If we Brexit., ending the Barnet agreement, I’m for! ), or because the construc-
tions were too rare to reasonably justify developing a manual query (Very much
looking forward to seeing nigel farage in action tonight).

False positives (FP) unique to the LLM were usually syntactically similar to
one of the queries, but did not match the correct semantics (#Brexit gloom is
for losers). In rarer cases, the tweets contained some reference to desire that was
too implicit according to the guidelines (“Being pro brexit is wacist!” said the
hipster white brits to the black brits – this tweet is not considered desire since it
is a general statement rather than a specific entity desiring something).

7 Limitations

The case study currently pursues a comparatively narrow topical focus; the gen-
eralizability of our findings remains to be explored. Scaling the overall approach
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to large repositories of logical patterns is possible in principle but resource-
intensive: Firstly, the method relies on the manual development of corpus queries,
which involves corpus-linguistic analysis, and secondly, query development needs
manual annotation of random samples to find suitable starting points (however,
queries then generalise from very few examples). The task of annotating sam-
ples for matches with logical patterns is conceptually difficult, and agreement
between human annotators is comparatively low (with notably higher agreement
on the post dataset). Our approach to fine-tuning LLMs using query results is
currently at the proof-of-concept stage and could likely be substantially improved
in further work.

8 Conclusion

We have described an approach to extracting argument fragments from short text
snippets on social media, using corpus queries to fill slots in predefined logical
patterns. Patterns and queries can be applied in a nested fashion, allowing for
the extraction of more complex semantic content. We have demonstrated an
application of our methodology in the generation of training data for use in the
fine-tuning of LLMs. Without any manual annotation, we achieve comparable
results to state-of-the-art few-shot learning approaches such as SetFit that have
been trained on more than 1200 manually annotated tweets.

Ongoing efforts aim to conduct automated logical reasoning steps over the
extracted argument fragments, which will require use of semantic similarity mea-
sures. Moreover, we intend to extend the scope of the method both w.r.t. sup-
ported lanuages and w.r.t. the length and degree of coherence of the underlying
text, covering also, e.g., newspaper articles or parliamentary debates, and aiming
to extract argumentation chains instead of just argument fragments.

Acknowledgements. The work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 377333057 “Reconstructing Arguments
from Newsworthy Debates (RAND)”.
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Abstract. Abstract argumentation frameworks model arguments and
their relationships as directed graphs, often with the goal of identify-
ing sets of arguments capable of defending themselves against external
attacks. The determination of such admissible sets, depending on spe-
cific semantics, is known to be an NP-hard problem. Recent research has
demonstrated the efficacy of machine learning methods in approximating
solutions compared to exact methods. In this study, we leverage machine
learning to enhance the performance of an exact solver for credulous rea-
soning under admissibility in abstract argumentation.

More precisely, we first apply a random forest to predict acceptability,
and subsequently use those predictions to form a heuristic that guides
a search-based solver. Additionally, we propose a strategy for handling
varying prediction qualities. Our approach significantly reduces both the
number of backtracking steps and the overall runtime, compared to stan-
dard existing heuristics for search-based solvers, while still providing a
correct solution.

Keywords: Abstract argumentation · Heuristics · Random forest

1 Introduction

Argumentation is central for human communication and interaction, hence there
are various strategies of implementing this concept in approaches to artificial
intelligence. In the field of abstract argumentation [8], the underlying idea is to
focus on the interplay between arguments and counterarguments rather than on
the content of the arguments themselves.

The core formalism in this field is the abstract argumentation framework,
which can be understood as a directed graph in which the nodes represent the
given arguments, and the edges represent an attack relation between them.

Figure 1 shows an example of such a framework. Semantics are commonly
expressed through so-called extensions, which are sets of arguments that jointly
fulfill certain conditions. A fundamental semantics in the field of abstract argu-
mentation is the concept of admissibility. In order to be an admissible extension,
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arguments in the set must not attack each other (i. e., the set must be conflict-
free) and they have to defend each other from all outside attacks.

Typical problems in abstract argumentation include the problem of deciding
whether an argument is included in at least one extension (or all extensions) wrt.
a specific semantics, or the problem of determining an extension or enumerating
all of them wrt. a specific semantics.

The literature already provides different families of (exact) approaches to
solve the above-mentioned reasoning problems in abstract argumentation. One
such family consists of reduction-based approaches—see, e. g., [1,9,17,21,24]—
which encode a given problem in a different formalism—e. g., as a Boolean sat-
isfiability problem—and then use an existing solver for that formalism. Another
family of approaches consists of backtracking-based methods that make use of
heuristics to guide the search procedure—see, e. g., [12,22,23].

Since most of the reasoning problems in abstract argumentation are compu-
tationally hard [10], this can result in exceedingly long runtimes when using an
exact algorithm. To counteract this issue, machine learning-based approaches
have been proposed in the literature [6,7,15,19]. However, although these
approaches proved to be significantly faster than their exact counterparts,
they are not guaranteed to yield correct results (for a deeper analysis, see
also [16]). Thus, the main advantage of an exact method (such as a reduction-
or backtracking-based approach) is that it always provides correct results, while
the main advantage of a (purely heuristic) machine learning-based approach is
its runtime performance. An approach for combining these advantages is the
use of machine learning techniques to predict the “best” exact solver from a
portfolio [14,25]. In the work at hand, we aim to harness the advantages of
machine learning methods in a different manner. More precisely, we use pre-
dictions made by a machine learning model in order to inform a heuristic that
guides a backtracking-based approach which ultimately yields a correct result.
As an example for the overall approach we consider the task of deciding whether
a given argument is accepted under admissibility [8], which is a core aspect in
many reasoning problems.

In an experimental evaluation we compare the use of our machine learning-
based heuristic (using a random forest) to the standard heuristic of the
backtracking-based solver Heureka [12], and we demonstrate that both the num-
ber of backtracking steps as well as the overall runtime can be reduced when our
newly proposed heuristic is applied.

To summarize, our contributions are as follows:

– We present an approach that exploits the strengths of both machine learn-
ing and reasoning techniques by using machine learning-based predictions to
create a heuristic which can accelerate an exact, backtracking-based solver.

– Our approach offers a flexible solution, as both the machine learning compo-
nent and the backtracking-based solver can be specified as desired.

– In an experimental analysis, we show that our approach leads to a significant
decrease in both the number of backtracking steps and overall runtime, when
compared to a standard heuristic.
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Fig. 1. An abstract argumentation framework.

The remainder of the paper is organized as follows. In Sect. 2 we provide some
preliminaries on the topic of abstract argumentation. After giving an overview on
current solution approaches for problems in abstract argumentation in Sect. 3, we
propose a machine learning-guided heuristic in Sect. 4. An extensive experimen-
tal analysis is presented in Sect. 5, Sect. 6 details the limitations of our research
and finally we conclude in Sect. 7.

2 Preliminaries

An abstract argumentation framework (AF) [8] is a tuple F = (Args, R), with
Args being a set of arguments and R ⊆ Args × Args defining an attack relation.
An argument a ∈ Args attacks another argument b ∈ Args if (a, b) ∈ R. On the
other hand, an argument a ∈ Args is defended by a set of arguments E ⊆ Args if
for all b ∈ Args with (b, a) ∈ R, there exists a c ∈ E with (c, b) ∈ R.

An extension is a set of arguments that are jointly acceptable, given a set
of conditions. Exactly which conditions need to be satisfied is determined by
a semantics. There exists a multitude of different semantics in the literature,
however, we focus on the preferred semantics introduced in the seminal paper
by Dung [8].

Definition 1. Let F = (Args, R) be an argumentation framework. A set E ⊆
Args is

– conflict-free if there are no a, b ∈ E such that (a, b) ∈ R,
– admissible if E is conflict-free and each a ∈ E is defended by E within F ,
– complete if every argument a ∈ Args defended by E is also included in E,
– preferred if E is a ⊆-maximal complete extension, and
– grounded if E is a ⊆-minimal complete extension.

Note that the grounded extension is uniquely determined [8].
Typical decision problems in the area of abstract argumentation include the

problem of deciding whether a given argument is included in at least one exten-
sion (credulous acceptability) or all extensions (skeptical acceptability) wrt. a
given semantics. In the following, we denote the problem of deciding credulous
acceptability wrt. preferred semantics as DC. Note that this problem is equiva-
lent to the problems of deciding credulous acceptability under admissible, and
under complete semantics.



188 S. Hoffmann et al.

Algorithm 1: Backtracking-based algorithm SEARCH for checking credu-
lous acceptance wrt. admissibility
Data: F = (Args, R), Sin, Sout ⊆ Args
Result: True if there is admissible S′ with Sin ⊆ S′.

1 if Sin is not conflict-free then
2 return False

3 if Sin is admissible then
4 return True

5 Pick a ∈ Args \ (Sin ∪ Sout)
6 return SEARCH(F, Sin ∪ {a}, Sout) OR SEARCH(F, Sin, Sout ∪ {a})

Example 1. Consider the AF illustrated in Fig. 1. The conflict-free sets of this
AF are

{∅, {a0}, {a1}, {a2}, {a3}, {a4},
{a0, a2}, {a0, a4}, {a2, a4}, {a3, a4},
{a0, a2, a4}}.

Out of these sets, only ∅, {a4}, {a0, a4}, and {a0, a2, a4} defend themselves, and
are thus admissible. Further, the only complete sets are ∅ and {a0, a2, a4}, which
makes the grounded extension (i.e., the ⊆-minimal complete extension) ∅, and
the set of preferred extensions (i.e., the ⊆-maximal complete extensions) consists
only of {a0, a2, a4}. We can also see that the set of arguments contained in at
least one admissible set (i.e., the set of credulously acceptable arguments wrt.
admissibility) is {a0, a2, a4}, which is equal to the set of credulously accepted
arguments under complete or preferred semantics.

3 Solution Approaches in Abstract Argumentation

The methods employed to address decision problems in abstract argumenta-
tion can be broadly categorized into reduction-based or direct approaches [5].
Reduction-based solvers operate by translating the reasoning problem into other
formalisms, such as answer-set programming [9,11], constraint-satisfaction prob-
lems [2,4] or Boolean satisfiability [21,26], leveraging existing solvers in those
domains. The advantage of the reduction-based approach lies in the high effi-
ciency of these existing solvers. On the other hand, direct approaches involve
the implementation of a dedicated algorithm tailored to the structure of AFs,
often utilizing backtracking. Direct solvers retain the structural information of
the AF, allowing them to exploit specific shortcuts relevant to certain semantics
[5].

Algorithm 1 describes a simple backtracking strategy to assess argument
justification. Given an AF F and two argument sets Sin and Sout, the algo-
rithm recursively explores potential admissible sets by considering the inclusion
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or exclusion of individual arguments. It terminates and returns False if Sin

is not conflict-free, ensuring the absence of internal attacks. If Sin is already
admissible, the algorithm returns True. Otherwise, it selects an argument a
from the remaining set of arguments and recursively follows two branches: one
including a in Sin and maintaining Sout, and another excluding a from Sin and
incorporating a into Sout. If the search in the first branch succeeds the second
branch does not have to be explored. If the search in the first branch fails, we
say that the algorithm backtracks and it is required to continue with the second
branch. The algorithm returns True if either branch results in an admissible
set. The algorithm can determine if an argument a is contained in at least one
admissible/preferred/complete extension by calling it with SEARCH(F, {a}, ∅).

The order in which arguments are processed—i. e. how argument a is deter-
mined in line 5 of Algorithm 1—plays a crucial role in the algorithm’s perfor-
mance, and different heuristics can be employed for this purpose. The algorithm
we use in our study specifies the order in a deterministic way. The selected
heuristic calculates a confidence value for each argument. Subsequently, these
values are arranged in descending order to establish the total ordering.

Example 2. Consider again the AF in Fig. 1, which depicts an AF with the
preferred extension {a0, a2, a4}, and the task to decide DC wrt. a2. Assuming
the order determined by a certain heuristic is (a1, a3, a4, a0, a2)1, the binary tree
visualizing the recursive calls needed to solve this task using Algorithm 1 has a
depth of 4. In contrast, building the order based on a perfect prediction of each
argument’s acceptability yields a depth of 2, thereby enhancing the algorithm’s
efficiency.

Note that Algorithm 1 only showcases the general principle of search-based
algorithms. Existing search-based solvers [12,22,23] are more involved and rely
on similar techniques as DPLL- and CDCL-solvers from satisfiability solving [3].

4 Machine Learning-Guided Heuristics

The goal of this paper is to improve the performance of a direct solver by reducing
the number of backtracking steps necessary to decide DC wrt. a given argument.

In order to do so, we employ a machine learning classifier and use the obtained
predictions to guide a direct solver. For our research, we decided to predict the
overall acceptance status of an argument and use this prediction, along with a
confidence measure, to build our heuristic. This heuristic determines the order
in which the search algorithm processes the arguments. One might question
why we did not employ the classifier to directly predict the optimal order for
each argument, thereby eliminating the need for a priority heuristic altogether.
However, it is crucial to acknowledge that for each argument, there exist multiple
ideal orderings that would effectively guide the solver.

Returning to Example 2, we determined a0, a2, a4 to be the preferred exten-
sion of this AF. However, when deciding DC with respect to a2, it does not mat-
ter whether we first pass a0 or a4 to the algorithm. Another possible approach
1 This is the order determined by the standard heuristic used in Heureka [12].
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would be to aim to directly predict admissible sets. The author in [18] describes
a similar approach by training a graph neural network to predict which argu-
ments are jointly admissible and then use this information to guide a SAT-based
solver. While this approach yielded promising results and provides opportuni-
ties for further study, it also requires extensive neural network training, whereas
our goal was to investigate whether a lightweight solution could already provide
substantial improvements. More information on the training process is provided
in Sect. 5.1.

We pass the obtained prediction outcomes as input to a direct solver and use
them to develop a heuristic that prioritizes arguments based on their predicted
acceptability. Arguments predicted with higher confidence to be accepted wrt.
DC are processed first, while those likely to be rejected are processed last. We
compare the results to those obtained using a heuristic that has demonstrated
effective performance for DC in prior research [12].

Following an analysis of some initial experiments, we refine our approach by
crafting a heuristic tailored specifically to the query argument. Subsequently, we
assess the performance on further datasets.

To determine whether an argument a is acceptable wrt. DC, we need to find
a preferred extension that contains a. In contrast, to prove that a is not accept-
able wrt. DC, we need to establish that there cannot be a preferred extension
containing a. As any conflict with the grounded extension signifies the rejection
of a, our strategy in aiming to prove that a is not acceptable wrt. DC revolves
around assuming a, as well as all arguments belonging to the grounded exten-
sion, are acceptable wrt. DC and devising a heuristic prioritizing arguments likely
not being accepted. This approach aimed to ensure conflicts happen early on in
the justification process, in order to enhance overall performance. While ini-
tial experiments showed promising outcomes in AFs with substantial grounded
extensions, the efficacy diminished in AFs with an empty grounded extension.
Even when restricting the heuristic’s application only to AFs with non-empty
grounded extensions, the results failed to significantly surpass those of the stan-
dard heuristic. This may be attributed to the fluctuation in prediction accuracy
when considering related arguments. As detailed in Sect. 5, although our RF-
model is able to classify most arguments correctly, when constructing a heuristic
centered on a specific argument, substantial penalties can occur for inaccuracies
in predicting related arguments. Additional research is needed to devise a robust
heuristic for rejected arguments. Consequently, we exclusively consider accepted
arguments in the subsequent sections of this paper.

5 Experimental Analysis

The following section offers an overview of the datasets we utilized, outlines our
experimental setup, and presents the results obtained from our experiments.
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5.1 Datasets and Setup

To conduct our experiments, we utilized the kwt-train and kwt-test datasets
generated using the KwtDungTheoryGenerator2 as described in [16].

Each graph in these datasets consists of 151 arguments, and the training and
test set each contain 1000 graphs.

To assess the performance of our heuristic on larger datasets, we employed
the KwtDungTheoryGenerator to generate a more extensive dataset called kwt-
large. This new dataset comprises 10,000 graphs designated for training (kwt-
large-train) and an additional 1000 graphs reserved for testing (kwt-large-test).
The graphs within this dataset span a range of 100 to 300 arguments, with a
total of 148,483 accepted arguments within the kwt-large-test set.

In our research, the primary emphasis lies on enhancing the performance of
arguments that are credulously accepted. Accordingly, we sought to employ a
graph type that featured a substantial number of accepted arguments for our
third dataset. To achieve this, we harnessed the AFBenchGen graph generator3

to create a supplementary set of 10,000 Barabasi graphs for training (Barabasi-
train) and an additional 1,000 Barabasi graphs for testing (Barabasi-test). These
graphs encompassed argument quantities ranging from 100 to 500, resulting in
a total of 252,502 accepted arguments within the Barabasi-test set4.

Previous research has suggested that standard machine learning classifiers
are useful in predicting the acceptability status of arguments in an AF [13,16].
In [13] random forest (RF) classifiers trained using a comprehensive feature set
provided the best results. This feature set comprised 10 node- and graph-based
properties, namely the degree, closeness, Katz [20], and betweenness centrality
as well as the number of the strongly connected components (SCC) of the AF,
the size of the SCC each argument is part of, the average degree of the AF and
whether it is irreflexive, strongly connected or aperiodic.

Building on these results, we trained individual RF classifiers for each dataset.
The training and testing procedures were executed using Python, making use
of the scikit-learn5 and networkx 6 libraries. For a detailed overview of all three
datasets, please refer to Table 1. To quantify the efficacy of our classification
results, we use the standard metrics of accuracy, recall (also referred to as
true positive rate (TPR)), specificity (also referred to as true negative rate
(TNR)), and precision, as well as the Matthews Correlation Coefficient (MCC).
We define a true positive (TP) as an argument in an AF that is accepted wrt.
DC and was correctly classified as such. Accordingly, a true negative (TN) is
a non-accepted argument that is correctly classified as such, and false posi-
tives/negatives (FP/FN) are the corresponding falsely classified counterparts.

2 http://tweetyproject.org/r/?r=kwt gen.
3 https://sourceforge.net/projects/afbenchgen/.
4 The datasets, the enhanced Heureka code and the individual results are available

here: http://mthimm.de/misc/hkt ratio24.zip.
5 https://scikit-learn.org/stable/.
6 https://networkx.org/.

http://tweetyproject.org/r/?r=kwt_gen
https://sourceforge.net/projects/afbenchgen/
http://mthimm.de/misc/hkt_ratio24.zip
https://scikit-learn.org/stable/
https://networkx.org/
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Table 1. Overview of the kwt, kwt-large and Barabasi datasets.

Dataset No of graphs No of nodes YES nodes NO nodes

kwt-train 1,000 151,000 113,539 37,461

kwt-test 1,000 151,000 112,909 38,091

kwt-large-train 10,000 2,210,000 1,574,194 635,806

kwt-large-test 1,000 220,342 148,483 71,859

Barabasi-train 10,000 3,000,000 2,524,352 475,648

Barabasi-test 1,000 300,000 252,502 47,498

Table 2. Results for classifying the kwt, kwt-large and Barabasi test sets using an RF
classifier trained on a total of 10 graph features.

Dataset MCC Accuracy Recall (TPR) Specificity (TNR) Precision

kwt-test 0.987 0.995 0.994 1 1

kwt-large-test 0.990 0.996 0.994 1 1

Barabasi-test 0.792 0.947 0.980 0.771 0.958

Accuracy is defined as TP+TN
TP+TN+FP+FN , precision as TP

TP+FP , TPR as TP
TP+FN , TNR

as TN
TN+FP , and MCC as TP·TN−FP·FN√

(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)
.

We decided on using the Heureka solver [12] due to its implementation of
a direct solution approach and its flexibility in incorporating custom heuristics
to determine the order of arguments. The objective of the heuristic is to assign
a real-number value to each argument through a mapping function. A higher
value indicates a higher priority for a particular argument, influencing its pro-
cessing order in the justification process. Specifically for DC, Heureka employs
a standard heuristic that emphasizes arguments within strongly connected com-
ponents, combining this with a path-based component.

In our experiments, Heureka is executed on each argument within our test
sets, capturing both runtime and backtracking steps for individual arguments.
The standard heuristic serves as a benchmark for comparing the outcomes of
our experiments. To control the overall runtime for each dataset, a timeout of
10 minutes per argument is implemented.

5.2 Initial Experimental Analysis

We begin our experiments by training an RF classifier for each dataset. An
overview of the classification metrics is provided in Table 2.

Our initial approach involves simply prioritizing the arguments predicted
to be acceptable wrt. DC. The order of argument processing is determined by
calculating a score for each argument based on the percentage of trees that
favor the assigned label. If an argument is predicted to not be contained in any
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Table 3. Results for classifying DC arguments in the kwt Dataset using the standard
Heureka heuristic as well as a simple prediction-based ordering

MCC Standard Backtracks Prediction Backtracks no of AFs

>0.7 39,919 1,082,091 8

>0.8 168,312 50,328,039 58

>0.9 10,033 1,531,500 33

1 280,676 0 898

Total 498,940 52,941,630 997

extension, we prioritize arguments with predictions that are close to the decision
boundary.

We evaluate all arguments that are acceptable wrt. DC in the kwt-test set
using both the prediction-based ordering and the standard heuristic.

The results, presented in Table 3, indicate that the simple ordering we
employed successfully reduced the need for backtracking in cases with relatively
accurate predictions, however, this approach severely penalizes wrong predic-
tions, which led to an overall increase in backtracking steps. Additionally, using
the simple ordering heuristic, Heureka was unable to solve three AFs within the
10-minute time limit per argument.

To gain deeper insights into the limitations of this approach, we conducted a
detailed analysis of the AF that required the highest number of backtracking
steps. While applying the prediction-based ordering resulted in a staggering
21,482,709 backtracking steps, the standard heuristic was able to resolve this
AF without any backtracking.

Upon closer examination, we discovered that out of the 151 arguments in
this AF, only 9 specific arguments were responsible for all the backtracking
steps. These 9 arguments were the sole accepted arguments that were erroneously
predicted as not accepted by our model. Furthermore, all of these arguments
belonged to the same extension, and critically, none of them belonged to any
other extension. As a result, these crucial arguments, which would be highly
valuable for guiding our search algorithm, ended up being processed toward the
end of the solving process. Consequently, a straightforward ordering approach
proved to be insufficient. To reduce the overall number of required backtracking
steps, a more refined heuristic is needed.

To establish whether an argument a is acceptable wrt. DC, we must identify a
preferred extension E that contains a. Therefore, we want to prioritize arguments
that are most likely part of E. We thus separate our AF into three distinct
sets: Arguments that are likely not in E (outExt), arguments that defend a
(defenders) and thus have the highest chance to be in E, and arguments that
might be in E (possibleExt). Our refined algorithm starts by adding all arguments
that are in conflict with a to the outExt set. Likewise, arguments predicted to
be outside any extension are categorized within outExt. Subsequently, we then
iterate through the remaining arguments, identifying whether arguments act
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as defenders of a by attacking its attackers or whether they undermine E by
targeting arguments likely to be part of E. Arguments that do not fall into the
categories of defenders or offenders are placed in the possibleExt set. Once all
arguments are processed we determine the heuristic order, making sure, that
all defenders are processed first. This is ensured by multiplying the prediction
probability of each argument in a set by a dedicated factor for said set. Let the
factors used to multiply the prediction confidence values be denoted as x, y, z for
the defenders, possibleExt and outExt sets, respectively. The actual value of the
factors is arbitrary, as long as the following conditions hold: x > y and z > 1.
For more detailed information, please refer to Algorithm 2. In our experiments
we set x = 1000, y = 100, and z = 2.

Algorithm 2: MLPred Heuristic for accepted Arguments
Data: AF aaf , Prediction pred, Query Argument a
Result: Heuristic h

1 attackRelation ← AttackRelation(aaf);
2 attackers ← attackRelation.attacker set(a);
3 attackeds ← attackRelation.attacked set(a);
4 outExt ← attackers ∪ attackeds;
5 possibleExt ← itemIndex;
6 defenders ← ∅;
7 for i = 0; i < pred.args.size()-1; i + + do
8 curAttackeds ← attackRelation.attacked set(i);
9 argIsDefender ← curAttackeds ∩ attackers;

10 argIsOffender ← curAttackeds ∩ possibleExt;
11 if pred.predictLabel[i] == YES then
12 if argIsOffender then
13 outExt ← i;
14 continue;

15 else if argIsDefender then
16 defenders ← i;

17 else
18 possibleExt ← i;

19 attackers ← attackRelation.attacker set(i);
20 outExt ← attackers ∪ curAttackeds;

21 else
22 outExt ← i;

23 for arg in defenders do
24 h.order[arg] ← pred.predProb[arg] ∗ x

25 for arg in possibleExt do
26 h.order[arg] ← pred.predProb[arg] ∗ y

27 for arg in outExt do
28 h.order[arg] ← pred.predProb[arg] ∗ z−1
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Table 4. Results for classifying DC arguments in the kwt Dataset using the standard
Heureka heuristic as well as the MLPred heuristic explained in Algorithm 2.

MCC Standard Backtracks Prediction Backtracks no of AFs

>0.7 39,919 358,246 8

>0.8 185,587 4,320,665 60

>0.9 10,101 1,412,926 34

1 280,676 0 898

Total 516,283 6,091,837 1000

Table 5. Results for classifying the kwt Dataset using the standard Heureka heuristic
as well as the MLPred heuristic explained in Algorithm 2 with a threshold of 0.35.

MCC Standard Backtracks Prediction Backtracks no of AFs

>0.7 39,919 31,976 8

>0.8 185,587 226,790 60

>0.9 10,101 8,029 34

1 280,676 0 898

Total 516,283 266,795 1000

Running Heureka using this refined approach yielded a significant reduction
in backtracking, nearly reaching a 90% reduction, and enabling Heureka to suc-
cessfully solve all argumentation AFs within the allocated time, as shown in
Table 4. However, when evaluated against the standard heuristic, it is evident
that the total number of backtracking steps, though significantly improved, still
falls short of matching the performance of the standard heuristic.

Within our dataset, all instances of backtracking occur in AFs where the
predictive accuracy is not perfect. As we have observed during our in-depth
analysis of an individual AF, the quality of predictions can vary not only between
AFs but also among arguments within the same AF. Therefore, we require a
method to make an informed choice of whether we can rely on the predictions
generated by the machine learning model to effectively guide Heureka.

In our algorithm, the defenders set comprises the most critical arguments,
as these directly support our query argument a. We operate on the assumption
that a larger defenders set implies a more informative prediction for guiding
Heureka. We also employ a threshold parameter below, which we opt to use
the standard heuristic instead of the prediction. More specifically, this threshold
dictates the required size of the defenders set in relation to the possibleExt set.
In our experiments, we employed a threshold of 0.35. Re-running Heureka with
this threshold produced the results presented in Table 5.

By implementing the threshold to filter out uninformative predictions, we
successfully reduced the number of backtracking steps by nearly 50%. In the
following section we will evaluate our initial results using larger, more diverse
datasets.
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Table 6. Results for classifying the kwt-large dataset using the standard Heureka
heuristic as well as the MLPred heuristic explained in Algorithm 2 with a threshold of
0.35.

MCC Standard
Backtracks
YES

No of
AFs

Prediction
Backtracks
YES

No of
AFs

>0.8 42,088,262 31 37,881,987 34

>0.9 90,335,877 60 16,892,061 64

1 1,287,751,506 804 0 896

Total 1,420,175,645 895 54,774,048 994

Table 7. Runtime in seconds for classifying the kwt-large dataset using the standard
Heureka heuristic as well as the MLPred heuristic explained in Algorithm 2 with a
threshold of 0.35.

MCC Runtime Standard Runtime MLPred No of AFs

> 0.8 574 552 31

> 0.9 2,148 475 60

1 30,134 3,885 804

Total 32,856 4,911 895

5.3 Evaluation and Results

The first evaluation experiment involved running Heureka on the kwt-large
dataset using the same prediction quality threshold of 0.35. The MLPred heuris-
tic resulted in a substantial reduction of backtracking steps required for justi-
fying accepted arguments compared to the standard heuristic, as demonstrated
in Table 6. Notably, the MLPred heuristic enabled heureka, to successfully solve
994 AFs, whereas the standard heuristic was only able to solve 895 AFs without
encountering timeouts.

We also experienced a drastic decrease in runtime when using the MLPred
heuristic. Table 7 shows an overview over the runtime in seconds needed to solve
the 895 AFs that both heuristics were able to solve completely. The MLPred
heuristic achieved a runtime reduction of 85%. The performance gain achieved by
using the MLPred heuristic is also evident, when comparing the runtime for indi-
vidual arguments. Figure 2a shows the runtime comparison for both heuristics.
To limit the overview to instances of a certain difficulty, we only plot arguments,
where the amount of backtracking steps exceeds the mean amount of backtrack-
ing steps for at least one heuristic. We can clearly see, that on the vast majority
of arguments the MLPred heuristic outperformed the standard heuristic.

In order to assess the performance of the prediction heuristic on a differ-
ent graph type, we ran the same experiments on the Barabasi-test Dataset.
Again, the prediction heuristic resulted in a significant reduction in the need for
backtracking. In fact, as can be seen in Table 8, the need for backtracking was
eliminated almost completely.
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Fig. 2. Runtime per argument for arguments with above-average backtracking steps

We also compared the runtime for both heuristics for the Barabasi dataset.
Interestingly, as is evident in Table 9 the standard heuristic overall was the faster
choice for the AFs both heuristics could solve. This stems from the fact that
Heureka needs more time to parse and build the MLPred heuristic. As the graphs
in this dataset in general can be solved much faster than those in the Kwt-large
dataset, the decreased runtime for the justification process is not enough to
outweigh the overhead added by using the prediction.

However, when comparing the runtime for the individual arguments in
Fig. 2b, we can see that for the hardest arguments of this dataset the MLPred
heuristic performed better. Combined with the fact, that the MLPred heuris-
tic was able to solve all AFs of this dataset we can still conclude that using a
machine learning prediction was beneficial when solving the Barabasi dataset.

6 Limitations

Our study primarily focuses on enhancing the solution runtime for arguments
classified as DC. While we successfully utilized machine learning predictions to
guide the Heureka solver in justifying rejected arguments in several test cases,
our approach did not yield satisfactory results when applied to a larger number of
arguments. Additionally, our investigation only considered credulous acceptance
under preferred semantics. Furthermore, we limited our analysis to two different
graph types, namely kwt and barabasi graphs.

While kwt graphs are intentionally designed to pose a challenge wrt. deciding
DC under preferred semantics, and barabasi graphs are advantageous to our study
due to their tendency to contain a large number of accepted arguments, it would
be beneficial to assess the efficacy of our approach on other graph types in the
future. This assessment should specifically include graphs used as benchmarks
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Table 8. Results for classifying the Barabasi dataset using the standard Heureka
heuristic as well as the MLPred heuristic explained in Algorithm 2 with a threshold of
0.35.

MCC Standard
Backtracks
YES

No of
AFs

Prediction
Backtracks
YES

No of
AFs

>0.5 0 4 2 4

>0.6 1,080 53 362 053

>0.7 2,521,167 467 2,843 481

>0.8 236,081,763 428 1,774 433

>0.9 1,510 29 63 29

Total 238,605,520 981 5,044 1,000

Table 9. Runtime in seconds for classifying the Barabasi dataset using the standard
Heureka heuristic as well as the MLPred heuristic explained in Algorithm 2 with a
threshold of 0.35.

MCC Runtime Standard Runtime MLPred No of AFs

> 0.5 0 0 4

> 0.6 7 17 53

> 0.7 113 294 467

> 0.8 156 243 428

> 0.9 3 6 29

Total 278 561 981

in the International Competition on Computational Models of Argumentation7,
enabling a direct comparison to other state-of-the-art solvers.

We chose a lightweight approach, employing a standard random forest clas-
sifier trained on different graph properties. Although the classification results
were reasonably good, more advanced techniques such as neural networks have
demonstrated even better results and could, therefore, prove beneficial in our
pursuit to improve the runtime of justification algorithms.

7 Conclusion

The goal of our research was to improve the runtime of a search-based solver, by
reducing the backtracking steps needed to justify whether an argument is DC.

Our study revealed that using machine learning predictions to assist a search-
based solver leads to notable advantages in minimizing backtracking steps and
improving runtime in decision-making processes, specifically in the context of
argument acceptance. The integration of machine learning resulted in a signif-
icant reduction of backtracking steps, achieving a minimum reduction of 96%.
7 http://argumentationcompetition.org/index.html.

http://argumentationcompetition.org/index.html
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Across all datasets examined, the overall runtime could be decreased by up to
85%. Furthermore, our approach was able to enhance the solvability of argumen-
tation frameworks within a specified time constraint.

Further research opportunities could involve combining the classifier and the
solver into a standalone application, eliminating the necessity to provide the
solver with external predictions. However, given that the prediction quality of
the RF classifier depends on the similarity between training and testing data,
exploring alternative classifiers becomes imperative. Existing studies propose
that employing graph neural networks holds promise for achieving robust pre-
diction results.

Notably, our research did not yield significant improvements for rejected argu-
ments. Subsequent investigations should look into strategies to effectively apply
predictions to rejected arguments.
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Deutsche Forschungsgemeinschaft (grant 375588274).
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Abstract. We present a general framework to rank assumption in as-
sumption-based argumentation frameworks (ABA frameworks), relying
on their relationship to other assumptions and the syntactical structure
of the ABA framework. We propose a new family of semantics for ABA
frameworks that is using reductions to the abstract argumentation set-
ting and leveraging existing ranking-based semantics for abstract argu-
mentation. We show the suitability of these semantics by investigating a
case study based on medical recommendations for patients with multiple
health conditions and show that the relationship of the recommendations
are enough to establish a ranking between the recommendations.

Keywords: ABA · Ranking-based semantics · TMR

1 Introduction

In recent years, the use of artificial intelligence in medicine has become increas-
ingly popular [1,3,23]. An AI system can be used to support the decision-making
process of practitioners, in particular by recommending treatments for patients
with specific health conditions. A particularly challenging task is finding good
recommendations for patients with several different health conditions (multi-
morbidities), where the different health conditions require different treatment
approaches [12,13]. In this case, treatments need to be combined, but such a
combination is not always trivial. It may be that two treatments do not mix
well, or worse, that they counteract each other. Therefore, an AI system needs
to take into account the interaction between different treatment approaches in
order to recommend the best course of action.

The Transition-based Medical Recommendation model (TMR) is used to rep-
resent clinical guideline recommendations and their interactions. These recom-
mendations consist of an action and a corresponding effect on a property. The
actions of two recommendations may contradict each other. However, the TMR
model is constructed based on a generic database and cannot be used directly
c© The Author(s) 2024
P. Cimiano et al. (Eds.): RATIO 2024, LNAI 14638, pp. 202–220, 2024.
https://doi.org/10.1007/978-3-031-63536-6_12
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to reason wrt. a specific patient and their health conditions. To overcome this
disadvantage and reason with TMR on specific patient data, Cyras et al. [12,13]
proposed to use formal argumentation [4] as the foundation for a decision-making
model. Formal argumentation is concerned with the representation of arguments
and their relationships. One important approach is the abstract argumentation
framework (AF) by Dung [15]. This framework uses directed graphs to represent
arguments as nodes and attacks between two arguments as edges between these
two arguments, where the source of an edge attacks the target. One way of rea-
soning with AFs is to use extension-based semantics, which specify when a set
of arguments is acceptable.

In addition to AFs, other models of rational decision-making using argu-
mentative reasoning have been explored in the literature. One of these are
the assumption-based argumentation frameworks (ABA frameworks) [6,7,16,26].
These are based on deductive systems over a formal language with rules. One
important component of the formal language are the so-called assumptions,
which are used as the basis for deriving further pieces of information. Similar
to AFs, one reasoning method for ABA frameworks are extension-based seman-
tics that define when a set of assumptions is acceptable. Abstract argumentation
frameworks and ABA frameworks are closely related; the standard approach to
reasoning with ABA frameworks involves deriving an AF and a translation for
the other direction exists as well [14].

The classical semantics of both AFs and ABA frameworks induce a binary
classification of arguments resp. assumptions: an argument or assumption is
either accepted or not. This may be considered too restrictive in real-world
scenarios such as the treatment recommendation scenario from above. For AFs,
ranking-based semantics [2,8] have been introduced to overcome this limitation,
where a ranking of arguments is established based on their individual strength.
Thus, we can not only state that an argument is part of an acceptable set or
not, but also infer that one argument is “better” than another one.

In this paper we introduce ranking-based semantics for the ABA setting to
rank assumptions based on their strength. Using these semantics, we can state
whether one assumption is stronger than another. We present a family of ranking-
based semantics based on ideas for AFs. For an ABA framework, we look at the
induced AF and compute a ranking over arguments, then lift the resulting rank-
ing back to ABA, and then re-evaluate the result in the context of ABA. In addi-
tion, we look at a case study based on [28] using the TMR model to rank medical
recommendations and show that the proposed ranking formalism behaves in line
with other recent AI systems for finding medical recommendations.

This paper is organised as follows. We recall the necessary background infor-
mation about AFs, ranking-based semantics, ABA frameworks and the TMR
model in Sect. 2. In Sect. 3, we introduce ranking-based semantics for ABA
frameworks and propose a family of ranking-based semantics for ABA frame-
works based on ranking-based semantics for AFs. In Sect. 4, we investigate a
case study based on the TMR model to show the intuitive behaviour of our
proposed semantics. Related work is discussed in Sect. 5 and Sect. 7 concludes
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Fig. 1. Abstract argumentation framework F from Example 1.

the paper. This paper is a continuation of the workshop paper (with informal
proceedings) [25] and extended with a case study in Sect. 4.

2 Preliminaries

In this section we recall the necessary preliminaries for this work. We start with
abstract argumentation framework and their extension-based semantics, since
they are the most basic notion we will need. After that we recall ranking-based
semantics as an alternative the extension-based semantics. Finally we denote
assumption-based argumentation frameworks, which uses abstract argumenta-
tion frameworks and their extension-based semantics to reason about sets of
assumptions.

2.1 Abstract Argumentation Frameworks

An abstract argumentation framework (AF ) is a directed graph F = (Arg,Att)
where Arg is a finite set of arguments and Att ⊆ Arg ×Arg is an attack relation
[15]. An argument a is said to attack an argument b if (a, b) ∈ Att. We say that an
argument a is defended by a set E ⊆ Arg if every argument b ∈ Arg that attacks
a is attacked by some c ∈ E. For a ∈ Arg we define a−

F = {b | (b, a) ∈ Att} and
a+

F = {b | (a, b) ∈ Att}, so the sets of attackers of a and the set of arguments
attacked by a in F . For a set of arguments E ⊆ A we extend these definitions
to E−

F and E+
F via E−

F =
⋃

a∈E a−
F and E+

F =
⋃

a∈E a+
F , respectively. If the AF

is clear in the context, we will omit the index.

Example 1. Consider the argumentation framework F = (Arg,Att) with

Arg = {a, b, c, p, q, r} Att = {(r, a), (q, b), (p, c), (p, r), (r, p), (q, r)}.

F is depicted as a directed graph in Fig. 1, with the nodes corresponding to
arguments, and the edges corresponding to attacks.

Most semantics [5] for abstract argumentation are relying on two basic con-
cepts: conflict-freeness and admissibility. Given F = (Arg,Att), a set E ⊆ Arg
is

– conflict-free iff ∀a, b ∈ E, (a, b) �∈ Att;
– admissible iff it is conflict-free, and every element of E is defended by E.
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We use cf(F ) and ad(F ) for denoting the sets of conflict-free and admissible
sets of an argumentation framework F , respectively. The intuition behind these
concepts is that a set of arguments may be accepted only if it is internally
consistent (conflict-freeness) and able to defend itself against potential threats
(admissibility). The semantics proposed by Dung [15] are then defined as follows.

Definition 1. Given F = (Arg,Att), an admissible set E ⊆ Arg is

– a complete extension (co) iff it contains every argument that it defends;
– a preferred extension (pr) iff it is a ⊆-maximal complete extension;
– a grounded extension (gr) iff it is a ⊆-minimal complete extension;
– a stable extension (stb) iff E+

F = A \ E.

The sets of extensions of an argumentation framework F , for these four
semantics, are denoted (respectively) co(F ), pr(F ), gr(F ) and stb(F ). Note that
the grounded extension is uniquely determined [15].

2.2 Ranking-Based Semantics

While extension-based semantics can only differentiate between acceptance and
non-acceptance of arguments, ranking-based semantics [2] allow to rank argu-
ments based on their strength.

Definition 2. A ranking-based semantics ρ is a function, which maps an argu-
mentation framework F = (Arg,Att) to a preorder1 �ρ

F on Arg.

Intuitively, a �ρ
F b means that a is at least as strong as b in F . We further define

a �ρ
F b to denote a �ρ

F b and b ��ρ
F a and a �ρ

F b to denote a �ρ
F b and b �ρ

F a.
An example for a ranking-based semantics is the Burden-based semantics [2],

which is based on burden numbers that assess the strength of an argument in
relation to the strengths of its attackers. Let �lex be the lexicographical prefer-
ence order, which for (possibly infinite) real-valued vectors V = (V1, V2, . . .) and
V ′ = (V ′

1 , V
′
2 , . . .) is defined as V �lex V ′ iff ∃i s.t. Vi < V ′

i and ∀j < i, Vj = V ′
j

(and V �lex V ′ iff ∀i, Vi = V ′
i ).

Definition 3. Let F = (Arg,Att) be an AF, a ∈ Arg, and i ∈ N. The burden
number buri(a) for argument a ∈ Arg in iteration i is defined as

buri(a) :=
{
1 if i = 0
1 +

∑
b∈a−

F

1
buri−1(b)

otherwise

Let bur(a) = (bur0(a), bur1(a), bur2(a), . . .) and define the Burden-based seman-
tics (Bbs) ranking �Bbs

F via a �Bbs
F b iff bur(a) �lex bur(b) for all a, b ∈ Arg.

1 A preorder is a (binary) relation that is reflexive and transitive.
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Example 2. Consider again the AF F from Example 1. Argument q is
unattacked, hence bur(q) = (1, 1, 1, . . .). The remaining burden numbers are

bur(a) = (1, 2,
4
3
, . . .) bur(b) = (1, 2, 2, . . .) bur(c) = (1, 2,

2
3
, . . .)

bur(p) = (1, 2,
4
3
, . . .) bur(r) = (1, 3, 2.5, . . .).

Since a and p have the same attacker r, they receive in each step the same value.
We obtain the ranking q �Bbs

F a �Bbs
F p �Bbs

F c �Bbs
F b �Bbs

F r.

2.3 Assumption-Based Argumentation Frameworks

Assumption-based Argumentation (ABA) frameworks builds on a deductive sys-
tem (L,R), where L is a formal language and R a set of rules of the form
r = a0 ← a1, ..., an with ai ∈ L. We say that a0 is the head of the rule
(head(r) = a0) and the set {a1, ..., an} is the body (body(r) = {a1, ..., an}).

Definition 4. An ABA framework is a tuple (L,R,A, ), where (L,R) is a
deductive system, A ⊆ L a non-empty set of assumptions, and : A → L is a
so-called contrary function.

We focus in this work on flat ABA frameworks, i. e., head(r) /∈ A for each rule
r ∈ R.

A sentence s ∈ L is derivable from a set of assumptions X ⊆ A and rules
R ⊆ R, denoted by X �R s, if there is a finite rooted labelled tree T with the
root being labelled with s, the set of labels for the leaves of T is equal to X or
X ∪ {�}, and the internal nodes are labelled with head(r) according to a rule
r ∈ R s.t. the children are labelled with body(r) or � if the body is empty. Each
assumption x ∈ X has an associated leaf labelled with x and each rule r ∈ R
has an associated node in the tree. For a tree T , we denote by asm(T ) the set
of assumptions used to derive the conclusion denoted cl(T ) with rules ru(T ).

Similar to AFs, ABA frameworks can be used as a rational argumentation-
based decision-making model. Here, a set of assumptions S attacks a set of
assumptions Q ⊆ A if there is S′ ⊆ S, R ⊆ R, s.t. S′ �R a for some a ∈ Q. S
is conflict-free if S does not attack S. S defends assumption s if S attacks each
assumption set Q that attacks {s}.

Definition 5. For D = (L,R,A, ) be an ABA framework and a conflict-free
set of assumptions S ⊆ A, we say S is

– admissible in D (S ∈ ad(D)) if S defends itself,
– complete in D (S ∈ co(D)) if S is admissible and contains every assumptions

set it defends,
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– grounded in D (S ∈ gr(D)) if S is ⊆-minimally complete,
– preferred in D (S ∈ pr(D)) if S is ⊆-maximally complete, and
– stable in D (S ∈ st(D)) iff S attacks every assumption a ∈ A \ S.

Example 3. Consider the ABA framework D with assumptions A = {a, b, c} and
rules:

r1 : r ← b, c r2 : q ← r3 : p ← q, a

with a = r, b = q, c = p. We can, e. g., derive p from {a} with rules r2 and r3 and
since p = c we see that {a} attacks {c}. Furthermore, {a} and ∅ are admissible.

AFs and ABA frameworks are closely related [14], and we can define an AF
as an instance of an ABA framework and the other way around.

Definition 6. The associated AF FD = (Arg,Att) of an ABA framework D =
(L,R,A, ) is given by Arg = {T | T is a tree for s ∈ L with cl(T ) = s} and
attack relation (T, T ′) ∈ Att iff there is c ∈ asm(T ′) s.t. c = cl(T ).

Definition 7. Let F = (Arg,Att) be an AF. The associated ABA framework of
F is ABA(F ) = (L,R,A, ) with

A = Arg L = A ∪ {ac|a ∈ A} R = {bc ← a|(a, b) ∈ Att}

and a = ac, for all a ∈ A.

It can be shown [14] that if a set of assumptions S is acceptable in the ABA
framework D, then S is also acceptable in the corresponding AF FD (in the form
of conclusions of an extension).

Example 4. Continuing Example 3, we can construct the corresponding AF
FD = (Arg,Att) of D, with Arg = {a, b, c, p, q, r} where

– a is a tree with asm(a) = {a}, cl(a) = a, and ru(a) = ∅,
– b is a tree with asm(b) = {b}, cl(b) = b, and ru(b) = ∅,
– c is a tree with asm(c) = {c}, cl(c) = c, and ru(c) = ∅,
– p is a tree with asm(p) = {a}, cl(p) = p, and ru(p) = {r3},
– q is a tree with asm(q) = ∅, cl(q) = q, and ru(q) = {r2},
– r is a tree with asm(r) = {b, c}, cl(r) = r, and ru(r) = {r1}
and the attack relation Att = {(q, b), (q, r), (r, a), (r, p), (p, r), (p, c)}.

The corresponding graph representation can be found in Fig. 2. So, for each
derivable sentence in an ABA framework, we create an argument in the corre-
sponding AF. We know that p is derivable from {a} by rules r2 and r3, hence
p ∈ Arg and additionally the attacks in the AF are representing the attacks from
one set of assumptions to another set of assumptions. For example, the attack
(p, r) ∈ Att is representing the fact, that {a} attacks {b}.



208 K. Skiba et al.

Fig. 2. Graph representation of Example 4

Note that in the following, we call argument a, based on a tree of the form
asm(a) = {a}, cl(a) = a and ru(a) = ∅, where a is an assumption, the assump-
tion argument of a.

3 Ranking Assumptions

As with extension-based semantics in AFs, reasoning in ABA only distinguishes
between acceptable and non-acceptable assumptions. Next we explore the appli-
cability of ranking-based semantics for AFs to rank assumptions in ABA by
defining a family of ranking-based semantics for ABA frameworks that relies on
the reduction of an ABA framework to its corresponding AF, an application of
a ranking-based semantics for AFs on this derived AF, and a re-interpretation
of the resulting ranking over arguments in terms of assumptions. Finally, we
conduct a thorough case study that illustrates the usefulness of our approach.

Definition 8. A ranking-based semantics τ is a function that maps an ABA
framework D = (L,R,A, ) to a preorder �τ

D on A.

Intuitively, a �τ
D b means, that assumption a is at least as strong as b in D. We

define the abbreviations �τ
D and �τ

D as before.
We instantiate the above definition by reducing the problem in ABA to a

ranking problem in AFs and utilising existing ranking-based semantics for AFs.

Definition 9. Let D = (L,R,A, ) be an ABA framework, FD = (Arg,Att)
the corresponding AF, a, b ∈ A, a, b the corresponding assumption arguments,
and ρ a ranking-based semantics for AFs. The ranking-based semantics ABA-ρ
returns a �ABA-ρ

D b iff a �ρ
FD

b.

In other words, assumption a is at least as strong as b in D if the corresponding
assumption argument a is at least as strong as b in the corresponding AF of D.

For the remainder of this paper, in particular for examples, we will use the
Burden-based semantics from Definition 3 as a specific instance for a ranking-
based semantics, but other existing ranking-based semantics [8] can be used
instead as well.

Example 5. Consider the ABA framework D from Example 3 and its corre-
sponding AF FD constructed in Example 4. The ranking over arguments in FD

is then

q �Bbs
FD

p �Bbs
FD

a �Bbs
FD

c �Bbs
FD

b �Bbs
FD

r.
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Restricting the ranking to assumption arguments gives us a �Bbs
FD

c �Bbs
FD

b. We
can project this ranking back to ABA:

a �ABA-Bbs
D c �ABA-Bbs

D b

Hence, a is the strongest assumption, then c, and b is the weakest assumption.
The preferred extension of D is {a}, thus it is intuitive that a is the strongest
assumption. While b is attacked by a fact q ← meaning that b is not really strong
and therefore should be ranked below c.

So the corresponding AF of an ABA framework gives us insight into the rela-
tionship between each assumption. We see that if the corresponding argument
is strong or highly ranked in the corresponding AF, then the assumption will
also be strong in the ABA framework. In addition, we can compare b and c with
each other, which is not possible by using extension-based semantics, since both
assumptions are not acceptable.

In the remainder of this section we discuss the behaviour of �ABA-ρ in relation
to the underlying ranking-based semantics ρ. If ρ behaves in a certain way, then it
was shown that �ABA-ρ satisfies proposed properties. The first property states
that assumptions for which we can not derive the contrary should be ranked
better than any other assumption.

Theorem 1. If for ρ it holds that for any AF F = (Arg,Att) and for all a, b ∈
Arg with a−

F = ∅ and b−
F �= ∅, a �ρ

F b, then for every ABA framework D =
(L,R,A, ) it holds that for every assumption a ∈ A s.t. a is not derivable from
any set of assumptions Q ⊆ A and for every assumption b ∈ A s.t. b is derivable
it holds that a �ABA-ρ

D b.

Proof. Let D = (L,R,A, ) be an ABA framework, FD = (A,R) the corre-
sponding AF, a, b ∈ A, a, b the corresponding assumptions arguments, and ρ a
ranking-based semantics for AFs.

Assume for ρ it holds that for any AF F = (Arg,Att) and for all a, b ∈ Arg
with a−

F = ∅ and b−
F �= ∅, a �ρ

F b. Assume a is not derivable and b is derivable.
Since a is not derivable, we know that a can not be attacked in FD, because we
do not have any argument x in FD with cl(x) = a. Hence, a−

FD
= ∅. Additionally,

we know that b is attacked at least once, because b is derivable in D, so there has
to be an argument x′ s.t. cl(x′) = b. Hence, b−

FD
�= ∅. So, we know that a �ρ

FD
b

and therefore also a �ABA-ρ
D b.

Adding attacks to an assumption, should not raise the strength of the assump-
tion.

Theorem 2. Let D = (L,R,A, ) be an ABA framework and a ∈ A. Let r−
add

be a rule with r−
add /∈ R and head(r−

add) = a. D−
add is a copy of D with r−

add

added, i. e., D−
add = (L,R ∪ {r−

add},A, ).
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If for ρ it holds that for any AF F = (Arg,Att), it holds that for all a, b ∈ Arg
with |a−| < |b−|, a �ρ

F b and for all c, d ∈ Arg either c �ρ
F d or d �ρ

F c, then
for all ABA frameworks D = (L,R,A, ) it holds for all a, b ∈ A with a �= b that
a �τ

D−
add

b implies a �ABA-ρ
D b.

Proof. Let D = (L,R,A, ) be an flat ABA framework, FD = (Arg,Att) the
corresponding AF and ρ a ranking-based semantics for AFs. Let r−

add is a new
rule for a ∈ A, where r−

add /∈ R and head(r−
add) = a and D−

add is a copy of D with
r−
add added, i.e. D−

add = (L,R ∪ {r−
add},A, ) and let FD−

add
be the corresponding

AF.
Assume for ρ it holds that for all a, b ∈ Arg with |a−| < |b−|, a �ρ

F b and
for all c, d ∈ Arg either c �ρ

F d or d �ρ
F c. Assume a �ABA-ρ

D−
add

b for b ∈ A and the
corresponding assumption arguments a and b. First, we look at the case that
r−
add can not be activated, so there is no tree x s.t. r−

add ∈ ru(x) meaning that,
body(r−

add) �⊆ A and there is no sequence of rules (r1, ..., rn, r−
add) from R s.t.

body(r−
add) ⊆ ⋃n

i=1 head(ri) ∪ A. Then the addition of r−
add does not change the

corresponding AF, i.e. FD = FD−
add

and therefore a �ABA-ρ
F

D
−
add

b implies a �ABA-ρ
FD

b.

Next, we look at the case, where r−
add can be activated. The addition of any

attack into an AF can only raise the number of attackers for an argument and
can not lower the number of attackers. Similar hold for ABA frameworks, the
addition and activation of a new rule does not yield to deactivation of other
rules. Hence, it holds that |x−

FD
| ≤ |x−

F
D

−
add

| for any x ∈ A and its corresponding

assumption argument x. Since a �ρ

D−
add

b holds, we know that |a−
F

D
−
add

| ≤ |b−
F

D
−
add

|.
If |b−

FD
| = |b−

F
D

−
add

|, then it is clear that |a−
FD

| ≤ |b−
FD

| and it holds that

a �ρ
FD

b and therefore also a �ABA-ρ
D b.

For |b−
FD

| < |b−
F

D
−
add

| we know that we can derive a in FD−
add

and this activates

a rule r′ with a ∈ body(r′) and this rule is needed to activate rule r′′ with
head(r′′) = b. This implies that a can not be derived in D otherwise we could
activate r′ in D as well and that means that |b−

FD
| < |b−

F
D

−
add

| could not hold.

Since a can not be derived this implies |a−
FD

| = 0 and therefore |a−
FD

| ≤ |b−
FD

|
and also a �ρ

FD
b, which implies a �ABA-ρ

D b.
Cyras and Toni [14] have shown that the acceptance of extension-based

semantics coincides for ABA frameworks and their corresponding AFs. How-
ever, the transformation from an ABA framework to an AF and back to an
ABA framework does add new rules and therefore changes the framework. How-
ever, transforming an ABA framework to an AF and back should not change the
ranking.
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Theorem 3. If for ρ it holds that for any AF F = (Arg,Att), it holds that
for all a, b ∈ Arg with |a−| < |b−|, a �ρ

F b and for all c, d ∈ Arg either
c �ρ

F d or d �ρ
F c, then for every ABA framework D = (L,R,A, ) and FD

the corresponding AF to D, and ABA(FD) the corresponding ABA framework
to FD, it holds for any pair a, b ∈ A that we have a �τ

D b iff a �ABA-ρ
ABA(FD) b.

Proof. Let D = (L,R,A, ) be a flat ABA framework, FD = (Arg,Att) the cor-
responding AF, ABA(FD) the corresponding ABA framework of FD, FABA(FD)

the corresponding AF to ABA(FD) and ρ a ranking-based semantics for AFs.
Let a, b ∈ A, a be the corresponding assumptions argument of a and b be the
corresponding assumption argument of b.

Assume for ρ it holds that for all a, b ∈ Arg with |a−| < |b−|, a �ρ
F b and for

all c, d ∈ Arg either c �ρ
F d or d �ρ

F c and a �ABA-ρ
D b. If a sentence is derivable

in D, then there is a corresponding argument in FD and every argument in FD

is an assumption in ABA(FD) and since assumptions are always derivable, we
know that everything, which is derivable in D is also derivable in ABA(FD).
This implies that the number of attacker for any assumption argument a in FD

is equal to the number of attacker for the corresponding assumption argument
in FABA(FD). Since ρ satisfies CP and Total and a �ABA−ρ

D b, we know |a−
FD

| ≤
|b−

FD
| and since the number of attacker is the same in FD and FABA(FD), i.e.

|(a)−FD
| = |(a)−FABA(FD)

|, we have |a−
FABA(FD)

| ≤ |b−
FABA(FD)

|. Then a �ρ
FABA(FD)

b

and therefore also a �ABA-ρ
ABA(FD) b.

A self-contradicting assumption should be ranked worse than any other
assumption.

Theorem 4. If for ρ it holds that for any AF F = (Arg,Att), it holds that for
all a, b ∈ Arg with (a, a) /∈ Att and (b, b) ∈ Att, a �ρ

F b, then for every ABA
framework D = (L,R,A, ) the following holds for every assumptions a, b ∈ A,
if {a} ��R a and {b} �R b then a �ABA-ρ

D b.

Proof. Let D = (L,R,A, ) be an ABA framework, FD = (Arg,Att) the corre-
sponding AF, a, b ∈ A, the corresponding assumptions arguments a, b, and ρ a
ranking-based semantics for AFs.

Assume for ρ it holds that for any AF F = (Arg,Att), it holds that for all
a, b ∈ Arg with (a, a) /∈ Att and (b, b) ∈ Att, a �ρ

F b and {a} ��R a and b with
{b} �R b. This implies that (b, b) ∈ R and (a, a) /∈ R. So, b attacks itself and also
an assumption argument x for x ∈ A can only attack it self if {x} �R x, hence
a can not attack it self. Hence, we know a �ρ

FD
b and this implies a �ABA-ρ

D b.

4 Case Study

First, we recall the Transition-based Medical Recommendation (TMR) model
introduced in [28] and used to construct ABA frameworks in [12,13].
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The TMR model is used to represent clinical guideline recommendations for
multimorbidity situations, i. e. situations where multiple health conditions need
to be managed simultaneously. In addition, TMR can identify recommendations
that are in conflict with each other. Using this conflict information we construct
ABA frameworks as proposed in [12,13].

Definition 10. A recommendation R is a tuple R = (A, δ, C) where:

– R is a name;
– A is an associated action;
– δ ∈ [−1, 1] is the deontic strength, where δ ≥ 0 means R recommends per-

forming A and δ < 0 recommends avoiding A;
– C = 〈c1, . . . , cn〉 is a set of contributions with contribution ci being a tuple

(P, E , vI , vT , o) with:

• affected property P,
• effect E of A on P,
• initial value vI of P,
• target value vT of P after A was applied,
• value o ∈ {−,_,+} of contribution indicating importance.

We denote with R the set of recommendations.

Note that our definitions are a simplification of the original formal description,
which can be found in [28].

Example 6. Consider recommendations

R1 = (Adm. NSAID, 0.5, (Blood Coag,decrease,normal, low,+))
R2 = (Adm. Aspirin,−0.5, (Gastro. Bleeding, increase,normal,high,−))

from [28]. For recommendation R1 we have action administering NSAID with
a strength of 0.5, which means that this action should take place, the effect of
the action is to decrease the property Blood Coagulation form start value normal
to low. In other words, recommendation R1 can be translated to: NSAID should
be administered to decrease Blood Coagulation from normal to low. while recom-
mendation R2 states: Aspirin should not be administered, because it increases
Gastrointestinal bleeding.

The TMR can be used to identify conflicts or contradictions between rec-
ommendations. For example, one recommendation may suggest an action, while
another recommendation urges avoiding the same action. A clinician should not
follow two conflicting recommendations.

Definition 11. A contradiction interaction between recommendations R,R′ ∈
R is a tuple (R,R′).

The set of interactions is denoted with I.
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Example 7. The two recommendations from Example 6 are contradictions to
each other, since administering NSAID means that one should administer
Aspirin and Ibuprofen. So, R1 recommends administering Aspirin, while R2 sug-
gest to avoid administering Aspirin. Hence (R1, R2) ∈ I.

The TMS recommendation and the interactions between these recommen-
dations are for general patients. In general, however, the choice of guidelines
should be based on the patient’s specific medical background. Not every drug
combination is suitable for every patient. A patient may be allergic to a partic-
ular drug, so that drug should not be administered. So the reasoning behind the
recommendations should be based on a specific context or patient. We denote
the context of a patient by S.

Next, we present a case study based on data from [28] to show that our
proposed ranking over assumptions behaves intuitively in the context of medical
recommendations. Similar to [12], we focus on the contradiction interactions
between breast cancer (BC) and hypertension (HT) guidelines.

To construct an ABA framework based on TMS recommendations, we use
the formalism of [12]. The authors defined ABA+G frameworks, which are exten-
sions of ABA frameworks, where additional information like a preference order
over the set of assumptions as well as goals and a preoder over these goals are
needed to construct an ABA+G framework. Our approach does not need these
additional information to reason and to find the best recommendations, a sim-
ple ABA framework is sufficient. Not only additional information is needed for
ABA+G but also the computational complexity of the credulous resp. scep-
tical acceptance problems for ABA+G frameworks are higher than for ABA
frameworks [19].2 Recommendations are represented by assumptions, while the
corresponding actions and effects are modelled by rules and the context of a
patient is represented by facts.

Definition 12 ([12,13]). Given recommendations R, interactions I and context
S, the ABA patient framework is defined via Dp = (L,R,A, ), where:

A = {R : (A, δ, C) ∈ R}, assumptions are the recommendations;
Ra = R+

a ∪ R−
a , rules representing actions of recommendations, where

R+
a = {A ← R : (A, δ, C) ∈ R, δ ≥ 0},

R−
a = {not A ← R : (A, δ, C) ∈ R, δ < 0};

Re = R+
e ∪ R−

e , rules representing effects on properties brought about by
actions, where

2 An assumption a is credulously (sceptically) accepted wrt. a given semantics iff it is
contained in at least one (all) acceptable sets of assumptions (wrt. that semantics).
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R+
e = {EP ← A : (A, δ, C) ∈ R, δ ≥ 0, (P, E , vI , vT , o) ∈ C},

R−
e = {not EP ← not A : (A, δ, C) ∈ R, δ < 0, (P, E , vI , vT , o) ∈ C};

Rs = {vIP ← : vIP ∈ S}, facts representing the patient’s state S, where

S ⊆
⋃

R∈R

{vIP : (P, E , vI , vT , o) ∈ C, R = (A, δ, C)};

Rc = R+
c ∪ R−

c , rules representing contradicting interactions between recom-
mendations, where

R+
c ={Rj ← Ri, inti,j : (Ri, Rj , μ) ∈ I, δi ≥ 0},

R−
c ={Ri ← Rj , inti,j , vI,jPj : (Ri, Rj , μ) ∈ I, (Rj , Aj , δj , Cj) ∈ R,

(Pj , Ej , vI,j , vT ,−) ∈ Cj , δi < 0};

R = Ra ∪ Re ∪ Rs ∪ Rc ∪ {inti,j ← : (Ri, Rj) ∈ I};
By convention, L and are implicit from A and R as follows: unless x appears
in either A or R, it is different from the sentences appearing in A or R; thus,
L consists of all the sentences appearing in R, A and {α : α ∈ A}.

Example 8. Taking the recommendations of the case study from [28] focusing
on the contradicting interactions between breast cancer and hypertension we
get following recommendations: Let R = {R2, R3, R4, R8} with:

– R2 = (Std. Exercise, 0.5, {

(Fatigue, decrease, high, normal,+)
(Fitness, decrease, high, normal,+)
(Pain, decrease, high, normal,+)}

– R3 = (Low Int. Exercise, 0.5, {

(Fatigue, decrease, high, normal,+)
(Fitness, decrease, high, normal,+)
(Pain, decrease, high, normal,+)}

– R4 = (Exercise,−1, {(Body Temp, increase, high, very high,−)})
– R8 = (High Int. Exercise,−0.5, {(Blood Pressure, increase, ?, ?,−)}

The interactions between these recommendations are then: I = {(R2, R4),
(R3, R4), (R2, R8)}. So, recommendations R2 and R4 are in a conflict and should
not be followed simultaneously. To model patient-orientated reasoning let us
consider Patient A from [12]. Patient A has increased Blood Pressure and high
Body Temperature. The corresponding ABA framework to Patient A is: DPa

=
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(L,R,A, ) :

A ={R2, R3, R4, R8}
R ={Std. Exercise ← R2,

Low Int. Exercise ← R3,

not Exercise ← R4,

not High Int. Exercise ← R8} ∪
{increase Body Temp ← Std. Exercise,
decrease Fatigue ← Std. Exercise,
decrease Pain ← Std. Exercise,
decrease Fatigue ← Low Int. Exercise,
decrease Pain ← Low Int. Exercise,
not increase Blood Pressure ← not High Int. Exercise},

not increase Body Temp ← not Exercise} ∪
{Blood Pressure ← ,high Body Temp. ← } ∪
{R4 ← R2, int2,4,

R2 ← R4, init2,4,high Body Temp.,

R4 ← R3, init3,4,

R3 ← R4, init3,4,high Body Temp.,

R8 ← R2, init2,8,

R2 ← R8, init2,8,Blood Pressure} ∪
{init2,4 ← , init3,4 ← , init2,8 ← }

Fig. 3. Simplified graph representation of the case study, where only arguments with
a recommendation or their contrary in the conclusion are depicted.

A simplified graph representation of the corresponding AF to DPa
can be

found in Fig. 3, where only arguments are depicted, which are relevant for the
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reasoning process, i. e., only arguments with recommendations or their contrary
in their conclusion. The remaining arguments are only leaf arguments with terms
like Std. Exercise and not relevant to the acceptance of other arguments. The pre-
ferred extensions of DPa

are {R3, R8}, {R4, R8} and {R2, R3}. These extensions
do not give us any insight of which recommendation to follow, as all recommen-
dations are credulously accepted but none of them are sceptically accepted. To
identify the ‘best’ recommendations, we use the formalism proposed in Defini-
tion 9 and use again Burden-based semantics as the underlying ranking-based
semantics. The resulting ranking of the four recommendations is

R8 =ABA-Bbs
DPa

R3 �ABA-Bbs
DPa

R4 =ABA-Bbs
DPa

R2

Recommendations R8 and R3 are the best recommendations to follow. These
two recommendations are not in a conflict with each other and actually form a
preferred extension, so we can follow both these recommendations together with-
out any problem. Hence, for patient A we recommend to not do High Intensive
Exercise, because this will increase their Blood Pressure, but the patient should
do low Intensive Exercise, because this decreases Fatigue, Fitness and Pain.

The results of the case study in Example 8 are consistent with the informal
discussion of [28] as well as the resulting reasoning of [12], both of which sug-
gest following R8 and R3. The case study shows that the individual strength of
each recommendation are already enough to reason with and we do not need
additional information like a preference order over the recommendations like
needed in the approach of [12]. In general recommendations with less interaction
with other recommendations will be ranked highly, since in the corresponding
AF these recommendations only have small number of attackers. Thinking a bit
further we realise that avoiding following two contradicting recommendation is
the main motivation of TMR.

5 Related Work

One of the most discussed topics in structured argumentation are preferences
over uncertain information. These preferences state that information a is bet-
ter or more believable than information b. A number of frameworks that work
with preferences can be found in the literature such as ASPIC+ [10,20–22,24],
ABA+ [11,14] or p_ABA [27]. While ABA+ and p_ABA are extensions of ABA,
ASPIC+ is a general-purpose structure argumentation framework, with focus on
preferences. Prakken [24] has shown that flat ABA frameworks can be instanti-
ated as ASPIC+ frameworks. In addition to an ABA framework, ABA+ receives
a preference over the assumptions as input. Using these preferences a new attack
relation is defined. Similar to ABA+, p_ABA receives a preference as input in
addition to the ABA framework. However, the preference in p_ABA is over
the sentences L. In these frameworks, the preferences are preorders over rules
and ordinary premises (ASPIC+), assumptions (ABA+) or sentences (p_ABA).
Hence, these preferences are similar to our rankings over assumptions. All these
preferences can be seen as a notion of strength, if an assumption a is preferred to
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an assumption b in an ABA+ framework, then this relationship between a and
b can be seen as a being better than b. However, all these frameworks receive
their preferences as an input rather than calculating the preorders.

In ASPIC+ and ABA+ preferences are used to disable or reverse attacks.
If the target of an attack is considered better than the attacker, the attack is
discarded or reversed so that the attacker becomes the attacker.

Another application is to use the underlying ranking over assumptions to
construct the corresponding ABA+ framework for an ABA framework. So, we
take an ABA framework and compute a ranking over the assumption with any
ranking-based semantics like ABA-Bbs to then construct an ABA+ framework
using our ranking as a preference order. An ABA+ framework constructed in
such a way has similarities with the underlying ABA framework for example the
conflict-free sets are the same. Thus, we can transform any ABA framework into
an ABA+ framework without additional information such as a preference order.

p_ABA uses preferences to discredit sets of assumptions. Wakaki [27] pro-
poses preorders over sets of assumptions. However, their approach has two major
differences: first, in p_ABA preferences are part of the input, and second, they
can only distinguish sets of assumptions satisfying an extension-based semantics.

In the literature, ranking-based semantics are used to refine extension-based
reasoning for AFs. For example Bonzon et al. [9] use the aggregated strength val-
ues of each argument of a set to compare two sets. Whereas Konieczny et.al. [18]
compare two sets of arguments using a pairwise comparison based on a criterion
like the number of arguments within the first set that are not attacked by the sec-
ond set. Thus, the presented ranking-based semantics for ABA frameworks are
the first step towards refining extension-based reasoning for ABA frameworks.

Heyninck et al. [17] have discussed ranking-based semantics for ABA frame-
works as well, however their focus is more on the numerical strength value each
assumptions receives rather than the relationship between each assumption with
respect to their strength like presented in this paper.

6 Limitations

The biggest limitation of the approach discussed in this paper is the initial con-
struction of the ABA framework based on the recommendation data given. In
Example 8 we already see such limitations, even-though our case study only con-
tains four recommendations the corresponding ABA framework has already 21
rules. Hence, with an increasing number of recommendations the corresponding
ABA framework could be to big to handle.

7 Conclusion

In this paper, we discussed the problem of individual strength of assumptions in
ABA frameworks. We proposed a general framework to rank assumptions based
on their strength within an ABA framework without additional information
such as a preference order. We also defined a family of ranking-based semantics
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for ABA based on approaches and ideas for AFs. For an ABA framework we
construct the corresponding AF then apply known ranking-based semantics in
order to rank arguments in the corresponding AF to finally re-interpret this
ranking in the ABA setting. In addition, we used the proposed semantics on a
case study to rank recommendations in the TMR model.

As for future work, we want to look at other structured argumentation frame-
works such as ASPIC+ and apply similar ideas in order to rank individual ele-
ments of the ASPIC+ framework based on their strength alone. Our current
approach uses AFs in order to rank assumptions. As a follow-up we want to
propose direct approaches using only the ABA framework without the help of
the corresponding AF.
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Abstract. We introduce an argumentation-based approach for conduct-
ing probabilistic causal reasoning. For that, we consider Pearl’s causal
models where causal relations are modelled via structural equations and
a probability distribution over background atoms. The probability that
some causal statement holds is then computed by constructing a prob-
abilistic argumentation framework and determining its extensions. This
framework can then be used to generate argumentative explanations for
the (non-)acceptance of the causal statement. Furthermore, we present
an argumentation-based version of the twin network method for dealing
with counterfactuals. Finally, we show that our approach yields the same
results for causal and counterfactual queries as Pearl’s model.

Keywords: causality · argumentation · counterfactuals

1 Introduction

A recent work [17] presents a machine learning model capable of predicting the
mortality within the next 24 h of the in-patients of a hospital with an accuracy
of 95%. This impressive example of the recent advances in AI research is also
an excellent example of the limits of machine learning approaches. While it is
of course helpful to know which patients need immediate treatment to prevent
them from dying, the model leaves us completely in the dark regarding the
kind of treatment they need. Imagine this kind of algorithm to be used during a
major incident where triage is necessary. Using this model to decide who receives
treatment could do more harm than it helps, because patients that could be saved
with simple and fast methods would be excluded from treatment. This is one
of many potential applications for AI where an explanation of the output of
the model is needed. Due to this issue, Explainable Artificial Intelligence (XAI)
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has become an important research area, which is a very productive but also
challenging area of research [13].

A major contribution towards a formal theory of causality is the work on
causal graphs by Pearl [14]. He models causal relationships with a double-layered
formalism. On the one hand, there are the structural equations which are used
to compute the value of an observable variable from a given set of values for a
fixed number of unobservable background variables. On the other hand, there
is a directed acyclic graph, which represents the causal dependencies between
observable and background variables. A causal explanation is then formalized as
a set of logical statements on causal dependencies. His approach has been widely
recognized and, in particular, has been adopted in recent work on XAI [11,16].

For verifying a given causal explanation one needs a reasoning formalism
which can process causal statements. We propose to use abstract argumen-
tation frameworks as introduced by Dung in [6]. An abstract argumentation
framework consists of a set of arguments—in our case causal statements—and a
binary attack relation between them. An argumentation semantics is applied to
this structure to determine sets of collectively acceptable arguments—so called
extensions—which we use to represent consistent sets of causal statements. As a
non-monotonic formalism, it can handle inconsistent input, which makes it well-
suited for causal reasoning, where additional information can falsify a previously
inferred causal dependency. In our approach, causal statements are interpreted
as arguments in an abstract argumentation framework and the attack relation
represents contradicting causal inferences. This allows us to question the rea-
soning process during a query. A representation of causal inferences with an
argumentation framework offers an intuitive and well-researched access to all
maximal consistent causal theories fitting some given facts.

We present two methods for integrating uncertainty into our causal argu-
mentation frameworks. Our first approach makes use of default reasoning to
accommodate inconsistent assumptions to reason from. This allows us to rea-
son while staying ambiguous with regard to some background variables. We
presented a preliminary discussion of this method in a recent workshop paper
[1]. In the second approach we refine our causal argumentation frameworks by
bringing probabilities into play. In order to represent Pearl’s causal theory to the
full extent with argumentation, we introduce probabilistic causal argumentation
frameworks, which are based on the probabilistic argumentation frameworks by
Hunter [10]. To summarise, our contributions are:

– We demonstrate how causal argumentation frameworks can be used to con-
duct defeasible reasoning on causal statements (Sect. 3.1), following up on our
work [1].

– We introduce an enhanced version, probabilistic causal argumentation frame-
work and show that it captures Pearl’s probabiblistic causal reasoning ade-
quately (Sect. 3.2).

– We employ probabilistic argumentation frameworks for reasoning with inter-
ventional and counterfactual statements and show they produce the same
results as Pearl’s three-step-method and twin model approach (Sect. 4).



Argumentation-Based Probabilistic Causal Reasoning 223

Moreover, Sect. 2 introduces the necessary formal context, Sect. 5 discusses
related works, and Sect. 7 concludes the paper. Proofs of technical results are
omitted due to space restrictions and can be found in an online appendix.1

2 Preliminaries

We set L to be the language of propositional logic over a finite set of atoms
At with the usual connectives {∧,∨,¬,→,↔} and � is the standard entailment
operator. A valuation val : At → {true, false} is an assignment of truth values
to propositional variables. Our causal reasoning framework builds on a well-
known form of default reasoning based on maximal consistent subsets [12]. We
define a knowledge base Δ as a pair (K,A) where we assume that K ⊆ L is a set
of facts and A ⊆ L is a set of assumptions. Facts are true, thus we assume that
K is consistent while assumptions are statements that we are willing to assume
true unless we have evidence to the contrary.

Definition 1. Let Δ = (K,A) be a knowledge base and φ, ψ ∈ L. A set Σ ⊆ A
is a maximal K-consistent subset of A whenever Σ ∪K is consistent and Σ′ ∪K
is inconsistent for all Σ′ ⊆ A such that Σ ⊂ Σ′. We say that:

– Δ entails ψ (written Δ |∼ ψ) whenever Σ ∪ K � ψ for every maximal K-
consistent subset of A.

– φ Δ-entails ψ (written φ |∼Δ ψ) whenever (K ∪ {φ}, A) entails ψ.

The argumentative part of our causal reasoning method relies on the notion
of the argumentation framework (AF for short) as introduced by Dung [6].

Definition 2. An argumentation framework is a pair AF = (Arg,R) where Arg
is a set of arguments and where R ⊆ A × A is called the attack relation.

We say that an argument a ∈ Arg attacks another argument b ∈ Arg iff we
have that (a, b) ∈ R. We may also use infix notation for attacks and write aRb for
(a, b) ∈ R. Given an AF, a semantics determines sets of jointly acceptable argu-
ments called extensions. In this work, we only make use of the stable semantics,
for other semantics see [6].

Definition 3. Let AF = (Arg,R) be an AF. A set E ⊆ Arg is:

– conflict-free iff for all a, b ∈ E we have (a, b) /∈ R.
– stable iff E is conflict-free and for every a ∈ Arg \ E there is a b ∈ E such

that (b, a) ∈ R.

With stb(AF) we denote the set of stable extensions of an AF. For the argu-
mentative part of our approach to reasoning with a probabilistic causal model,
we use the notion of probabilistic argumentation framework (PAF for short) [9].
In this framework, probabilities are assigned to sets of arguments S ⊆ Arg, called
framework states, which implies that the existence of arguments is not indepen-
dent of each other. Whenever an argument a is part of some framework state S,
i.e., we have that a ∈ S, we say that a is active in S.
1 http://mthimm.de/misc/bbrt_ratio24.pdf.

http://mthimm.de/misc/bbrt_ratio24.pdf
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Definition 4. A probabilistic argumentation framework is a pair PAF =
(AF, PAF) where AF = (Arg,R) is an argumentation framework and PAF : 2Arg →
[0, 1] is a function with

∑
S∈2Arg PAF(S) = 1.

Example 1. Consider the PAF in Fig. 1. We evaluate the framework by consider-
ing the different framework states and their respective extensions. For instance,
the framework state S1 = {a, b} has a probability of 0.4 and only one stable
extension {b}. On the other hand, the framework state S3 = {a, b, c} with prob-
ability 0.2 has two stable extensions {a, c} and {b}.

Fig. 1. The PAF (F, PAF) with three frameworks states as depicted in the table.

3 Causal Reasoning

In the following, we will introduce an argumentation-based approach to perform
reasoning with a causal model. The main advantage of this approach is the ability
to not only determine whether some causal statement holds, but also provide an
argumentative explanation on why it holds or not.

In Sect. 3.1, we introduce our approach for qualitative causal reasoning from
[1], based on a modified version of Pearl’s causal model [14], where we only
consider Boolean-valued variables. In this scenario, we model the uncertainty
via defeasibility which allows us to qualitatively answer queries directly in an
argumentation framework. On the other hand, quantitative causal reasoning
means computing the exact probability that the conclusion holds under the
given observation. For this type of reasoning, we consider probabilistic causal
models [14] and define a novel approach for answering queries with the help of
a probabilistic argumentation framework (Sect. 3.2).

3.1 Defeasible Causal Reasoning

To model defeasible causal reasoning, we essentially use the causal model of
Pearl [14] except that we restrict our attention to Boolean-valued variables. As
described in Definition 5 below, a causal model2 K is a set of formulas which we
call Boolean structural equations (terminology adopted from [2]). We distinguish
between two types of atoms in these equations: the background atoms U(K) and
explainable atoms V (K). Variables that are determined outside of the model are

2 Here, we deviate from Pearl’s notation for causal models which are defined as the
triple (U, V, K), explicitly listing background and explainable atoms [14]. However,
with (U(K), V (K), K) we recover Pearls notation of a causal model.
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represented as background atoms u ∈ U(K) and are considered unobservable
and uncontrollable. An explainable atom v ∈ V (K) is functionally dependent on
other atoms of the model. We specify this dependency in the form of Boolean
structural equations of the form v ↔ φ, where φ is a logical formula over the
set of atoms that v is dependent on. Intuitively, a structural equation for some
explainable atom v represents the causal mechanism by which v is determined
by the other atoms in the model. We use bi-implication because the represented
causal mechanism determines not only when v is true, but also when v is false.

Definition 5. A Boolean structural equation for v is a formula of the form
v ↔ φ where φ is a propositional formula that does not contain v. A causal model
K is a set of Boolean structural equations, exactly one equation κv for each atom
v ∈ V (K). With U(K) we denote the set of background atoms appearing in K
and with V (K) we denote the set of explainable atoms appearing in K.

Furthermore, a causal model induces a causal graph G whose vertices are
the explainable atoms of the model [14]. Background atoms of the model are
represented as a different type of vertex. Given a Boolean structural equation
v ↔ φ, we call an atom appearing in φ a parent of v. The causal graph G contains
an edge from atom v ∈ U ∪ V to atom v′ ∈ V whenever v is a parent of v′. We
say a causal model K is Semi-Markovian if the causal graph induced is acyclic
[14].

Example 2. Suppose we are building a causal model to investigate the cause of
a surfer’s death by drowning at the beach. The explainable variables in this
case could be Vsurf (Ksurf ) = {drowning, cramp, submersion, broken-board}, i.e.,
the fact itself, two physical conditions leading to it, as well as a side-effect.
The background conditions potentially leading to these variables being true are
Usurf (Ksurf ) = {jellyfish, strong-current, giant-wave}. We equip these with the
structural equations Ksurf

κd : drowning ↔ cramp ∨ submersion
κc : cramp ↔ strong-current ∨ jellyfish
κs : submersion ↔ giant-wave ∧ strong-current
κbb : broken-board ↔ giant-wave

Figure 2 depicts the causal graph for this model. The background atoms of
the model are drawn using dotted lines.

Fig. 2. Causal graph for Example 2.
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We now define a causal knowledge base as a knowledge base, where the set of
facts K is a causal model and the set of assumptions A is limited to assumptions
about the background atoms in K.

Definition 6. A causal knowledge base is a knowledge base Δ = (K,A) where
K is a causal model and where A is a set of background assumptions, at least
one for each background atom. A background assumption for an atom u is a
literal l ∈ {u,¬u}. We denote by l the assumption of the opposite, i. e., u = ¬u
and ¬u = u.

Since the background variables are supposed to be independent, we restrict
the background assumptions to be literals. This allows us to express three pos-
sible stances towards a background atom u: we can assume just u, just ¬u, or
both. Assuming only u (¬u) amounts to assuming that u is true (false), unless
we have evidence to the contrary. On the other hand, if we assume both u and
¬u, this represents a state of uncertainty where we are willing to consider u to
be true as well as false, depending on the evidence.

Example 3. To continue Example 2 we can now construct a causal KB Δ =
(Ksurf , A) by combining the causal model Ksurf with the set of assumptions A =
{jellyfish, strong-current,¬strong-current, giant-wave}. Intuitively, this expresses
that we assume a giant wave has happened and that there are dangerous jellyfish
present, but are uncertain whether there is a strong current in the area.

Given a causal knowledge base Δ = (K,A), then Δ-entailment can be under-
stood as the relation between observations and predictions, i.e., an observation
φ Δ-entails some prediction ψ, denoted by φ |∼Δ ψ, if the underlying causal
model together with the observation φ entails the conclusion ψ. These predic-
tions include causes as well as effects of the observation in accordance with the
causal model K and the background assumptions A.

We now describe how we can transform a causal knowledge base into an
argumentation framework and how to compute the Δ-entailment in that frame-
work. For that, we adopt the approach by Cayrol et al. [4] to define an argu-
ment induced by a knowledge base Δ = (K,A). An induced argument is a pair
(Φ,ψ) where Φ ⊆ A is a minimal set of assumptions (called the premises of the
argument) that, together with K, consistently entails some conclusion ψ. The
attacks between the arguments are given by the undercut relation. We say that
an argument undercuts another if the conclusion of the former is the negation
of a premise of the latter.

Definition 7. Let Δ = (K,A) be a causal knowledge base. We define the AF
induced by Δ, denoted with F (Δ) = (ArgΔ,RΔ) as follows

– The set of Δ-induced arguments ArgΔ is defined as all arguments of the form
(Φ,ψ) such that ψ ∈ {u,¬u | U(K) ∪ V (K)} and

• Φ ⊆ A,
• Φ ∪ K � ⊥,
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• Φ ∪ K � ψ, and if Ψ ⊂ Φ then Ψ ∪ K � ψ.
– (Φ,ψ)RΔ(Φ′, ψ′), iff for some φ′ ∈ Φ′ we have φ′ = ψ.

As shown by Cayrol et al. [4], there is a one-to-one correspondence between
the maximal K-consistent subsets of a knowledge base and the stable extensions
of an AF induced according to Definition 7. Given a causal knowledge base
Δ = (K,A), this allows us to answer the question of whether φ Δ-entails ψ by
constructing the AF induced by (K ∪ {φ}, A) and determining whether every
stable extension contains at least one argument which concludes ψ.

Proposition 1. Let Δ = (K,A) be a causal knowledge base. Then φ |∼Δ ψ
if and only if every stable extension E of F (K ∪ {φ}, A) contains an argument
with conclusion ψ.

Example 4. We continue with the causal knowledge base Δ = (Ksurf , A) from
Example 3. Consider the question whether observing that the surfer has drowned
entails that the drowning has been caused by submersion, i.e., consider the stat-
ment whether drowning |∼Δ submersion. Submersion and a cramp are the two
possible causes of drowning. It depends on the background atoms which one was
the actual cause of drowning. We determine the question and the explanation
via the induced AF F = F ((K∪{drowning}, A)), shown in Fig. 3 (we only depict
arguments relevant to the conclusion of submersion). The two stable extensions
of this AF are {a1, a3} and {a2, a4, a5}. The argument a4 concludes submersion,
but is only included in one of the stable extensions. Thus, drowning does not
entail submersion, given the background assumptions A.

Moreover, note that the statement drowning |∼Δ ¬submersion does also not
hold.

To conclude, we can say if we observe drowning, then submersion is a possible
cause, but not necessary. The explanation for either case is then given by the
corresponding stable extension containing the conclusion.

Fig. 3. The AF F (K ∪ {drowning}, A) from Example 4.



228 L. Bengel et al.

3.2 Probabilistic Causal Reasoning

A probabilistic causal model [14] is defined as a causal model together with a
probability assignment to every background atom. For some causal statement
φ |∼Δ ψ, this allows us to determine exactly the probability that ψ holds given φ.
As implied by Definition 8, we assume that the probabilities of the background
atoms are independent, thus the causal model is considered Markovian.

Definition 8. A probabilistic causal model is a pair C = (K,P) where K is a
causal model and P : U → [0, 1] is a probability assignment.

Let C = (K,P) be a probabilistic causal model. A causal state C ∈ 2U(K) is
essentially a specific configuration of the background atoms. So, if u ∈ C, then
u is considered true in the state C, and otherwise u is false. We then define the
probability distribution PC over causal states (which correspond directly to the
valuations of U(K)) as follows

PC(C) =
∏

u∈C

P(u)
∏

u∈U\C

(1 − P(u)). (1)

Note that the above defined function is indeed well-defined.

Proposition 2. For any causal model C = (K,P), the probability distribution
PC sums up to 1.

Example 5. Consider again the causal model K introduced in Example 2. The
background atoms of K are giant-wave (g), strong-current (s) and jellyfish (j).
We define the probability assignment P to the background atoms as follows:
P(giant-wave) = 0.8, P(strong-current) = 0.5 and P(jellyfish) = 0.2. Then, for
the probabilistic causal model C = (K,P) we compute the probability distri-
bution of the causal states via Eq. (1) as follows: PC(gsj) = PC(gsj) = 0.32,
PC(gsj) = PC(gsj) = PC(gsj) = PC(gsj) = 0.08 and PC(gsj) = PC(gsj) = 0.02.

For a causal statement φ |∼C ψ the probability that ψ is predicted to be true,
given the observation φ is given as the conditional probability PC(ψ | φ) [14].

Example 6. Consider the causal statement drowning |∼C submersion. We com-
pute the probability PC(submersion|drowning) (i. e., probability of submersion
given that we observe drowning) using the standard causal model approach.
Continuing Example 5, we construct the probability distribution over all valua-
tions of the background atoms, and including all the explainable atoms, whose
values are determined by the background atoms, see Table 1. Computing queries
based on observations simply amounts to computing a conditional probabil-
ity based on the probability distribution given above. Using the definition of
conditional probability we get PC(submersion|drowning) = PC(submersion ∧
drowning)/PC(drowning) = 0.4/0.6 = 2/3. Thus, the probability of submersion
given that we observe drowning is 2/3.
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Table 1. Partial probability distribution PC from Example 6.

gsj broken-board submersion cramp drowning Prob

000 0 0 0 0 0.08
001 0 0 1 1 0.02
010 0 0 1 1 0.08
011 0 0 1 1 0.02
100 1 0 0 0 0.32
101 1 0 1 1 0.08
110 1 1 1 1 0.32
111 1 1 1 1 0.08

In order to determine the probability of a statement φ |∼C ψ, we induce a
probabilistic argumentation framework PAF from the probabilistic causal model
C. For that we denote with C(φ) the set of causal states in which the observation
φ is true, defined as

C(φ) = {C ∈ 2U(K) | K ∪ C ∪ {¬u | u /∈ C} � φ}.

Similar to before, an induced argument is a pair (Φ,ψ) consisting of a set of
premises Φ and a conclusion ψ. The set of premises Φ ⊆ {u,¬u | u ∈ U(K)}
must be consistent with some causal state C ∈ C(φ), i.e., the union of C and Φ
is not contradictory, and is has to be the minimal K-consistent set to entail the
conclusion ψ. The attacks of PAF are again given by the undercut relation.

We define ArgC(C) as the set of arguments consistent with a causal state
C ∈ 2U , i.e., ArgC(C) = {(Φ,ψ) ∈ ArgC | Φ∪C ∪{¬u | u /∈ C} � ⊥}, where ArgC
is the set of induced arguments (see Definition 9). With that, the probability of
a framework state S of the PAF is defined as the sum over the probabilities of
all causal states C which are consistent with all arguments that are active in S.

Definition 9. Let C = (K,P) be a probabilistic causal model. We define the
PAF induced by C, given the observation φ, denoted with PAFC = (F (C), PAF)
with F (C) = (ArgC ,RC) as follows:

– The set of C-induced arguments ArgC consists of all arguments (Φ,ψ), with
Φ ⊆ {u,¬u | u ∈ U(K)}, such that

• Φ ∪ C � ⊥ for some C ∈ C(φ),
• Φ ∪ K � ⊥,
• Φ ∪ K � ψ, and if Ψ ⊂ Φ then Ψ ∪ K � ψ.

– The set of C-induced attacks RC is defined via the undercut relation, i.e., an
argument (Φ,ψ) undercuts an argument (Φ′, ψ′) iff for some φ′ ∈ Φ′ we have
φ′ ≡ ψ.
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The probability distribution PAF : 2Arg → [0, 1] over framework states is given as

PAF(S) =
∑

C∈C(φ,S)

PC(C).

where C(φ, S) = {C ∈ C(φ) | S = ArgC(C)}.

Note that the above defined probability distribution PAF is indeed well-
defined.

Proposition 3. For any causal model C = (K,P) and observation φ, the prob-
ability distribution PAF sums up to 1.

Example 7. We continue Example 5. To determine the probability of drowning
|∼C submersion, we construct the induced probabilistic argumentation frame-
work PAFC = (F (C), PAF ), shown in Fig. 4 (only arguments relevant to the query
are depicted). The framework states with non-zero probability are described in
Table 2. Each framework state corresponds to one or more causal state and con-
sists of a subset of arguments for which we can determine whether all stable
extensions conclude submersion. In this case, only the first framework state sat-
isfies this.

Fig. 4. The AF F (K ∪ {drowning}) from Example 7.

Table 2. The framework states of the induced PAFC = (F (K∪{drowning}), PAF) which
correspond to some C ∈ C(φ).

C(φ, S) PAF(S) a1 a2 a3 a4 a5 a6 a7 S � φ

gsj, gsj 0.4 � � � yes
gsj 0.08 � � � no
gsj,gsj 0.1 � � � no
gsj 0.02 � � � � no



Argumentation-Based Probabilistic Causal Reasoning 231

Let C = (K,P) be a probabilistic causal model and consider some causal
statement φ |∼C ψ.

We can compute the probability that ψ holds given that φ is true via the
induced probabilistic argumentation framework PAFC = (F (K ∪ {φ}), PAF) as
follows. With S[ψ=true] we denote the set of framework states which entail the
conclusion ψ, i.e., for which every stable extension of PAFC contains at least
one argument with the conclusion ψ. In Pearl’s standard causal model app-
roach, the probability P (φ |∼C ψ) is computed as the conditional probability
PC(ψ|φ) = PC(ψ ∧ φ)/PC(φ). Analogously, in our framework the probability
PC(ψ ∧ φ) amounts to the sum of probabilities over all framework states S that
entail ψ, while the probability PC(φ) is the sum of probabilities over all causal
states in which φ is true. Thus, the probability P (φ |∼C ψ) is then computed as

P (φ |∼C ψ) =

∑

S∈S[ψ=true]

PAF(S)

∑

C∈C(φ)

PC(C)
. (2)

Our main theorem below states that probabilistic argumentative reasoning
amounts to the same results as Pearl’s classical approach, with the added value
of representing causal inference through argumentative reasoning.

Theorem 1. Let C = (K,P) be a probabilistic causal model and φ |∼C ψ is a
causal statement. Then P (φ |∼C ψ) = PC(ψ|φ).

In addition to the probability that the statement is true, the induced PAF
also allows us to provide different types of explanations. We can, for example,
provide an explanation for the most likely scenario under which the query holds.
The same can be done for the situation under which the contrary is most likely
to be true. Furthermore, we might also provide an explanation for the scenario
in which both outcomes are possible.

Example 8. We continue Example 7. The probability of drowning |∼C submersion
can then be computed via (2). Considering the framework states in Table 2,
only one framework state with probability 0.4, corresponding to the causal
states gsj and gsj, entails the conclusion submersion. The sum of probabil-
ities over the causal states that are consistent with drowning C(drowning) is
0.6. Thus the probability of submersion given that we observe drowning is
P (drowning |∼C submersion) = 0.4/0.6 = 0.66. In terms of explainability, we
have different angles to give an explanation based on the argumentation frame-
work. A positive explanation would be that a giant wave and a strong current
cause submersion. On the other hand, we can also say that the most likely rea-
son against submersion is that there is no strong current which means no risk of
submersion, as implied by the second framework state.

4 Counterfactual Reasoning

We consider first the interventional statements of the form

if v would be x then ψ would be true. (3)
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The left side of an interventional statement consists of an action where the
atom v is intervened on, i.e., we set v to the truth value x. It is important to
note that this is different from simply observing v or ¬v. Performing the action
of setting v to x means overriding the causal mechanism that usually determines
v. For some causal model K, we denote with K[v=x] the causal model where the
structural equation of κv is replaced with v ↔ x.

Definition 10. Let K be a causal model, let v ∈ V be an explainable atom, and
let x ∈ {�,⊥}. We denote by K[v=x] the causal model defined by

K[v=x] = {(v′ ↔ φ) ∈ K | v′ �= v} ∪ {(v ↔ x)}.

Note that we perform the intervention on the causal model K itself, which
means we can apply this intervention both to a causal knowledge base Δ =
(K,A) as well as a probabilistic causal model C = (K,P), depending on whether
we want to reason qualitatively or quantitatively. We will then also write Δ[v=x]

and C[v=x] as a shortcut for Δ = (K[v=X], A) or C = (K[v=x],P) respectively.
A counterfactual statement is of the form

given φ, if v had been x then ψ would be true. (4)

Intuitively this means, if we observe φ and if v would have been x, then ψ
would have been true. So we reason about a hypothetical or alternative scenario.

In [14], Pearl introduced two approaches to deal with counterfactual state-
ments: a three-step procedure and the twin network method. We base our app-
roach to counterfactual reasoning on the twin network approach. The general
idea is to construct a twin model which consists of the actual causal model,
representing the actual world, and a second model that represents the counter-
factual world. Both of these worlds share the same background atoms, i.e., we
have U(K) = U(K∗), while for all explainable atoms v ∈ V (K) we introduce a
“counterfactual copy” v∗ ∈ V (K∗) in the counterfactual world.

Definition 11. The twin model for a causal model K is the causal model K∗

defined by
K∗ = K ∪ {(v∗ ↔ φ∗) | (v ↔ φ) ∈ K}.

Like for the intervention, we may also write Δ∗ and C∗ as a shortcut for
Δ = (K∗, A) or C = (K∗,P) respectively.

First, consider the three-step procedure for evaluating counterfactual state-
ments in a probabilistic causal model as described by Pearl [14].

Definition 12. Given a probabilistic causal model C = (K,P), the truth of a
counterfactual statement

given φ, if v had been x then ψ would be true

is determined by:

– Step 1 (abduction) Update PC by the evidence φ to obtain PC(u | φ).
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– Step 2 (action) Modify K by the action v = x to obtain K[v=x].
– Step 3 (prediction) Use the modified model (K[v=x], PC(u | φ)) to compute the

probability of ψ, i.e., PC(ψ | φ).

The problem of this procedure lies in the abduction step, where we have to
compute a probability distribution over configurations of the background atoms.
This can be avoided by using the twin network method.

Consider a probabilistic causal model C = (K,P) and a counterfactual state-
ment (4). Our argumentation-based approach consists of the following steps:

1. Compute the twin model C∗ ∪ {φ} which includes the observation φ,
2. Perform the intervention v∗=x on the counterfactual copy of v to obtain

C∗
[v∗=x] ∪ {φ},

3. Construct the induced probabilistic AF PAFC = (F (C∗
[v∗=x] ∪ {φ}), PAF),

4. Determine the probability that ψ∗ is true.

Note that the second and fourth step, representing action and prediction step
of the standard three-step procedure, take place in the counterfactual world.
For the third step we induce the probabilistic argumentation framework from
C as described in Definition 9. The probability that ψ would have been true
given φ, under the assumption that v = x, is calculated as the sum over the
probabilities of all framework states S ∈ S[ψ∗=true] for which every stable exten-
sion of the induced probabilistic argumentation framework of the twin model
PAFC = (F ((C ∪ {φ})), PAF) contains an argument with conclusion ψ∗.

Definition 13. Let C = (K,P) be a probabilistic causal model. For the coun-
terfactual statement φ |∼C∗

[v∗=x]
ψ∗, the probability that ψ would have been true,

given φ and assuming v=x, is computed as

P (φ |∼C∗
[v∗=x]

ψ∗) =
∑

S∈S[ψ∗=true]

PAF(S).

The probabilistic argumentation-based twin network approach is equivalent
to Pearl’s standard three-step procedure.

Theorem 2. Let C = (K,P) be a probabilistic causal model. Given a counter-
factual statement φ |∼C∗

[v∗=x]
ψ∗, we have that P (φ |∼C∗

[v∗=x]
ψ∗) = PC(ψ | φ).

5 Discussion

In this work, we extended our argumentation-based approach for defeasible
causal and counterfactual reasoning from [1] to the probabilistic scenario. The
intention of our approach is to bridge the gap from causal reasoning to formal
argumentation. Our approach provides an argumentative representation of the
causal mechanisms of the model in the context of a specific causal or counter-
factual statement. In the literature, approaches for generating explanations for
the (non-)acceptance of arguments in an argumentation framework have already
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been proposed [5]. The work [8] introduces a new kind of semantics called related
admissibility which computes sets of arguments that are related to a specific
argument. These sets form the basis of different kinds of explanations for the
argument. Based on the same idea, they also introduce dispute forests that can be
used to explain the non-acceptance of an argument. Furthermore, [3] introduce
a general framework for explanations in formal and structured argumentation.
They define different kinds of explanations, for example, an explanation for or
against an argument as well as evidence that supports or is incompatible with
an argument. This approach is especially interesting since they also consider the
structured argumentation formalism ASPIC+ [15], which is very similar to how
we induce argumentation frameworks from causal models in our approach.

There also exist other argumentation-based approaches in the literature that
highlight the interest in explaining causal reasoning. For instance, the work [18] is
concerned with Bayesian networks and introduces the notion of a support graph
that makes d-separation explicit, which eliminates circular causal structures and
helps to explain interdependent causes.

In a recent work [16], Rago et al. introduce an approach for generating bipolar
argumentation frameworks from causal models in the sense of Pearl. They create
so called explanation moulds, that reinterpret desirable properties of semantics
of argumentation frameworks. In their approach, they interpret causal atoms
directly as arguments and causes contribute positively or negatively towards
arguments via attack and support relations, respectively.

6 Limitations

In the following we discuss the limitations of the approach introduced in this
work. First, our approach is built on classical propositional logic. That means,
while being relatively easy to understand, the expressiveness is limited when
compared to other higher-order logics.

Our approach is only focused on the actual reasoning with a causal model.
That means we consider the underlying causal model to be given and crafted by
experts and we assume that the given relations between the variables are indeed
causal and not merely correlations.

Furthermore, the computational complexity of this approach to causal rea-
soning is quite high. Our approach relies on deciding whether some of the argu-
ments are skeptically accepted in the induced argumentation framework. This
problem is naturally difficult and in the case of the stable semantics that we use
it has been shown to be NP-complete [7]. In addition to that, when consider-
ing probabilistic causal reasoning we have to potentially consider exponentially
many framework states (wrt. the set of background variables) which increases
the complexity of the approach significantly.

Finally, it should also be noted that our approach is to be understood as
a groundwork for making causal reasoning explainable. Meaning the induced
(probabilistic) argumentation framework can be the basis for crafting human
understandable explanations. How exactly these explanations should look like,
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is left for future work and some interesting approaches for that matter have
already been highlighted in Sect. 5. Especially in the case of probabilistic causal
reasoning this is even more difficult since the probabilistic aspect has to be
somehow incorporated into the explanations.

7 Conclusion

We extended our approach for argumentation-based causal reasoning from [1]
to deal with probabilistic causal models. For that, we model probabilistic causal
reasoning in a probabilistic argumentation framework and compute the probabil-
ity that the statement is true by reasoning in the framework states. Furthermore,
we showed that our approach can also be used for reasoning with counterfactuals,
by adapting Pearl’s twin network method. Besides computing the probability,
the generated probabilistic argumentation framework can be used as the basis
for creating explanations of the underlying causal mechanisms of the model in
the context of the statement, since it provides both arguments supporting the
prediction as well as arguments that refute the prediction.

Future work includes determining structural properties of the generated
(probabilistic) AFs and looking into concrete application scenarios to investi-
gate the capabilities of our approach.
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Abstract. Bayesian Belief Networks (BBNs) are gaining traction in
practical fields such as law and medicine. Given this growing relevance, it
is imperative to make Bayesian methodologies accessible to professionals
in these fields, many of whom might lack formal training in probabil-
ity calculus. Argumentation offers a promising avenue to achieve this.
It serves a dual purpose: (i) generating an explanation of the important
reasoning steps that occur in Bayesian inference and (ii) exploring the
structure of complex problems, which can help to elicit a BBN represen-
tation. Since Bayesian probabilistic inference also provides clear norma-
tive criteria for argument quality, there is a tight conceptual connection
between the argumentative structure of a problem and its representa-
tion as a BBN. The primary challenge is representing the argumentative
structure that renders BBN inference transparent to non-experts. Here,
we examine algorithmic approaches to extract argument structures from
BBNs. We critically review three algorithms - each distinguished by its
unique methodology in extracting and evaluating arguments. We show
why these algorithms still fall short when it comes to elucidating intri-
cate features of BBNs, such as “explaining away” [44] or other complex
interactions between variables. We conclude by diagnosing the core issue
and offering a forward-looking suggestion for enhancing representation
in future endeavors.
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1 Introduction

At the heart of scientific discovery and societal progress lies a fundamental con-
cept: argumentation. It plays a pivotal role not only in the realm of science for
explanation, justification, and the discovery of scientific laws but also serves as
the backbone of effective communication and decision-making across disciplines,
making it indispensable for a well-functioning democracy.

What constitutes a good argument? This enduring question has fascinated
scholars for centuries, yielding a diverse array of studies and theories (e.g., [7,
15,23,34,41,43] , with a comprehensive review available in [13].

In recent decades, Bayesian argumentation has emerged as a significant
methodological breakthrough, offering explicit, normatively grounded criteria
for evaluating arguments’ quality and inferential soundness [14]. Its foundational
principle in practical and scientific reasoning [1,2] and its focus on minimizing
the retention of incorrect beliefs [32] mark it as a notable advance in argumen-
tation theory.

A particularly promising tool within the Bayesian framework is Bayesian
Belief Networks (BBNs). These probabilistic models visualize complex relation-
ships between variables and their dependencies while enabling sophisticated
inference and learning capabilities about uncertain outcomes [21,31]. This inves-
tigation zeroes in on three innovative algorithmic strategies-Sevilla [38], Timmer
et al. [40], and Keppens [19] - for extracting and scrutinizing arguments within
BBNs. By dissecting these methods, we aim to illuminate their strengths and
limitations, advocating for a paradigm shift towards more effective argumenta-
tion methodologies. Our critical analysis highlights the challenges inherent in
managing the ’Explaining Away’ effect and the nuanced treatment of ‘Soft Evi-
dence’, underscoring the need for a sophisticated understanding of evidential
relations within BBNs.

The paper is structured as follows: We begin by exploring the fundamentals
of BBNs, spotlighting their role in modeling argumentation through the lens of
The Spider network [4,33], an example network designed to test decision-making
in uncertain contexts using BBNs [4,33].

We then critically compare three algorithmic approaches to argument extrac-
tion, exposing ongoing challenges and the need for clearer methodologies to
tackle the nuanced dynamics of argument strength and validity in intercon-
nected systems. Our analysis emphasizes the crucial role of transparency and
accessibility in these methodologies, aiming to demystify the complexities for
both scholars and practitioners.

2 The Bayesian Approach to Argumentation

This section gives a brief overview of the Bayesian approach to argumentation.
Section 2.1 outlines the motivation and generality of the Bayesian approach,
highlighting important advances in developing formal tools. Section 2.2 intro-
duces Bayesian Belief Networks (BBNs) as a powerful graphical tool within the
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Bayesian framework, which can significantly simplify computations and help
visualize relations of conditional (in)dependence. Finally, in Sect. 2.3, we present
important challenges when it comes to explaining the reasoning with BBNs to
non-experts. Here, we primarily focus on the Explaining Away effect and why it
is difficult to grasp intuitively. The effect can be further modified by the pres-
ence of Soft Evidence, which raises the probability of an observation without
becoming fully certain.

2.1 The Bayesian Framework

Revisiting our primary query, we ask: what defines a compelling argument?
The existence of argumentative fallacies shows that subjective (psychological)
persuasiveness and objective argument quality can come apart. Fallacies were
studied extensively in arguments that psychologically seem persuasive, but as
we examine them, we realize that they should not convince us [15,45].

However, interestingly, arguments that share the same form with other fal-
lacious arguments can still be good arguments in a different context [11]. For
instance, compare the two arguments: “We haven’t discovered any extraterres-
trial life so far. Therefore, there is no extraterrestrial life in our universe.” versus
“After several checks, we couldn’t discover any technical problems with this
engine. Therefore, the engine works.” Both arguments have an analogous form,
known as argument from ignorance: given the absence of evidence to the con-
trary, we accept the hypothesis. However, while the former argument seems quite
strong (at least to the extent that the premise can grant the conclusion), the
latter is entirely reasonable, and in fact, we (have to) rely on this kind of rea-
soning all the time. Arguments from ignorance—one example of many informal
argument schemes—have been discussed in the literature [12,30].

This underscores that argument quality in realistic scenarios isn’t solely based
on syntactic form. Approaches to argumentation focusing only on syntactic form
or deductive validity overlook critical elements of real-world argumentation, such
as belief dynamics, graded uncertainty about propositions, and the interaction
of relevant factors. Arguments in real-world scenarios are shaped by uncertain
evidence, the audience’s prior beliefs, and information source reliability [12,14].
Thus, a purely deductive approach may not sufficiently address these real-world
complexities.

This brings us to the necessity of a more adaptive approach. A probabilis-
tic approach, capable of addressing uncertainty and still containing deductive
validity as a limiting case, emerges as promising. This approach, while retain-
ing the foundations of logic, extends its capabilities. It enables a more in-depth
evaluation of informal arguments, like in our example above, while aligning more
with the multifaceted nature of real-world discourse. Furthermore, a probabilis-
tic approach can help to unify the large plethora of argument schemes [42] that
have been identified in studies of informal logic [10], showing how Bayesian rea-
soning can be used to explain how, when, and why diverse argument schemes
actually work. There are also generalizations of standard Bayesian updating,
such as Jeffrey conditionalization [18], which allows for updating credences based
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on uncertain evidence1, and distance-minimization approaches [8,9], which also
enable updating on more complex, non-propositional constraints.

In a nutshell, the strength of an argument is a question of relevance, expressed
in terms of probability- or belief change. Argument quality is assessed by con-
sidering how one’s belief in a target proposition would change upon learning the
particular premise- an idea aptly encapsulated in the slogan of “argumentation
as learning” [8].

Finally, knowledge bases that determine dependencies between propositions
or variables of interest can be graphically represented as BBNs, which are
directed acyclic graphs equipped with a probability distribution (more on this
right below). BBNs are not just widely used in scientific contexts (e.g., [28]); they
have found increasingly widespread adoption in software systems in domains as
diverse as law, medicine, risk analysis, engineering, or strategic decision-making
(e.g., [3,24]). BBNs are popular because they can provide relatively simple,
compact representations of complex problems. Crucially, BBNs can not only
be learned from data under certain assumptions [16,37] but are formulated in
terms of the variables that figure in the discourse and theories of these domains.
This contrasts with low-level, data-driven ‘black box’ systems and makes BBNs
key candidates for the development of explainable AI systems (XAI) (regarding
the difficulties of developing explanations for ‘black box’ systems see, e.g., [36]
and for discussion of the broader role of argumentation for XAI see, e.g., [39]).
Now, let us look more closely at BBNs’ features and non-experts’ difficulties
understanding their dynamics.

2.2 Bayesian Belief Networks (BBNs)

BBNs provide a graphically compact and computationally powerful representa-
tion of complex problem domains (for an example, see Fig. 1). BBNs are graphs
with multiple nodes (variables), directed edges (relationship between variables),
and no cycles. In these Directed Acyclic Graphs (DAGs), directed edges connect
parent nodes to their downstream child nodes with a conditional probability
table for each Parent-Child relationship. This allows a compact, computation-
ally efficient encoding of the joint probability distribution as a product of condi-
tional probabilities [22,25]. This specific feature is called the Markov property.
It states that each node is conditionally independent of its non-descendants (i.e.,
ancestors or unrelated nodes) in the network, given its parents.

BBNs were shown to mitigate some frequent biases in reasoning under uncer-
tainty [4,29]. Having an intuitively understandable tool is highly beneficial in
the domains mentioned above because experts (e.g., in law) are not necessar-
ily experts in probability calculus, and therefore, the quality of decisions can
be improved by providing adequate and understandable explanations of correct
probabilistic inferences.

Let us consider the following example, known as the ’Spider’ scenario [33]:

1 Without raising the probability of the observed variable to total certainty.
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Imagine you’re an intelligence analyst on the trail of a dangerous foreign
spy known as ’the Spider.’ Initial evidence suggests that the Spider might be
hiding in a facility located in a neutral country, represented by the binary vari-
able Sp. Your mission is to collect more information to determine if your team
should infiltrate the facility to apprehend the Spider. You receive reports from
agents Emerson and Quinn indicating the Spider’s presence in the facility (binary
variables E,Q), known for their reliability (low false-positive and false-negative
rates). However, you soon encounter telephone logs that suggest Emerson and
Quinn could collaborate with the Spider (binary variable L), though there’s a
chance these logs are forgeries created by the Spider’s allies to mislead. To effec-
tively navigate this situation, you must synthesize all these pieces of evidence,
particularly considering the potential disinformation L = l that could affect the
credibility of positive reports from Emerson and Quinn, E = e, and Q = q.

Fig. 1. The Spider Network

While a BBN’s graphical representation makes the overall independence
structure and potential causal relations directly visible, other, more indirect
reasoning features still challenge humans. In the following, we present two exem-
plary features of BBNs that are hard to understand: uncertain (soft) evidence,
explaining away, and synergistic interaction effects.

2.3 Explaining BBNs: Important Challenges

Now, we present two factors that complicate the explanation of BBNs: Explain-
ing Away and Soft Evidence. We start with the latter and then show how it
affects Explaining Away (our main focus), which we introduce next.

Soft Evidence. refers to cases in which an event is not learned or observed with
certainty (i.e., probability 1), but its probability only increases. This can also
happen if a leaf node is observed, but we are interested in its effect on further
upstream nodes. Hence, we must calculate the effects of intermediate nodes,
whose probability is raised by observing the respective leaf nodes, but it still
remains below certainty. Within the Bayesian framework, we can accommodate
soft evidence as a case of Jeffrey conditionalization [18], but for the untrained
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user, it may be difficult to track how the probability flow propagates without
further visualization or explanation.

Notably, soft evidence can also reverse the explaining-away effect, which we
explain next.

Explaining Away. is a particular (and potentially tricky) effect that occurs
in collider networks X → Z ← Y . The collider network represents a structure
where an effect has several possible, unconditionally independent causes2. Sup-
pose the effect Z is observed, and the probability of one of the possible causes
increases (say X). This can lead to a decrease in the probability of the alternative
explanation – it is “explained away” by the presence of the first cause. Pearl [31]
provides an intuitive example of this effect: Suppose your car’s failed (variable
Z), and the possible causes are either a dead battery (X) or a blocked fuel pump
(Y ). If you learn that the battery is dead, this is a sufficient explanation of your
observation regarding Z – if the fuel pump was blocked as well, this would be
a very unlucky coincidence, and hence, you may think in this kind of situation
that X “explains away” Y . On the other hand, there are cases with a similar
structure where we might be intuitively inclined to think that learning about
one cause doesn’t give us any further information regarding the other. So, what
is going on here?

The general answer is that we can observe this effect in collider networks
with binary variables X,Y,Z (with values x,¬x, i.e., the negation), equipped
with a probability distribution that satisfies the following inequality:

P (z|x, y) · P (z|¬x,¬y) < P (z|¬x, y) · P (z|x,¬y) (1)

If this holds, then observing Z makes X and Y dependent in the following
sense:

– If the probabilities of X = x and Y = y increase due to Z = z, then P (x|z) >
P (x) and P (y|z) > P (y).

– If either Y = y or X = x is observed in addition to Z = z, then P (x|z, y) ≤
P (x|z) or (respectively) P (y|z, x) ≤ P (y|z).

The DAG by itself does not indicate whether this holds, which means that
the user needs to understand the probabilistic relations or the graphical repre-
sentation (or AI-generated verbal explanation) needs to be adequately extended
to include this information understandably. For humans, explaining away often
seems to be challenging to grasp. Several empirical studies have indicated sub-
jects’ tendency to under-update or contradict the prescription of explaining-
away-reasoning (e.g., [35]). Thus, it is an important desideratum for explanatory
algorithms to make this relation apparent to the user and, ideally, provide an
explanation that fits the context of the application.

2 Here, we are explicitly referring to uncoupled colliders, where there is no link between
X and Y .
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Finally, as mentioned above, soft evidence can reverse ‘explaining away’ as
follows. In a collider X → Z ← Y , if there is soft evidence for Z, i.e., P (Z = z)
increases, then X can confirm Y . This makes the intuitive understanding even
more difficult because the BBN does not depict the probability flow. Hence,
we need the relevant background knowledge to draw the correct inference from
observing a BBN and facts about changing probabilities. An explainable algo-
rithm thus has to provide the relevant background information and make it
salient in the context of the given application scenario.

3 Algorithmic Approaches to Bayesian Argumentation

This section reviews the relation between argument diagrams (ADs) and BBNs
and three extant approaches to AD extraction from BBNs. Specifically, in
Sect. 3.1, we analyze general conceptual questions about the relation between
ADs and BBNs, as well as general desiderata for explanatory or auxiliary ADs.
In Sect. 3.2, we present three extant approaches to argument extraction: the fac-
tor graphs by Sevilla [38], the support construction by Timmer [40], and the
argument-diagram-extraction by Keppens [19]. In Sect. 3.3, these algorithms are
evaluated using the Spider example, which we introduced previously (Fig. 1). We
find that these algorithms illuminate the connection between argument diagrams
and BBNs, but ultimately, the main challenges identified in Sect. 2.3 remain unre-
solved. Further work combining different approaches and extended psychological
research will be needed to develop a more comprehensive and theoretically well-
founded approach to explanatory reasoning with BBNs.

3.1 The Relation Between Argument Diagrams and Bayesian
Networks

An argumentative problem-solving approach often helps to increase the under-
standing of complex problems. This also comes out in the social procedure of the
BARD project [29], designed for the elicitation of BBN representations via group
deliberation. We have already seen that BBNs (as mathematical objects) con-
tain features that are intuitively challenging for laypeople, but when problems
are posed within a context of practical argumentation, correct reasoning and
intuitive understanding can be improved [17]. The interaction between infer-
ence in BBNs and argument diagramming techniques becomes interesting at
this point. Experts in practical domains, e.g., in law, tend to understand argu-
ment diagrams better than causal models or BBNs [19,40]. At the same time,
inference with BBNs provides a normative standard for correct reasoning under
uncertainty. Therefore, BBNs and more informal argument diagramming tech-
niques can exhibit synergies that benefit the general project of widening access
to Bayesian reasoning resources.

Generally, the information exchange between BBNs and Argument diagrams
(ADs) can go in both directions:
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1. Elicitation (from ADs to BBNs): an argumentative exchange about a tar-
get domain or problem (represented as an AD) is mapped to a BBN. This
requires an unambiguous mapping from input ADs and additional technical
constraints (accounting for contextual and pragmatic factors in conversation)
to BBNs.

2. Explanation (from BBNs to ADs): probabilistic inference in a BBN is trans-
ferred to an AD, which can then also serve as the basis for verbal explana-
tions and be supplemented with quantitative impact measures (how much
each premise or piece of evidence impacts the set of target variables or con-
clusions).

The literature on algorithmic argument generation and explainable AI has
generated some approaches to algorithmic argument extraction from BBNs. In
the following, we review frameworks by Sevilla 2021 [38], Timmer [40], and Kep-
pens [19].

3.2 Introducing Three Extant Algorithms

Sevilla (2021). This algorithm, developed by Jaime Sevilla [38], finds an app-
roach to select a list of relevant and independent arguments from a BBN, given
evidence nodes and a target node. The strength of each argument is computed
by the logarithmic odds ratio, calculated after implementing the approximate
message-passing algorithm to ascertain the relatively important arguments. The
algorithm generates a factor graph [22] from a BBN with the nodes for all vari-
ables in the model and the factors representing the conditional probability tables.
The nodes connected to the factors are part of the conditional probabilities. To
prepare the message passing calculation, each observation node is initialized to
a lopsided factor (only the known state with probability one and others with
probability 0). In contrast, the remaining nodes are initialized to constant fac-
tors (under uniform distribution). After obtaining the factor graph, the message-
passing algorithm could estimate all message flows. Effects and strength of argu-
ment: An argument is indicated as a directed acyclic graph over a factor graph
consisting of nodes and factors from observation to the target. The effect of each
inference step in an argument defines how a preceding node affects the inferior
node. The factor is multiplied by all premises as the message-passing algorithm
and then divided by the factor itself to distinguish between the information
obtained from the updates Δ and the information inherently embedded within
the conditional probability table φ.

The effect of a complete argument is calculated by recursively utilizing the
Step Effect. The effects of all the parents of the factor are multiplied together to
inherit the effect of an argument. The strength of an argument is introduced to
compare the importance of all the arguments. It is the logarithmic odds of the
argument that support the outcome. This measure of strength is a real-valued
quantity, where its sign indicates whether the argument supports or opposes the
outcome, and its magnitude quantifies the strength of the argument.
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Argument independence: to decide whether simple arguments should be com-
bined into one complex argument indicates to determine whether they are inde-
pendent. More ordinarily, a list of arguments is independent if the effect of the
union of arguments is equal to the product of the effects of simple arguments.
To adjust the theory to reality, a list of arguments is approximately independent
if the distance of effects is within a certain threshold.

The final output presented to the user is a text generated from basic blocks
which take premises (evidence nodes) and a query node as input and give an
evaluation of how much the given set of premises supports the probandum, with
the logarithmic odds as a measure of argument strength (supplemented by a
qualifier tag, such as ‘weak inference’ or ‘strong inference’).

Timmer (2017) focuses on the construction of support graphs from BBNs.
Support graphs are trees with a given query node as their root, and the descen-
dants on each branching layer consist of all the variables that directly affect
their parent. This tree preserves the conditional independence structure, which
entails that all Markov-equivalent DAGs map onto the same support graph. This
approach promises that a tree, in which the conclusion is at the top, and the
supporting evidence (premises) are on the layers below, is easier to interpret than
a BBN, in which we sometimes have to reason ‘backward’ (e.g., from effects to
possible causes, as in the explaining away effect). Due to the close connection
between support graphs and BBNs, Timmer’s construction promises to be a
good candidate for elicitation, i.e., a stepwise translation of (informal) argument
diagrams into BBNs.3

The variables are mapped from the BBN to the new structure to construct
a support graph with the query node (conclusion) as a root. In doing so, the
same variables occur multiple times on the tree. Therefore, to avoid the inclu-
sion of false independencies and (in the extreme case) circular reasoning, a set
of forbidden nodes is defined, whose purpose is to exclude these problematic
instances. The set of descendants for each given node in the tree is then defined
as the Markov blanket of the corresponding node in the BBN minus the set of
forbidden variables. The algorithm terminates when no further nodes are added.
Formally, the set F(Vi) of forbidden nodes for variable Vi is defined as follows.

– F(Vi) = {Vi}, if Vi is the query node (root of the SG)
– Otherwise, if Vj is a parent of Vi in the SG:

• F(Vi) = F(Vj) ∪ {Vi}, if Vi is a parent of Vj in the BBN
• F(Vi) = F(Vj) ∪ {Vi} ∪ Par(Vi), if Vi is a child of Vj in the BBN
• F(Vi) = F(Vj) ∪ {Vi} ∪ Ci,j , otherwise, where Ci,j are the common
children of Vi, Vj in the BBN.

3 In the interest of space, we cannot cover this aspect here, but we note that it is an
interesting direction for future research.
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Keppens (2013) considers arguments as consisting of observed variables. The
input of the algorithm is a BBN, together with a query node (probandum),
denoted as H = h, and a set of observations O = {O1 = o1, ..., On = on} (the
evidence). Given this initial set, the algorithm finds all nodes on a path between
(i) one of the variables corresponding to observations and (ii) the probandum in
the BBN. For these intermediate nodes, the algorithm calculates the most proba-
ble value (defined as arg maxv∈Im(V ) P (v|O, h)), given the values of probandum
and observations. Finally, the set of edges in Keppens’ AD corresponds precisely
to the set of edges of the BBN, but the edges in the baseline AD are inverted.
This is due to the intended application to forensic reasoning, where we must
standardly reason backward, from evidence (observations) to the most likely
explanatory hypothesis (probandum).

Furthermore, Keppens’ algorithm has additional features that potentially
make his AD formalism more expressive than Timmer’s. In particular, we point
out the distinction between convergent and linked arguments. Convergent and
linked arguments are arguments that share the same conclusion. Convergent
arguments have independent sets of premises, while in linked arguments, there
is dependence among the premises. Keppens’ proposed criterion to distinguish
between convergent and linked arguments is whether the variables corresponding
to premises are d-separated by the conclusion in the BBN (if yes, the arguments
are convergent; otherwise, they are linked). In the AD, these can be represented
via a single hyper-edge4 that connects a set of linked (dependent) arguments to a
single claim or separate edges pointing from individual convergent (independent)
arguments to one conclusion.

The final step is decorating the inference links in the resulting AD with labels
that indicate probative force. These are verbal descriptions (‘strong’, ‘weak’, ‘cer-
tain’ etc.) based on intervals of likelihood ratios.

3.3 Evaluating the Algorithms: Example Networks

Let us examine how well these algorithms connect to BBNs, focusing on explana-
tion (noting that exploring the potential of support graphs for elicitation remains
for future work). We consider an example case, “The Spider” [4,33], to evaluate
how well the algorithms fare regarding explanation. This example stands out
for its prior demonstrations of challenging human and artificial agents with its
nuanced scenario, often revealing areas of sub-optimal reasoning.

Sevilla: Sevilla’s algorithm yields the output shown in Fig. 2. The algorithm
can quantify individual support relations and provide an overall evaluation (not
shown here). Still, it is not designed to show precisely how arguments interact.
In particular, the dynamics related to explaining away do not appear, and the
simple list of ‘strength values’ might look rather confusing to an untrained user.
Furthermore, the algorithm produces artifacts that output irrelevant conclusions
(such as the ‘certain inference’ in the last two paragraphs).
4 a hyper-edge connects a set of nodes to another node or set of nodes.
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Fig. 2. Argument obtained from adding Emerson’s and Quinn’s reports as premises
for the conclusion that the Spider is in the facility.

Timmer: Timmer’s algorithm yields the output shown in Fig. 3. These support
graphs are not particularly informative regarding the interaction between the
evidence pieces. All of them are in the Markov blanket of Sp. Therefore, all are
directly relevant to the conclusion—but from the graph alone, we don’t know
how. In particular, the explaining away effect between Sp and L that is triggered
by increasing P (Sp = true) via W = true is not visible in the graph. Similarly,
the support graph doesn’t show how the explaining away relation changes under
soft evidence: recall that soft evidence can reverse the explaining away effect.
However, neither of these effects is visible in the support graph since its structure
is always the same. Since the support graph is limited in this way, also a verbal
explanation that is based only on information provided by the support graph
(i.e., ‘translating’ the support graph into a textual explanation via some fixed
scheme) cannot make these effects visible either—precisely because the relevant
information is missing. Hence, the support graph does not add much explanatory
power to the BBNs, except for clarifying which variables directly affect the target
node.

Fig. 3. Full support graph with observed reports by Winter and Alpha in the Spider
Network.

Keppens: The core structure of Keppens’ argument diagram in this scenario
looks as follows:
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Fig. 4. Argument Diagram extracted with Keppens’ algorithm.

In this argument diagram, the differentiation looks better than in Timmer’s
case because L = true and Sp = true are depicted as alternative explanations
of evidence pieces E = false and Q = false (represented as a bidirectional edge
between nodes L and Sp). E = false and Q = false are linked arguments.
Therefore, they are connected via a hyperedge to both alternative conclusions.

The limitations in Keppens’ case primarily relate to the aggregation and the
assignment of labels of probative force. When assessing how a specific piece of
evidence influences the probability of the target node and when comparing the
situation before and after observing that evidence, it is crucial to understand
how the probative force of the total (aggregated) argument shifts concerning the
target node. For example, if we start with the reports from Emerson and Quinn,
their joint probative force for Spider being in the facility may be “strong.” So,
in the next step, we need to check how this assignment changes when we add
Winter’s (and other witnesses’) reports. In the best case, the label changes (e.g.,
from “strong” to “very strong”), which, if not numerically precise, gives the
user at least a qualitative understanding of how the respective variables in the
BBN interact. However, the probability shift happens within the interval in the
worst case. Thus, the final label may still say “strong” even though there was a
shift from the lower bound of “strong” to the higher bound (i.e., almost “very
strong”). Thus, it is still a non-trivial question of how this can be represented
in an argument diagram without numerical values. A complete solution must
include numerical values and verbal interpretations adequate for context.

Another limitation concerns the representation of linked arguments. In a
collider X → Z ← Y , an argument based on X and Z to the conclusion Y is
linked (the premises are not d-separated by the conclusion Y ), but their roles
are fundamentally different. While we can remove premise X, and still argue
for/against some value of Y only with Z, the reverse is impossible since X and
Y are unconditionally independent. Thus, the classification of linked arguments
must be refined for more advanced applications and faithful representation of
BN relations in an explanatory argument diagram.

These results indicate that simple, static displays of AD still have limited
explanatory power regarding dynamic interactions between evidence variables
since probabilistic information flows back and forth in the BBN, as exemplified
in the previous section. However, as illustrated by Keppens’ none of these prob-
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lems seem unsolvable. Thus, we are optimistic that future work (taking Keppens’
algorithm as a starting point and refining it further) can solve at least a good
portion of the persisting challenges. As Sevilla used, additional text generation
seems indispensable to generate more complete explanations. However, the out-
puts produced by Sevilla’s algorithm show that significant challenges still exist
to come closer to a comprehensive solution.

Alternative methods for explaining Bayesian networks have also been pro-
posed, for example, interactive graphical explanations that use color codings and
node- and edge sizes to indicate interactions between variables (see, e.g., [20]).
Suppose the graphical display of argument structures extracted from Bayesian
networks can be useful. In that case, such an interactive approach might be
better—but it is unclear whether this would have any value over just using a
more colorful and interactive version of the Bayes net itself. However, the gen-
eration of text from argumentative seems promising because it goes beyond the
graphical modality and adds a new dimension to help the user understand from
a different perspective. Text can combine a linear path of reasoning with chang-
ing interactions, feedback, and back-and-forth that occurs as more information
is introduced. This can be done on a high level (thus being able to handle large
networks without getting lost) or in a more detailed way. So far, text-based algo-
rithms are still undeveloped (no new recent approaches were presented besides
Sevilla’s), and thus, we believe that pushing this line of research will be fruitful
in the future.

4 Limitation

In this study, we selectively examined three diverse methodologies, acknowledg-
ing the existence of additional approaches that could further enrich our analy-
sis. This deliberate choice allowed us to showcase a range of distinctly different
methods, setting a foundation for comprehensively exploring this field. While our
investigation focused on a carefully chosen example to illuminate specific chal-
lenges, it opens the door to examining other networks, particularly larger ones,
in future studies. Our critical review of current algorithms lays the groundwork
for future research to build upon, presenting an exciting opportunity to develop
innovative solutions to the challenges we have highlighted.

This paper represents a significant stride towards refining our approach to
Bayesian Belief Networks (BBNs) and their applications. At its heart, the com-
parison of three distinct approaches serves not only to highlight the current
state of the art but also to spark a deeper inquiry into methodological enhance-
ments. Notably, while our analysis suggests that translating a BBN into an
argument structure could potentially deepen our understanding of probabilistic
inferences, it also points to an intriguing area for future empirical investiga-
tion. This prospect underscores the forward-looking nature of our work, inviting
further research to validate these claims and continue advancing the field in
novel and meaningful directions. In non-written argumentation paradigms men-
tioned in the paper, we need to note that the cognitive capacity of human end
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users is inherently limited, which presents a notable challenge to the scalability
of graphical approaches, as their effectiveness might diminish when applied to
larger and more complex models. Future research should consider a fundamen-
tal shift in approach, aligning more closely with the intricacies of argumentation
and Bayesian reasoning. This would ensure that the powerful potential of BBNs
can be fully harnessed in diverse real-world applications.

5 Conclusion

In our exploration of algorithmic methods to extract and evaluate arguments
from Bayesian Belief Networks (BBNs), we identified persistent challenges, par-
ticularly concerning the intricate features of BBNs. The difficulties in captur-
ing nuances like interdependence underscore the complexities inherent to these
probabilistic models. While these algorithms provide valuable insights and bring
us closer to making Bayesian methodologies more comprehensible, our analysis
indicates that more innovative approaches are needed. A holistic understanding
of the argumentative structure is crucial for transparent BBN inference, espe-
cially for those without expert knowledge in probability calculus. As BBNs gain
prominence in decision-making across disciplines, refining these algorithms is not
just an academic endeavor but a practical necessity.
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Abstract. In this paper, we examine algorithms that utilize factor
graphs from Bayesian Belief Networks to generate and evaluate argu-
ments. We assess their strengths and weaknesses, which leads to the
creation of our improved algorithm that rectifies the issues that we iden-
tified. Our approach includes applying the original and modified algo-
rithms to previously known networks to pose challenges in generating
robust arguments for humans and computers. Our findings reveal signif-
icant improvements in the creation of more robust arguments. Moreover,
we delve into the dynamics of argument interaction, offering detailed
insight into the algorithms’ practical efficacy.
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Generation

1 Introduction

Argumentation is central to collective reasoning, informed decision-making, and
decision articulation within collaborative contexts. Yet uncertainty pervades
decision-making in real life: in a medical setting, doctors often face uncertain sce-
narios where they must make critical decisions based on incomplete information.
Investment decisions are fraught with uncertainty in finance. In the judiciary,
verdicts by judges and juries frequently rely on evidence that lacks absolute cer-
tainty. Therefore, realistically applicable argumentation theory must be able to
cope with reasoning under uncertainty.
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The necessity to navigate the complexities of decision-making under uncer-
tainty has sparked significant interest in developing algorithms that facilitate
probabilistic reasoning. Such algorithms could enhance the explainability of
expert systems, particularly those utilizing Bayesian Belief Networks (BBNs).

BBNs are graphical tools for modeling probabilistic dependencies between
variables and facilitating reasoning under uncertainty [4,5]. The use of BBNs
to provide explanations in real-world settings faces challenges because of the
complexity involved, with many variables and detailed interactions. Developing
explanations through the extraction of arguments underscores the need for an
argumentation theory that effectively navigates uncertainty and is comprehen-
sible to experts and non-experts.

One method to elucidate BBNs’ decisions involves distilling complex argu-
ments into more straightforward, comprehensible segments. However, simplifying
arguments presents a dichotomy: while disassembling complex arguments into
simpler components enhances transparency and comprehensibility, it risks over-
simplification, where the interconnected nature of premises is pivotal. Hence,
there is a fundamental trade-off: make the representation of an argument as
straightforward as possible while maintaining a sufficient level of accuracy con-
cerning the underlying probabilistic reasoning structure. This balance - stream-
lining argument representation without compromising the integrity of the under-
lying probabilistic logic - is at the heart of our paper.

In Sect. 2, we motivate the question of independent arguments and introduce
an algorithm by Sevilla [7] that uses factor graphs to extract arguments from
BBNs, which also gives a useful criterion for independent arguments.

In Sect. 3, we identify some problems in Sevilla’s algorithm using a scenario
known as “The Spider” [6] to assess the performance of algorithms in providing
explanations. The Spider case is notable for previously testing both human and
artificial agents with its complex scenario, frequently uncovering instances of less-
than-ideal reasoning. [2]. We propose our own improvements to the algorithm by
showing its enhanced reasoning. Finally, we present our improved version results
and demonstrate the threshold’s merits for independent arguments in the factor
graph approach.

2 The Question of Independent Arguments

In this section, we look at probabilistic argumentation, explicitly examining how
arguments depend on (or are independent of) each other. We focus on extracting
arguments from BBNs using factor graphs. First, we briefly introduce factor
graphs. Following this, we present a detailed overview of a specific algorithm, as
proposed by Sevilla [7], explaining its methodology in the field of probabilistic
argumentation. Apart from Sevilla’s work, the work on extracting arguments
from BBNs is scarce. Other algorithms rely on graphical methods (e.g., [8,9]),
but none use factor graphs. Since Sevilla’s factor graph approach is novel in
this respect, we aim to explore its potential and the power of its criterion for
argument independence.
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2.1 Factor Graphs

In probabilistic argumentation, it is essential to identify when arguments are
independent, as this clarity helps to understand each argument’s role in a com-
plex discussion. Factor graphs, which build upon the ideas of BBNs, provide a
clear framework for mapping and studying the parts and behavior of arguments.
This approach is especially useful when the argumentation process can be sim-
plified into smaller, more manageable functions, each concerning a specific set
of variables.

Technically, factor graphs are a type of graphical model used in probabil-
ity theory and statistical modeling to represent the factorization of a function.
Consider a probability distribution P (X1,X2, . . . , Xn) over n random variables.
This distribution can be factorized as:

P (X1,X2, . . . , Xn) =
K∏

k=1

fk(Sk)

where fk(Sk) represents a factor over a subset of variables, and K is the number
of factors. Graphically, this factorization is represented as a bipartite graph with
variable nodes (Xi) and factor nodes (fk). An edge is drawn between a variable
node and a factor node if the variable is in the subset for that factor. For details,
see [1,4].

When using factor graphs for argument extraction, variable nodes can rep-
resent components of an argument, such as claims, evidence, counterarguments,
and assumptions, whereas factor nodes represent inference rules. Each element
plays a distinct role in the structure of the argument. Factors represent the prob-
abilistic relationships between these components, e.g., a factor might represent
the strength of evidence supporting a claim or the impact of a counterargument
on the overall argument’s validity. Using probabilistic models, the factor graph
can accommodate uncertainties and variabilities inherent in arguments, includ-
ing assessing the likelihood of a claim’s validity based on the available evidence.

2.2 Overview of the Factor-Graph-Approach Proposed by J. Sevilla

The algorithm constructs a factor graph from a BBN as follows1. It creates
variable nodes for each variable from the BBN and factors representing the con-
ditional probability tables. Connections between variable nodes and their respec-
tive factors are established in these conditional probabilities. To calculate and
update joint probability distributions in the factor graph, the message passing
algorithm [4] is used.

In preparation for message passing, observation nodes are set to lopsided fac-
tors (i.e., zero or one) for the initialization phase, reflecting known states with a
probability of one and all other states with zero probability. Other nodes are ini-
tialized with constant factors, assuming a uniform distribution. Once the factor
1 For sources containing a pseudo-code and the technical implementation, see material

in Appendix A.
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graph is established, the algorithm implements the message-passing algorithm
to calculate the flow of messages across the graph.

Effects and Strength of an Argument: This approach represents arguments as
directed acyclic graphs over the factor graph. An argument, for example, is
shown in Fig. 4. It comprises nodes and factors ranging from observation to the
target node. The influence of each inference step in an argument is called Step
Effect and is defined by how a preceding node impacts the subsequent node.
More specifically, the argument’s premises (variable nodes) are multiplied with
their factor node (inference rule) as per the message-passing algorithm, and the
result is normalized by dividing by the factor itself. This division distinguishes
new information (Δ) and inherent data in the conditional probability table (φ).

The cumulative effect of an argument is calculated by multiplying the effects
of all parent factors through the recursive application of the step effect. Finally,
the strength of an argument is measured by the logarithmic odds of its effect
supporting the outcome. This provides a real-valued metric that indicates the
argument’s direction (support or opposition) and magnitude (strength).

Argument Independence: Determining argument independence involves assessing
if the combined effect of multiple arguments equals the product of their individ-
ual effects. Arguments are independent if their effect’s discrepancy falls within
a predefined threshold. This is measured as the maximum absolute difference in
log odds between the factors, represented by the equation:

Factor Distance(φ1, φ2) = max
∣∣∣∣log

(φ1/φ2(t0)) (to)
Averaget�=to (φ1/φ2) (t)

∣∣∣∣ ,

where (φ1/φ2)(t0) is the probability ratio φ1(t0) to φ(t0) (i.e. the probability
that variable T takes value t0 given φ1 vs that probability given φ2), which is
compared to the average of all values t of T such that t �= t0 (see pseudo-code
in Appendix A).

Finding All Arguments: The algorithm’s objective is to identify a set of relevant
and independent arguments that elucidate the network’s outcome based on given
premises and a target. It begins by identifying simple arguments2) from each
evidence node to the target, excluding paths passing through another evidence
node. The algorithm then iteratively combines these simple arguments into more
complex ones, checking for their potential breakdown into independent combi-
nations. Two thresholds are set to accommodate larger BBNs: one for the length
of simple paths (from one premise node to the query node) and another for the
number of these simple paths to be combined. Finally, dependent arguments are
amalgamated, and all arguments are ordered by their absolute strength.

2 an argument is simple if it cannot be broken down into a union of distinct sub-
arguments, [7, p. 6].
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Explaining Arguments: Natural language explanations of arguments are gener-
ated by tracing the nodes each simple argument passes through. The outcome
is determined based on the evidence favored by the message-passing algorithm’s
results.

3 Testing and Improving the Factor Graph Algorithm

In this section, we identify some problems in Sevilla’s algorithm that lead to
incorrect results in an application scenario (“The Spider”) we used to test it. We
then propose improvements and show how the improved algorithm yields better
outcomes. Finally, we test different threshold levels for independent arguments.

3.1 Overview of the BARD Project and “the Spider” Problem

The BARD project [2,3] sets out to establish an overarching framework lever-
aging BBNs to advance argumentation. This initiative mainly tailors decision
scenarios to underscore the complexities and challenges faced in decision-making
endeavors mediated by BBNs, focusing on navigating through evidence conflicts,
gauging source reliability, and encapsulating uncertainty to ensure clarity and
comprehension.

Our research focuses on the “The Spider” problem presented in the BARD
project, as described by Pilditch (2019) [6]. This scenario serves as a testing
ground for dealing with misleading information sources.

In this exercise, participants assume the role of intelligence analysts on the
hunt for a notorious foreign spy, known as “The Spider,” suspected to be hiding
in a facility located in a neutral country. The primary objective is to gather addi-
tional intelligence to determine the necessity of a covert operation to capture the
Spider. Initial reports from agents Emerson and Quinn place the Spider within
the facility, with both agents acclaimed for their high reliability (characterized by
low false-positive and false-negative rates). However, emerging telephone records
cast suspicion on Emerson and Quinn’s loyalty, insinuating they might collab-
orate with the Spider. On the other hand, the records might also be forged:
the Spider’s true allies might have created them to spread disinformation. If the
records turn out to be authentic, it would mean that Emerson and Quinn con-
sistently report the opposite (i.e., if the Spider is in the facility, they report that
he is not, and vice versa).

Finally, Winter, a communication analyst known for her meticulousness
(almost zero false positives), confirms the Spider’s presence through surveil-
lance data. Trustworthy field agent Sawyer and local witness Alpha echo this
claim. The structure of this scenario is visualized in the BBN shown in Fig. 1
(all variables are binary).

The decision-making process in this scenario is challenging due to conflicting
reports from Emerson, Quinn, and the other members. In particular, uncertainty
regarding the authenticity of the telephone records adds another layer of com-
plexity to the conflict. How should we weigh the highly reliable information of
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one group reporting negatively against the collective inputs of the other mem-
bers reporting positively? This dilemma underscores the intricacy of the Spider
problem and highlights the need for an effective strategy to resolve such conflicts.
We will implement the algorithms for this problem to analyze their reliability.

Fig. 1. The structure of the Spider network and its factor graph. Left: the BBN of “The
Spider”. Right: The factor graph of “The Spider” network. The blue nodes represent
the nodes in the BBN, and the orange nodes represent factors. (Color figure online)

3.2 Results with the Original Algorithm

In this section, we apply Sevilla’s original algorithm to “The Spider” problem,
addressing a fundamental question: based on your evidence, “the Spider is not
in the facility” from Emerson and Quinn and “the Spider is in the facility” from
Sawyer, what do you believe the probability is of “The Spider” is in the facility?
Additionally, we adjust the threshold settings to explore the interactions between
different arguments.

Each paragraph in Fig. 2 and Fig. 3 is an argument. For instance, the struc-
ture of the first argument in Fig. 2 is from Sawyer to “The Spider” as shown in
Fig. 4. The arguments favor “The Spider” being in the facility (Spider is true)
or neutral (Spider is true or Spider is false). This means that taken together,
the arguments of this algorithm suggest “The Spider” is in the facility when it is
known that Emerson and Quinn report the absence of “The Spider” and Sawyer
reports the presence of “The Spider”.

As depicted in Fig. 2, the default threshold condition results in a clear separa-
tion of all arguments. Upon reducing the threshold value, we observe that argu-
ments are identified as being interdependent. Figure 3 illustrates an interaction
between the arguments originating from Quinn and Emerson towards Spider,
which is a notable deviation from their previously independent status shown in
Fig. 2. The threshold deciding the interaction level of arguments is user-defined
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Fig. 2. Results from the original algorithm with default threshold = 0.1.

Fig. 3. Results from the original algorithm with threshold = 2 × 10−16.

Fig. 4. The first argument in Fig. 2. The direction is from the observation to the query
node.

and can be adjusted based on specific situations. The optimal threshold varies
depending on the scenario.

3.3 Diagnosis and Solution Proposal

Here, we present our in-depth exploration of the algorithm’s technical difficulties
and shortcomings. We provide a comprehensive analysis of their causes and
effects. Following this analysis, we propose targeted solutions and enhancements
to improve the algorithm’s accuracy and reliability.
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Ignorance of Prior Probability. The initialization of the nodes without infor-
mation assumes a uniform distribution, which leads to the wrong calculation of
the probability marginalization of the outcome. In Fig. 2, Quinn’s report of the
Spider’s absence paradoxically suggests the Spider’s presence, contrasting our
initial expectations. We anticipate that if Quinn reports the absence of the Spi-
der, it would significantly increase the likelihood of its absence, considering the
low propensity to be league with the Spider. To rectify this, we propose chang-
ing the initialization of nodes, except for evidence nodes, to reflect their prior
probabilities.

Certain Inference. When distinct node states are assigned equivalent prob-
abilities, the algorithm returns a “certain inference.” However, this might be
misleading about a definitive node’s state, which is not the case. To address this
semantic inconsistency, we propose renaming this outcome “equal effect infer-
ence.”

D-Separation Detection Deficiency. The algorithm is unable to identify d-
separation structures: two (non-empty) sets of nodes X,Y are d-separated by
another (possibly empty) set of nodes Z, if and only if every path from a node
x ∈ X to a node y ∈ Y is blocked. A path xi → v → ... → y is blocked by Z iff
for every node w on the path one of the following two holds:

1. the path’s edges do not meet head-to-head in w and w ∈ Z, or
2. the edges meet head-head in w and w �∈ Z and none of w’s descendant are

in Z.

D-separation identifies conditional independence relations between nodes in a
Bayes net. Our results indicate that an effect exists between d-separated nodes.
We adapted the algorithm to evaluate d-separation between nodes for every
step of the argument process. An identification of d-separation signifies that the
argument does not affect the target node.

Uncertain Equivalence Between Node Value and Step Effect. In each
step, the value of the step target node equals the step effect when moving from
parent to child. Conversely, from child to parent, the value equals the step effect
times the parent’s prior probability. This distinction arises because the step
effect represents P (child|parent). When calculating P (parent|child), it equals
P (child|parent)∗P (parent)/P (child) according to Bayes rule. By first determin-
ing the direction of the effect, we increase the precision of our effect and strength
calculations.
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Table 1. Conclusion of the improvements

Dimensions The original algorithm Our improved
algorithm

Initialization of
unobserved nodes

uniform distribution prior probability

Explanation in words certain inference equal effect inference

D-separation Non D-separated detection D-separated detection
addition

Linking the possibility
and step effect

Equivalence Considerations of
node relationship

To summarise, our improvements are listed in Table 1.

3.4 Results of the Improved Version

Fig. 5. Results from our updated algorithm with default threshold = 0.1.

After implementing our enhanced algorithm to revisit “The Spider” case, we
observed that the outcomes were significantly more plausible than the original
results. When Emerson or Quinn reports the argument, arguments are identified
as independent with an elevated threshold. This outcome is consistent with their
established reliability and the low likelihood of them being allied with the Spider.
The outcomes presented in Fig. 5 demonstrate a merging of arguments under the
standard threshold. Conversely, Fig. 6 shows that the arguments are identified
as independent with an elevated threshold.
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Fig. 6. Results from our updated algorithm with threshold = 6.

Figure 6 further showcases the ability of the algorithm to detect d-separation.
Analyzing an individual argument with Quinn leading to Spider via Both, the
nodes Both and Spider are d-separated within the Both ← Emerson → Spider
collider structure. The impact of Quinn on Spider is interrupted in this sequence.
The algorithm detects the d-separation and informs users that this particular
type of argument does not influence the target node.

4 Limitation and Future Work

This paper identifies and addresses key areas for enhancement within the factor
graph-based approach to the algorithmic generation and evaluation of argu-
ments. We have introduced modifications that considerably bolster reasoning
capabilities. Our preliminary research, centered on the exemplary use of a com-
plex and challenging Bayesian Belief Network (“The Spider”), has illuminated
promising avenues for refining reasoning strategies. Despite these advancements,
there remains substantial scope for future research to validate these algorith-
mic improvements across a more varied array of scenarios and Bayesian Belief
Networks (BBNs), thus underlining their widespread applicability and efficacy.

Through this exploration, we enhance reasoning capabilities and underscore
the significance of setting a threshold for independent arguments within the fac-
tor graph framework. This work establishes a solid foundation for further inves-
tigation into the algorithm’s operational effectiveness. Building upon this foun-
dation, we aim to extend our analysis to a wider range of BBNs. This endeavor
is motivated by our goal to affirm the universality and practical utility of the
proposed algorithmic enhancements.

Moreover, future research is crucial to build upon our findings through empir-
ical evaluation. This subsequent research phase will compare the human under-
standing and evaluation of the algorithm’s arguments against its actual perfor-
mance. By incorporating a more extensive set of examples and applying quanti-
tative accuracy metrics, we aim to solidify the evidence supporting our claims of
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improved algorithmic performance. This approach addresses the limitations iden-
tified and deepens our comprehension of how these algorithmic enhancements
can significantly enhance human reasoning processes in the face of uncertainty.

5 Conclusion

This paper pinpoints and tackles crucial improvement opportunities within
the factor-graph-based approach to generating and evaluating arguments
using Bayesian Belief Networks (BBNs). We have implemented changes that
strengthen the reasoning abilities of an exemplary algorithm that uses factor
graphs.

Refining Sevilla’s algorithm, we demonstrated that meaningful argument
extractions from BBNs are possible within this approach. We especially noted
the utility of establishing a threshold for independent arguments. This feature, in
particular, showcases the potential for more precise and nuanced argumentation
within complex probabilistic models.
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A Appendix

Our enhancements to this algorithm, based on Sevilla’s packages and the PGMPy
open-source software for computing Bayesian networks, can be viewed in detail
at this link3. To help you understand our enhancements better, we have attached
pseudo-code for the relevant parts.

For the initialization of the unobserved nodes, they are under a uniform
distribution initialization:

for node in model :
i f node in ev idence :
node [ ob s e rv ed s t a t e ] = 1
node [ o t h e r s t a t e s ] = 0
else :
node [ s t a t e s ] = uniform d i s t r i b u t i o n

3 https://github.com/yuancao-git/factor graph algorithm.git.

https://github.com/yuancao-git/factor_graph_algorithm.git
https://github.com/yuancao-git/factor_graph_algorithm.git
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We modify it to make use of prior probabilities:

for node in model :
i f node in ev idence :
node [ ob s e rv ed s t a t e ] = 1
node [ o t h e r s t a t e s ] = 0
else :
p r i o r = model . p r i o r c a l c u l a t i o n ( node )
node [ s t a t e s ] = p r i o r

We change how we calculate the argument’s strength to make the explana-
tions more precise. The outcomes are altered from “certain inference”:

query node = [ v1 , v2 , . . . , vn ] ( s e t V)
i f query node has one maximum vm:

argument strength = vm/sum(V out o f vm)

i f query node has s e v e r a l maximums vm1 , . . . , vmm:
choose a l l the se s t a t e s vm1 , . . . , vmm ( s e t Vm)

argument strength=sum(vm1 , . . . , vmm)/sum(V out o f Vm)

to the “equal effect inference”:

query node = [ v1 , v2 , . . . , vn ] ( s e t V)
i f query node has one maximum vm:

argument strength = vm/sum(V out o f vm)
i f query node has s e v e r a l maximums vm1 , . . . , vmm:

choose a l l the se s t a t e s vm1 , . . . , vmm ( s e t Vm)
argument strength = vm1 / sum (V out o f Vm)
d i sp l ay ‘ ‘ equal e f f e c t i n f e r e n c e ’ ’

Before calculating the argument strength, we add D-separation detection to
check if there is influence between nodes:

for argument in a l l a rgument s :
for s tep in argument :
sub BBN = to BBN( argument , s tep )
d s epa ra t i on =

d separated (sub BBN , ev idence in argument )
i f d sepa ra t i on == True :

‘ ‘ no i n f l u e n c e ’ ’
i f d sepa ra t i on == False :

c a l c u l a t e argument strength
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Abstract. When the phenomena of interest are in need of explanation,
we are often in search of the underlying root causes. Causal inference
provides tools for identifying these root causes—by performing interven-
tions on suitably chosen variables we can observe down-stream effects in
the outcome variable of interest. On the other hand, argumentation as an
approach of attributing observed outcomes to specific factors, naturally
lends itself as a tool for determining the most plausible explanation. We
can further improve the robustness of such explanations by measuring
their likelihood within a mutually agreed-upon causal model. For this,
typically one of in-principle two distinct types of counterfactual explana-
tions is used: interventional counterfactuals, which treat changes as delib-
erate interventions to the causal system, and backtracking counterfactu-
als, which attribute changes exclusively to exogenous factors. Although
both frameworks share the common goal of inferring true causal factors,
they fundamentally differ in their conception of counterfactuals. Here,
we present the first approach that decides when to expect interventional
and when to opt for backtracking counterfactuals.

Keywords: Explanations · Causality · Interventions · Backtracking

1 Introduction

Dating back to the times of Aristotle, causality as a concept is intimately linked
with human reasoning and the formation of arguments (Evans, 1959; Falcon,
2006). When trying to find the truth over a topic by exchanging arguments, we
rely on causal relations to ground our claims within the realm of observed and
already agreed-upon knowledge (Hume, 1896). In summary, causality is the key
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factor that lets us distinguish between mere coincidences and true relations of
cause and effect (Mackie, 1980; Aldrich, 1995).

While day-to-day arguments might (or might rather not) involve explicit
notions of causality, we assume in this paper that certain kinds of mechanisms
dictate the unfolding of events in our everyday lives. While, in principle, arbitrary
events could alter the unfolding of things, we assume that there exists a ‘natural’
–that is, an unintervened– unfolding of events. When trying to provide arguments
about possible alternative outcomes, one might try to come up with a possible
‘counterfactual’ unfolding of events that only requires small deviations from
the, otherwise, natural unfolding. This heuristic is based on the assumption that
explanations adhere to previous observations and past experiences. In this paper,
we argue that arguments should stay close to previous experience and only be
abandoned in the light of new evidence. Such situations usually only happen
when explicit information about such interventions taking place is obtained or
observations deviate from expectations to the extent that assuming interventions
to be the underlying cause is inevitable.

In the following sections, we discuss the use of different counterfactual expla-
nation methods within graphical causal models. More formally, we utilize the
Pearlian notion of causality (Pearl, 2009) to reason about underlying causal
relations. While we derive our reasoning method with the formalism of Pearlian
causality, we want to point out that several methods exist to transform argu-
ments to causal Bayesian networks, and vice versa to extract arguments from
those (Bex et al., 2016; Timmer et al., 2017; Wieten et al., 2019).

Contributions. In the following we briefly sketch a possible application of
our idea in a potential case of a court hearing. We discuss the benefits and
shortcomings of classical interventional and backtracking counterfactuals. Both
approaches aim to generate arguments for hypothetical and/or counterfactual
scenarios. We propose an algorithm to infer the most plausible explanation from
a natural unfolding of a system and fall back to interventional explanations when
needed. Lastly, we propose the use of infinitesimal probabilities in causal models
as a way of comparing explanations across multiple interventional distributions.

1.1 Introductory Example

To the best of our knowledge, counterfactual causal reasoning has not yet been
applied to the field of formal argumentation (as, for example, summarized by
Baroni et al. (2011)). Such approaches might be particularly useful to a confined
set of settings, where one tries to argue over hypothetical –counterfactual– sce-
narios. We will now present a hypothetical applied example to better motivate
the assumptions made during the following sections.

Consider the hypothetical scenario of a debate during a court hearing on
whether or not some store employee could have helped an injured customer.
While the fact that the employee did not help is undisputed, a defense attorney
might try to argue that all attempts to provide such help would have also been
bound to fail. Therefore, all arguments remain in reasoning about non-observable
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counterfactual outcomes. In such a scenario, a successful defense would naturally
try to derive zero probability for all possible positive (in terms of successfully
helping the customer) outcomes. The opposing prosecutor would try to come up
with feasible counterarguments. A possible line of argument could go as follows:

Argument : Even if the employee had been willing to help, no medicine was
available. Attack : Assuming that medicine would have become available, the
employee should have started with the emergency procedure.

Argument : The employee did not receive proper training to start the procedure.
Attack : Proper training was offered to all employees. And so on. . .

Every argument tries to reduce the probability of a successful help outcome
to zero. In such cases, the only remaining attack is to assume that some latent
factor (e.g. presence of medicine, proper training, . . . ) could have been set to
another value than the one that is claimed. Given the benefit of the doubt, every
such assumption required to accuse the employee weakens the indictment and
lowers the chance of conviction. The total number of such necessary assumptions
is likely to influence the final court ruling. In the following, we will capture this
notion via a preorder on argument preference in Sect. 3.2.

2 Preliminaries and Related work

In general, we write indexed sets of variables in bold upper-case X and their
values in lower-case x. Single variables and their values are written in normal
style (X, x). Specific elements of a tuple are indicated by a subscript index Xi.
Probability distributions of a variable X or a tuple X of variables are denoted
by PX and PX respectively.

Structural Causal Models. Structural Causal Models (SCM) provide a frame-
work to formalize a notion of causality via graphical models (Pearl, 2009). They
can be expressed as structural equation models without affecting expressiveness
(Rubenstein et al., 2017). We adopt a slightly modified definition of SCM model-
ing an explicit set of allowed interventions, similar to earlier works of Rubenstein
et al. (2017); Beckers and Halpern (2019); Willig et al. (2023).

Definition 1. A structural causal model is a tuple M = (V,U,F, I,PU) form-
ing a directed acyclic graph G over the indexed set of variables X = {X1, . . . , XK}
taking values in XXX =

∏
k∈{1...K} Xk subject to a strict partial order <X over X,

where

– V = {X1, . . . , XN} ⊆ X, N ≤ K is the indexed set of endogenous variables.
– U = X \V = {XN+1, . . . , XK} is the indexed set of exogenous variables.
– F is the indexed set of deterministic structural equations, Vi := fi(X′), where

the parents are X′ ⊆ {Xj ∈ X |Xj <X Vi}.
– I ⊆ {{Ii,di

|i ∈ i, di ∈ d}i⊆{1...N}}d∈JJJ where JJJ is the set of possible (gen-
erally unknown) joint distributions d on XXX , Ii,di

indicates an intervention
do(Xi ∼ di), where the value of Xi is sampled from the i-th marginal distri-
bution of d. We write arbitrary sets of interventions on X′ ⊆ X as IX′ ∈ I.
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– PU is the probability distribution over U.

By construction, at most one intervention on any specific variable is to
be included in any intervention set I ∈ I. When JJJ is defined to equal δ(XXX )
(with δ(XXX ) being the set of all possible Dirac distributions over XXX ), I mod-
els sets of atomic interventions. An atomic intervention on a single variable
do(Xi ∼ δ(x′

i)) places all probability mass on a single value x′
i. Consequently,

the unintervened fi can be replaced by the constant assignment Xi := x′
i and

we write do(Xi = x′
i), and Ii,xi

, respectively. Every M entails a DAG structure
G = (X, E) consisting of vertices X and edges E , where a directed edge from
Xj to Xi exists if ∃x0, x1 ∈ Xj .fi(x′, x0) �= fi(x′, x1). For every variable Xi we
define ch(Xi),pa(Xi) and an(Xi) as the set of direct children, direct parents
and ancestors respectively, according to G.1 Every M entails an observational
distribution PM2 by pushing forward PU through F. Intervention do(Xi ∼ di)
replace fi by a function sampling from di. As a consequence, M might entail
infinitely many intervened distributions PI

M, generally preventing us from simul-
taneously modeling all possible scenarios that might arise during an argument
(see Sect. 3.3).

3 Backtracking in Causal Models

In this section, we will briefly review inference for classical ‘interventional’ coun-
terfactuals of Pearl (2009) and compare them to ‘backtracking’ counterfactuals
of Von Kügelgen et al. (2023). We will then present a scenario where backtrack-
ing counterfactuals fail to explain the given evidence and propose an iterative
method to remedy the situation. Since the following observational and counter-
factual values might be inferred over the same set of variables we denote the
corresponding counterfactual quantities with ∗.

Interventional Counterfactuals. We write PM(Yx∗ = y∗ | e) to express the
counterfactual question: “What would be the probability of some Y ⊆ V taking
values y∗ given some observations (or evidence) e, had variables X∗ ∈ X taken
values x∗”. Given a tuple e,x∗, classical counterfactual inference is performed in
three steps (Pearl, 2009):

Step 1 (abduction): Infer the most probable configuration u given evidence e
by maximizing P(u | e).
Step 2 (action): Act on the model M by applying interventions do(X∗ = x∗).
Such that F′ = {fi ∈ F |�Ij,vj

∈ I .i = j} ∪ {Xi := x∗
i }{x∗

i ∈x∗} and MI =
(V,U,F′, ∅,PU).

Step 3 (prediction): Compute PI
M(Y = y∗ |u).

1 We define ch(X), pa(X) and an(X) for sets of variables X, as the union of sets
obtained by individual variable evaluations, e.g., pa(X) =

⋃
X∈X pa(X).

2 In this paper, we always reference distributions with respect to some SCM M. The
expression PM indicates the distribution induced by M over the full variable set X.
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The most likely counterfactual configuration of variables Y can then be obtained
by searching for an y∗ that maximizes PI

M(Y = y∗ |u) in the third step.

Backtracking Counterfactuals. By interpreting the counterfactual quantities
Xi = x∗

i as interventions, interventional counterfactuals ‘detach’ the affected
variables from the inferred u’s by overwriting their structural equations. Von
Kügelgen et al. (2023) try to embed counterfactual values more naturally into
the inference framework by fixing x∗ but backtracking without interventions to a
counterfactual set u∗ which then entails x∗, but might differ from the u inferred
via observations e. Backtracking counterfactuals preserve the unaltered graph
structure by trading it for the induction of a new u∗. Throughout the inference
of y∗ the values of u,u∗ should be kept as close as possible (with regard to some
similarity measure) such that P(U,U∗) is maximized.

Comparison. When comparing both approaches, one sees that either the struc-
tural equations of M are altered or a new set of exogenous variables is inferred in
order to explain a different outcome. As we want to minimize the usage of inter-
ventions and apply them only in cases where no other options are viable, we will
consider backtracking counterfactuals as the default technique to infer explana-
tions. Stated more simply: ‘If we can explain a counterfactual scenario without
the use of external interventions we will do so.’ Depending on the specific metric
connecting u and u∗, backtracking counterfactuals might infer a vector u∗ that
could be inconsistent with our evidence e. For our goal of obtaining arguments
that are coherent with given observations we require all v∗ to take the same
values as their corresponding counterparts v constrained via evidence e. Oth-
erwise, one could always come up with explanations by choosing an arbitrary
similarity metric and simply disregard the observed evidence. We will now dis-
cuss a scenario where backtracking counterfactuals are unable to explain certain
situations and interventions need to be applied.

3.1 When Backtracking is not Enough

Under certain conditions, backtracking will always be able to infer a plausible
configuration u given some observation e. Specifically, this is the case whenever
the distribution has full support over X, implying that for any x ∈ X the
quantity P (x) is non-zero. Thus, we can always find some u ∈ U for any e
such that PM(u) �= 0. However, there exist a multitude of situations where
the SCM won’t have full support over the joint domain. For better intuition we
reiterate the example given by Von Kügelgen et al. (2023, Remark 4): even for
the most simple structural equation X0 := U0;X1 := X0, with U0,X0,X1 being
Boolean, we are unable to explain the observation (X0 = True,X1 = False)
via any value of U0. While this example might seem to be oversimplified, it
demonstrates the general problem of the backtracking approach: Whenever there
exists a deterministic relation between variables (e.g. X1 := X0) we are unable
to independently set both variables to distinct values using U0. In such settings,
we can always choose some x1 �= x0 as evidence and end up with a situation
that can not be explained via backtracking.



“Do Not Disturb My Circles!” 271

3.2 Iterative Backup

In the aforementioned case, there is no other choice than resorting back to deploy-
ing interventions. However, the number of deployed interventions on the system
should be kept minimal. We propose a simple algorithm (c.f. Fig. 1) that is grad-
ually backing up to explanations with higher numbers of interventions in the case
that a natural –interventionless– explanation can not be derived from evidence.

Fig. 1. IterativeBacktrack Algorithm. The algorithm searches through differ-
ent classes of explanations, starting at the unintervened I0. In case of not obtaining any
suitable explanations the algorithm gradually backs up to Ii>0 to search for explana-
tions with higher numbers of interventions. Within the procedure standard backtrack-
ing (Backtrack) is performed. However, after the first unintervened iteration it is
always applied over an already intervened graph MI′̄

V .

Order of Preference. To express a preference for a natural unfolding of a
system we establish an ordering that prefers explanations with no or fewer inter-
ventions over those requiring larger numbers of interventions. We express our
preference with the following preorder:

(x∗, IV) < (x∗, IV \Vi
) < · · · < (x∗, {IVi

, IVj
})i�=j < (x∗, {IVi

}) < (x∗, ∅) (1)

where each explanation (x∗, IV̄) with V̄ ⊆ V consists of a counterfactual variable
assignment x∗ and a set of interventions IV̄ that leads to a non-zero probability
P I

M(x∗). By this preorder, one explanation (x∗, IV̄) is preferred over another
(x∗, I′̄

V) whenever | IV̄ | < | I′̄
V |. As an immediate consequence, this ordering

groups together explanations based on the number of interventions. We define
explanation classes Ii with i ∈ N0 and define (x∗, IV̄) ∈ Ii iff | IV̄ | = i. With a
slight inaccuracy in expression we also refer to any resulting PIV̄

M(x∗) as belonging
to Ii whenever the associated (x∗, IV̄) ∈ Ii holds. Algorithm 1 searches for the
best explanation within each class Ii by finding the most probable configuration
x∗ via classical backtracking counterfactuals while maximizing probability by
varying I under the constraint of | I | = i. Naturally, the algorithm starts at
I = ∅ and gradually searches through higher classes of Ii. Whenever there
exists no viable backtracking explanation for a given set of interventions the
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initial assumption of PIV̄
M(x∗) �= 0 for any V of the backtracking algorithm is

violated. For such cases we assume that the argmax returns an arbitrary (x∗, IV̄)
whose probability PIV̄

M(x∗) evaluates to zero.

Trivial Explanation. There always exists at least one explanation with non-
zero probability (terminating the algorithm). Assuming that all variables have
at least one xi ∈ Xi with P (Xi = xi) > 0. Then there exists at least one config-
uration that is consistent with the given evidence, that is (x∗, {E := e;V \E :=
v∗ \ e}) with x∗ arbitrary and every v∗ ∈ V such that P (V = v∗) > 0. This
explanation intervenes on all variables that are not set by the evidence, fully
factorizing the SCM into its trivial decomposition P (V) =

∏
Vi∈V P(Vi) = 1

such that any variable is either determined by evidence or intervention with a
probability of one.

3.3 Default Logic

Most of today’s causal literature operates under the assumption that the set
of variables is fixed upon performing causal inference. We find this assumption
particularly difficult in the field of argumentation, where novel arguments might
be added dynamically by different parties in order to support their positions. It
is possible to model hard interventions via instrumental variables as laid out by
Von Kügelgen et al. (2023, Appendix A). A downside of instrumental variables is
that these auxiliary variables induce additional complexity to the SCM. While
it is easy to attach instrumental variables to any of the original variables, it
might be challenging to consider all possible interventions that can be performed
on the real-world model under consideration. For these reasons, we would like
to incorporate interventions only when required. One possible solution to this
problem is the adoption of concepts of default logic. In essence, interventions
are disregarded during ‘normal operation’ and only considered when mandatory.
Pearl (1988) and Bochman (2023) discuss possible approaches with regard to
causality. Still, it is difficult to quantify and compare probabilities taken from an
ever-adapting SCM. Probability values returned from a graph under intervention
I are no longer comparable with regard to some other intervention I′ as the
preconditions (specifically the number of interventions) changed, resulting in
different underlying distributions.

3.4 Integration of Hyperreals

Modeling all possible scenarios as explicit variables comes with the problem,
that we are usually unable to anticipate every possible arbitrary intervention
that might occur in the future. To tackle this kind of problem, we induce a
search order for Algorithm 1 that guarantees it to stop at the minimal Ii. No
matter which explanation (x∗, IV̄) is returned, we guarantee that there exists
no other explanation (x′∗, I′̄

V) with fewer interventions such that we adhere to
the total ordering of Eq. 1. The main difficulty of this problem, however, stems
from the inability to encode our preferred order of Ii within the probabilities
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PIX
M(x∗) itself. For two explanations (x∗, IV̄), (x′∗, I′̄

V) of different Ii with non-
zero support, PIX

M(x∗) and PI′
X

M(x′∗) might be ordered arbitrarily. In this regard,
we propose a small trick of introducing infinitesimal quantities ε within the
probability estimate of our SCM to make quantities comparable across preference
classes.

Hyperreal Numbers (informal). We utilize the concept of hyperreal
numbers ∗R as an extension of the real numbers R (Robinson, 2016). For
this, we define an infinitesimal unit ε with ε < r for all r ∈ R. Additionally,
we make use of the standard part function st(·) : ∗R → R which maps any
ε ∈ ∗R to its nearest real-valued representation.

Within our SCM we define an auxiliary variable X# I ∈ {0..N} that counts
the number of active interventions. Upon intervening on the SCM we set
X# I := | I | with corresponding probability P(X# I = n) = εn. The proba-
bility assignment forms a valid distribution, as for P(X# I = 0) = ε0 = 1 and
for any n �= 0,P(X# I) = st(εn) = 0. The terms are additive and normalized
(
∑N

n=0 εn = ε0 +
∑N

n=1 εn = 1 +
∑N

n=1 0 = 1). In essence, we introduce an
auxiliary variable within our model that gets added to the joint distribution of
our SCM:

PI
M(X) =

[∏

Xi∈{X \ I} P(Xi|pa(Xi))
]

· P(X# I) (2)

With increasing numbers of interventions P(X# I) takes probabilities of higher-
order infinitesimal values ε1, ε2, . . . which are totally ordered, irregardless of
the remaining PM(X \X# I)3. Taking the standard part of these probabilities
st(PI

M(X)) = 0 results in zero probability which underlines our intuition of
considering interventions as external entities within the natural unfolding of our
system. Importantly, in a scenario with no intervention present P(X# I) evaluates
to ε0 = 1, thus preserving probabilities in the unintervened case.

4 Discussion

In this paper, we discussed the use of backtracking counterfactuals as well as
classical interventional counterfactuals for deriving explanations. In the light of
obtaining arguments from structural causal models, we proposed to choose the
most ‘natural’ explanation. That is, choosing explanations requiring the least
number of interventions. Backtracking counterfactuals seem to be the more nat-
ural choice for supporting arguments as we do inherently try to avoid explaining
counterfactual outcomes via arbitrary external interventions. On the other side,
interventional counterfactuals can explain cases where backtracking reaches its
limits. For this reason, we proposed a basic algorithm for gradually backing up
from the interventionless setting towards explanations that involve more and

3 Assuming the remaining terms only take values in R.
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more changes on the graph. Through this process we choose the explanation
that requires the least number of interventions, therefore ‘identifying the type of
counterfactual at hand’. Eventually, we made a first attempt of inducing our pre-
order not only on the algorithmic level but also to encode it into the probabilities
derived from the SCM itself by utilizing infinitesimal quantities.

Limitations. Our preference order currently only considers the number of inter-
ventions needed to explain the observed evidence. While the number of interven-
tions might act as a sensible proxy for measuring the ‘reasonability’ of applied
interventions, we expect that extended investigations on the impact and/or plau-
sibility of different interventions should be done in the future.

Acknowledgements. The authors acknowledge the support of the German Sci-
ence Foundation (DFG) project “Causality, Argumentation, and Machine Learning”
(CAML2, KE 1686/3-2) of the SPP 1999 “Robust Argumentation Machines” (RATIO).
It benefited from the Hessian Ministry of Higher Education, Research, Science and the
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Abstract. Exchanging arguments and knowledge in conversations is an
intuitive way for humans to form opinions and reconcile opposing view-
points. The vast amount of information available on the internet, often
accessed through search engines, presents a considerable challenge. Man-
aging and filtering this overwhelming wealth of data raises the potential
for intellectual isolation. This can stem either from personalized searches
that create “filter bubbles” by considering a user’s history and prefer-
ences, or from the intrinsic, albeit unconscious, tendency of users to seek
information that aligns with their existing beliefs, forming “self-imposed
filter bubbles”.

To address this issue, we introduce a model aimed at engaging the user
in a critical examination of presented arguments and propose the use of
a virtual agent engaging in a deliberative dialogue with human users to
facilitate a fair and unbiased opinion formation. Our experiments have
demonstrated the success of these models and their implementation. As
a result, this work offers valuable insights for the design of future coop-
erative argumentative dialogue systems.

Keywords: Cooperative Argumentative Dialogue Systems · Reflective
(User) Engagement (RUE) · Conversational Engagement · User
Attention · User Focus · Gaze Tracking · Virtual Avatar

1 Introduction

Humans naturally form opinions and resolve differing perspectives through con-
versation, exchanging arguments and knowledge. Today’s digital landscape offers
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a wealth of opinions and information available online anytime. However, navi-
gating and evaluating this abundance of sources can be a challenging task. Filter
algorithms attempt to alleviate this challenge by personalizing content based on
users’ past requests, potentially leading to the creation of so-called “filter bub-
bles” [23] where users are exposed to information that is mainly consistent with
their existing viewpoints. In addition to these external influences, an intrinsi-
cally motivated counterpart comes to the forefront. Even when having access
to non-filtered sources, people tend to prioritize a biased subset of sources that
echo or reinforce their pre-existing or convenient opinions, forming so-called”
self-imposed filter bubbles” (SFB) [4,7,10]. To counteract this unintentional
intellectual isolation, we aim to 1) engage the user in an intuitive, fair and unbi-
ased process of opinion formation, 2) enable the user to explore a wide range
of information naturally and intuitively and thus, to “build(ing) engaging argu-
mentation”. To this end, we introduce the cooperative argumentative dialogue
system BEA embodied by a virtual agent participating in a deliberative dia-
logue with a human user. Unlike persuasive systems with competitive agendas,
our system aims to offer a diverse and representative overview within the context
of a conversation with the user.

The primary goal of BEA is to establish an interactive platform that moti-
vates users to explore diverse perspectives and critically scrutinize information
on diverse topics. To overcome the limitations of a one-sided conversation, BEA
leverages a flexible natural language understanding and multiple in- and out-
put modalities. To provide a basis for a thorough, well-rounded discussion, we
derive the necessary specific characteristics of the argumentative dialogue. These
critical features include, first, the user’s demonstration of critical thinking and
open-mindedness during the interaction with the agent, the so-called reflective
engagement. And second, the user’s motivation in sustaining the conversation
with the system represented by a human-like avatar, the so-called conversational
engagement. The following paper aims to elucidate the architecture of the argu-
mentative dialogue system BEA and its associated modules. In particular, it
explains the underlying model for the user’s reflective engagement and the cor-
responding intervention strategy of BEA based on this model. As an evaluation
of our models and implementation in BEA, we present the results of two stud-
ies, demonstrating 1) increased user attention and focus on relevant parts of the
arguments due to BEA’s intervention and 2) the positive impact of a human-like
virtual avatar embodying BEA on conversational user engagement, trust, and
the general perception of the system.

The remainder of this paper is as follows: Sect. 2 provides a short overview of
relevant related work. Section 3 gives an overview of the different components of
BEA, such as the formal argument structure, dialogue framework, interface etc.
In Sect. 4, we present an approach to model the user’s reflective engagement. In
Sect. 5 BEA’s contribution in enhancing the reflective and conversational user
engagement is evaluated. Respective limitations of our work are discussed in
Sect. 6, followed by a conclusion and outlook on future work in Sect. 7.
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2 Related Work

In the following, we give a short overview of the related work on 1) argumentative
dialogue systems, 2) reflective engagement and 3) conversational user engage-
ment and virtual Avatars.

2.1 Argumentative Dialog Systems

Argumentative dialogue systems (ADS), conversational agents (CA), and Chat-
bots aim to interact with users through natural language by exchanging argu-
ments. Most approaches to human-machine argumentation are embedded in
a competitive setting [27,28]. They utilize different models to structure the
interaction (similarity model to retrieve counterarguments [25], retrieval- and
generative-based models [16]). In contrast, [5] introduced a cooperative argu-
mentative dialogue system that provides arguments upon users’ request without
trying to persuade or win a debate against the user. We adopt this cooperative
approach, as a mere confrontation with opposing arguments leads to cognitive
dissonance [13], which can have a negative effect (defensive attitude [12]). There-
fore, a confrontation in a competitive scenario is more likely to lead to rejection.

2.2 Reflective Engagement

Reflective engagement (RE) in literature often denotes learners’ active involve-
ment in critically assessing their problem inquiry. Farr et al. [11] investigated
markers of reflection in online discussions. Lyons et al. [17] emphasized the delib-
erate interruption of teaching practices for systematic questioning, highlighting
the need for conscious awareness and adaptability. While existing research pri-
marily explores RE in teaching-learning processes [14], our focus is on diverging
viewpoints in argumentative scenarios. In contrast to methods like marker iden-
tification [11] our approach [30] integrates the user’s stance and explored argu-
mentation polarity for calculating reflective engagement, in line with [18]. Aicher
et al. [3] introduced the reflective user engagement (RUE) score which aims for
a balanced argument exploration of both sides. We extend this by rewarding
users scrutinizing views opposing their current opinion. In their recent work [4,7]
Aicher et al. introduced a model to determine the self-imposed filter bubble of
the user and showed the effectiveness of the respective intervening “breaking
strategy” to overcome the user’s SFB [2].

2.3 Conversational User Engagement and Virtual Avatars

Current research often delves into the impact of self-identification with avatars
in virtual spaces [20,26]). In contrast to virtual self-representations, our focus
is on the influence of a virtual avatar as a discussion counterpart. Research in
computer-mediated communication emphasizes that higher aesthetic and behav-
ioral realism in avatars enhances user engagement, acceptance, and a sense of
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“social copresence.” The results of Aseeri et al. [8] suggest that visual and non-
verbal cues from different avatar representations affect user experience in coop-
erative tasks. In the context of argumentative dialogue systems, literature is
very limited. Blount et al. [9] present an approach for participants to shape their
own avatar appearance and how this impacts the course of an argumentative
debate in the virtual sphere. However, there is a gap in analyzing the change in
engagement, motivation, and perception when employing a virtual human-like
avatar in a cooperative argumentative dialogue system instead of a chat-based
interface, which we aim to address.

3 Prototype and Architecture of BEA

In the following, we give a short overview of prototype of BEA and its architec-
ture, which is originally based on [5] and its extension [30].

Fig. 1. Overview of system architecture in the interaction with a user.

3.1 System Architecture

Figure 1 sketches the architecture of our system. It consists of 1) an NLU (Nat-
ural Language Understanding), 2) a knowledge base of arguments, 3) a dialogue
manager, 4) an NLG (Natural Language Generation), and 5) an intervention
strategy.

Natural Language Understanding
The system uses an integrated natural language understanding framework
(NLU) [1] to map the user’s input to the available speech acts. The user can
freely type their requests using a chat-input field to allow for a natural conversa-
tion. The NLU uses an intent classifier model consisting of two main components:
a BERT Transformer Encoder and a bidirectional LSTM classifier.

Knowledge Base
The arguments that are available to the system throughout the interaction
are encoded in an argument tree structure based on the argument annotation
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scheme introduced in [29]. The knowledge base consists of a set of components
Lt. It includes three types of argument components (Major Claim, Claim, and
Premise) and two different directed relations (support and attack) between them.
Within the scope of this work, relations are allowed from Claims to the Major
Claim, Premises to Claims and Premises to Premises. If a component ϕi ∈ Lt

has a relation towards a component ϕj ∈ Lt, we say that ϕj is the target (of ϕi)
and each component (apart from the Major Claim ϕ0) has exactly one target.
Hence, the arguments Φi ∈ Args that can be generated from such a structure
have the form Φi = (ϕi ⇒ ϕj) (=̂ support) or Φi = (ϕi ⇒ ¬ϕj) (=̂ attack). Since
each relation is unique and the difference between the three types of components
is characterized solely by the allowed relations, each resulting structure can be
represented as acyclic directed graph with argument components as nodes and
relations as edges.

Throughout this work, we use the idebate dataset Marriage is an outdated
institution1 consisting of 72 arguments following the presented structure. The
root argument is defined as Φ0 := ϕ0. Every argument Φi ∈ Args has a stance
∈ {+,−} towards ϕ0 defined by the component relation and the respective posi-
tion in the argument graph.

Table 1. Communication language Lc of the herein implemented dialogue system
consisting of nine speech acts.

Speech Act Description

System moves

argue(ϕi ⇒ ϕj) Present argument ϕi ⇒ ϕj

jump to(ϕi) Jump to argument Φi = ϕi ⇒ ∗a

intervene Suggest a challenger argument

User moves

whypro(ϕi) Ask for a supporting component

whycon(ϕi) Ask for an attacking component

levelup Move level up

agree(ϕi) Feedback to agree with a statement ϕi

disagree(ϕi) Feedback to disagree with a statement ϕi

confirm/reject Confirm/Reject intervention
a∗ ∈ {ϕ, ¬ϕ}

Dialogue Manager
The dialogue manager has access to different knowledge bases and provides a
communication language Lc, which includes the speech acts available to the

1 https://idebate.net/resources/debatabase.

https://idebate.net/resources/debatabase
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user and system (see Table 1). These speech acts are tailored to suit the pur-
pose of a specific dialogue system and can be modified accordingly. It manages
the dialogue between the system and the user and ensures logical consistency.
Furthermore, the dialogue manager stores the current dialogue state, i.e., the
complete dialogue history, which arguments have been presented, the current
position within the argument tree, and allowed speech acts. For instance, if an
argument Φi is a leaf node, whypro(ϕi) is not allowed. If the user requests a new
argument (whyx), the system selects a random argument from all arguments
fitting the requested relation x ∈ {pro, con}.

Natural Language Generation
The system generates a textual response, wherein the Natural Language Gen-
eration (NLG) relies on the original surface text of the argument components,
denoted as ϕi ∈ Lt. These annotated sentences were manually adjusted in terms
of grammatical syntax to create independent utterances, serving as templates for
the corresponding system responses. In order to add some diversity, a collection
of natural language formulations was created for each speech act. During the
response generation, the explicit formulation is chosen from this list randomly.
To structure the dialogue as comprehensible and understandable for the user
as possible, and to clearly present contextual connections, the system employs
transitional phrases such as Let us return to the previous argument, that ...
or This claim is supported by the argument that .... Please note that the system
presents all arguments in a neutral manner, without taking a stance of its own.

Intervention Strategy
The intervention keeps track of the user’s reflective engagement (RUE) (RUE,
see Sect. 4 for calculations) and intervenes if necessary, i.e., it suggests consider-
ing an opposing viewpoint and presents a challenger argument if the user agrees.
Let l+, l− ∈ Lt be the set of all valid2 argument components that the system
can present. For every user request, the system simulates the RUEΦ0 for all
valid challenger arguments and returns the component that maximizes it. The
intervention takes place if and only if the simulated RUE is greater than the
maximum possible RUE for all available non-challenger arguments, i.e., if the
user requests a supporting argument, the system checks if

max
ϕi∈l−

(sim rue(ϕi)) > max
ϕi∈l+

(sim rue(ϕi)) (1)

and, if so, returns ϕi = arg maxϕi∈l−(sim rue(ϕi)), and suggests it to the user,
who can accept or reject it. In case of rejection, the system proceeds with the
initial user request.

3.2 User Interface

Table 2 sketches a sample dialogue between the user and system.
2 A valid pro (+) and con (-) argument component ϕi is an unheard component that

links to any component ϕj that has already been presented to the user.
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Table 2. Exemplary dialogue between the system and the user about the topic “Mar-
riage is an outdated institution” with intervention condition.

Actor Utterance/Action Speech Acts

system Let’s discuss that marriage is an outdated
institution.

claim(ϕ0)

User Give me an argument in favor. whypro(ϕ0)

system Marriage does not provide a more stable
environment for child rearing than a regular
monogamous relationship.

argue(ϕ1 ⇒ ϕ0)

User *Clicks green button “Agree” on interface.* agree(ϕ1)

system Alright, I noted your feedback. Let us return to
the topic of this discussion.

-

User Could you elaborate this further? whypro(ϕ0)

system I think we should look at the opposite point of
view. Alright?

intervene

User Yes confirm

system Marriage removes the transient and casual
aspects of a monogamous relationship, thus
giving a child a far more stable environment.

argue(ϕ2 ⇒ ¬ϕ0)

The user interface consists of four components: 1) the dialogue history show-
ing the system output and user input, 2) the user input text field, 3) the user
feedback buttons, and 4) the graphically displayed information about the argu-
ment structure. Furthermore, instead of the dialogue history in the middle of the
screen, a human-like 3D avatar can be displayed in the same position, presenting
the arguments in spoken language (see Fig. 4). The dialogue history is depicted
on the right side of the screen in this configuration.

A classic chat design displays the system’s textual response. The interface
provides a text (chat) input where users can formulate their requests. To allow
for feedback on whether users agree with the current argument or not, there
are two buttons (Agree and Disagree) that the user can use at any time during
interaction. Without feedback, the system considers a neutral user stance. On
the left side the browser window left side, the current argument graph displays
a visual representation of all arguments of the respective Root Claim3. An out-
lined turquoise node denotes the user’s current position, the already discussed
arguments are shown in solid turquoise, and unheard arguments are in grey. The
edges between the nodes show a supporting relation in green and an attacking
one in red. Users can choose whether to ask for a pro or con argument or how
they want to navigate through the argument tree.

3 We define a Root Claim as a Claim ϕj which directly attacks or supports the Major
Claim ϕ0.
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4 Modeling Reflective Engagement

In the following, we give a short overview of the reflective engagement model
(for details see [3,30]).

A set of arguments with the same target argument Φi is denoted as PΦi
. If

it is in favor of stance +, it is denoted as P+
Φi

and P−
Φi

elsewise. The set of all
visited arguments Φj with target argument Φi is denoted as PΦi,v.

We define the user’s focus for argument Φi based on visited pro and con
arguments as:

focusΦi
=

∣

∣

∣P+
Φi,v

∣

∣

∣ −
∣

∣

∣P−
Φi,v

∣

∣

∣

|PΦi,v| ∈ [−1, 1]. (2)

It is easy to verify that the more arguments of a certain stance are selected by
the user, the more the focus shifts in the direction of the respective stance.

The overall normalized user focus F ∈ [−1, 1] is then defined by summing up
and normalizing the focusΦi

:

F :=

∑

Φk∈Args focusΦk

|Args| (3)

During the interaction with the system, users can give feedback on whether
or not they agree or disagree with any argument Φi ∈ Args. Considering the
hierarchical structure of arguments, the system uses this feedback to compute
the user’s stance eΦj

∈ [0, 1] of any argument Φj ∈ Args considering the feedback
for this respective argument and the feedback for all arguments in the subtree
with Φj as root (following the approach of [31]).

The user’s reflective engagement considers the weighted user’s focus by mak-
ing use of the inverted correlation of stance and focus (Eq. 4). This is based on
the assumption that users with a particular stance are likely to focus more on
arguments that are in line with their stance. Users with a higher level of RE
tend to look at claims that support an opposite view as well [24].

RUE = 1 −
∣

∣

∣

∣

eΦ0 −
(

1 − F + 1
2

)∣

∣

∣

∣

(4)

After inverting the normalized focus, the difference between user stance and
focus is taken to compute RUE, i.e., the more the focus aligns with the user’s
stance, the lower the RUE and vice versa. This approach ensures that if the user
stance is positive (+), the system intervenes to suggest the user choose more con
arguments (challenger arguments of pro arguments) and vice versa.

5 Evaluation

In the following we give an overview of the results of to our two previously pub-
lished evaluation studies4, aimed to analyze the influence of 1) the intervention
4 Due to space limitations, only essential results are presented here; further details are

available in our cited work.
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on the user’s focus on challenger arguments [30] and 2) a virtual human-like
avatar on the general user perception and conversational user engagement [6].

5.1 Study 1 [30]: Analyzing Focus on Challenger Arguments

The first study was conducted online via the crowdsourcing platform “Crowdee5”
with 58 participants (aged 18–63) divided into two groups (an experimental
group with intervention and a control group without intervention) from the UK,
US, and Australia (English native speakers to avoid language barrier effects).
The study setup used the chat-based output modality. After an introduction to
the system (short text and description of how to interact with the system), the
users were advised to explore enough arguments to build a well-founded opinion
on the topic Marriage is an outdated institution. The participants were not told
anything about the underlying reflection model but only to select at least ten
arguments. In addition, they were asked to rate their opinion on the topic on a
5-point Likert scale, which normalized in [0, 1] displayed the initial user stance
e0. During the study, we collected the following data anonymously:

1. Measured user reflection score RUE (Fig. 2a).
2. User stance eΦ0 (Fig. 2b)
3. Set of visited arguments P+

v and P−
v (Fig. 2c).

Fig. 2. Collected data: Reflection score RUE, user stance eΦ0 , and focus F of both the
experimental group (x) and the control group (o).

Statistical Analysis: Concerning the calculated RUE score (Fig. 2a), the
homogeneity of variances was falsified utilizing the Levene’s test (F = 5.64,
p = .021) and the assumption of a normal distribution using the Shapiro-Wilk
5 https://www.crowdee.com/.

https://www.crowdee.com/
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test (W = 0.895, p < .001,W = 0.874). Thus, we applied the Mann-Whitney-U
test showing a main effect of intervention on RUE (U = 273, n1 = 30, n2 = 28,
p ≤ .01). In addition to that, we also checked the total amount of interventions.
There were 262 interventions in the experimental condition (8.73 per user), 201
of which were accepted by the user, which is an acceptance rate of 76%.

To investigate the main effect of intervention on challenger arguments, we
analyzed how many participants were more engaged with challenger arguments
by comparing the amount of pro and con arguments that the user heard to the
user stance, e.g., if the user stance is negative (eΦ0 < 0.5) and more pro than con
arguments were heard (P+

v > P−
v ), it implicates a strong challenged engagement

(see Table 3).

Table 3. Contingency table of focus on challenger arguments per condition.

Condition Challenger arg. Non-challenger arg. Total

Experimental 24 6 30

Control 15 13 28

Marginal Column Total 39 19 58

We found that with intervention, nearly 80% of participants were more
engaged with challenger arguments, while only 53% in the control condition
did so, which is a total increase of 51%. A chi-square test of independence [19]
was performed to examine the relation between condition and engagement with
challenger arguments showing a significant relation (χ2(1, N = 58) = 4.5924, p =
.032).

Analyzing the main effect of intervention on the total percentage of heard
challenger arguments revealed a large significant main effect (T-Test, t(56) =
2.0903, p = .02, d = .55, Fig. 3), proving that the users in the experimental
group focused significantly more on challenger arguments than in the control
condition.

Fig. 3. Means including 95% confidence interval denoted by bars of focus on challenger
arguments. (*) p < .05.
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5.2 Study 2 [6]: Influence of Avatar Interface

Fig. 4. User interface with avatar. Above the chat-input line four buttons and the
virtual avatar are shown. The dialogue history is placed on the right side of the screen.

After having shown the positive impact of BEA’s intervention on the user’s
focus and reflective engagement, this subsection focuses on analysing how to
create a enjoyable, natural discussion and maintain the user motivation to inter-
act with BEA. Therefore, we examine the impact of avatar versus non-avatar
interfaces on user perception, engagement, and trust in argumentative dialogue
systems, we conducted a crowdsourcing study. Eighty-four participants (aged
18–65; 52 female, 31 male, 1 “other/do not want to say”) were divided into two
groups: 46 interacted with a virtual avatar interface (avatar system) illustrated
in Fig. 4, and 38 with a non-avatar interface (non-avatar system) (similar to the
screen in Fig. 1). Both systems were identical, differing only in the graphical user
interface (chat-based output for the non-avatar system, spoken avatar output for
the avatar system). The avatar interface utilized the CharamelTM avatar6 with
synthetic speech utilizing Nuance TTS and Amazon Polly Voices7.

Participants interacted significantly longer with the avatar, influenced by
the avatar’s spoken utterance and response delays caused by the avatar server.
The participants rated statements on a 5-point Likert scale (1=“Totally dis-
agree”, 5=“Totally agree”) across three questionnaires. In addition to the three
questionnaires, we asked the participants to rate their opinion and interest in the
topic “Marriage is an outdated institution” before (“pre”) and after (“post”) the
interaction. There is no significant difference between the two participant groups
(Mann-Whitney-U-Test) or between the pre- and post-conditions (Wilcoxon
6 https://www.charamel.com/competence/avatare.
7 https://docs.aws.amazon.com/polly/latest/dg/voicelist.html.

https://www.charamel.com/competence/avatare
https://docs.aws.amazon.com/polly/latest/dg/voicelist.html
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signed-rank test) regarding user opinion. This is important to avoid the risk
that the avatar itself biases and manipulates user opinion. While the differences
in user interest are not yet significant, they are still noticeable for the avatar
group (Meanpre = 3.56, Meanpost = 3.81,p = .074, r = .195) compared to the
non-avatar one (Meanpre = 3.58, Meanpost = 3.53,p = .614, r = .055). This
implies a slight tendency that the user interest is positively influenced by the
avatar.

First questionnaire (adopted from a questionnaire according to ITU-T
Recommendation P.851) [22]8: consists of 39 single items and measures the
user’s general impression of the system. Its items are grouped by the follow-
ing aspects: information provided by the system (IPS), communication with the
system (COM), system behavior (SB), dialogue (DI), user’s impression of the
system (UIS), acceptability (ACC), and argumentation (ARG)9.

Even though the differences between the avatar and non-avatar group regard-
ing the merged aspects IPS, COM, SB, DI, UIS, ACC and ARG are insignificant
(Mann-Whitney-U-Test), we can perceive some consistent, aspect-overlapping
tendency. Regarding the aspects IPS, COM, UIS and ACC neither the single
item analysis nor the merged analysis showed any significant differences. Like-
wise also for the three other aspects (SB, DI and ARG) the merged analysis did
not show any significant differences, but we could still perceive some consistent,
aspect-overlapping tendency. Especially regarding the perceived naturalness and
the engagement users felt, the avatar system is rated significantly better.

Second questionnaire: consists of 12 items [21] and measures the conver-
sational engagement. Its items are grouped by the following aspects: Focused
attention (FA), perceived usability (PU), aesthetic appeal (AE) and Reward
(RW). The findings revealed the avatar system’s engaging effect, as indicated
by better ratings across all items and especially significant for the impression
that using the system was worthwhile (pRW1 = .022, rRW1 = 0.25). However,
perceived usability needs improvement, particularly regarding automated speech
recognition errors and the explanation of the system’s reaction if the user was
not understood correctly.

Together with the voluntary the significant difference in the expected help
the system should have provided, this implies that the avatar on one hand side
tends to raise the expectation to that of a human conversational partner. Thus,
fulfilling these expectations could lead to a significantly stronger acceptance
comparable to a human conversational partner.

Third questionnaire [15]10: consists of 11 items and measures user trust. Its
items are grouped by the following aspects: understanding/predictability (UP),
familiarity (F), propensity to trust (PT) and trust in automation (TA). The
users tend to trust the avatar system more than the non-avatar one, especially
regarding their propensity to trust (pPT = 0.015, rPT = 0.266). Both participant

8 Such questionnaires can be used to evaluate the quality of speech-based services.
9 Self-added aspect since this is not captured by standardized questionnaires.

10 This questionnaire was developed to measure trust in automation.
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groups do not differ noticeably in the familiarity with similar systems, which
implies an inclination towards trusting the avatar system more. Thus, especially
by individualizing the avatar further, we believe to increase the user trust and
support a well-founded opinion building.

In summary, our findings support using an avatar interface in ADS, empha-
sizing its potential to enhance user engagement and trust without manipulating
their opinion. Addressing usability concerns can further optimize the user satis-
faction and it will become easier to maintain the interaction.

6 Limitations

This paper, however, is subject to some limitations that will be addressed in
future research. First, in our second study, we did not compare different avatar
settings personalized to individual users, nor did we conduct per-participant
analyses. For this exploratory study, we opted for an easily implementable,
widely accessible, representative avatar, rather than one that is highly individ-
ualized. The comparison to a purely chat-based interface aimed to evaluate the
influence of avatars on argumentative interactions in general. The focus was to
determine whether the mere visualization of an avatar leads to a bias in opinion
formation or influences the perception of the provided argumentative content and
conversational engagement of users even though the avatar has not been person-
alized. However, future research in this domain should investigate the impact of
personalized avatar features and how individual participants perceive the inter-
action, the provided argument content, and the avatar’s personality traits (e.g.,
dominance, friendliness/pleasure). In order to capture the full range of experi-
ences and perspectives of the participants in future studies, it may be beneficial
to supplement the study with qualitative data in the form of participant inter-
views (e.g. by free text responses). Furthermore, it needs to be mentioned, that
due to limited space we did not discuss user comments in detail. Moreover in
future work we will put a specific focus on analyzing aspects directly related to
argumentation, such as the perception of argument strategy/selection (regard-
ing consistency, quality, persuasiveness, etc.) in relation to differences in avatar
modeling.

Another limitation is that both user studies focus solely on one topic (“Mar-
riage is an outdated institution”) derived from a single source. We selected this
topic because its dataset fulfills our criteria of being sufficiently large, balanced
in terms of argument stance (pro/con), of high quality, and having depth in argu-
ments. Although it appears suitable for a proof-of-principle study, the scalability
of our findings needs to be demonstrated concerning other topics.

Moreover, we emphasize that while the user-agent interaction may seem con-
strained and artificial because users are unable to introduce counterarguments,
this decision was deliberate. The aim of the argumentative dialogue system is
to neutrally confront users with pro/con arguments on a given topic, allowing
them to explore without being directly engaged in a persuasive discussion. As
pointed out by [24] due to the users’ tendency to defend their own view, a system
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which confronts them with an opposing stance might not lead to critical reflec-
tion but rather the opposite. However, we aim for a more natural exchange in
future work. We intend to explore how users can introduce their own arguments
without exacerbating their self-imposed filter bubble. To achieve this, we pro-
pose investigating the approach of dynamically searching for relevant arguments
in real-time, which can support both viewpoints and supplement the existing
argumentative structure with arguments that have not yet been part of the
argumentative discourse.

One final limitation to mention here is that the study results presented herein
have predominantly been introduced separately in our earlier publications. The
intention behind this is to integrate and merge findings from previously sepa-
rately explored dimensions of reflective and conversational engagement within
argumentative discourse involving real users. This synthesis shall provide a basis
for addressing questions that involve both forms of engagement, conversational
and reflective engagement, to enhance argumentative discussions with individual
users in future work. Thus in this paper, we want to emphasize the importance of
acknowledging the significance of investigating both conversational and reflec-
tive engagement to attain a critically-reflected and enjoyable interaction with
real users within the context of robust argumentation machines.

7 Conclusion and Future Work

In this work we introduced an approach to build engaging argumentation. There-
fore, we focused on exploring methods to enhance the reflective and conversa-
tional engagement of users in the interaction with the cooperative argumentative
dialogue system BEA. To account for a critical reflection of arguments, we intro-
duce a model that characterizes reflective user engagement (RUE) and propose
a corresponding intervention strategy. To maintain the user motivation to con-
tinue the interaction, especially when guiding them to explore opposing view-
points without explicit request, we suggest incorporating a virtual, human-like
avatar to embody the system.

The first of two presented user studies demonstrates that BEA’s interven-
tion not only increased RUE but also enhanced the user focus on challenger
arguments. Results from a second user study imply the positive impact of a
human-like virtual avatar embodying BEA on conversational user engagement,
trust, and overall system perception. This suggests that a human-like design gen-
erates expectations for communication and assistance, akin to interactions with
a human conversational partner without manipulating the user’s opinion. How-
ever, errors or delays in the avatar’s response time can have a noticeable adverse
impact, emphasizing the need for addressing these issues in future refinements
of the avatar setting.

Also, in future work, we aim to explore how personalizing and individual-
izing avatars influence users’ perception of argument content (persuasiveness,
etc.) and user trust and motivation, particularly in relation to specific avatar
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traits. Through qualitative analyses, we hope to gain more insight into the fac-
tors that contribute to manipulating the rational perception of argument con-
tent when modeling virtual, argumentative avatars. And we will investigate the
potential of personalized avatar implementation to enhance interaction in argu-
mentative dialogue systems, through social presence influence, positive feedback,
and emotional connection, with the intention to increased user engagement and
satisfaction.

To ensure scalability of the described results and introduced approaches, we
aim to test them on datasets covering other controversial topics from various
sources. Additionally, we aim to enhance natural interaction by allowing users
to contribute their own aspects/arguments while ensuring that the user’s self-
imposed filter bubble does not reinforce.

In conclusion, based on the established connection between reflective and
conversational engagement in argumentative interaction with real users, we aim
to further explore the interdependencies between them and their impacts. There-
fore, this work presents important implications for designing a critically-reflected
and enjoyable interaction within the context of robust argumentation machines.
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University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
{Mark-Matthias.Zymla,Raphael.Buchmueller,Miriam.Butt,

DanielKeim}@uni-konstanz.de

Abstract. In this paper, we introduce an application for exploring the
effect of linguistic features on personalized argument preferences. These
individual preferences are derived by measuring the impact of linguis-
tic features on pairwise comparisons between arguments. The insights
derived from this are, in turn, useful for studies of argument quality.
To conduct this research, we have developed a new pipeline that covers
three major components: data collection, argument comparison labeling,
and data exploration, incorporating linguistic annotations of arguments
and preference data. The first component has resulted in a novel cor-
pus consisting of minimal pairs of arguments: the comparable argument
corpus. For the second component, we have developed a visual interac-
tive labeling system that structures the annotation process of pairwise
comparisons. Through these annotations, we extract patterns of argu-
ment preferences using Gaussian Process Preference Learning based on
linguistic feature vectors. The corresponding, personalized models are
used to identify relevant features to explain argument preferences. By
training individual models for different users, we gain information that
allows us to compare different user groups, identifying different argu-
mentation preferences across groups. Each of these steps is supported by
novel visual analytics dashboards, facilitating data collection and anno-
tation steps and enabling the exploration of personal preferences.

Keywords: argument quality · argument preferences · visual analytics

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG)
within the project CUEPAQ, Grant Number 455910360, as part of the Priority Pro-
gram “Robust Argumentation Machines (RATIO)” (SPP-1999). We are grateful
to the participants of the Priority program RATIO for discussions at various project
meetings. Furthermore, we would like to thank Mennatallah El-Assady, Annette Hautli-
Janisz, Chris Reed, and Rita Sevastjanova for providing crucial feedback We are also
very thankful to Fabian Sperrle for his contributions to the project.

c© The Author(s) 2024
P. Cimiano et al. (Eds.): RATIO 2024, LNAI 14638, pp. 296–314, 2024.
https://doi.org/10.1007/978-3-031-63536-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63536-6_18&domain=pdf
http://orcid.org/0009-0005-5617-0265
http://orcid.org/0000-0002-0612-8828
http://orcid.org/0000-0003-0409-9223
https://doi.org/10.1007/978-3-031-63536-6_18


Deciphering Personal Argument Styles 297

1 Introduction

This paper addresses a central question within research on argumentation,
namely: What makes a good argument? [29,41,43–45]. The literature so far
has established, that the quality of an argument has many dimensions, which
pertain to the content of the arguments themselves as well as their rhetori-
cal “packaging”. In our project Visual Analytics and Linguistics for Capturing,
Understanding, and Explaining Personalized Argument Quality (CUEPAQ), we
have built on our expertise in the linguistic analysis of argumentation [11,14,38]
to explore the hypothesis that argument preferences are, in fact, often more
subjective than the current state of the art in the literature leads us to believe
(cf. [41]). More concretely, the project focuses on the effect of linguistic features
on personalized argument preferences.

For this, we have developed a new application, the CUEPipe. This pipeline
allows researchers to generate data sets for assessing personalized argument pref-
erences as well as annotating these data sets for argument preference. Expect-
ing different results from different annotators, we also provide a platform for
exploring personalized argument models learned from the annotations. Thus,
the CUEPipe allows linguists to investigate argument preferences, including our
claim that argument preferences are, to some extent, subjective. In this paper,
we describe three major components of the application:

i. An interface for generating a corpus of arguments and exploring its linguistic
feature diversity

ii. An interface for labeling pairwise comparisons between arguments
iii. An interface for exploring personal argument preferences

We illustrate each of these steps based on a proof-of-concept use case by
reporting our own experiences with the application and the results of a user study
tailored towards testing the visual interactive labeling aspect of the application
and the exploration of personal argument preferences. For this, our declared
goal was to explore whether how we attribute beliefs to different entities affects
how we perceive the corresponding arguments. We do this by looking at how
propositional attitude verbs affect argument preferences.

The paper is structured as follows: In the next section, we describe the con-
cepts explored in CUEPAQ in more detail. In Sect. 3, we describe how these
concepts relate to the CUEPipe and in Sect. 4, we describe our pilot use case
involving user studies. Section 6 concludes.

2 Background

One main goal of our research is to investigate the impact of linguistic features
on argument preferences in a controlled manner. To achieve this, we drasti-
cally simplify the complexity often attributed to the structure of arguments, as
becomes apparent when investigating the topic of argumentation schemes (e.g.,
[23,31,46,47]). As such, we rely on the simple idea that “Argumentation is aimed
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at increasing or (decreasing) the acceptability of a controversial standpoint”
[42, p. 4].1 In the next section, we motivate this decision.

2.1 Argument Data

We treat arguments as tuples (premise,conclusion,relation), following basic
(computational) argumentation schemes [30]. The premise and the conclusion
are unmodified linguistic expressions.2 They stand in a specified relation to the
argument and are taken to be a member of the set {support,attack}. The support
relation indicates that the premise increases the acceptability of the conclusion,
while the attack relation aims at decreasing the acceptability of the conclusion.
An example is illustrated in (1).

(1) Covid has a 2% mortality rate. →support Covid is dangerous.

One of the reasons to focus on the simple arguments is to enable the con-
trastive study of linguistic features by means of minimal pairs. Minimal pairs
originated in the linguistic study of sounds and are used to help determine dis-
tinctive classes, for example, to determine the phonemes of a language. Beyond
phonology, the concept has been applied to different kinds of minimal pairs,
prominently syntactic minimal pairs, which have been used, for example, in lan-
guage acquisition research [10,20]. Similarly, minimal pair data has been used
to judge the linguistic ability of machine and deep learning systems (see, e.g.,
[27,48]). Our goal is to investigate whether minimal changes affect the judg-
ment of argument preferences. More concretely, our corpus helps to explore how
minimal changes in the premise affect the acceptability of the conclusion of an
argument. A typical minimal pair in our corpus is exemplified by (1) vs. (2). As
can be seen, our minimal pairs are based on the choice of lexical items that make
up an argument. The term minimal refers to the addition, removal, or change
of at most one word.

(2) Covid only has a 2% mortality rate. →support Covid is dangerous.

As discussed in Sects. 3 and 4, these minimal pairs help provide balanced
corpora for research into individual preferences as tied to linguistic features.

2.2 Argument Preferences

According to recent work on the assessment of argument quality, argument pref-
erences are affected by various dimensions [43,44]. However, these dimensions
1 While we restricted ourselves to simple argument types, the methods presented in

this paper are applicable to more complex arguments as well. However, creating
minimal pairs becomes more complicated the more complex the arguments are.

2 Some annotation schemes, e.g., Inference Anchoring Theory [6] distinguish between
locutions and propositional content, when defining the building blocks of an argu-
ment. There, the propositional content is reconstructed from the original locution
enriching it semantically, e.g., by resolving anaphora.
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have mainly been used to assess objective argument quality. [41] acknowledge
the subjectivity of rating argument quality, but do not explore this further. Our
approach is based on the efforts to evaluate how convincing arguments are by
[16,36,37] and similar approaches, and we treat argument preference as a single
value derived from a function over linguistic features values of that argument.

We collect pairwise comparisons of arguments to train models that learn
this function (e.g., [16]). More concretely, our approach is based on [36] (also
[16,43]). This means we train argument preference models based on Gaussian
Process Preference Learning (GPPL). We chose this model since it is particu-
larly well suited to working with sparse data. Furthermore, [37] opens up new
possibilities for future research by simultaneously including annotations from
multiple users. As we are primarily interested in the impact of linguistic fea-
tures on model performance, we focus on using linguistic features for assessing
argument preferences, e.g., [5,29,44] to train these models.

Based on the collected argument preferences and the models trained on them,
we can develop user profiles that explain the linguistic preferences of users. For
this, two strategies are pursued in this paper: i) analyzing the feature importance
scores that a model assigns during training, and ii) analyzing the most and least
preferred arguments of a user using register analysis methods [4].

2.3 Visual Analytics for Linguistics

We integrate diverse methodologies from the domain of Visual Analytics [24]
to support argument and model exploration as well as user engagement in the
procedural stages of the CUEPipe. We draw upon expertise from prior studies in
the field of natural language exploration [5,11]. Specifically, we derive method-
ologies from the field of visual data collection [12,25,33] to support the process
of corpus annotation. We further integrate a new visual interactive labeling com-
ponent derived from [2,3,34] for annotating argument preferences. Finally, we
introduce a dashboard designed for the examination of preference models by
introducing a new radial evaluation technique based on former approaches to
user-centric visualization [8,18,34,35], thus adding to the growing body of work
on LingVis: Visual Analytics for Linguistics [1,7].

3 The CUEPAQ Argument Exploration Pipeline

Our CUEPipe is a web-based application providing graphical user interfaces
for various tasks related to the linguistic modeling of argument preferences. In
this section, after introducing the overall workflow, we present the individual
components, describing their basic functionalities and intended applications.

3.1 The CUEPipe Workflow

Figure 1 shows the overall workflow of the system. CUEPipe provides various
interfaces (I) for working on collecting argument data. The (V)isualizations
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Fig. 1. The CUEPipe workflow

described in Sect. 3.2 provide an intuitive overview of the data set, allowing
for its exploration. As described in Sects. 3.3 and 3.4, the labeling process and
exploration of argument preferences are also supported by separate interfaces
and visualizations.

Furthermore, the workflow in Fig. 1 highlights the different roles of entities
interacting with the CUEPipe. It provides access to an extendable argument
corpus. However, it is best used to study specific linguistic cues in a targeted data
set. Thus, the first important role is that of the linguist. The linguist formulates
a hypothesis and defines an expected outcome of the study. Then they generate
a data set accordingly. Correspondingly, they may choose to specify a feature
set that focuses on the attributes of interest.

The next step is conducting the study. The second role, users, consists of
the target group. Here the subjective nature of argument preferences comes into
play. The user group of a study can be categorized across different dimensions,
e.g., demographic features, such as age, gender, or income. This depends on the
goal of the study and the corresponding hypothesis. The task of the user group is
to compare arguments pairwisely to create a model that captures their argument
preferences reasonably well, as described in Sect. 3.3.

Finally, the role of the analyst is to interpret the resulting preference models
and the insights they provide on the user group, e.g., finding clusters. The analyst
has a dual role, as it should inform both the linguist and the users. Concerning
the users, the goal is to teach them about their argument preferences by analyz-
ing the features that play a role in their preference models and comparison with
other models. With respect to the linguist, the analysis needs to communicate
the actual outcome of the study, involving information about model performance
and other factors that might affect the reliability of the study. This forms a feed-
back loop. Depending on the study’s outcome, the linguist may want to revise
their hypothesis or tweak other variables, such as the used feature space or the
argument set. If the result confirms the hypothesis, the linguist still needs to
evaluate the created models carefully to ascertain that the results are reliable.

The best use for the CUEPipe may be for prototyping studies to make sure
that a more detailed investigation is warranted. However, it also allows linguists
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to expand on a study incrementally. In principle, the different elements are mod-
ular, allowing for individual use, too.

Table 1. Argument distribution in the CAP

Dataset Arguments Variation Ratio Unique Standpoints

Corpus 315 0.69 78

Staging 1375 0.54 154

New 103 0.45 45

In the next few sections, we will present the individual steps in Fig. 1, collec-
tion, labeling, and Analysis, in more detail focusing on their implementation.

3.2 Generating a Data Set for Exploring Argument Preferences

The CUEPipe provides a graphical user interface for adding arguments to the
Comparable Argument Corpus (CAP) we have developed. The main innovation
of the CAP is that it allows adding minimal variations of arguments that contain
contrasting lexical items. Thus, the interface is designed to provide a view for
adding arguments, a view for varying arguments, and a general argument view
that groups arguments and their variations to provide a high-level overview.

Data Collection: The corpus is divided into three levels, new arguments, staging
arguments, and corpus. This distinction is mainly for quality control reasons.
Arguments, as well as their variations, must adhere to the general structure
described in Sect. 2.1: (premise, conclusion, relation), arguments must be lin-
guistically adequate (i.e., no non-sense strings, etc.), and the relation between
premise and conclusion must be conceivable (thus, all arguments are assumed
to surpass a certain argument quality threshold). After submission to new argu-
ments, two additional data collectors have to confirm these requirements by
promoting arguments to staging and corpus, respectively. Consequently, three
distinct experts confirm each argument to be suitable for the corpus.3 Table 1
describes the current size of the corpus. Variation ratio refers to the average
number of variations per argument. Unique standpoints refers to the number of
unique conclusions, indicating topic variation in the corpus. Since the goal is to
focus on linguistic feature effects on argument preferences, we aim to provide a
varied data set that allows the creation of test sets for various topics.

Each argument is annotated with metadata, including relations between
arguments (i.e., whether an argument is a variation of another or an original
argument), the author label for variations, and the source label for original

3 Experts are linguistic researchers of argumentation and linguistics students with
training in the annotation of arguments.
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arguments.4 For the sake of keeping the structure simple, there is no nesting of
variations in the corpus, so variations generally have 0 other variations (although
they may be incidental variations of other variations of the original).

Linguistic Feature Annotations: Each argument in the main corpus is annotated
with linguistic features to allow for the exploration of personalized argument
preferences. For this, we use several automated feature annotation pipelines.
Some of these were borrowed by other work, e.g., [11,39] and [29], while some
features have been implemented actively for the CUEPipe. Particularly relevant
for the CUEPipe are features introduced by lexical items, including the concrete
use of certain items and additional properties. Examples of this are embedding
verbs, noun and verb modifiers, and different types of negation (verb vs. noun).
As an example of additional annotations related to the concrete lexical items,
we use the semantic parser by [21] to distinguish different kinds of intensionality
(veridical, averidical, and anti-veridical). Overall, the application supports 66
linguistic features, ranging from stylistic to semantic. These features are orga-
nized into feature groups that give an intuitive understanding of their expected
role in analyzing personal argument preferences.

Corpus Exploration: In addition to the corpus management functionality, we
provide a visual exploration dashboard to interact with the data in the corpus.
This component primarily serves to inspect feature distributions and interactions
in the corpus. It consists of three parts: the argument similarity map and the
global and local co-occurrence matrices.

The argument similarity map, as the name suggests, maps arguments onto a
two-dimensional space as circles. It distributes them according to their similarity
based on their annotated features. For this, we use an off-the-shelf dimensional-
ity reduction (principal component analysis, PCA; [17]) to reduce the linguistic
feature vectors to two dimensions. The map can be customized for selected fea-
ture combinations. Thus, distributions of different feature categories based on
the analyst’s interest can be evaluated in this way. Moreover, different feature
sets, or individual features, can be mapped onto the x- and y-axes of the map.
As shown in Fig. 2, the selected features for each axis are reduced to one dimen-
sion each. This allows linguists to compare the distribution of features or feature
groups in relation to the overall complexity of the corpus. Figure 2 illustrates
this by presenting the distribution of the feature averidical-ratio relative to the
full feature set. As the picture suggests, many arguments do not indicate averidi-
cality in the selected argument set. However, of those marked with averidicality,
we can see that they are somewhat distributed across the data set.5 Linguists
4 The arguments in the CAP have been collected from various sources, including exist-

ing argument corpora, e.g., the IBM 30k corpus [15] and the argumentative micro-
text corpus [28]. However, many arguments have also been collected manually with
support from the OVA tool [19].

5 Averidicality refers to elements that are linguistically marked as not factual, e.g.,
introduced by verbs like believe, think, assume, compared to verbs like know, discover,
forget, which presuppose that the content that they mark is veridical. See Sect. 4.
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Fig. 2. Feature exploration

can select arguments of interest, such as argument clusters, outliers, or argu-
ments of a certain value, for closer inspection to refine the information provided
by the argument similarity map. As shown in Fig. 2 on the right, researchers
then see global and local feature co-occurrence matrices. As the name suggests,
these visualizations present feature collocations. The global matrix displays pair-
wise interactions within the selected subspace in the upper right corner. Darker
shades indicate a high number of feature co-occurrences, while brighter shades
indicate fewer feature co-occurrences. When a cell is selected, the local matrix
(bottom right corner) shows how two features interact in close detail using the
same overall method. Thus, the local co-occurrence matrix in Fig. 2 suggests
that, in this selection, many arguments contain one propositional attitude verb
expressing a level of veridicality.

Overall, the argument exploration dashboard can be used to find balanced
data sets for specific features and to explore and reduce imbalances in test sets.
Furthermore, it provides an overview of the coverage of the corpus.

3.3 Learning Preferences via Visual Interactive Labeling

Our goal is to learn preferences from pairwise comparisons, as illustrated in
Fig. 3. There, two different arguments are presented. In accordance with our
definition of an argument, choosing the preferred argument involves choosing the
argument for which the premise better affects the conclusion (i.e., increases or
lowers the acceptability of the conclusion). This task can be varied across various
dimensions, e.g., by only presenting premises affecting the same conclusion, or
only arguments with support relations, etc. Thus, the system allows for some
flexibility concerning the definition of comparison tasks.
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Fig. 3. Visual interactive labeling

The annotation of argument preferences is an extremely expensive task due
to the fact that the number of comparisons n in a set of arguments with size
x exhibits quadratic growth (n = ( (x ∗ (x − 1))/2). Thus, a full annotation of
30 arguments already requires 435 comparisons. Because we want to test per-
sonalized argument preferences, we cannot use multiple annotators for the same
model to reduce the annotation cost per annotator. Consequently, we have devel-
oped a system that is aimed at supporting this costly annotation process and
possibly reducing the number of annotations needed to make valid predictions
about a user’s argument preferences.

Learning Argument Preferences: For learning preferences, we represent argu-
ments as linguistic feature vectors based on the annotations explained in
Sect. 3.2. As an underlying model, we use a model for pairwise preference learn-
ing based on Gaussian Process Preference Learning [36,37], a type of Bayesian
inference model. These models define a real-valued function f that takes linguis-
tic feature values as input and can be used to predict rankings, pairwise labels,
and ratings for individual arguments [36]. Concretely, ratings are represented as
numeric values provided by f , where higher values correspond to a stronger pref-
erence for the given argument based on its features. Pairwise labels are predicted
via the preference likelihood p(i � j|f(xi), f(xj)), where i � j is a pairwise label
comparing two arguments (i.e., argument i is better than argument j).

The application does not hinge on this choice of model. However, preliminary
tests have shown the model’s suitability for testing the overall pipeline. We
primarily relied on its good performance on sparse data, allowing it to learn
from relatively few comparisons, making it more feasible to learn the preferences
of individual users.

Visual Interactive Labeling: The visual interactive labeling process is divided
into two parts. First, a small random subset of comparisons is sampled from the
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data set that is to be annotated. A user annotates this subset to provide some
initial comparisons for model training. Once the subset is fully annotated, the
second stage begins.

In the second stage, the user is supported by information from their prefer-
ence model. Figure 3 illustrates our interface for visualizing model information.
On the left-hand side, the two arguments are presented side-by-side. They are
compared on a 5-point scale corresponding to the position of the arguments (i.e.,
A1 is the left argument, and A2 is the right argument). The visualization on the
right side guides users through the annotation process. It can be divided into
two parts divided by the arguments (represented by their IDs) as the spine of
the visualization. On the left side, an arc diagram provides information about
the overall annotation progress by visualizing the already annotated argument
pairs in gray. Additionally, the arc diagram visualizes predictions by the user’s
model: the five green arcs suggest candidates for the next comparison based
on the model’s variance predicted for these comparisons. These suggestions are
calculated globally across all arguments by default. The current arguments dis-
played for comparison are highlighted in pink as the comparison most favored
by the model. The user can change the next pair of arguments by selecting other
green arcs or clicking on single arguments. This action can become relevant when
including argument-specific information in the decision process. As displayed on
the right side, each argument is represented as a tuple of bar charts describing
its number of annotated comparisons in orange, its assessment of the certainty of
this score in blue, and its predicted absolute preference score in red. Sometimes,
relying on the variance alone leads to a situation where only a certain subset of
arguments is frequently annotated while other arguments are not annotated at
all. Users may wish to strive for a more balanced annotation process. The visu-
alization gives them the flexibility to do this. The visualization also allows users
to investigate their annotation process by showing them the predicted ranking
of the arguments based on their model. Thus, in addition to the concrete display
of the accuracy value of the model, users can also confirm that the model learns
the appropriate expected rankings for individual arguments.

Ultimately, this visualization serves to investigate strategies to quickly
increase model accuracy, particularly during the annotation of large data sets.
Once a large number of arguments is involved, it becomes unfeasible to annotate
them all. Thus, doing the right annotations to increase model predictability is
essential. As of now, we rely only on data from the trained models; However,
the issue has been gaining more attention recently (e.g., [13]). Thus, future work
aims at improving the model’s capability to select meaningful comparisons.

3.4 Exploring Personal Preferences

The CUEPipe provides functionality for exploring preference models based on
the previous steps of the pipeline. Concretely, we provide functionality for model
performance analysis and model comparison across different users.
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Model Performance Analysis: The application allows users to apply models to
arbitrary data sets, allowing users to test them on unseen data. For this, k-
fold cross-validation is provided as well (for k = 5). This allows users to train
the model on larger data sets involving both seen and unseen data, providing a
more in-depth understanding of the performance of a user’s model. Additionally,
we have added functionality for re-calculating the model training history. This
allows us to investigate the model’s performance in relation to the annotation
progress of a given data set.

Fig. 4. Model exploration

Comparative Model Exploration: The main visualization is presented in Fig. 4.
It allows for the exploration and comparison of user models according to their
predicted preferences. Again, we make use of a principal component analysis to
project high-dimensional feature importance vectors provided by user models on
a two-dimensional, radial space. Hence, models that are displayed close together
share similar feature importance vectors. We use this metric as an indicator of
the impact of linguistic features on the prediction of argument preferences. Thus,
different feature importance values indicate different argument preferences.

To illustrate these differences, we separate the space into multiple slices by
displaying a visualization similar to a pie chart. The user may determine the
number of slices. The individual pieces of the pie describe potential model clus-
ters, i.e., models with similar feature importance patterns. The feature impor-
tance vectors of these models are aggregated and visualized in the outer ring of
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the visualization. This provides users with information on differences between
the various clusters. Color is used to affiliate the user model to the respective arc
and to display important feature differences in the outer ring, thus supporting
the differentiation between the different model clusters.

The model comparison visualization allows an analyst to cluster users and
find commonalities between their models. To further explore the models, it is
possible to extract top and bottom arguments from the annotated data sets
(and beyond, if model performance allows it) and feed into the previously pre-
sented argument exploration view (Sect. 3.2). There, feature distributions in the
different sets (all, top, and bottom arguments) may be inspected.

4 Study: Propositional Attitudes

We conducted a proof-of-concept case study to evaluate the functionality of the
system. The study consists of a linguist creating a data set for exploring the
impact of propositional attitude verbs on argument preferences. Subsequently,
users were asked to compare arguments to learn their preferences. Finally, the
results were analyzed using the presented model exploration functionality.

Creating Data Sets: For this proof-of-concept study, we created a data set con-
sisting of arguments containing propositional attitude verbs, a kind of embedding
verb encoding the commitment of a source to the embedded content.

More concretely, the properties we are interested in relate to the intensional
nature of (some) embedding verbs [9,26]. One important notion is factuality or
factivity [22], which also receives regular attention in the computational litera-
ture (e.g., [32,40]).

For the sake of this paper, we understand factivity as a continuous value
that describes the degree of commitment attributed to the content embedded
under factivity markers, e.g., discover in (3-a) or believe in (3-b). However, as
(3-b) illustrates, the source that the commitment is attributed to is also relevant.
Thus, the fact that 3 out of 50 lawyers believe that piracy is theft is not a strong
premise for the standpoint piracy is theft (cf. (3-b)); however, were it 47 out 50
lawyers, then despite the less strong commitment indicated by believe (compared
to discover), the premise might still make a good support.

(3) a. After evaluating over 105 million data points from 30,000 U.S.-
based Prodoscore users, we discovered that there was a five percent
increase in productivity during the pandemic work from home period.
→support Companies should move towards a hybrid and remote work-
ing environment.

b. Of the 50 lawyers who were interviewed, only three believed that
downloading or streaming digital content from pirate sources should
be illegal and unacceptable.
→support Piracy is not theft.
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The test and training data sets were created by a linguist based on 88 argu-
ments containing propositional attitude verbs in the corpus. The data set was
skewed towards embedding verbs claim, think, agree, and show. This is illustrated
in Fig. 5 (right side). The embedding verbs used in the 15 test arguments are
shown on the left of Fig. 5.

Preference Learning Experiments: We tested five participants (i.e., users) for this
study. All of them had an academic background (three student assistants and
two postdocs). Each participant did two annotation sessions. In the first session,
they annotated preferences based on ten arguments, resulting in 45 random
comparisons. These later serve as test sets for the models trained on their training
sets comprising 105 comparisons. Due to the sparseness of the data, we tested
the model both on seen and unseen data. The results in Table 2 show that while
the model learned argument preferences for some of the users relatively well
within the seen data, applying the models to unseen data shows that they have
not learned enough to make general predictions about the argument preferences
of the users (tested by combining the training and test sets and applying k-fold
validation with k=5, as provided by the application).

Table 2. Model performance (accuracy) across users

seen data unseen data standard deviation

user1 0.67 0.37 0.15

user2 0.82 0.62 0.09

user3 0.56 0.41 0.04

user4 0.79 0.59 0.03

user5 0.79 0.54 0.11

Model Exploration: We fed the four models based on the annotation study into
the model exploration dashboard. The dashboard shows that the three users
with relatively high accuracy on the seen data form a cluster with respect to the
feature importance values of their models. User1 and User3 formed their own
clusters (see Fig. 4). We can see that the models with the best accuracy metrics
generally have higher feature importance scores across features. This suggests
that their preference patterns are more consistent with underlying linguistic
features. However, comparing the cluster of three in isolation reveals considerable
differences in the importance of argument features, suggesting that the models
are still quite distinct. Concretely, for User5, positive and negative sentiment
were important features for the model, but the semantic features of veridicality
and averidicality (i.e., those pertaining to factivity) did not seem to play a role.
Conversely, User2 put focus on neutral sentiment, and the semantic features
concerned with factivity were among the most important ones of their model.
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Fig. 5. Embedding verbs in the training set (left) and corpus (right)

Finally, User5 model was mostly affected by features pertaining to linguistic
complexity, while sentiment and factivity features played only a minor role.

Overall, the study’s compactness requires us to take these assumptions with
a grain of salt. Nonetheless, this proof of concept shows that the pipeline can be
used to inspect personal argument preferences across multiple users within a few
arguments. Informally collected feedback from the five users was very positive on
average, although smaller technical issues occurred during the study. However,
we will leave a more detailed analysis of the system’s usability for future work.

5 Limitations

In this section, we discuss two limitations that pertain to the CUEPipe itself
and to limitations of our proof-of-concept study.

5.1 The CUEPipe

Currently, CUEPipe is best suited for smaller pilot studies tailored toward the
initial investigations of hypotheses. This limit is imposed on a technical level as
well as on the level of implementation of the visualizations. On a technical level,
the limit pertains mainly to the visual interactive labeling step. In the current
implementation, model updates needed for making meaningful annotation sug-
gestions require complete retraining of the model. This works well on smaller
amounts of data but can interrupt the annotation process as the models become
larger, both in terms of feature annotations and the number of comparisons. To
some extent, this can be solved implementationally by optimizing training pro-
cedures (e.g., by running them asynchronously in the background and adapting
the interface between the annotation interface and the trained preference mod-
els accordingly). Another possibility that could be explored is to create crowd
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models [37] and, for example, merge models of users with similar annotation
behaviors. However, this would obviously lead to larger but (potentially) fewer
models. Thus, ultimately, large-scale studies based on pairwise comparisons may
require a more powerful infrastructure than is currently available.6

Another issue of the CUEPipe is that the visualizations do not always scale
optimally with increasing data complexity. In particular, representing complex
feature annotations can clutter visualizations. Thus, organizing and representing
linguistic features intuitively is an ongoing concern. Our goal is to improve on
the current state which only allows the selection and deselection of features. A
more ambitious approach would be to incorporate guidance. For example, in the
radial exploration visualization, such a system could attempt to automatically
detect features relevant to distinguishing target groups and highlight those.

5.2 The Proof-of-concept Study

The study focused on the system’s overall usability, concentrating on the work-
flow described in Sect. 3.1. As mentioned there, the study should be seen as a
prototype study. The main drawbacks are as follows:

The study participants have not been selected with certain demographic
properties in mind. Although the system can and should be used to find dif-
ferences in seemingly homogenous groups (in this case, all participants were
academics), a study that is geared towards predicting predefined clusters in a
target group may illustrate the validity of the system more clearly.

Overall, the study is small-scale. Thus, as mentioned in Sect. 4, the results
should be taken with a grain of salt. This is further compounded by the fact that
we rely on automated feature annotations. While this is fine for some features,
e.g., those pertaining to language complexity, in particular, the meaning-oriented
features, such as veridicality, need to be carefully evaluated to avoid propagating
wrong information in the analysis stage of the system. For example, the system
broadly captures the right generalizations regarding the relation between atti-
tude verbs and veridicality, but there exist some outliers that can falsify results.
Concerning the first problem, future studies are planned with a focus on explor-
ing the individual properties of target groups. Regarding the second problem,
including evaluation metrics for features may make the system more transparent.

6 Conclusion

We have presented an application combining three major components for
researching personalized argument preferences: data collection, preference label-
ing, and preference exploration. We also contribute a small (but dynamic) corpus
of linguistically annotated arguments and various techniques for visual analysis
of linguistic data. The CUEPipe application has been demonstrated by means
of a proof-of-concept study, indicating that the overall workflow is successful.
6 As [36,37] show, large-scale studies are not generally impossible for GPPL. The

concerns here target the visual support component of the annotation task.
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The pipeline offers up multiple avenues for future work, e.g., facilitating com-
parative annotation, the visual representation of linguistically annotated data,
and the visual exploration of linguistic models. Overall, the CUEPipe provides
exciting prospects for exploring personalized argument preferences. Its coverage
of various major tasks in linguistic research makes it interesting for everyone
working on argument preferences. Furthermore, its ease of use reduces the bar-
rier to conducting various tasks for users new to the topic.
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5. Bögel, T., et al.: Towards Visualizing Linguistic Patterns of Deliberation: a Case
Study of the S21 Arbitration (2014). talk presented at DH2014 in Lausanne

6. Budzynska, K., Janier, M., Reed, C., Saint-Dizier, P., Stede, M., Yakorska, O.: A
model for processing illocutionary structures and argumentation in debates. In:
Proceedings of the 9th edition of the Language Resources and Evaluation Confer-
ence (LREC) (2014)

7. Butt, M., Hautli-Janisz, A., Lyding, V. (eds.): LingVis: Visual Analytics for Lin-
guistics. CSLI Publications, Stanford (2020)

8. Cashman, D., et al.: A user-based visual analytics workflow for exploratory
model analysis. Comput. Graphics Forum 38(3), 185–199 (2019). https://
doi.org/10.1111/cgf.13681, https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
13681, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13681

9. Condoravdi, C., Crouch, D., De Paiva, V., Stolle, R., Bobrow, D.: Entailment,
intensionality and text understanding. In: Proceedings of the HLT-NAACL 2003
Workshop on Text Meaning, pp. 38–45 (2003)

10. DeKeyser, R.M.: The robustness of critical period effects in second language acqui-
sition. Stud. Second. Lang. Acquis. 22(4), 499–533 (2000)

11. El-Assady, M., et al.: lingvis.io - A Linguistic Visual Analytics Framework (2019)
12. Van den Elzen, S., Van Wijk, J.J.: BaobabView: interactive construction and

analysis of decision trees. In: 2011 IEEE Conference on Visual Analytics Science
and Technology (VAST), pp. 151–160 (2011). https://doi.org/10.1109/VAST.2011.
6102453, https://ieeexplore.ieee.org/document/6102453

13. Gienapp, L., Stein, B., Hagen, M., Potthast, M.: Efficient pairwise annotation of
argument quality. In: Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 5772–5781 (2020)

14. Gold, V., Hautli-Janisz, A., Holzinger, K.: VisArgue - Analyse von Politischen
Verhandlungen. Zeitschrift für Konfliktmanagement 3(16), 98–99 (2016)

https://doi.org/10.2312/eurova.20171123
https://doi.org/10.2312/eurova.20171123
https://diglib.eg.org:443/xmlui/handle/10.2312/eurova20171123
https://diglib.eg.org:443/xmlui/handle/10.2312/eurova20171123
https://doi.org/10.1007/s00371-018-1500-3
https://doi.org/10.1007/s00371-018-1500-3
https://doi.org/10.1111/cgf.13681
https://doi.org/10.1111/cgf.13681
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13681
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13681
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13681
https://doi.org/10.1109/VAST.2011.6102453
https://doi.org/10.1109/VAST.2011.6102453
https://ieeexplore.ieee.org/document/6102453


312 M.-M. Zymla et al.

15. Gretz, S., et al.: A large-scale dataset for argument quality ranking: construction
and analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, pp. 7805–7813 (2020)

16. Habernal, I., Gurevych, I.: Which argument is more convincing? Analyzing and
predicting convincingness of web arguments using bidirectional LSTM. In: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1589–1599 (2016)

17. Hasan, B.M.S., Abdulazeez, A.M.: A review of principal component analysis algo-
rithm for dimensionality reduction. J. Soft Comput. Data Min. 2(1), 20–30 (2021)

18. Hindalong, E., Johnson, J., Carenini, G., Munzner, T.: Abstractions for visualizing
preferences in group decisions. Proc. ACM Hum.-Comput. Interact. 6(CSCW1),
49:1–49:44 (2022). https://doi.org/10.1145/3512896, https://dl.acm.org/doi/10.
1145/3512896

19. Janier, M., Lawrence, J., Reed, C.: OVA+: an argument analysis interface. In:
Computational Models of Argument (COMMA) (2014)

20. Johnson, J.S., Newport, E.L.: Critical period effects in second language learning:
the influence of maturational state on the acquisition of English as a second lan-
guage. Cogn. Psychol. 21(1), 60–99 (1989)

21. Kalouli, A.L., Crouch, R., de Paiva, V.: GKR: bridging the gap between sym-
bolic/structural and distributional meaning representations. In: Xue, N., et al.
(eds.) Proceedings of the First International Workshop on Designing Meaning
Representations, Florence, Italy, pp. 44–55. Association for Computational Lin-
guistics (2019). https://doi.org/10.18653/v1/W19-3305, https://aclanthology.org/
W19-3305

22. Karttunen, L.: Some observations on factivity. Res. Lang. Soc. Interact. 4(1), 55–69
(1971)

23. Katzav, J., Reed, C.: On argumentation schemes and the natural classification of
arguments. Argumentation 18(2), 239–259 (2004)

24. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.:
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Abstract. The comparative argumentative machine CAM can retrieve
arguments that answer comparative questions—questions that ask which
of several to-be-compared options should be favored in some scenario. In
this paper, we describe how we equipped CAM with a better answer
stance detection (i.e., a better detection of which option “wins” a com-
parison) and with system variants to support non-English requests. As
for the improved answer stance detection, we develop RoBERTa-based
approaches and experimentally show them to be more effective than pre-
vious feature-based and LLM-based stance detectors. As for the multi-
lingualism, in a proof of concept, we compare two approaches to sup-
port Russian requests and answers: (1) translating the original English
CAM data and (2) using an existing replica of CAM on native Russian
data. Comparing the translation-based and the replica-based CAM vari-
ants in a user study shows that combining their answers seems to be
the most promising. For individual questions, the retrieved arguments
of the two variants are often different and of quite diverse relevance and
quality. As a demonstrator, we deploy a first multilingual CAM version
that combines translation-based and replica-based outputs for English
and Russian and that can easily be extended to further languages.

Keywords: Answering Comparative Questions · Argumentation
Machines · Answer Stance Detection · Cross-Language Argument
Retrieval

1 Introduction

Decision making is part of everyday life, yet it can involve a complex and time-
consuming process when pro / con arguments on the potential alternatives need
to be gathered and weighed (e.g., ‘Should I buy or rent a house?’).

There are many ways to gather arguments or opinions on some compari-
son objects: asking other people but also using web search engines, LLM-based
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systems, specialized product comparison websites, research prototypes, etc. One
research prototype that was developed for open comparative questions (i.e., not
just focusing on products) and that should be more effective than skimming
through a search engine’s classical “ten blue links” is the comparative argumen-
tative machine CAM [33].1 The web interface of CAM takes some comparison
objects and aspects as input, retrieves (argumentative) sentences relevant to
the comparison, detects the sentences’ comparative stances (i.e., which com-
parison object is favored), and presents a tabular result. As the original CAM
only supports English inputs and results, recently, a replica of CAM for Russian
comparisons—the RuCAM system—has been developed [22].

An important component of CAM and RuCAM is stance detection to deter-
mine for each retrieved sentence which comparison object is favored and which
object is the overall “winner” in the retrieved sentences (e.g., ‘buying’ vs. ‘renting’
in the house example). Accurately grouping the retrieved sentences in CAM’s
and in RuCAM’s tabular result presentation with respect to the favored objects
ensures that users are not misled and can come to “correct” conclusions. Still,
with F1 scores of 0.85 and 0.82, respectively, CAM’s and RuCAM’s current rule-
and XGBoost-based [8] or rule- and BERT-based [13] stance detection seem to
leave some room for further effectiveness improvement. Our first research ques-
tion thus is: (RQ1) Can advanced BERT models like RoBERTa improve the
effectiveness of CAM’s and RuCAM’s answer stance detection?

To address RQ1, we fine-tune several RoBERTa-based models [9,20] on the
5,759 English sentences of the CompSent-19 training set [29] using the masking
approach of Bondarenko et al. [4]. In our experiments, our new stance detectors
achieve F1 scores of 0.91 for English and 0.87 for Russian and thus are more
effective than CAM’s and RuCAM’s current detectors. Interestingly, a multi-
lingual XLM-RoBERTa model turned out to be as effective as an English-only
model so that the same stance detector can be used in CAM and in RuCAM.

Developed as a replica of the original CAM system, RuCAM uses the Russian
and not the English part of the Common Crawl.2 Still, another possibility to sup-
port some non-English language would have been to simply translate the original
CAM’s inputs and results. As there was no comparison of these two ideas yet and
as we aim for a single multilingual CAM system, our second research question
is: (RQ2) What are the strengths and weaknesses of machine translation-based
and replica-based “localization” of CAM?

To address RQ2, we use Russian as the target language and compare machine-
translated CAM responses and RuCAM responses in manual analyses and in a
user study. The results of our manual analyses indicate that CAM and RuCAM
retrieve rather different results of varying relevance and quality (translated
CAM results tend to be more relevant while the RuCAM results tend to be of
higher quality). Therefore, a combination of translation-based and replica-based
results seems to be a promising direction for a multilingual CAM system.

1 http://ltdemos.informatik.uni-hamburg.de/cam/.
2 https://commoncrawl.org/.

http://ltdemos.informatik.uni-hamburg.de/cam/
https://commoncrawl.org/
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Our code and data are publicly available.3 As a demonstrator of a multilin-
gual CAM system, we equip the existing CAM and RuCAM backends with a
new interface for multilingual translation- and replica-based search in English
and Russian4 that can easily be extended to support further languages.

2 Related Work

This section provides an overview of the CAM system and the existing
approaches for comparative stance detection.

2.1 CAM Overview

Comparative information needs in web search were first addressed by develop-
ing simplistic search interfaces where two to-be-compared products were entered
separately in a left and a right search box [25,35]. The search results were pre-
sented to the searcher as side-by-side two standard “ten blue links” lists for
each product. Later, the comparative argumentative machine (CAM) was devel-
oped to tackle open-domain comparisons (not just products) [33]. The CAM’s
web interface takes as input user-specified two comparison objects (e.g., ‘buy a
house’ and ‘rent a house’) and optional comparison aspect(s) (e.g., ‘risk’). Then,
using Elasticsearch,5 CAM retrieves comparative arguments (e.g., ‘It is less risky
to rent a house than to buy’) relevant to the user input from the DepCC cor-
pus [30] containing about 14 billion English sentences coming from the Common
Crawl corpus (if no relevant arguments are found, CAM will respectively notify
the user). For each retrieved argument, its comparative stance is detected so
that the arguments can be grouped into two columns (i.e., whether one or the
other object is preferred according to individual arguments) for the final result
presentation. In the CAM’s output, the arguments are ranked based on the Elas-
ticsearch relevance score. Additionally, the final comparison score is shown to the
user, which determines the overall “winner” of the comparison. The score com-
bines the stance detector’s confidence and the Elasticsearch score and is summed
up over all the retrieved arguments for each comparison object [33]. The design
of the CAM system is also shown in Fig. 1.

The comparative stance in the context of CAM is defined as ternary label:
(1) First comparison object “wins” a comparison, i.e., it performs better or is
more suitable for the comparison aspect compared to the second object (e.g.,
‘It is less risky to buy a house than to rent a house’), (2) second object “wins”
a comparison (e.g., ‘It is less risky to rent a house than to buy a house’), or
(3) none “wins” or no comparison is present; such statements are excluded from
the CAM’s final result presentation [33].

A user study with CAM showed that the study participants were able to
answer comparative questions faster and more accurately compared to a standard
3 https://github.com/webis-de/RATIO-24.
4 https://cam-multi.ltdemos.informatik.uni-hamburg.de.
5 https://www.elastic.co.

https://github.com/webis-de/RATIO-24
https://cam-multi.ltdemos.informatik.uni-hamburg.de
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web search [33]. Later, RuCAM [22], a Russian version of the CAM system (that
supports the English language only), was developed that replicates the original
CAM pipeline using a Russian part of the Common Crawl corpus [28].

2.2 Comparative Stance Detection

One of the important (Ru)CAM components is a comparative stance detec-
tor that allows to place the retrieved arguments on the correct “winning” side.
More generally, stance detection is the task of identifying the author’s viewpoint
(attitude, opinion) towards a target, which can be a debate topic, an entity,
or a claim [23]. Earlier works mostly focused on the stance detection in online
debates [19] and proposed rule-based [2,24,41,42] and feature-based classifiers
using, for instance, SVM [3,15,36,42] or Naïve Bayes [2,15,31]. Later, neural
network architectures like CNN [16,43], LSTM [44,45], and transformer-based
models like BERT [13] became state-of-the-art approaches [1,34,39].

The aforementioned works mostly focused on the stance detection towards
a single target. Our task is to detect the stance given two comparison objects,
i.e., two stance targets (e.g., ‘buy a house’ vs. ‘rent a house’). For detecting a
comparative stance, i.e., a “winning” comparison object in English sentences,
different feature-based classifiers were tested [29], e.g., logistic regression [12],
SVM [11], XGBoost [8], etc. Trained on 5,759 and tested on 1,440 English sen-
tences (CompSent-19 dataset [29]), the most effective stance detector (XGBoost
with InferSent embeddings [10]) achieved a micro-avg. F1 of 0.85 (3 labels: first /
second object “wins” or no comparison).

Later, on the same dataset, a stance detector was tested that employed multi-
hop graph attention over a dependency graph sentence representation [21]. Each
sentence was represented by its dependency graph, which, for simplicity, was then
converted from the original directed graph into an undirected graph. Embeddings
for each sentence word (node in the dependency graph) were calculated using
BERT [13]. Then, Graph Attention Networks [40] were used to embed the rela-
tion between the comparison objects. Finally, a feed-forward layer with a softmax
function was added to project the embedding vectors into classes for prediction.
The proposed approaches achieved a micro-avg. F1 of 0.87, outperforming the
previous XGBoost-based stance detector.

Recently, large language models like LlaMa-2 [38], GPT-3.5 Turbo [26], and
GPT-4 [27] using zero-shot and few-shot prompting were tested [18]. In addition
to rigorous prompt engineering, the authors designed a retry message to tackle
the cases when an LLM returned malformed answers, i.e., answers violating
the predefined format suitable to extract the predicted stance. Interestingly, all
tested LLMs did not improve over the aforementioned stance detectors.

In this paper, we fine-tune the RoBERTa [20] and XLM-RoBERTa models [9]
following the idea of masking the comparison objects with special tokens [4]. The
evaluation results show that our stance detectors are more effective than previous
feature-, neural-, and LLM-based approaches, achieving a micro-avg. F1 of 0.91
for the English and 0.87 for the Russian languages.
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3 Improving Comparative Stance Detection

The current CAM implementation allows to choose between a rule-based com-
parative stance detector that uses the handcrafted list of cue words and an
XGBoost-based classifier [29,33]. The latter one is more effective and achieves a
micro-avg. F1 of 0.85 (3 labels: first/second object “wins” or no comparison).

Table 1. Stance detection effectiveness of different approaches tested on English sen-
tences from the CompSent-19 dataset (class distribution: ‘no comparison’ 73%, ‘first
object wins’ 19%, ‘second object wins’ 8%) [29]. Reported are F1 scores per stance
class and a micro-averaged F1.

Stance detector Ref. Stance label Micro-avg.
First Second None

Rule-based [29] 0.65 0.44 0.90 0.82
GPT-3.5 Turbo (few-shot) [18] 0.68 0.48 0.90 0.84
LLaMa-2 70B (few-shot) [18] 0.75 0.60 0.91 0.85
XGBoost + InferSent [29] 0.75 0.43 0.92 0.85
GPT-4 (few-shot) [18] 0.78 0.65 0.91 0.86
ED-GATBERT [21] 0.78 0.56 0.93 0.87
RoBERTa-masked our 0.86 0.70 0.94 0.91
XLM-RoBERTa-masked our 0.87 0.69 0.95 0.91

To address our first research question, we fine-tune the English RoBERTa [20]
and multilingual XLM-RoBERTa [9] models on the CompSent-19 train set (5,759
English sentences) [29]. Following the idea by Bondarenko et al. [4], we mask
the comparison objects using the special masking tokens: [FIRST OBJECT] and
[SECOND OBJECT], before fine-tuning.6

We compare the effectiveness of our stance detectors with several approaches
from previous work that were tested on the CompSent-19 test set (1,440 English
sentences; we again mask the comparison objects). The results in Table 1 show
that our stance detectors achieve a convincing micro-avg. F1 of 0.91 and are
more effective than previous existing feature-based and LLM-based approaches.

Multilingual Stance Detection. To test our comparative stance detector for the
Russian language, we use a dataset of 1,208 manually labeled Russian sen-
tences [22]. Due to a relatively small number of labeled examples, we use the
whole dataset to test our multilingual stance detector based on XLM-RoBERTa
that was fine-tuned on English sentences. We also test on the original test set
for a more fair comparison with the stance detectors for Russian from previ-
ous work [22]. Our stance detector achieves a micro-avg. F1 of 0.87 on the test
6 Hyperparameters were selected using a 5-fold cross-validation on the train set. Mod-

els: roberta-large and xlm-roberta-large, batch size: 16, learning rate: 0.00003, train-
ing epochs: 5. Fine-tuning was performed using Colab’s Tesla T4 GPU (RoBERTa)
and NVIDIA GeForce RTX 4090 (XLM-RoBERTa).
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Table 2. Stance detection effectiveness of different approaches tested on Russian sen-
tences (class distribution: ‘no comparison’ 70%, ‘first object wins’ 21%, ‘second object
wins’ 9%) [22]. Reported are F1 scores per stance class and a micro-averaged F1. For
comparison with the original stance detectors for Russian [22], we additionally report
the results on the original test set.

Stance detector Ref. Stance label Micro-avg.
First Second None

Test set (119 sentences)
Rule-based [22] 0.34 0.33 0.82 0.69
RuBERT-based [22] 0.57 0.38 0.91 0.82
XLM-RoBERTa-masked our 0.71 0.53 0.93 0.87
Full dataset (1,208 sentences)
Rule-based [22] 0.41 0.27 0.74 0.62
XLM-RoBERTa-masked our 0.68 0.53 0.90 0.83

set and 0.83 on the full dataset (cf. Table 2), which is more effective than the
rule-based approach and fine-tuned RuBERT [22].

An interesting observation is that for English sentences, fine-tuning a multi-
lingual RoBERTa is as effective for stance detection as fine-tuning an English-
only model. We thus suggest using for practical application a single fine-tuned
XLM-RoBERTa to detect the stance in both the English and Russian languages.

4 Adapting CAM to Russian

One of the limitations of CAM is its restriction on the English language. To
address our second research question, we explore the use of machine translation
to translate CAM output to the target Russian language. We then compare the
translation-based approach with the existing replica-based system, RuCAM [22].

4.1 Translation-Based System

As the translation model, we use OPUS-MT [37]. While OPUS-MT could be
replaced with any system, we motivate its use since it is open access and easy
to implement using the Huggingface’s transformers library.

The overall CAM architecture extended with the translation modules is pre-
sented in Fig. 1(a). First, we added a translation step to the CAM’s input of
the comparison objects and aspect(s) from Russian to English,7 so that we
could retrieve English sentences from the Elasticsearch index. Afterwards, we
translate the retrieved arguments from English to Russian for the final result
presentation.8 This system does not require any additional data and indexing.
7 https://huggingface.co/Helsinki-NLP/opus-mt-ru-en.
8 https://huggingface.co/Helsinki-NLP/opus-mt-en-ru.

https://huggingface.co/Helsinki-NLP/opus-mt-ru-en
https://huggingface.co/Helsinki-NLP/opus-mt-en-ru
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Fig. 1. (a) The architecture of the CAM system extended with translation modules;
new modules are in green; (b) The architecture of the RuCAM system [22]. The modules
that we used for the language adaptation comparison are in purple. The updated stance
classification model is also highlighted in purple. (Color figure online)

4.2 RuCAM

To compare with the alternative pipeline for language adaptation, we consider
RuCAM [22]: the Russian Comparative Argumentative Machine9 that imple-
ments its own Elasticsearch index based on the Open Super-large Crawled
Aggregated corpus (OSCAR) [28] containing 21 billion Russian sentences from
the Common Crawl corpus. RuCAM also accepts natural language questions as
input; however, we skip previous steps (comparative question identification and
object and aspect detection) and query the system directly with two comparison
objects and, optionally, aspect(s). We also replace the original stance classifica-
tion model with our fine-tuned XLM-RoBERTa-masked model to improve the
quality of the system output. Figure 1(b) presents the overall architecture of
RuCAM, highlighting in purple the modules used for the comparison as well as
the updated stance classification model.

4.3 System Comparison on Retrieval Effectiveness

To evaluate the two adaptation techniques, we set up a manual annotation fol-
lowing the methodology from the Touché 2020–2022 shared tasks on argument
retrieval [5–7]. For the user study, we use the Touché 2022 dataset [6] that
contains 50 comparative questions, each labeled with two comparison objects
that we also translated into Russian (e.g., ‘Should I buy or rent a house?’) The
English CAM found matches (i.e., relevant arguments) for 40 object pairs, and
the RuCAM had matches for 46 pairs. Then, we provided five volunteer annota-
tors with the annotation guidelines from the Touché tasks and asked to label the

9 http://rucam.ltdemos.informatik.uni-hamburg.de.

http://rucam.ltdemos.informatik.uni-hamburg.de
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Table 3. Relevance-wise (R) and quality-wise (Q) retrieval effectiveness of the replica-
based and translation-based systems. The nDCG scores are calculated for the two
ranked lists separately (the first or the second object “wins” a comparison split after
stance detection) and for all the retrieved results before stance detection (overall).

System First object Second object Overall
nDCG@5 nDCG@10 nDCG@5 nDCG@10 nDCG@5 nDCG@10
R Q R Q R Q R Q R Q R Q

Replica-based 0.84 0.93 0.90 0.96 0.83 0.93 0.90 0.96 0.83 0.93 0.90 0.96
Transl.-based 0.91 0.81 0.97 0.91 0.85 0.79 0.94 0.90 0.88 0.78 0.95 0.91

retrieved arguments based on: (1) the relevance to the comparison object pairs
as not relevant (label 0), relevant (label 1), and highly relevant (label 2), and
(2) the argument quality (rhetorical well-writtenness) as low quality (label 0),
sufficient quality (label 1), and high quality (label 2). In total, the labeled dataset
comprises 1,238 arguments (at most 10 arguments for each object pair).10

To calibrate the annotators’ interpretations of the guidelines, we conducted
an initial Fleiss’ κ test in which each annotator had to label the same 15 argu-
ments for 3 object pairs (5 arguments for each pair). The observed Fleiss’ κ
values were 0.734 for argument relevance (substantial agreement) and 0.45 for
argument quality (moderate agreement). Furthermore, after the initial κ test,
we organized a follow-up discussion with all the annotators to clarify poten-
tial misinterpretations, e.g., the cases where one of the objects is ambiguous
(e.g., ‘Milk tastes better than cow’s milk in the supermarket.’; it is not clear
whether the first object refers to ‘goat milk’ or not) or the argument is too long
and contains both the comparison as well as the unrelated text (e.g., ‘Comp
JAVA Program Description: I will not say for sure that NetBeans is better than
Eclipse, I believe that each development environment has its own strengths and
weaknesses.’). Afterwards, each annotator independently judged the results for
disjoint subsets of the topics (i.e., each unique object pair was assigned to one
annotator only).

Using the resulting manual labels for the argument relevance and quality, we
calculate nDCG@5 and nDCG@10 scores [17] for each comparison object sepa-
rately (since CAM and RuCAM split the arguments according to the “winning”
object) and overall scores for all arguments retrieved for all object pairs (see
Table 3). We assume that the scores are comparable, as both systems retrieve
arguments from Common Crawl. Apparently, different corpora might have dif-
ferent numbers of relevant arguments because of social and cultural differences.

The results show that both relevance and quality nDCG scores are relatively
high for both systems. However, the argument relevance in a translation-based
system is consistently higher. This might be explained either by a more effective
stance detector for English or a more effective Elasticsearch retrieval for English,
possibly due to linguistic differences (Russian is a highly inflected language while

10 The labeled dataset and annotation guidelines are available in the GitHub repository:
https://github.com/webis-de/RATIO-24.

https://github.com/webis-de/RATIO-24
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Table 4. Similarity scores between the arguments retrieved by the translation-based
and replica-based systems. The respective embedding models used to calculate a cosine
similarity are given in parentheses.

Metric Score

ROUGE-1 0.257
ROUGE-2 0.046
Cos. sim. (sentence-transformers/LaBSE) 0.404
Cos. sim. (ai-forever/sbert_large_nlu_ru) 0.635
Cos. sim. (DeepPavlov/rubert-base-cased-sentence) 0.656

English is weakly inflected). On the other hand, the argument quality-wise nDCG
scores for translated arguments are lower than those for arguments retrieved in
the original Russian language. This result can be highly correlated with the
quality of the machine translation system.

4.4 Measuring Argument Similarity

To understand whether the arguments retrieved by the two systems are lexically
and semantically similar and whether there is a need to replicate the whole
system instead of translating, we calculate similarity scores between arguments
retrieved by two systems for 78 comparison objects (from 39 pairs).

The scores are reported in Table 4. To calculate ROUGE-1 and ROUGE-2,
we tokenize and lemmatize the arguments since Russian is a highly inflected
language. The resulting ROUGE scores are relatively low (ROUGE-1 is 0.257
and ROUGE-2 is 0.046), indicating that the translated texts are lexically quite
dissimilar to the texts retrieved by the RuCAM system.

To calculate cosine similarity scores, we use the three following sentence
embedding models: (1) multilingual LaBSE [14],11 (2) Russian BERT large
uncased,12 and (3) Sentence RuBERT,13 where sentence representations are
mean-pooled token embeddings analogous Sentence-BERT [32]. The highest
mean cosine similarity score between different embeddings is 0.656, which is bor-
derline, however, similarities might dramatically differ for the arguments from
different pairs. For example, the arguments for the pairs “Chinese vs. Western
medicine” have a mean similarity of 0.763, and for the “morning vs. afternoon
sun”, the mean score is 0.290 (examples for these two cases are in Tables 5 and 6).

We also looked at how pairs are ranked according to the ROUGE-1 and cosine
similarity metrics of their arguments. First of all, our goal was to check to what
extent two metrics are related when identifying similar arguments from two sys-
tems. We measured the Spearman’s correlation coefficient between ROUGE-1
and cosine similarity, which showed a weak correlation of 0.371 (p-value = 0.02).
11 https://huggingface.co/sentence-transformers/LaBSE.
12 https://huggingface.co/ai-forever/sbert_large_nlu_ru.
13 https://huggingface.co/DeepPavlov/rubert-base-cased-sentence.

https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/ai-forever/sbert_large_nlu_ru
https://huggingface.co/DeepPavlov/rubert-base-cased-sentence
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Table 5. Example arguments for the object pair ‘Chinese medicine vs. Western
medicine’ that has the highest mean cosine similarity 0.763 among all the object pairs
(‘rubert-base-cased-sentence’ embeddings). For the demonstration purpose, we trans-
lated Russian arguments into English using OPUS-MT.

Translation-based Replication-based (RuCAM)

The amazing thing is that with
Traditional Chinese Medicine I always get
better faster than all of my colleagues
who are relying on Western medicine

“I think more and more Western
doctors are realizing today that
Chinese medicine is effective,” says
Dr. Li

Chinese medicine is superior to Western
medicine

Chinese medicine has outstripped
Western medicine in some respects

As for the treatment of Nephrotic
syndrome, by large, Chinese medicine is
superior to Western medicine

In Chinese medicine, attention is paid
to hidden factors, whereas Western
medicine pays more attention to
visible indicators

What I am saying is Chinese medicine is
a better method of healthcare than
Western medicine

In Chinese medicine, for example,
kidneys are given much more
attention than in Western medicine

I am a firm believer that Chinese
medicine is better than Western in many
cases

Chinese medicine has coped with
what European medicine has not
coped with

From Table 7, one can also see that pairs with the most similar and dissimi-
lar arguments do not overlap much, especially between the top-10 object pairs:
‘Chinese medicine vs. Western medicine’, ‘steel knives vs. ceramic knives’, and
‘Google vs. Yandex search’. According to cosine similarity, more general or com-
mon knowledge concepts get higher scores, while for the ROUGE-1 metric, top-10
similar arguments are for companies, brands, and specific topics like program-
ming or medicine. Surprisingly, ‘kids vs. adults’, ‘rain water vs. tap water’, and
‘skiing vs. snowboarding’ appear at the top of cosine similarity scores but at the
bottom of the list for the ROUGE-1 score. ‘BMW vs. Audi’, ‘Kenya vs. Tanza-
nia’, and ‘morning sun vs. afternoon sun’ are object pairs that were shown to
be different by both metrics. Secondly, our goal was to see, how similar were the
arguments from two systems regarding both metrics. Manual analysis of the pairs
that were scored differently by ROUGE-1 and cosine similarity showed that high
ROUGE-1 scores indeed represent similar arguments, while low cosine similarity
scores for those cases can be explained by the unequal number of arguments for
each language that increases the impact of the outliers.

Thus, we conclude that a good approach for extending CAM is to combine the
translation- and replica-based systems: the results show that the lexical similarity
of the arguments from both systems is quite low, while the similarity according
to semantic representations is borderline. We also analyzed the arguments to
understand whether the dissimilarities could be explained by cultural differences
present in the source languages. We identified the following main trends:
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Table 6. Example arguments for the object pair ‘morning sun vs. afternoon sun’ that
has the lowest mean cosine similarity 0.290 among all the object pairs (‘rubert-base-
cased-sentence’ embeddings). For the demonstration purpose, we translated Russian
arguments into English using OPUS-MT.

Translation-based Replication-based (RuCAM)

And remember: morning sun is cooler
than afternoon sun

Gerberas can be grown in full sun,
but it is better in the morning sun
and in the midday shade

The morning sun is cooler and gentler
than the afternoon hot sun

The location is sunny, but the bright
afternoon sun is less useful, shaded

Morning sun is better than afternoon sun The morning sun is best with
reflected light the rest of the time

Early morning sun is better than late
afternoon sun since the flowers last longer
under cooler conditions

Hot summer sun Many
rhododendrons tolerate the morning
sun better, although there are some
species and varieties that do not
tolerate the sun at all

Experienced gardeners know it, morning
sun is cooler than afternoon sun.

The morning sun is always preferable
to the midday sun, which can burn
plants

(a) The retrieved arguments address different aspects of the culture and every-
day life of the source language speakers. For example, when comparing car
brands, English arguments tend to care more about safety, engine capaci-
ties, and technology, while Russian arguments pay attention to price, repair
costs, wear and tear, and car modifications present on the Russian car mar-
ket.

(b) Cultural bias occurs in both more specific and more generic comparisons.
For instance, for the ‘IELTS vs. TOEFL’ object pair (more specific com-
parison), English arguments focus on complexity and the test’s specific fea-
tures, whereas Russian arguments mainly discuss the certificate’s recognition
in other countries. For the ‘skiing vs. snowboarding’ pair (more generic),
English arguments discuss the learning rate and complexity, whereas Rus-
sian arguments care more about adrenaline, safety and which sport is better
for families.

(c) However, for some more generic comparisons like ‘football vs. basketball’
or ‘Western medicine vs. Chinese medicine’, the arguments mostly compare
the same aspects like effectiveness, popularity, and often express personal
preferences.

The aforementioned examples highlight that the provenance of retrieved
arguments (the language in particular) significantly influences their diversity
and introduces potential cultural nuances. In the process of adapting the CAM
system to a new language, meticulous consideration should be given to vari-
ous facets, including the translation quality, the cultural predisposition inherent
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Table 7. Object pairs and similarity scores between the retrieved arguments by
two systems: translation-based and replica-based. The object pairs are sorted in
descending order of the similarity scores. Highlighted in green are the pairs that get
high/low/medium scores by the two similarity metrics. Highlighted in red are the pairs
showing discrepancies in two similarity metrics.

Cosine Similarity ROUGE-1

Chinese vs. Western medicine 0.763 cow milk vs. goat milk 0.393
Apple vs. Google 0.744 rain water vs. tap water 0.362
PHP vs. Python 0.736 London vs. Paris 0.335
Linux vs. Windows 0.732 Chinese vs. Western medicine 0.330
artificial sweeteners vs. white sugar 0.728 skiing vs. snowboarding 0.328
steel knives vs. ceramic knives 0.721 kids vs. adults 0.321
Ibuprofen vs. Aspirin 0.718 steel knives vs. ceramic knives 0.307
hybrid vs. diesel 0.701 Google vs. Yahoo search 0.302
Google vs. Yahoo search 0.700 train vs. plane 0.301

OpenGL vs. Direct3D 0.687 Internet Explorer vs. Firefox 0.292
ASP vs. PHP 0.677 artificial sweeteners vs. white sugar 0.287
NetBeans vs. Eclipse 0.674 basketball vs. football 0.287
Xbox vs. PlayStation 0.669 cats vs. dogs 0.286
laptop vs. desktop 0.661 IELTS vs. TOEFL 0.284
Canon vs. Nikon 0.650 Apple vs. Google 0.284
electric stove vs. gas stove 0.645 electric stove vs. gas stove 0.270
IELTS vs. TOEFL 0.643 Ibuprofen vs. Aspirin 0.265
cow milk vs. goat milk 0.626 OpenGL vs. Direct3D 0.251
quicksort vs. merge sort 0.621 gas vs. charcoal 0.249
Family Guy vs. The Simpsons 0.619 Xbox vs. PlayStation 0.249
basketball vs. football 0.608 Linux vs. Windows 0.246
MAC vs. PC 0.607 pasta vs. pizza 0.246
Adidas vs. Nike 0.596 ASP vs. PHP 0.235
Ford vs. Toyota 0.592 hybrid vs. diesel 0.229
gas vs. charcoal 0.592 laptop vs. desktop 0.224
train vs. plane 0.591 PHP vs. Python 0.223
London vs. Paris 0.590 NetBeans vs. Eclipse 0.211
pasta vs. pizza 0.586 Python vs. R 0.211
Pepsi vs. Coca-cola 0.585 Boeing vs. Airbus 0.211

Internet Explorer vs. Firefox 0.583 MAC vs. PC 0.208
cats vs. dogs 0.581 Family Guy vs. The Simpsons 0.203
Boeing vs. Airbus 0.573 quicksort vs. merge sort 0.188
kids vs. adults 0.567 Ford vs. Toyota 0.185
Python vs. R 0.561 Adidas vs. Nike 0.181
rain water vs. tap water 0.560 Canon vs. Nikon 0.175
skiing vs. snowboarding 0.559 morning sun vs. afternoon sun 0.168
BMW vs. Audi 0.528 BMW vs. Audi 0.154
Kenya vs. Tanzania 0.305 Pepsi vs. Coca-cola 0.151
morning sun vs. afternoon sun 0.290 Kenya vs. Tanzania 0.127
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in the source language, and the preferences of the target users—whether they
seek responses tailored to a specific language and culture or a more expansive
overview. However, in general, a recommended strategy is to merge the outputs
of translated arguments and arguments in the target language, thereby enhanc-
ing the topical coverage.

5 Multilingual CAM

Fig. 2. The multilingual CAM interface. Shown are the results for a comparison ‘Chi-
nese medicine vs. Western medicine’ in Russian. The output combines arguments in the
target language (upper part) and translated from English (lower part). The ‘Chinese
medicine’-object (left-hand) “wins” a comparison (see the bar in the middle).

To showcase the combined approach, we develop a demonstration of multi-
lingual CAM that allows to search for arguments in English CAM and Russian
RuCAM via their respective APIs. The interface of a combined system is shown
in Fig. 2. It accepts a pair of comparison objects and an optional comparison
aspect in either language and retrieves arguments in both languages when the
option ‘Multilingual Search’ is selected. Otherwise, the answers are provided in
the input languages. Optionally, the user can specify the input language (e.g.,
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when searching for “BMW” written in Latin script in the Russian texts); other-
wise, the language is identified automatically. The output arguments are grouped
into two blocks: those that come from the corpus of an input language and (in
the case of the multilingual search option) translated from another language.

Our first prototype of multilingual CAM currently has several technical lim-
itations. First, it depends on the successful response from the CAM or RuCAM
API. Second, it relies on the machine translation module, which may incorrectly
translate the user input, resulting in a failure to find relevant arguments. There-
fore, future work should focus on overcoming the aforementioned shortcomings
by locally hosting the retrieval corpora and deploying other translation models.

6 Conclusion

In this paper, we improved the answer stance detection of CAM and RuCAM—
systems that can answer comparative questions in English and Russian—by fine-
tuning RoBERTa-based models. Furthermore, we compared the replica-based
RuCAM approach of “localizing” CAM to the Russian language to a simple
machine translation-based CAM variant. Our analyses showed that translating
CAM’s inputs and outputs also yields decent effectiveness scores with respect to
result relevance and quality. However, we also found that the results retrieved by
the two systems (translation-based and replica-based) are lexically and semanti-
cally quite dissimilar as, for instance, the Russian results from the replica-based
RuCAM system that uses native Russian data can be more culture-specific and
might take into account uncommon and unexpected aspects. Therefore, combin-
ing the results of the translation-based and of the replica-based CAM variants
could yield more diverse arguments for comparisons.

As a demonstrator of a multilingual CAM system, we implemented an inter-
face to combine the results of translation- and replica-based CAM systems. In
a user study, we found that, for instance, the perceived result quality is highly
dependent on the translation quality; in our study, translated results were per-
ceived as more relevant but of a lower quality than the results retrieved in the
target language—often also related to the translation quality of the actual search
terms (comparison objects and aspects).

Limitations

Our current work focused on two rather high-resource languages (English and
Russian) so that our findings and conclusions may not be applicable to lower-
resource languages. In future research, we thus plan to also analyze CAM-like
systems in other languages.

Furthermore, our study results depend on two restricting factors: (1) the
choice of the machine translation model, and (2) potential biases of the man-
ual annotations. To alleviate the first factor, we relied on previous work and
preferred publicly available translation models that can be easily deployed. As
for the second factor, while annotation bias cannot be fully avoided, we ensured
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that our annotators understood and followed the guidelines by conducting pilot
annotations with a follow-up discussion of possible misinterpretations. In the
future, larger studies with a bigger group of human annotators are necessary for
more robust conclusions.

Finally, CAM and RuCAM operate on large document collections, in which
the amount of relevant data cannot be controlled or measured. To more closely
study sociocultural questions in the context of comparison analyses, other more
focussed collections might be better suited.
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Abstract. Decision-making and opinion formation are influenced by
arguments from various online sources, including social media, web pub-
lishers, and, not least, the search engines used to retrieve them. How-
ever, many, if not most, arguments on the web are informal, especially in
online discussions or on personal pages. They can be long and unstruc-
tured, subjective and emotional, and contain inappropriate language.
This makes it difficult to find relevant arguments efficiently. We hypoth-
esize that, on search engine results pages, “objective snippets” of argu-
ments are better suited than the commonly used extractive snippets and
develop corresponding methods for two important tasks: snippet gen-
eration and neutralization. For each of these tasks, we investigate two
approaches based on (1) prompt engineering for large language mod-
els (LLMs), and (2) supervised models trained on existing datasets. We
find that a supervised summarization model outperforms zero-shot sum-
marization with LLMs for snippet generation. For neutralization, using
reinforcement learning to align an LLM with human preferences for suit-
able arguments leads to the best results. Both tasks are complementary,
and their combination leads to the best snippets of arguments according
to automatic and human evaluation.

Keywords: Computational Argumentation · Information Retrieval ·
Large Language Models · Text Summarization · Text Neutralization

1 Introduction

Deliberative processes are a key element of well-informed decision-making and
opinion formation. Their goal is to explore and evaluate the space of arguments
that are relevant for deciding on the best course of action in a given situa-
tion [34]. Vast amounts of arguments on virtually all topics of interest can be

T. Ziegenbein and S. Syed—Equal contribution.
c© The Author(s) 2024

P. Cimiano et al. (Eds.): RATIO 2024, LNAI 14638, pp. 335–351, 2024.
https://doi.org/10.1007/978-3-031-63536-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-63536-6_20&domain=pdf
https://doi.org/10.1007/978-3-031-63536-6_20


336 T. Ziegenbein et al.

found on the web and are retrievable using generic or specialized search engines.
However, the argument snippets returned by argument search engines are often
insufficient to help users find relevant arguments—for two main reasons. First,
the standard methods for generating snippets often fail to capture the essence
of an argument [2] (henceforth referred to as the argument’s “gist”). Second, the
snippets often contain subjective, informal, emotional, or inappropriate language
that distracts from the gist [38]. Though the original arguments may still contain
information that is highly relevant to a topic, snippets that reflect inappropriate
presentations may prevent users from recognizing them as relevant.

Fig. 1. Illustration of our two-step approach encompassing snippet generation and
neutralization to create an objective snippet of a relevant document (argumentative
text) for a user query (controversial issue). The document contains information that
is relevant to the query, although written inappropriately. Our objective snippet miti-
gates this while retaining the relevant content. For comparison, an extractive TextRank
baseline reflects this inappropriateness, resulting in a potentially ineffective snippet.

In this paper, we investigate whether “objective snippets” are better suited
for argument search engines. We define such a snippet to combine the main claim
of an argument and the evidence supporting it (basically, the gist), while avoid-
ing overly subjective and informal language. We propose a two-step approach to
create objective snippets of arguments. The first step, snippet generation, aims
to extract the main message and supporting evidence of an argument. We assume
that a short summary of an argument (i.e. two sentences) can represent this gist.
The second step, neutralization, aims to neutralize the language of the extracted
core statement to make it more objective. We also investigate the necessity of
neutralization as a separate task, since abstractive summaries in particular can
potentially neutralize the language of the source text already during generation.
Figure 1 exemplifies snippets from existing snippet generation models as well
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as from our approach. It demonstrates that existing approaches produce snip-
pets that retain inappropriate language, which undermines the effectiveness of
the main argument. In contrast, our approach combines snippet generation and
neutralization to produce objective, well-written snippets while preserving the
semantics of the source argument. Our contributions are as follows:1

– A two-step approach that tackles the tasks of snippet generation and neutral-
ization to create objective argument snippets for argument search (Sect. 3).

– Three manual evaluation studies on snippet generation and neutralization,
individually and in combination, using (1) the args.me corpus [1] and (2) the
appropriateness corpus [38] as ground truth (Sects. 4 and 5).

We show that abstractive snippets are better suited to present arguments as
search results than extractive snippets. In particular, argument neutralization
leads to an expected increase in the likelihood of a productive discussion on
the topic. Moreover, combining abstractive summarization with neutralization
creates a more objective snippet that further improves the already-preferred
abstractive snippets in terms of the likelihood that users are willing to read the
full argument presented by the snippet.

2 Related Work

In this section, we describe relevant previous work on the tasks of snippet gen-
eration and neutralization. Since snippet generation is very similar to summa-
rization, we describe relevant work from both areas.

2.1 Snippet Generation

Snippets in search engines are primarily extractive in nature. Snippet generators
extract the most relevant parts of the source text, especially those containing
the terms of the query [3,14,32,35]. The aim of a snippet is to help users quickly
identify documents likely to satisfy their information need [9]. First, argument
search engines such as args.me [33] or ArgumenText [28] used the first sentences
of retrieved arguments as snippets. Later, extractive snippets of the arguments
as proposed by Alshomary et al. [2] replaced them, enriching TextRank with
argumentative information to extract the main claim and supporting premise
as an argument snippet, which forms a baseline in our evaluation. The argu-
ments were also summarized in individual sentences [28], key points [4], and
conclusions [30].

Our motivation is to introduce objective snippets of arguments in a search
engine. While minimizing the reuse of text in the snippets (from the source) is
beneficial [7], traditionally, extractive summaries are preferred over abstractive
summaries to avoid incorrect rephrasing of facts from the source text. This is
because abstractive summaries of standard sequence-to-sequence models suffer

1 The experiment code is available at https://github.com/webis-de/RATIO-24.

https://github.com/webis-de/RATIO-24
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from hallucinations [24] and incorrectly merge different parts of the source, lead-
ing to incorrect facts [5]. However, recent advances in abstractive summarization
using pre-trained language models have been shown to generate more fluid and
coherent summaries than purely extractive approaches, which improves their
overall readability and preference by humans [13]. Therefore, we opt for abstrac-
tive snippets in this work. Moreover, we investigate the zero-shot effectiveness
of the instruction-driven Alpaca [31] model using prompting.

2.2 Neutralization

Neutralization can be seen as a style transfer task. Style transfer in the con-
text of natural language generation aims to control attributes in the generated
text, such as politeness, emotion, or humor among many others [17]. Text style
transfer has been applied to authorial features and literary genres [12]. Most
studies deal with broad notions of style, including the formality and subjec-
tivity of a text [18]. There are also approaches to changing sentiment polarity
(of reviews) [16], political bias (of news headlines) [6], and framing (of news
articles) [8].

Many approaches learn a sequence-to-sequence model on parallel source–
target text pairs. Modifying the style often works reliably, but preserving the
content seems to be a challenge [6]. On the other hand, style and content are
difficult to separate in text (i.e., words can reflect both simultaneously). To
mitigate this, some works avoid disentangling latent representations of style and
content [10], but this cannot guarantee that certain information is preserved.
Others restrict transfer to low-level linguistic decisions [12,27].

Our aim is to improve the appropriateness of arguments to ensure that they
are suitable for a wide audience. However, unlike traditional style transfer, the
role of semantic preservation here is rather superficial, as some parts of our texts
that are responsible for inappropriateness may be inappropriate due to their con-
tent rather than their style, such as ad hominem attacks. Therefore, we generally
prefer appropriateness over semantic similarity in this paper.2 Since no parallel
data is available for the argument neutralization task, we rely on an instruction-
based zero-shot approach with Alpaca [31]. For further refinement, we use the
appropriateness classifier from Ziegenbein et al. [38] and an adapted version
of the RLHF (Reinforcement Learning using Human Feedback) method from
Stiennon et al. [29]. The authors of Madanagopal and Caverlee [23] use a rein-
forcement learning-based approach to correct subjective language in Wikipedia
articles, which comes closest to our approach. However, their approach is based
on parallel data, which is not available for the task of neutralization. As far as
we know, there is no style transfer approach for argument neutralization to date,
and none of the related reinforcement learning approaches for style transfer use
prompting as the initial model (i.e., for the policy).

2 The role of semantic similarity is being investigated in another paper under review.
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3 Approach

This section describes the approaches we evaluated for generating argument
snippets and their neutralization.

3.1 Snippet Generation

We investigated three snippet generation approaches: (1) an unsupervised extrac-
tive argument summarization model, (2) a supervised abstractive news summa-
rization model, and (3) an instruction-tuned zero-shot summarization model.

Extractive-Summarizer. With TextRank, Alshomary et al. [2] proposed
an unsupervised extractive argument snippet generation approach that extracts
the main claim and premise of an argument as its snippet. To identify the corre-
sponding argument sentences, a variant of PageRank [26] is used to rank them
based on their contextual importance and argumentativeness. Starting from
equal scores for all sentences, the model iteratively updates these scores until
convergence is achieved. The two highest-scoring sentences are then extracted
in their original order to maintain coherence. TextRank serves as the standard
model for generating snippets for the args.me search engine and as our baseline.

Abstractive-Summarizer. For supervised snippet generation, we use a
BART model [21], finetuned to the task of abstractive news summarization on
the CNN/DailyMail dataset [25].3 To tailor its summaries to the task argument
snippet generation, we shorten the input to 102 tokens and limit the minimum
and maximum summary length to 25% and 35% of the argument length respec-
tively.

Instruction-Summarizer. To instruct Alpaca to generate a snippet, we
use the prompt ### Instruction: The following is an argument on the
topic"<topic>". Extract a coherent gist from it that is exactly two
sentences long. ### Input: <argument> ### Response: and insert an argu-
ment and its topic. Generation is done at a temperature of 1 and sampling with
a p-value of 0.95. The number of generated sentences is limited to two in order
to ensure snippets of a similar length compared to the other approaches.

3.2 Neutralization

For neutralization, we compare (1) an instruction-tuned zero-shot neutralization
model, and (2) a reinforcement learning-aligned neutralization model.

Instruction-Neutralizer. To instruct Alpaca to neutralize a text, we use
the prompt ### Instruction: Rewrite the following argument on the topic
of "<topic>" to be more appropriate and make only minimal changes to
the original argument. ### Input: <argument> ### Response: and provide
it with the argument and its topic. We use a temperature of 1 and sample with
a p-value of 0.95 during generation. The number of generated tokens is limited

3 https://huggingface.co/facebook/bart-large-cnn.

https://huggingface.co/facebook/bart-large-cnn
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to 50% to 150% of the original argument to ensure that the model does not
delete or add too much content when rewriting the arguments or snippets.

Aligned-Neutralizer. To align Alpaca with human-defined appropriateness
criteria, we finetune it using reinforcement learning from human feedback [29,39].
During the training process, we use the same prompt settings and hyperparame-
ters as before, but adjust the output of the model to generate texts that are cat-
egorized as appropriate by the appropriateness classifier of Ziegenbein et al. [38].
Thus, texts generated by Alpaca serve as input to the classifier and the returned
probability value for the appropriateness class as a reward to update Alpaca.
For efficiency, we do not update Alpaca’s original weights but use adapter-based
low-rank adaptation (LoRA) [15]. A full description of the approach and the
training process is part of a paper soon to be published [37].4

4 Data

For evaluation, we use two datasets sampled from (1) the args.me corpus [1]
and (2) the appropriateness corpus [38]. The former is used to evaluate the snip-
pet generation approaches and combining snippet generation and neutralization,
while the latter is used to evaluate the argument neutralization approaches.

4.1 The args.me Corpus

To obtain the dataset for our snippet generation experiments, we sample argu-
ments from the args.me corpus [1]. The args.me corpus contains 387,606 argu-
ments from four debate portals, each annotated with a stance (pro or con) and
a topic (e.g., “abortion” or “gay marriage”). Based on the ten most frequently
submitted queries to the args.me API [33], we created an initial dataset. To
ensure adequate summarization potential for snippet generation and to account
for possible input length limitations of the models used in our experiments, we
filter the dataset to contain only arguments between 100 and 500 words in length.
Furthermore, we use an ensemble classifier based on the five folds of the appro-
priateness corpus to retain only inappropriate arguments. Finally, we extract
the top five pro and top five con arguments for each query based on the args.me
ranking obtained from its API. This gives us a final dataset of 99 arguments.5

4.2 The Appropriateness Corpus

To obtain the dataset for our neutralization experiments, we sample arguments
from the appropriateness corpus [38]. The corpus contains 2,191 arguments

4 The code and data used to train the models can be found here: https://github.com/
webis-de/RATIO-24.

5 As one of the queries did not contain enough arguments to meet the inappropriate-
ness criteria, one query contains only nine arguments instead of ten.

https://github.com/webis-de/RATIO-24
https://github.com/webis-de/RATIO-24
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labeled with the corresponding discussion titles from three genres (reviews, dis-
cussion forums, and Q&A forums). Each argument is annotated by three anno-
tators according to a 14-dimensional taxonomy of inappropriateness errors. We
filter the corpus to include only arguments that were classified as inappropri-
ate by all three annotators in the original study to ensure that there is a clear
need for neutralization. As before, we only retain arguments between 100 and
500 words in length. Finally, we draw a random sample of 100 arguments from
the corpus to obtain our final dataset.
Table 1. Evaluation of the snippet generation approaches without neutralization:
(a) ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L (RL), and BERTScore (Sim.), com-
puted between the source argument and the generated snippet, perplexity (PPL) of the
generated snippet and percentage of appropriate generated snippets (App.). (b) Abso-
lute counts of ranks assigned by human evaluators to the three approaches and their
average.

Approach (a) Automatic (b) Manual
R1 R2 RL Sim PPL↓ App.↑ #1 #2 #3 Avg.↓

Extractive-Sum. 0.29 0.28 0.29 0.25 67.7 0.21 42 126 327 2.58
Abstractive-Sum. 0.40 0.38 0.38 0.35 50.9 0.31 274 149 72 1.59
Instruction-Sum. 0.24 0.11 0.16 0.13 26.5 0.58 179 220 96 1.83

5 Evaluation

We evaluate our approaches in a series of experiments, both automatically and
manually. For automatic evaluation, we quantify the content preservation of all
approaches with ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L (RL) [22] for
lexical similarity, and with BERTScore (Sim.) [36] for semantic similarity. Fur-
thermore, we measure the fluency of the generated texts with Perplexity (PPL)
and compute the percentage of instances for which an approach was able to
change the label from inappropriate to appropriate (based on the ensemble clas-
sifier of Ziegenbein et al. [38], see Sect. 3). The manual evaluation is detailed in
the corresponding subsections, as the user studies differ for each of the tasks.

5.1 Snippet Generation

Automatic Evaluation. Table 1a shows that, when automatically determin-
ing the best summarization model for snippet generation, the Abstractive-
Summarizer scores best in terms of content preservation (highest R1, R2, RL,
Sim.). Instruction-Summarizer is strongest in fluency (PPL 26.5) and creates
appropriate snippets for 58% of inappropriate arguments. The extractive base-
line Extractive-Summarizer does not win in any of the automatic measurements
used.

Manual Evaluation. We hired five evaluators on upwork.com who are
native English speakers and tasked them to evaluate snippets of 99 arguments



342 T. Ziegenbein et al.

from our three models: Instruction-Summarizer, Abstractive-Summarizer, and
Extractive-Summarizer. Given a topic, a source argument (pro/con) and three
snippets, the evaluators rated the suitability of a snippet to be displayed on a
search engine results page for the argument by ranking them from “best” to
“worst.” A detailed annotation guide describing the characteristics of a good
snippet, such as high coverage of key information from the original argument
and its ability to help users easily identify relevant arguments from a ranking of
results.

As shown in Table 1b, Abstractive-Summarizer proved to be the best model
for generating snippets according to the evaluators, ranking first in about 56% of
the examples (274 out of 495). The agreement between annotators was 0.22, as
measured by Kendall’s τ rank correlation coefficient [19]. This indicates a positive
rank correlation while underlining the subjectivity of the quality ratings.

5.2 Neutralization

Automatic Evaluation. Comparing the Instruction-Neutralizer with the
Aligned-Neutralizer, Table 2a shows that there are differences in content preser-
vation and transfer of appropriateness. That is, the Instruction-Neutralizer per-
forms better on R1 (0.79), R2 (0.66), RL (0.73), and Sim. (0.67), whereas
the Aligned-Neutralizer performs better on fluency (PPL 18.4) and transfer
(App. 0.97), making almost all arguments appropriate (97%). This suggests
that there is a trade-off between retaining the content of the argument and
improving appropriateness. As mentioned above, we are investigating this effect
in another paper that is not yet published at the time of writing. However, a
manual inspection of the neutralized arguments and our annotators’ comments
shows that, despite the rather low content preservation (0.18 for BERTScore),
the main meaning of the argument and its reasoning are mostly preserved, but
the arguments do not show any lexical similarity to the original argument.

Table 2. Evaluation of the neutralization approaches: (a) ROUGE-1 (R1), ROUGE-2
(R2), ROUGE-L (RL), BERTScore (Sim.), perplexity (PPL) of the neutralized argu-
ment, and percentage of successfully neutralized arguments (App.). (b) Absolute counts
of ranks assigned by the human evaluators to the three approaches and their average.

Approach (a) Automatic (b) Manual
R1 R2 RL Sim PPL↓ App.↑ #1 #2 #3 Avg.↓

Exact-Copy 1.00 1.00 1.00 1.00 66.1 0.00 10 91 399 2.78
Instruction-Neut. 0.79 0.66 0.73 0.67 29.5 0.40 67 345 88 2.04
Aligned-Neut. 0.41 0.16 0.27 0.18 18.4 0.97 423 64 13 1.18

Manual Evaluation. If people prefer neutralized arguments over the base-
line arguments that contain inappropriate content, this is evidence that neutral-
ization is useful for the ultimate goal of creating “objective snippets.” Accord-
ingly, we evaluated the neutralized arguments of Instruction-Neutralizer and
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Aligned-Neutralizer together with the baseline argument. Like above, five human
evaluators ranked the three argument variants from “best” to “worst” according
to their appropriateness to be presented in a civil debate on a given topic. We
used 100 (manually labeled) inappropriate arguments from the appropriateness
corpus. The evaluators were provided with a comprehensive guide describing the
characteristics of inappropriate arguments and how to identify them [38].

Table 2b shows the results. Neutralized arguments from Aligned-Neutralizer
are preferred over others in 84.6% of cases (423 out of 500). This underlines the
effectiveness of neutralization and its implicit goal of making arguments more
appropriate in public debates. Kendall’s τ for this evaluation was 0.48, indicating
a positive correlation between the rankings. Compared to the snippet generation
task, the evaluators were able to distinguish more reliably between the quality
of inappropriate and appropriate variants of an argument.

5.3 Objective Snippets

Automatic Evaluation. Comparing the two approaches using our auto-
matic measures, Table 3a shows that combining Abstractive-Summarizer with
Aligned-Neutralizer further decreases the similarity of the snippet to the origi-
nal argument (0.35 vs. 0.11), but increases the number of appropriate snippets
(0.87 vs. 0.31).

Table 3. Evaluation of the combined approach (snippet generation + neutralization):
(a) ROUGE-1 (R1), ROUGE-2 (R2), ROUGE-L (RL), BERTScore (Sim.), perplexity
(PPL) of the generated snippet, and percentage of appropriate snippets generated
(App.). (b) Absolute and relative count of snippets of one approach being preferred
over the other.

Approach (a) Automatic (b) Manual
R1 R2 RL Sim PPL↓ App.↑ Pref.↑ %↑

Abstractive-Sum. 0.40 0.38 0.38 0.35 50.9 0.31 57 0.11
+ Aligned-Neut. 0.25 0.10 0.17 0.11 20.0 0.87 438 0.89

Manual Evaluation. In addition to evaluating the individual subtasks, we
also evaluated the holistic approach by assessing the usefulness of the objective
snippets. Specifically, we performed a pairwise comparison between the objective
snippets and the non-neutralized snippets. In contrast to evaluating the gener-
ation of the snippets, where the original argument was also provided, we only
provided the topic to the five human evaluators. Given a self-contained query,
they were asked to select the excerpt they were most likely to click on to read
the full argument. For this evaluation, we used 100 arguments for 10 topics from
the args.me corpus and selected an equal number of pro and con arguments.

Table 3b shows the results. Objective snippets were preferred over non-
neutralized snippets in 89% of the cases (438 out of 495). This indicates that
neutralization has a positive effect on the likelihood that search engine users will
follow the link to read the full argument from which the snippet was extracted.
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Krippendorff’s α [20] was 0.29, indicating moderate agreement between annota-
tors. Further examples of snippets generated by our best approach (Abstractive-
Sum. + Aligned-Neut.) are shown in Table 5 in the Appendix.

Qualitative Analysis. We conducted a manual evaluation of each task,
which included the generation and neutralization of snippets as well as the result-
ing objective snippets generated with our approach. For all tasks, we recruited
annotators who are native English speakers, aiming for a balanced representa-
tion of male and female annotators. Annotators had the opportunity to provide
comments and could also contact us directly if they needed help. No additional
questions were asked throughout the annotation tasks, with the exception of a
brief review of a small subset of completed annotations to confirm understanding
of the task.

Table 4. Quality dimensions for each tasks (snippet generation, neutralization, objec-
tive snippets), derived from the comments of annotators in our manual evaluation
studies.

Task Quality Dimensions (Preferred by Annotators)
Snippet Generation specificity, clarity, positive/inoffensive language, conciseness,

self-containment, informativeness, focus on the issue, avoiding
personal attacks, structure and coherence,
accuracy/correctness

Neutralization openness, simple language, absence of profanity, facilitating
critical evaluation, seriousness, absence of
grammatical/orthographic errors, balanced emotions,
well-reasoned, structure and coherence, formal language,
non-speculative

Objective Snippets conciseness, simple language, fluency, balanced emotions,
includes quotes/evidence/statistics, specificity, coherence

For each example within our three studies, annotators were asked to pro-
vide optional feedback in natural language on their ratings and preferences for
the results of each study. We manually analyzed nearly 500 comments to iden-
tify important quality dimensions for achieving the goal of creating objective
snippets. In particular, we derived quality dimensions that have been studied
in related areas such as summarization, text generation, and sentiment analy-
sis. Table 4 provides an overview of these dimensions for each task. Examples
of comments for the tasks of snippet generation, neutralization, and objective
snippets are shown in Tables 6 and 7 in the Appendix, respectively.

Overall, we found that grammaticality and positive language strongly influ-
enced the credibility and acceptability of the argument snippets. Annotators
consistently preferred arguments that were free of spelling errors, had correct
punctuation, and were well-structured, regardless of their content. Therefore,
ensuring grammatical correctness and a well-structured output is crucial. Fur-
thermore, the use of positive language is preferred over negative language, with
annotators emphasizing that a positive tone signals critical thinking and open-
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ness to other opinions. Consequently, neutralization plays a key role in ensur-
ing that the snippets are suitable for a wide audience. In line with the quality
dimensions of summaries [11], high-quality annotators preferred snippets that
were informative, concise and coherent.

Limitations and Ethical Concerns

This paper aims to provide evidence that objective argument snippets signifi-
cantly improve the overall user experience when searching for arguments. While
our human annotators strongly advocate neutralizing arguments and their snip-
pets, we currently lack evidence that directly correlates (to a large extent) with
satisfying users’ information needs. Another unexplored aspect is to investigate
whether the generation of snippets, especially through prompting, implicitly
incorporates neutralization to some extent. These questions are subject to future
research in the given context.

It is crucial to note that the success of generating and neutralizing snip-
pets is closely linked to the quality of the original arguments. In cases where
the original arguments are poorly constructed or unclear, the resulting objective
snippets may not effectively represent their gist. We also recognize that neu-
tralization is not appropriate in certain contexts where preserving the original
language of the source text is critical (e.g., student essays, legal documents, or
medical fields). In such cases, the application of neutralization requires the user’s
consent to ensure transparency and accountability. Practical implementations of
our approach could include user options that allow individuals to choose between
the original and neutralized versions of a snippet or an argument. We further
acknowledge that our assumption that the generated arguments are gists of the
original arguments may not always hold true. In some cases, the generated argu-
ments may not capture the essence of the original arguments, leading to a loss
of information.

We would like to acknowledge that the task of creating and neutralizing
snippets is to a certain extent subjective. The choice of the best snippet may vary
depending on the annotator’s background, experience, and personal preferences.
For this reason, we believe that further research is needed to explore the influence
of these factors on the quality of the generated snippets and, in particular, to
involve the authors of the original arguments in the process of snippet generation.

In summary, our empirical research highlights the potential benefits of miti-
gating subjective bias, particularly in the broader context of engaging with the
opinions and arguments of others. This does not only facilitate informed decision
making, but it can also be valuable for educational purposes.

6 Conclusion

In this paper, we have investigated the hypothesis that “objective snippets”
of arguments are better for argument search engine results than state-of-the-art
extractive snippets, using methods that combine snippet generation and neutral-
ization. Our study has conveyed that a BART-based supervised summarization
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model outperforms a zero-shot Alpaca model to snippet generation. For neutral-
ization, we have found that using reinforcement learning to align a large language
model with human preferences for suitable arguments works best. We have also
observed that both tasks complement each other and that their combination
leads to the most effective snippets, as shown by human evaluation. Our results
provide important insights and innovative methods that can be used to improve
search engines in order to produce more efficient search results for users.
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A Appendix

Table 5. Examples of arguments from the appropriateness corpus and their neutralized
snippets generated by our approach.

Type Example
Argument I always hear people talking about how the death penalty needs to be enforced

more often. I, personally, am undecided on my opinion on the death penalty, but in
my mind, the death penalty is used primarily as a societal form of retaliation (much
the way that putting someone’s head on a pike was used in the past). [...] At the very
least, it will disseminate information to public about what execution in the United
States is actually like (this may, in turn, change the beliefs that someone holds on
the death penalty)

Neutralized
Snippet

It is important for the public to be aware of the death penalty in the U.S. in order to
make informed decisions about the practice. Televising executions could help to
bridge the gap in understanding between the public and the criminal justice system.

Argument At Poland Spring, we know that freshness and consistency go hand in hand. Our
rigorous quality control standards help us make sure that you will enjoy the same
crisp, delicious water every time you take a sip. To maintain the purity of our water,
we employ a comprehensive, multi-barrier filtration system that involves carefully
controlled and continuously monitored disinfection processes in hygienically designed
lines. [...] Every year, we screen for over 200 possible contaminants-far more than
state and federal regulations require

Neutralized
Snippet

Poland Spring utilizes a rigorous filtration system, which is tested regularly
throughout the production process to ensure the safety of the water. This process
ensures the water quality remains consistent and meets strict quality standards.

Argument CarCraze—you are wrong, sorry to say What you have there, my dear, is a bona fide
Court Order for you to appear in court to answer to a Motion to Collect a Debt. [...]
If you “just let it ride”, as you say, don’t be surprised when you open up your
paycheck and you find a good chunk of it GONE ! What you should do: Seek legal
counsel (get a lawyer) and come up with a manageable payment plan that is both
satisfactory to your creditor, and workable for you. DON’T HESITATE - you will
regret it

Neutralized
Snippet

If you choose to ignore the notice of motion from the collection firm, it is possible
that you may incur additional fees and charges. It is best to seek legal counsel from a
professional in order to create a manageable payment plan that suits your financial
situation.

Argument In my opinion, all it serves to do is remind men to fulfil the traditional gender roles.
To “be a man” you have to provide for your family, be responsible and protect your
family. It’s the male equivalent of “be more ladylike”. All it accomplishes is: * Make
non-traditionally masculine men feel like shit * [...] And god forbid that men have
some values that women are ’supposed’ to have. Why not have a gender neutral
phrase? “Be a better person”?

Neutralized
Snippet

This phrase can be harmful as it can lead to feelings of exclusion for men who don’t
conform to traditional gender roles, as these expectations can be seen as exclusive to
men. This can be damaging as it may make those men feel like they do not belong
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Table 6. A sample of comments provided by annotators organized by quality dimen-
sions that influence snippet generation. Comments are edited for presentation pur-
poses. Also, the anonymized snippets referred to in the comments (e.g., A, B, C) do
not always correspond to a specific model being evaluated as the order of the snippets
was randomized.

Dimension Annotators’ Comments
Conciseness “This snippet provides a concise and clear definition of feminism,

emphasizing equality and respect for both men and women.”
Focus “Snippet A is ranked highest for its clear emphasis on the necessity of

abortion...”
Offensive
Language

“While this snippet discusses activism against woman abuse and negative
elements related to women, it introduces terms that may be considered
offensive (e.g., “SLuts”).”, “The use of language like “I am going to have to
ask you go to timeout because that idea is downright childish” might be
perceived as confrontational.”

Informativeness The first snippet condenses the argument very succinctly and covers most
of the major points in the arguments above

Structure &
Coherence

“Snippet B is the worst summary for the argument presented above
because there is not direct link between the statement and the conclusion
of the snippet - so it completely misses the point.”, “Snippet C is by far the
best snippet in this sequence. It has a clear structure and it delivers the
message of the paragraph.”

Grammaticality “Snippet A and B both have grammatical errors (need/needed), which
would discredit the link/argument/page from the get go.”

Self-contained “Snippet A is ranked 3rd because there is no logical link between the first
part of the snippet and the second part of the snippet. No reader could
understand what the argument is about from that summary alone.”

Accuracy “Snippet C comes in last because it is completely inaccurate, given that it
claims these points of view are Trump’s points of view. In fact, they are the
views of the narrator/author.”

Argument-
friendly
Vocabulary

“Argument A has slightly more argument-friendly vocabulary (e.g’
juxtaposition’ used in contrast to’antithesis’).”, “The only main difference
between argument A and C is the choice of vocabulary to describe the
couples that the writer is associated with being either committed or
monogamous. I think that the use of the word’committed’ to describe the
couple in argument A makes the example used more relevant to the
argument at hand.”

Seriousness “Although argument A and C are similar, argument A has a more sincere
tone and slightly more proper grammar: e.g. Latinos not “Latinos” / Latin
America not Latinamerica.”

Profanity &
Speculation

“B is more to the point, doesn’t speculate on strategies and has no
profanity like C/B (Shit/assholes).”

Clarity “This argument is clear in its meaning, provides a concise comparison
between the two cases, and avoids inappropriate language or tone.” , “This
argument presents the issue clearly, maintains a proportional and balanced
perspective by addressing both sides...”
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Table 7. A sample of comments provided by annotators organized by quality dimen-
sions that influence preference of snippets. Comments are edited for presentation pur-
poses. Also, the anonymized arguments referred to in the comments (e.g., A, B, C) do
not always correspond to a specific model being evaluated as the order of the arguments
was randomized.

Dimension Annotators’ Comments
Respectful “It begins with a dismissive tone (“is totally crap”)...”, “This argument is the

best as it presents its points in a clear and respectful manner.”, “This argument
uses sarcasm (“(pause here for deeply bitter laugh)”) and refers to a political
figure in a dismissive manner (“The Shrub”).”, “This argument is the most
appropriate as it maintains a professional tone, focuses on the key issues, and
promotes a respectful and balanced discussion of the pro-choice vs. pro-life
debate.”

Critical
Evaluation

“The mention of “corrupt the minds of my children” is emotionally charged,
which may not provide room for critical evaluation.”, “the ending part
“expecting male users to do the looking for both themselves and the women”
may come off as slightly dismissive, which makes it less open to others’
arguments.”

Formal
Language

“This argument and Argument A are quite similar, but Argument C uses
slightly more refined and formal language, making it more appropriate for a
professional discussion. For example, it uses “Fourth Amendment” instead of
“4th” and “naive” instead of “living under a rock”.”

Grammaticality “It has orthographic errors (e.g., missing spaces and inconsistent punctuation),
making it harder to follow. Some of the phrasing is repetitive, and its
presentation can hinder a clear understanding of its main points.”, “...contains
orthographic errors (“ur”, “shld”, “dugs”), and uses casual and unclear
language. This decreases its credibility and appropriateness for a professional
debate.”

Conciseness “I chose snippet A because it uses short sentences instead of one long one, and
because it uses numbers which is more concrete than just saying “a high
degree.””, “Both very similar but snippet B is more concise...”

Evidence “Snippet B is very subjective and doesn’t present any evidence for the
argument.”, “...uses more numbers which encourages me to read.”, “Snippet B is
less pushy and provides more examples to back up its argument.”

Grammaticality “Snippet B has grammar and spelling errors which discourages me from
wanting to read more.”

Critical
Evaluation

“A places the onus of thought on the reader, allowing them the space to form
their own opinions. B is instructional, seemingly saying everything that is
needed for a reader to make their mind up without their own research.”

Structure &
Coherence

“Snippet A clearly outlines their argument, while snippet B hops back and
forth from one point to another without a linear thought process.”
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Abstract. Argumentation is ubiquitous, and the development of argu-
mentation machines could greatly assist humans in managing and navi-
gating argumentation. However, the development of such systems is hin-
dered by the lack of common standards and suitable tools, leading to ad-
hoc solutions with little reuse value. Towards a more unified approach, we
present an extensible microservice-based architecture for argumentation
machines. Being built on the established gRPC framework, it provides
strongly typed interfaces for the following services: (i) Argument Min-
ing, (ii) Case-Based Reasoning on Arguments, (iii) Argument Retrieval
and Ranking, and (iv) Quality Assessment of Arguments. Our system
is designed to be extensible, allowing for easy integration of new tasks.
We demonstrate the feasibility of our architecture via a proof-of-concept
implementation and provide additional supplementary resources, such
as a REST API gateway. Our contributions are publicly available on
GitHub under the permissive MIT license.

Keywords: Argumentation · Argument Graphs · Microservices ·
gRPC · REST · Natural Language Processing · Open Source

1 Introduction

Living in an ever-changing world, we are constantly confronted with new infor-
mation and, based on it, have to make decisions. With the advent of the Inter-
net, computers have become an integral part of this process. While traditional
Web search engines mostly rely on textual similarity, and thus require users
to manually extract and analyze relevant information, domain-specific systems
could incorporate other sources of knowledge to provide assistance. However,
even within a single field—such as argumentation—many competing solutions
exist without a common standard or interface. As a result, the development of
ad-hoc solutions is often necessary, which are not easily reusable in other con-
texts. Argumentation machines [30] for example may offer a variety of services
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like retrieval and validation, but contributions in the domain of Computational
Argumentation (CA) focus mainly on one aspect of such a system.

In this paper, we present a microservice-based architecture for argumenta-
tion machines designed to be extensible and reusable. The target audience is
researchers and developers who aim to build, extend, or only use specific func-
tions of argumentation machines, without reinventing the wheel. Our ultimate
vision is to allow other researchers to rewrite one service using their own algo-
rithms and integrate it into the existing architecture—enabling them to evaluate
their approach in a larger framework. Our contributions are (i) service descrip-
tions for common tasks in CA based on the established gRPC framework, (ii)
a proof-of-concept implementation of the architecture showcasing its feasibility,
and (iii) a collection of supplementary resources like a REST API gateway and
ready-to use client/server libraries.

The remainder of this paper is structured as follows: In Sect. 2, we introduce
the foundations necessary to understand our architecture, followed by a discus-
sion of related work in Sect. 3. Section 4 presents the service definitions that
are implemented in a proof-of-concept described in Sect. 5 and supported by
supplementary resources introduced in Sect. 6. Finally, Sect. 7 discusses current
limitations and Sect. 8 concludes our paper.

2 Foundations

Our proposed architecture for an argumentation machine is fundamentally based
on argument graphs, so we briefly introduce them in this section. Since dealing
with texts is essential in this domain, we also present some common Natural
Language Processing (NLP) [5] concepts here. Lastly, we introduce some aspects
of microservice-oriented backends like Representational State Transfer (REST)
and gRPC.

2.1 Theoretical Argumentation and Argument Graphs

An argument is typically composed of a single claim that is supported or attacked
by one or multiple premises [28]—these smallest units of an argument can be
subsumed under the term Argumentative Discourse Units (ADUs) [28]. A claim
itself may also support another claim and thus additionally act as a premise,
making it possible to represent entire conversations. Moreover, an argument
typically has one primary/central conclusion, the so-called major claim. This
inductive structure already forms a directed graph—we call it argument graph.

According to Argument Interchange Format (AIF) [13], an argument graph
is a tuple G = (V,E) where V is a set of nodes and E ⊆ V ×V is a set of directed
edges. The nodes are divided into atom nodes A ⊂ V representing the ADUs and
scheme nodes S ⊂ V representing the relationships between them: V = A ∪ S.
Edges cannot be drawn between two atom nodes, so we define E ⊆ V ×V \A×A.
Any sequential ordering of ADUs originating from the source text is lost in
the AIF graph representation. To mitigate this, the annotation software Online
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Visualization of Arguments (OVA) [8] for example uses additional properties to
store the position of each atom node in the text and consequently the order of
the ADUs. The creation of structured argument representations—including but
not limited to graphs—is also known as Argument Mining (AM) [20].

To use more detailed semantics when representing the scheme nodes, argu-
mentation schemes introduced by Walton et al. [41] may be used. Each scheme—
for instance, Expert Opinion—explicitly describes the role of a claim and its
fixed set of premises. In this example, the claim would be the conclusion of one
premise representing an expert’s opinion and the other premise representing the
expert’s expertise. To check the applicability of such a scheme to a relationship,
the authors defined critical questions.

2.2 Argument Processing

Argument graphs contain two types of information—structure and semantics.
The former refers to the graph-based representation (i.e., the nodes and edges),
whereas the latter refers to the text of the nodes. Our system deeply integrated
both aspects, so the following section will introduce the necessary concepts.

For the structural aspect, we use the wide variety of research on graph-
based representations. A relevant field is Process-Oriented Case-Based Reasoning
(POCBR), a variant of Case-Based Reasoning (CBR) [2,33] that focuses on
graph-based workflows (e.g., business processes). The idea of CBR is to solve
new problems by reusing solutions to problems similar to those that have been
solved in the past by performing four steps: (i) Retrieve a set of similar cases from
the so-called case base, (ii) reuse the found cases by adapting them to the new
query, (iii) revise the adapted cases by checking their validity, and (iv) retain the
new solution for future use. One central difference between case-based retrieval
and Information Retrieval (IR) is the inclusion of structural information—in our
case the argument graph.

When assessing the similarity between the atom nodes of two argument
graphs in the CBR framework, we need to take into account the semantic aspect.
Over the past few years, the use of language models—for instance, to compute
the semantic similarity between texts via embeddings—has become a common
practice in NLP. The basic idea is that words or sentences with similar meanings
should be close to each other in a high-dimensional vector space. Using standard
measures like the cosine distance, we can assess the similarity between two texts
by comparing their embeddings/vectors. For the nodes of the scheme, embed-
dings could also be computed to assess their similarity, but taxonomy-based
measures may be a better fit [40].

2.3 System Architectures

When designing a system, there are two common approaches: monolithic and
microservice-based architectures. A monolith is a single codebase that contains
all functionality of the system and is deployed as a single unit. On the contrary,
a microservice-based architecture is composed of multiple coherent services that
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are deployed independently of each other. [4] In this paper, we committed to the
latter for two main reasons: (i) The specific implementation of a single module
is entirely separated from the rest, meaning it is possible to combine different
programming languages (e.g., Java and Python). (ii) We aim at providing an
argumentation machine that allows other researchers to quickly swap out a sin-
gle module with their own implementation and evaluate it in a larger context.
Although both can in principle be achieved with a monolithic architecture, the
microservice-one was the more natural choice for us, since general-purpose mono-
liths are not yet widely used (see Sect. 3). In addition, a microservice architecture
makes it easier to scale horizontally, which means that it translates well into pro-
duction environments. In the following, we briefly introduce this architecture in
more detail.

According to Jamshidi et al. [18], a service/module of a microservice-based
system offers “access to its internal logic and data through a well-defined network
interface”—the so-called Application Programming Interface (API). As of 2024,
the most common style of these systems is REST, which uses a fixed set of
URL-based endpoints and Hypertext Transfer Protocol (HTTP) operations to
access the functionality of a service. There are also other options like Simple
Object Access Protocol (SOAP), GraphQL, and gRPC, each having its own
set of advantages and drawbacks. For our architecture, we ultimately settled on
gRPC—a Remote Procedure Call framework developed by Google on top of the
modern HTTP/2 protocol specifically for microservice backends.1 Compared to
the established REST, it has the following differences:

Stronger Typing. gRPC uses Protocol Buffers (Protobuf) for data serializa-
tion, which allows for a more strict definition of the data types used in the
API. This strong contract between client and server removes some potential
sources of bugs (e.g., sending strings instead of integers).

Code Generation. The use of Protobuf to define services provides a code gen-
eration tool that creates client and server stubs for most major programming
languages. This means that compared to REST, the user does not have to
deal with the low-level details of the HTTP protocol.

Binary Data Transfer. The messages sent between the client and the server are
encoded in a binary format, which is much more compact than the textual
JavaScript Object Notation (JSON) format used by REST. Note that this
does not have a negative impact on readability, as it only applies to the
transfer itself—that is, any Protobuf message can be serialized to a JSON
object as well.

These advantages come at the cost of a steeper learning curve—for instance,
developers need to learn a new domain-specific language and have to re-run the
code generation tool after changes to the service definitions. With its reliance
on HTTP/2, gRPC cannot be natively used in browsers and requires proxies
to work around this limitation (see Sect. 6 for our solution). Yet, due to the
mentioned advantages, gRPC and Protobuf are already heavily used in Machine
1 https://grpc.io.

https://grpc.io
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Learning (ML)—most prominently, they serve as the backbone for the official
Tensorflow API.2

3 Related Work

To the best of our knowledge, there is almost no work on the architecture of
argument machines as we present them. Works up to the mid-2010s often only
presented computational models of argument which are more concerned with
argumentation theory—that is, the construction of arguments or a whole argu-
mentation. In the following, we consequently not only collected works describing
entire argumentation machines, but also works concerned with only one aspect
of it (e.g., argument retrieval).

The development of argumentation machines began in the mid-1990s and
included work on argumentative dialog planning [29], applications of argument
schemas in Artificial Intelligence (AI) [31], and argumentation engines capable of
handling a large number of topics [30]. The AIF (see Sect. 2.1) was later extended
to handle dialogical argumentation [32]. In the following years, the argument
annotation tools ArgueBlogging [9] and OVA+ [19] were developed. They
specialized in constructing discussions about blogs and annotating plain texts
with argument graphs, respectively.

Slonim et al. [36] presented Project Debater, an autonomous debating system
that is capable of discussing with people a wide variety of topics and taking
certain positions. Even before the era of Large Language Models (LLMs), their
system was capable of conducting a discussion—that is, understanding users’
viewpoints and generating suitable arguments. In their work, they described the
architecture of the system and conducted an evaluation that included several
debate topics. An alternative architecture for an argumentation machine has
been proposed by Bergmann et al. [6] as part of the ReCAP project. In our
work, we build on their proposal and present an improved version that has been
developed according to best practices in an effort to keep up with the rapidly
changing field of CA.

Apart from this, we are only aware of work on stand-alone systems, which
we present in the following. Wachsmuth et al. [39] proposed the first argument
search engine (Args) known to us, which introduced a system that reads any free
text user queries to search for arguments, and then presents relevant arguments
from a pool of almost 300k previously mined and indexed arguments from five
debate portals (i.e., Web content) in a ranking based on BM25F. Other projects
used their system as a starting point for their own research—for instance, by
reimplementing its most important properties or using their dataset for tasks
like ranking [3,11]. However, despite all merits, their system does not cover the
entire argumentation machine as we envision it.

Among others, Bondarenko et al. [11] have been setting up the CLEF lab
Touché every year since 2020, where they used the Args dataset until 2022

2 https://github.com/tensorflow/serving.

https://github.com/tensorflow/serving
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and ClueWeb22 since 2023. The systems submitted by the participants can be
uploaded to TIRA [16] to reproduce the results. Like Args, ArgumenText [37]
is an argument search engine. First, it finds relevant documents in a large set
of heterogeneous arbitrary Web sources using ElasticSearch, then it identifies
relevant premises in them using Keras, assigns them stances by applying BiL-
STM, and ranks the premises by their classifier’s confidence score. Its evaluation
showed a high recall of 89% and a rather moderate precision of 47%.

Beyond the retrieval of arguments, Eden et al. [15] presented insights on the
creation of a Key Point Analysis (KPA) system and highlighted some of the
main challenges. KPA is concerned with extracting the main points from a col-
lection of opinions, a service that may in the future also be incorporated into our
proposed architecture. Romberg [34] tackles the problem that argumentation is
often subjective and annotations are summarized with average or majority vote,
resulting in minorities being ignored when learning. Therefore, she introduced
PerspectifyMe, a method that combines subjective points of view by com-
plementing an aggregated label with a subjectivity score. Heinisch et al. [17]
addressed the subjectivity issue in annotation processes and found that classi-
fiers incorporating relations between different annotators are beneficial even for
predicting single-annotator labels. Building models that are aware of potentially
subjective annotations is a crucial aspect in CA, so we plan to include this aspect
in future iterations of our architecture.

4 Microservices for Argumentation

As mentioned in Sect. 1 and seen in Sect. 3, argumentation machines can vary
greatly w.r.t. their functionality. Consequently, the main goal of our service def-
initions is to be easily extensible for tasks not envisioned by us. As a starting
point, we identified the following tasks as common in CA: (i) argument mining,
(ii) case-based reasoning on arguments, (iii) retrieval and ranking of arguments,
and (iv) quality assessment of arguments. Please note the difference between (ii)
and (iii): while the former integrates the structural information of entire graphs
(see Sect. 2.2), the latter considers ADUs or claim-premise pairs. An overview
of the different modules is given in Fig. 1. There are two special services in our
proposed architecture that were not part of the aforementioned list: (i) The argu-
mentation base in the middle and (ii) the NLP service to the bottom right. All
services either consume argument graphs or produce them, so we created a dedi-
cated module to serve them. Some of the services also require NLP functionality,
leading to the creation of a separate service for this task. All services are designed
to work independently of each other (with the exception of the NLP service), but
may be combined to form a complete argumentation machine. Further aspects
of their orchestration are discussed in Sect. 5.

All services are defined using Protobuf and gRPC with their definitions pub-
licly available on GitHub under the permissive MIT license.3 These service defi-
nitions are also available from the Buf Schema Registry, which makes it possible
3 https://github.com/recap-utr/arg-services.

https://github.com/recap-utr/arg-services
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Fig. 1. Overview of our proposed architecture for microservice-based argumentation
machines. Light gray boxes represent the different layers, dark gray ones external
resources, and white ones the services exposed via our API.

to add them as dependencies in other gRPC-based project and provides users
with a nicely formatted and up-to-date documentation.4 We acknowledge that
there may be varying requirements or the need for additional data depending on
the context. Consequently, each function described here allows arbitrary JSON-
encoded data to be encoded as an optional parameter called extras.

In the following section, we introduce each service in detail and provide a
list of all included functions. We also highlight some of the most important
options/parameters that can be used to customize the behavior of the services.
Due to their tight integration with the other services, we start with two core
modules: the argumentation base (middle) and NLP service (bottom right). Sub-
sequently, the remaining services mentioned above are introduced.

4.1 Argumentation Base

The core of our argumentation base is our own argument serialization format
Argument Buffers (Arguebuf) [21] first introduced at COMMA 2022. Given
that it has been designed as a first-class citizen of Protobuf, the integration
into our architecture is straightforward. Its formal semantics are based on the
established AIF standard (see Sect. 2.1), but the storage format is designed to
be more uniform and extensible at the same time. With regards to the graph

4 https://buf.build/recap/arg-services.

https://buf.build/recap/arg-services
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structure, the following five main differences exist compared to argument graphs
serialized to AIF: (i) The graph itself and each of its nodes/edges allow arbitrary
key-value pairs to be stored. (ii) The sets containing the nodes and edges are
represented as dictionaries with their respective IDs as keys to enforce unique-
ness. (iii) Original textual resources and participants of a conversation can be
stored together with the graph. (iv) The major claim is explicitly marked as
such. (v) Information about analysts and the creation/modification date can be
stored. Atom nodes can not only store the text of the ADU, but also the position
in the original text and the participant who made the statement. The link to
the original text also allows for reconstruction of the sequential ordering of the
argument as found in the source text. Scheme nodes do no longer use a free-text
field to store the scheme name, but instead refer to a scheme from a predefined
list through an enumeration. This decision makes parsing and serialization easier
and more reliable, with the drawback that new schemes first need to be added to
the Protobuf definition. All the mentioned changes are additions to the format,
so an existing AIF graph can easily be converted to Arguebuf. An area where
our format is currently lacking is the representation of dialogical argumentation,
which is planned to be added in the future. This service offers a single function:

Casebase. Given a list of filter criteria (expressed as regular expressions),
return a list of argument graphs. The type of filters available depends on the
implementation—thus the use of generic regexes—but may include factors
like the corpus name, the serialization format, or the inclusion of schemes.

We have chosen to stick to the CBR terminology here to be consistent with some
of our other services. Currently, only regex-based filtering is supported, but more
advanced filtering options could be added in the future if the need arises.

4.2 Natural Language Processing

As outlined earlier, the use of language models—for instance, to compute the
semantic similarity between texts via embeddings—has become a common prac-
tice in NLP. At the same time, these models are getting larger and larger, making
it harder to use them on a regular computer. When combined with a microser-
vice architecture, another challenge is that each service would need to load the
model into memory, which is a waste of resources. We therefore chose to add a
dedicated service for these needs with a central NlpConfig message that can
be passed between individual services. It encodes (i) the language of the process-
ing pipeline, (ii) the choice of the language model (multiple are also possible),
(iii) the similarity measure to use, and (iv) the pooling function for plain word
embeddings. Currently, this service focuses on determining semantic similarity
between texts through embeddings. More general NLP tasks like named entity
recognition or dependency parsing are not yet supported but could be added in
the future if the need arises. To mitigate this restriction, we added a function
to process texts with the Python library spaCy [25] and return the result as a
binary representation. Please note that the goal of this service is to save resources
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by loading common base models once instead of requiring each service to load
them individually. That also means that custom models (e.g., for classification)
are not part of this service and need to be handled by the respective service
implementations. It is also beyond the scope of this service to add generative
models, as there already exist well-established interfaces like the OpenAI API
for this purpose. The corresponding service offers the following functions:

Vectors. Given a list of texts, it returns their embeddings of n dimensions.
Similarity. Given a list of text pairs, it returns their similarity score between 0

and 1.
Spacy Document. Give a list of texts, return the corresponding spaCy doc-

uments. This is an optional service that is usable only with Python servers
and clients.

4.3 Argument Mining

Having introduced the two cornerstones of our architecture, we now present the
service responsible for building our argumentation base through AM. The set of
functions is derived from an end-to-end pipline [23] for transforming plain texts
into argument graphs consisting of multiple successive steps with an additional
function for transforming a text to a graph without any intermediate steps.

Segment Text. Given a natural language text, return the list of Elementary
Discourse Units (EDUs).

Classify ADUs. Given a list of EDUs, return the list of ADUs.
Predict Major Claim. Given a list of ADUs, return a ranking of major claim

candidates.
Predict Polarity/Entailment. Given a list of ADUs, compute the cross prod-

uct to generate claim-premise pairs and predict the polarities (i.e., support,
attack, or neutral) between them.

Construct Graph. Given all ADUs, the major claim, and the predicted polar-
ities, construct the resulting graph using some heuristic.

End-to-End Pipeline. Given a natural language text, return an argument
graph.

With the advent of generative language models, we plan to add a function to
the service that allows the generation of textual arguments and/or argument
graphs from a given prompt. Although even the present functions can already
be implemented using LLMs, the current set of features is more focused on the
extraction of arguments from existing texts. As such, the envisioned generation
function would enable the synthesis of new arguments.

4.4 Case-Based Reasoning on Arguments

With the methods in place to build the argumentation base, we have now reached
the knowledge layer and can take advantage of them in our services. The retrieval
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functionality is motivated by our paper published at FLAIRS 2019 [7] that pro-
poses a combination of semantic and structural similarity measures for CBR with
argument graphs. The underlying paper for the adaptation service has been pub-
lished at ICCBR 2023 [22] and proposes a hybrid approach combining WordNet

with LLMs to adapt retrieved arguments. For all methods offered by the service,
the cases and the user-provided are represented as argument graphs—enabling
the user to specify the structure and the content of the desired argument. It
offers the following functions:

Retrieve. Given a collection of argument graphs (i.e., the casebase) and a user-
defined query (that is also a graph), perform a search for the most similar
argument in the casebase.

Adapt. Given one retrieved graph and the user-defined query, perform a
keyword-based adaptation with the goal of making the retrieved one more
similar to the query. The function allows passing one or multiple rules to
influence the process. One can decide to restrict the adaptation process to
pure generalization, pure specialization, or a combination of both.

4.5 Argument Retrieval and Ranking

Argument Retrieval contains a wide range of IR tasks, including ranking and
clustering—the former being at the heart of every IR system. At SIGIR 2021 [27]
we presented an argument search system that ranks premises to queries according
to the principle of TF-IDF (i.e., the more frequent premises of claims that are
(more) similar to the query occur, the higher the score), as well as by the three
(main) quality dimensions of cogency, reasonableness, and effectiveness [38]. At
CIKM 2021 [14] we presented a work on fine granular clustering of arguments,
as clustering is an essential part of our ranking approaches. The service offers
the following functions:

Statistical Ranking. Given a query and a list of ADUs, return a ranking of
the given arguments based on frequency and specificity.

Quality-Based Ranking. Given a query and a list of ADUs, return a ranking of
the given arguments based on scores derived from a set of quality dimensions.

Fine-Granular Clustering. Given a query and a list of ADUs, predict a set
of scores used to assign them to fine-granular clusters.

4.6 Quality Assessment of Arguments

As implied in the previous section, we used argument quality in our work, which
is why we also offer a dedicated service for this task. A work presented at CIKM
2023 [12] introduced a User Interface (UI) that takes two premises for a claim
and not only decides for these two, which is more convincing for all 15 argument
quality dimensions [38], but also provides an additional explanation together
with the individual scores justifying why the particular decisions were made.
Another work published at the ArgMining workshop at COLING 2022 [10]
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presented an end-to-end tool that reads any plain text and returns the so-called
qualia structures (which express the meaning of lexical items from four view-
points). With validation being a central part of argument quality—arguments
containing disinformation have lower quality—we also provide a further service
that is based on a work presented at the TMG workshop at ICCBR 2023 [26]
able to predict the suitability of experts when cited for emphasizing statements.
The quality service has the following functions:

Quality Explanation. Given a claim and two premises, determine and explain
which one is more convincing for all available quality dimensions as well as
globally across all dimensions.

Qualia Annotations. Given a text and a list of qualia patterns, compute the
constituency tree and return the qualia role for each pattern.

Expert Suitability. Given a premise and (optionally) the Google Scholar ID
of a researcher, predict whether they are an expert on the given topic.

5 Proof-of-Concept

With all the necessary tools in place, we created a proof-of-concept implemen-
tation of our architecture that includes almost all the services and functions
described in Sect. 4. One of the central goals of our work has been to create a
machine that allows other researchers to reimplement a single module and gain
the ability to perform experiments in a larger system. Consequently, some of the
services are written in Python, while others use Java. The code is based on exist-
ing implementations originally written for the corresponding paper or was newly
created for this work. Some services are even implemented through a LLM-based
prompting strategy to showcase the flexibility of our architecture in keeping up
with the latest trends in NLP. The code and additional instructions are avail-
able on GitHub under the permissive MIT license.5 In the following section, we
present individual service implementations and discuss their orchestration. To
wrap up, we also introduce an evaluation framework for the CBR services that
demonstrates the client side of our architecture.

Argumentation Base. The argumentation base is provided by our Arguebuf

Python library (see Sect. 6 for more details). It can serve argument graphs from a
local directory or a remote server and allows to filter them with regular expres-
sions. Our implementation expects that filter criteria are stored in directory
names using the pattern <property1>=<value1>,<property2>=<value2>,...
and therefore allows the use of arbitrary properties for filtering.

To get started more easily, we provide a public collection of argument graphs
called ArgueBase

6 that adheres to the naming convention mentioned of the
directory. It contains a diverse set of publicly argument graph corpora in various
formats like AIF or Arguebuf and includes links to the original sources and
licenses.
5 https://github.com/recap-utr/arg-services-poc.
6 https://github.com/recap-utr/arguebase.

https://github.com/recap-utr/arg-services-poc
https://github.com/recap-utr/arguebase
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Natural Language Processing. Our NLP service implementation is written
in Python and built on the popular spaCy library—including a specialized client
to simplify the consumption of the service. Besides the embedding models offered
by spaCy, our services provide an integration with SentenceTransformers

7

that allows to use a wide range of pre-trained models for computing contextual-
ized embeddings and includes support for CUDA acceleration. For regular word
embeddings, multiple pooling methods are supported in addition to the default
pooling of the mean, including the generalized power mean [35]. Instead of apply-
ing cosine similarity to pooled vectors, max-pooling can be used to determine
the similarity between two texts [42]. Finally, multiple models can be selected at
the same time with their individual embeddings concatenated to a larger vector.

Argument Mining. Based on a prompting strategy created for another project
(currently in development), we implemented an LLM-based AM service in
Python. The service allows to run the stages individually or as an end-to-end
pipeline and makes use of the function calling feature of OpenAI’s ChatGPT to
enforce a JSON schema for the predictions. It demonstrates that even in light
of generative models getting better at many tasks, our architecture can act as a
translation layer between new and existing systems.

Case-Based Reasoning on Arguments. The retrieval functionality is imple-
mented in the Python application ArgueQuery and uses both semantic and
structural similarity measures for CBR with argument graphs. The semantic
part is handled by comparing embeddings, while the structural part involves an
A* search algorithm to find the best mapping between the user query and the
graphs in the case base.

Adaptation is possible through ArgueGen and uses a combination of
WordNet [1,24] and LLMs to adapt retrieved arguments. For each argument
to be adapted, the Python-based service first identifies the central keywords,
prompts a generative language model for suitable replacements, verifies the
response using the WordNet database, and applies all valid ones to the argu-
ment graph. In addition to this hybrid approach, it is also possible to perform
the adaptation solely based on LLMs or WordNet.

Both of these services make use of the NLP service of our architecture to
compute the embeddings and extract other linguistic features from the texts.
They show the power of the NlpConfig message: Each service receives an NLP
configuration object containing parameters like the model to use, and then uses
it themselves to perform requests to the NLP service. In this way, it is possible
to share a single object between all services but also use different configurations
for certain services if needed.

Argument Retrieval and Ranking. For the two ranking functions, a Java-
based application built on Apache Lucene8 is available. Given a user-provided
7 https://www.sbert.net/.
8 https://lucene.apache.org/.

https://www.sbert.net/
https://lucene.apache.org/
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textual query, this argument search engine returns a ranked list of representa-
tives from premise clusters. It first searches an inverted index for claims that
are similar to the query, identifies all linked premises (pre-clustered according
to their semantics), and then ranks these clusters at runtime using frequen-
cies or argument quality. For the fine-granular clustering function, we developed
a prompt-based strategy leveraging OpenAI’s ChatGPT to provide responses
(similar to the argument mining service).

Quality Assessment of Arguments. The same LLM-based approach was
used to provide a prototype of our quality explanation function. To determine
the qualia annotations, a text and a list of patterns consisting of sequences of
POS tags are expected. The Java-based system then creates the constituency
trees of the text and searches for the patterns. If these are found, the qualia
role and the qualia query that match a pattern are output for each match. The
expert suitability function is the only functionality of our proposed architecture
that is not part of this proof-of-concept.

Orchestration of Services. The ultimate goal of our architecture is to pro-
vide an integrated argumentation machine that exposes a set of services to the
user. To simplify the deployment and orchestration of these services, we provide
Docker-based containers for many of the services described in this section. These
containers can be managed jointly using Docker Compose, for which we provide
a configuration template as part of our proof-of-concept implementation. For our
two central services—that is, the argumentation base and NLP service—we also
provide pre-built images that can be pulled directly from the GitHub Container
Registry. For all argument mining and CBR services, we created ready-to-use
Docker files that can be built locally and integrated into the Docker Compose
configuration. The services for ranking and quality assessment of arguments (see
Sects. 4.5 and 4.6) are mostly written in Java and require custom binary files, so
their deployment is more involved. We plan to provide Docker images for the in
the future as well.

Evaluation Client. To evaluate our CBR services, we created a client called
ArgueLauncher

9 that can be used to compare the results of the argumenta-
tion machine to a gold standard. It is written in Python, can be used to evaluate
the retrieval and adaptation services, and contains an abstract interface for eval-
uations that can be easily extended to other services in the future. With this
application using only the client libraries of the services, it can also be used by
other developers as a starting point for integrating our architecture into their
own systems.

9 https://github.com/recap-utr/arguelauncher.

https://github.com/recap-utr/arguelauncher
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6 Supplementary Resources

Besides the service descriptions and their accompanying Protobuf definitions,
we also provide a few additional tools and resources to simplify the development
of argumentation machines. When designing these, we strived to follow the best
practices of software engineering. For instance, all libraries strictly adhere to the
semantic versioning scheme and provide a changelog for each release. We also
make extensive use of the package manager Nix10 to manage our dependencies
and provide reproducible environments. New releases are published through a
Continuous Integration (CI) pipeline that leverages our Nix setup in GitHub
actions. In the next section, we highlight what we believe are the most useful
resources for other researchers and developers in the domain of CA.

Ready-to-Use Client and Server Libraries. As stated in Sect. 2.3, Proto-
buf offers easy code generation of native libraries for most programming lan-
guages, but this additional step may already be a hurdle for some developers.
To lower the barrier of entry, we provide ready-to-use client and server libraries
for Python, TypeScript/JavaScript, and Java.11 They can be installed via their
native package manager—that is, pip, npm, and maven.

Creating a new argument graph format for our microservices allows first-
class support without the need for numerous format conversions. However, it
also means that existing and commonly used formats like AIF cannot be used
out-of-the-box. To remedy this, we provide supercharged libraries for Python and
JavaScript/TypeScript that make it easy to import graphs in AIF, Argdown,
Kialo, OVA3, SADFace, and xAIF and export them to AIF and xAIF.12 They
also contain optimized graph representations that abstract some Protobuf-
specific details away and make it easier to work with argument graphs in these
languages. The Python version is additionally integrated with NetworkX and
can render images of graphs using D2 and Graphviz.

REST API Gateway. Even though gRPC provides major advantages over
REST and we try to reduce the burden of using it as much as possible, it is
still not as widely used as REST. It may also be the case that a developer
wants to integrate our services into an existing system that already uses REST
APIs. To combine the best of both worlds, we created a proxy13 that allows
REST clients to access any gRPC service. It is based on the popular Envoy
proxy14 and is provided as a Docker image and a binary file for all three major
operating systems: Windows, Linux, and macOS. Additionally, it also supports
the conversion between gRPC-Web requests and regular gRPC requests (which
is needed for browser-based clients).
10 https://nixos.org.
11 https://github.com/recap-utr/arg-services.
12 https://github.com/recap-utr/arguebuf.
13 https://github.com/mirkolenz/grpc-proxy.
14 https://www.envoyproxy.io/.
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Argument Mapping Interface. First introduced at COMMA 2022 [21],
our tool ArgueMapper [21] is a web-based interface for creating argument
graphs.15 Compared to established solutions such as OVA, it uses a modern
development stack (TypeScript and React) and is thus easier to extend and main-
tain. ArgueMapper natively support our Protobuf-based serialization format
Arguebuf and can be used to build the argumentation base for our microser-
vices.

7 Limitations

While we have tried to create an extensible architecture that can be used for
a wide range of tasks in CA, there are still some limitations to our approach.
First, the reliance on gRPC and Protobuf may be a hurdle for some developers:
Although they provide a strong contract between the client and the server, they
are not as widely used as REST—especially in the context of research projects.
We try in part to mitigate this through our REST API gateway, but it is still
an additional layer that needs to be managed.

The representation of arguments through graphs is backed deeply into our
architecture and may not be suitable for all argumentative domains. For example,
some texts may contain arguments that are only loosely connected or where the
relations between them are implicit—like in news editorials. In such cases, the
strict graph structure may not be the best choice for representing arguments. In
addition, our Arguebuf format does not yet support dialogical argumentation,
limiting its applicability in this domain.

Lastly, the evaluation of our architecture is still ongoing, and we have not yet
tested it in a real-world scenario. We assume that there exist some features that
are missing and/or incomplete when coming to new domains, but we are open for
feedback and contributions from the community to improve our architecture—
which is possible due to the forward- and backward-compatibility of Protobuf.
An example of such missing features is our NLP service that is currently focused
only on the extraction of linguistic features and the computation of semantic
similarity. In the future, it may be desirable to extend its scope and integrate
functions to serve custom models to other services.

8 Conclusion and Future Work

In this paper, we presented an extensible microservice-based architecture for
argumentation machines based on gRPC and Protobuf. We also presented a
proof-of-concept implementation of our architecture and a ready-to-use eval-
uation framework for CBR tasks. Finally, we introduced a set of supplemen-
tary resources that we believe are useful to other researchers and developers in
the domain of CA. The architecture is the culmination of our work over the
past years, and we hope to contribute to the standardization of argumentation
15 https://github.com/recap-utr/arguemapper.
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machines. We also await feedback from the community to improve our architec-
ture and resources—everything is hosted on GitHub and open to any kind of
contribution.

Software is never a finished product, so there are many potential avenues for
future work. First, we will implement the remaining services mentioned in Sect. 4
so that the evaluation framework is no longer restricted to CBR. Subsequently,
we will add more services to our architecture to support more tasks in CA.
To appeal to a wider audience, we plan to develop an intuitive UI that allows
both lay persons and experts to use these services. Another starting point for
future work is the creation of a low-code solution for defining new services on
the fly—enabling the fast adoption of new ideas and trends in the field CA.
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