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Abstract. In this paper we present fixed-parameter algorithms for the
problem DuAL—given two hypergraphs, decide if one is the transversal
hypergraph of the other—and related problems. In the first part, we
consider the number of edges of the hypergraphs, the maximum degree
of a vertex, and a vertex complementary degree as our parameters.

In the second part, we use an Apriori approach to obtain FPT results
for generating all maximal independent sets of a hypergraph, all mini-
mal transversals of a hypergraph, and all maximal frequent sets where
parameters bound the intersections or unions of edges.

1 Introduction

In many situations, one might be interested in finding all objects or configura-
tions satisfying a certain monotone property. Consider, for instance, the prob-
lem of finding all (inclusion-wise) maximal/minimal collections of items that are
frequently /infrequently bought together by customers in a supermarket. More
precisely, let D € {0,1}™*"™ be a binary matrix whose rows represent the subsets
of items purchased by different customers in a supermarket. For a given integer
t > 0, a subset of items is said to be t-frequent if at least ¢ rows (transactions) of
D contain it, and otherwise is said to be t-infrequent. Finding frequent itemsets
is an essential problem in finding the so-called association rules in data mining
applications [AIS93]. By monotonicity, it is enough to find the border which is
defined by the minimal ¢-infrequent and maximal t-frequent sets. While it was
shown in [BGKMO02] that finding maximal frequent sets is an NP-hard problem,
finding the minimal t-infrequent sets, as well as many other enumeration prob-
lems in different areas (see e.g. [BEGKO03, EG95]), turn out to be polynomially
equivalent with the hypergraph transversal problem, defined as follows.

Let V be a finite set and H C 2V be a hypergraph on V. A transversal of
H is a subset of V that intersects every hyperedge of H. Let H¢ C 2V be the
hypergraph of all inclusion-wise minimal transversals of H, also called the dual
of H. For hypergraphs F and G on vertex set V, the hypergraph transversal
problem, denoted DUAL(F,G), asks to decide whether they are dual to each
other, i.e., F¢ = G. Equivalently, the problem is to check if two monotone



Boolean functions f, g : {0,1}" — {0, 1} are dual to each other, i.e., f(z) = §(Z)
for all z € {0,1}".

Let F,G C 2V be Sperner hypergraphs (i.e. no hyperedge of which contains
another), and let (F,G) be an instance of DUAL. By definition of dual hyper-
graphs we may assume throughout that

FNG#Qforall FeFand G €G. (1)

A witness for the non-duality of the pair (F, G) satisfying (1) is a subset X C V|
such that

XNF#0forall FeF, and X 2 G for all G € G. (2)

We shall say that the hypergraphs F and G satisfying (1) are dual if no such
witness exists. Intuitively, a witness of non duality of (F,G) is a transversal of
F (not necessarily minimal) that does not include any hyperedge of G. Also, by
definition, the pair ((),{0}) is dual. Note that the condition (2) is symmetric in
F and G: X C V satisfies (2) for the pair (F,G) if and only if X satisfies (2) for
(G, F).

In the following we present some fixed-parameter algorithms for this problem.
Briefly, a parameterized problem with parameter k is fixed-parameter tractable
if it can be solved by an algorithm running in time O(f(k) - poly(n)), where
f is a function depending on k only, n is the size of the input, and poly(n)
is any polynomial in n. The class FPT contains all fixed-parameter tractable
problems. For more general surveys on parameterized complexity and fixed-
parameter tractability we refer to the monographs of Downey and Fellows, and
Niedermeier [DF99, Nie06].

A related problem DUALIZATION(F) is to generate F¢ given F. Given an
algorithm for DUALIZATION we can decide if 7 and G are dual by generating the
dual hypergraph of one explicitly and compare it with the other (actually, DUAL
and DUALIZATION are even equivalent in the sense of solvability in appropriate
terms of polynomial time [BI95]). Due to the fact that the size of F¢ may be
exponentially larger than the the size of F, we consider output-sensitive fixed-
parameter algorithms for DUALIZATION, i.e., which are polynomial in both the
input and output size |F|+|F9|. In this sense, the time required to produce each
new output is usually called the delay of the algorithm.

Both, DuAL and DUALIZATION have many applications in such different
fields like artificial intelligence and logic [EG95, EG02], database theory [MR92],
data mining and machine learning [GKM™03], computational biology [Dam06,
Dam07], mobile communication systems [SS98], distributed systems [GB85], and
graph theory [JPY88, LLK80]. The currently best known algorithms for DUAL
run in quasi-polynomial time or use (’)(log2 n) nondeterministic bits [EGMO03,
FK96, KS03]. Thus, on the one hand, DUAL is probably not coNP-complete, but
on the other hand a polynomial time algorithm is not yet known.

In this paper, we show that DUAL(F,G) is fixed parameter-tractable with
respect to the following parameters:



— the numbers of edges m = |F| and m’ = |G| (cf. Section 2),

— the maximum degrees of vertices in F and G, i.e.,p = max,cy |[{F € F : v €
F}|, p/ = maxyey [{G € G : v € G} (cf. Section 3),

— the maximum complementary degrees ¢ = max,ev [{F € F : v ¢ F}| and
¢ =max,ey [{G €G : vé& G} (cf. Section 4), and

— the maximum c¢ such that |[F; U FyU---UFy| > n—c¢, where Fy,... F, € F
and k is a constant—and the symmetric parameter ¢’ with respect to G (cf.
Section 5.2).

We shall prove the bounds with respect to the parameters m, p, q, c; the other
symmetric bounds follow by exchanging the roles of F and G. Our results for
the parameters m and ¢ improve the respective results from [Hag07].

Other related FPT results were obtained by Damaschke who studied counting
and generating minimal transversals of size up to k and showed both problems
to be FPT if hyperedges have constantly bounded size [Dam06, Dam07].

In Section 5.3 we consider the related problem of finding all maximal frequent
sets, and show that it is fixed parameter-tractable with respect to the maximum
size of intersection of k rows of the database D for a constant k, thus generalizing
the well-known Apriori algorithm, which is fixed-parameter with respect to the
size of the largest transaction.

Let V be a finite set of size |V/| = n. For a hypergraph F C 2" and a subset
S C V, we use the following notations: S = V\ S, Fs = {F € F | F C S}
and F° = minimal ({F NS | F € F}), where for a hypergraph H, minimal()
denotes the Sperner hypergraph resulting from H by removing hyperedges that
contain any other hyperedge of H.

2 Number of edges as parameter

Let (F,G) be an instance of DUAL and let m = |F|. We show that the problem
is fixed-parameter tractable with parameter m and improve the running time
of [Hag07].

Given a subset S C V of vertices, [BGH98| gave a criterion to decide if S is
a sub-transversal of F, i.c., if there is a minimal transversal T € F¢ such that
T O S. In general, testing if S is a sub-transversal is an NP-hard problem even if
F is a graph (see [BEGKO00]). However, if |:S| is bounded by a constant, then such
a check can be done in polynomial time. This observation was used to solve the
hypergraph transversal problem in polynomial time for hypergraphs of bounded
edge size in [BEGKO00], or more generally of bounded conformality [BEGKO04].
To describe this criterion, we need a few more definitions. For a subset S C V/,
and a vertex v € S, let F,(S) = {H € F | HNS = {v}}. A selection of |S]|
hyperedges {H, € F,(S) | v € S} is called covering if there exists a hyperedge
H € Fy\g such that H C |J, g Ho.

Proposition 2.1 (cf. [BGH98]). A non-empty subset S C V is a sub-trans-
versal for F C 2V if and only if there evists a non-covering selection {H, €

Fo(S) | ve S} forS.



If the size of S is bounded we have the following.

Lemma 2.2. Given a hypergraph F C 2V of size | F| = m and a subset S C'V,
of size |S| = s, checking whether S is a sub-transversal of F can be done in time

O(nm(m/s)®).

Proof. For every possible selection F = {H, € F,(S) | v € S}, we can check if F
is non-covering in O(n|Fgz|) time. Since the families F,(S) are disjoint, we have
> ves [Fu(S)| < m, and thus the arithmetic-geometric mean inequality gives for
the total number of selections

1179 < (W) (™)

S S
veS

Procedure DUALIZE1(F,S,V):
Input: A hypergraph F C 2V, and a subset S C V
Output: The set {T € F¢ : T D S}

if S is not a sub-transversal for F then return

if S € ¢ then output S and return

Find e € V'\ S, such that S U {e} is a sub-transversal for F
DUALIZEL(F,SU{e}, V)

DUALIZE1L(FYMe} 5 v\ {e})

CU o=

Fig. 1. The backtracking method for finding minimal transversals

The algorithm is given in Figure 1, and is based on the standard backtrack-
ing technique for enumeration (see e.g. [RT75, Eit94]). The procedure is called
initially with S = (). It is easy to verify that the algorithm outputs all elements of
the dual hypergraph F¢, without repetition, and in lexicographic ordering (as-
suming some order on the vertex set V). Since the algorithm essentially builds
a backtracking tree whose leaves are the minimal transversals of F, the time
required to produce each new minimal transversal is bounded by the depth of
the tree (at most min{n,m}) times the maximum time required at each node.
By Lemma 2.2, the latter time is at most n - O(nm) - max{(m/s)® : 1 <s <
m} = O(n’m - em/¢).

Lemma 2.3. Let F C 2V be a hypergraph with |F| = m edges on |V| = n
vertices. Then all minimal transversals of F can be found with O(n*m?e™/¢
delay.

Theorem 2.4. Let F,G C 2V be two hypergraphs with |F| = m,|G| = m' and
|V| =n. Then F* =G can be decided in time O(n?*m2e(™/¢) . m’).



Proof. We generate at most m’ members of F¢ by calling DUALIZE1 (if there
are more then obviously F¢ # G). Assuming that hyperedges are represented by
bit vectors (defined by indicator functions), we can check whether G is identical
to F4 by lexicographically ordering the hyperedges of both and simply comparing
the two sorted lists. The time to sort and compare m’ hyperedges each one of
size at most logn can be bounded by O(m’logm’logn). O

As a side remark we note an interesting implication of Lemma 2.3. For a
hypergraph F with |F| < clogn for a constant ¢, the algorithm DUALIZE] finds
all its minimal transversals with polynomial delay O(n®/¢*2 log® n) improving
the previous best bound of O(n?¢6) by Makino [Mak03]. Similarly, if the number
of minimal transversals is bounded by O(logn), then DUALIZE1 can be used to
find all these transversals in incremental polynomial time. Another implication
which we will need in Section 5 is the following.

Corollary 2.5. For a hypergraph F C 2V, we can generate the first k minimal
transversals in time O(n?k3e*/¢) . m), where n = |V| and m = |F|.

Proof. We keep a partial list G of minimal transversals, initially empty. If |G| < k,
we call DUALIZE1 on G to generate at most m+1 elements of G%. If it terminates
with G¢ = F, then all elements of F? have been generated. Otherwise, X € G4\ F
is a witness for the non-duality of (G, F), and so by symmetry X contains a new
minimal transversal of F that extends G. O

3 Maximum degree as parameter

Let p be the maximum degree of a vertex in hypergraph F C 2V, i.e., p =
maxyey {F € F : v € F}|. We show that DUAL(F,G) is fixed-parameter
tractable with parameter p (a result which follows by similar techniques, but
with weaker bounds, from [EGMO03]).

For a labeling of vertices V = {v1,va,...,v,}, let F1, Fa, ..., F, be a parti-
tion of hypergraph F defined as F; = {F € F : F>v;, F C{v,...,v;}}. By
definition the size of each set F; in this partition is bounded by p. The algorithm
is given in Figure 2 and essentially combines the technique of the previous section
with the method of [LLK80] (see also [BEGKO04]). We proceed inductively, for
i=1,...,n, by finding (F;U...UF;_1)% Then for each set X in this transversal
hypergraph we extend it to a minimal transversal to (F; U...UF;)¢ by finding
({FeF : FNnX =0})? each set of which is combined with X, possibly also
deleting some elements from X, to obtain a minimal transversal to F; U...UJF;.

For a hypergraph H and its transversal X (not necessarily minimal), let 6(X)
denote a minimal transversal of H contained in X.

The following proposition states that with the partition Fi,Fs,...,Fy, the
size of intermediate hypergraphs in this incremental algorithm never gets too
large.



Procedure DUALIZE2(F,V):
Input: A hypergraph F C 2V
Output: The set F¢

Xo = {0}
fori=1,...,ndo
for each X € X;_1 do
Let A={FeF : FNnX =0}
Use DUALIZE1 to compute A? if not already computed
X, — {§(XUY) : Y eAY}
return X,

A o e

Fig. 2. Sequential method for finding minimal transversals

Proposition 3.1 (cf. [EGMO03, LLK80]). (i) VS CV : |[(Fs)¢| < |F4|,
(i) |(FLU...UF)4 < |F, (iii) For every X € (FyU...UF;i_1)4,

({FeF : FnX=0)¢ <|[(Fu...uF)

Proof. All three follow from the fact that (Fg)? is a truncation of F? on S,
where S = {vy,...,v;} in (ii) and S = {v1,...,v;} \ X in (iii). O

Let f(p,4) be the running time of algorithm DUALIZE1 when given a hyper-
graph with p edges on i vertices. Consider the i-th iteration. From Proposition 3.1
we have |X;_1| < |F9¢| and since we only compute A? in step 5 if not already
computed, there are at most min{2?, |F%|} calls to DUALIZEL. The size of A¢
can also be bounded by Proposition 3.1, which gives us |A?| < |F9|. Further-
more it is easy to see that the minimal transversal in step 6 can be found in time
O(n|F|) by removing the extra vertices (at most n). Thus the time spent in the
i-th iteration can be bounded by O(min{2?, |F4|} - f(p,n) + n|F| - |F?).

Theorem 3.2. Let F C 2V be a hypergraph on |V| = n wvertices in which the
degree of each vertex v € V is bounded by p. Then all minimal transversals of F
can be found in time O (n*mm/ - (min{2?,m’} - np?e?/* +m')), where m = | F|
and m' = |F4|.

4 Vertex complementary degree as parameter

For a hypergraph F C 2V and a vertex v € V, consider the number of edges
in F not containing v for some vertex v € V. Let ¢ be maximum such number,
ie, ¢ = maxyey {FF € F : v ¢ F}|. We show that DUAL(F,G) is fixed-
parameter tractable with parameter ¢ and improve the running time of [Hag07].

The following proposition gives a decomposition rule originally due to [FK96]
which for a vertex v € V divides the problem into two subproblems not contain-
ing v.



Proposition 4.1 (cf. [FK96]). Let F,G C 2V be two hypergraphs satisfying
(1), and v € V be a given vertex. Then F and G are dual if and only if the pairs
(]:V\U,QV\”) and (}"V\”,QV\U) are dual.

For a vertex v € V, one of the subproblem (Fyn,, QV\”) involves a hyper-
graph Fy\, with at most g edges. The algorithm solves it by calling DUALIZE1
resulting in time O(n2¢?e(?/¢) - |(Fy,)¢]). The other subproblem (FV\", Gy ,)
is solved recursively. Since at least one vertex is reduced at each step of the
algorithm, there are at most n = |V/| recursive steps.

Theorem 4.2. Let F,G C 2V be two hypergraphs with |F| = m,|G| = m' and
|V|=n. Let ¢ = max,ey |[{H € F : v¢ H}|. Then F* = G can be decided in
time O(n3q?el?/¢) . m’).

5 Results based on the Apriori technique

Gunopulos et al. [GKM™03| showed (Theorem 23, page 156) that generating
minimal transversals of hypergraphs F with edges of size at least n — ¢ can be
done in time O(2¢poly(n,m,m’)), where n = |V|, m = |F| and m’ = |F?|. This
is a fixed-parameter algorithm for ¢ as parameter. Furthermore, this result shows
that the transversals can be generated in polynomial time for ¢ € O(logn). The
computation is done by an Apriori (level-wise) algorithm [AS94].

Using the same approach, we shall show below that we can compute all the
minimal transversals in time O(min{2¢(m’)*poly(n,m),e*/cntpoly(m,m’)})
if the union of any k distinct minimal transversals has size at least n — c. Equiv-
alently, if any k distinct maximal independent sets of a hypergraph F intersect
in at most ¢ vertices, then all maximal independent sets can be computed in the
same time bound. As usual, an independent set of a hypergraph F is a subset
of its vertices which does not contain any hyperedge of F.

And again using the same idea, we show that the maximal frequent sets of
an m x n database can be computed in O(2C(nm’)2k71+1poly(n, m)) time if any
k rows of it intersect in at most ¢ items, where m’ is the number of such sets.

Note that for ¢ € O(logn) we have incremental polynomial-time algorithms
for all four problems.

5.1 The generalized Apriori algorithm

Let f: V — {0,1} be a monotone Boolean function, that is, for which f(X) >
f(Y) whenever X O Y. We assume that f is given by a polynomial-time evalu-
ation oracle requiring maximum time T, given the input. The Apriori approach
for finding all maximal subsets X such that f(X) = 0 (maximal false sets of
f), works by traversing all subsets X of V, for which f(X) = 0, in increasing
size, until all maximal such sets have been identified. The procedure is given in
Figure 3.



Lemma 5.1. If any maximal false set of f contains at most ¢ vertices, then
APRIORI finds all such sets in O(2°m/nTy) time, where n = |V| and m' is the
number of mazimal false sets.

Proof. The correctness of this Apriori style method can be shown straightfor-
wardly (cf. e.g. [AS94, GKM™03]). To see the time bound, note that for each
maximal false set we check at most 2¢ candidates (all the subsets) before adding
it to C. For each such candidate we check whether it is a false set and whether
it cannot be extended by adding more vertices. a

Procedure APRIORI(f,V):
Input: a monotone Boolean function f:V — {0,1}
Output: the maximal sets X C V such that f(X) =0

1. C—0;C—{{v}: veV}i—1;C—0Vj=2.3,...
2. while C; # 0

3 for X,Y €C;,|XNY|=i—-1

4. Z — XUY

5. if f(Z) =0 then

6 if f(ZU{v})=1,forallveV\Z then

7 C—Ccu{z}

8. else

9 Ci+1 <—Ci+1 U{Z}

10. 1—i+1
11. return C

Fig. 3. The generalized Apriori algorithm

5.2 Maximal Independent Sets

Let F C 2V be a hypergraph. An independent set of F is a subset of V which
does not contain any hyperedge of F. It is easy to see that the hypergraph of
maximal independent sets F% of F is the complementary hypergraph of the
dual Fd: Fie = {V\T: T € Fi}.

Let k and ¢ be two positive integers. We consider hypergraphs F C 2V
satisfying the following condition:

(C1) Any k distinct maximal independent sets I1,...,I; of F intersect in at
most ¢ vertices, i.e., [[; N--- NI <ec.

We shall derive below fixed-parameter algorithms with respect to either ¢ or
k. We note that condition (C1) can be checked in polynomial time for ¢ = O(1)
and k = O(logn). Indeed, (C1) holds if and only if every set X C V of size
|X| = ¢+ 1 is contained in at most k¥ — 1 maximal independent sets of F. The



k/e

latter condition can be checked in time n*! poly(n,m, k)e¥/¢ as follows from

the following lemma.

Lemma 5.2. Given a hypergraph F with vertex set V and a subset S C V of
vertices, we can check in polynomial time whether S is contained in k different
mazximal independent sets. Furthermore k such sets can be generated in time
O(poly(n, m, k)eF/¢).

Proof. Clearly, this check is equivalent to checking if S does not contain an
edge of F and if the truncated hypergraph F° has k maximal independent sets,
or equivalently k£ minimal transversals. By Corollary 2.5, this can be done in
O(poly(n,m, k)e*/¢) time. O

For a set S C V, denote by F%[S] the set of maximal independent sets of F
containing S.

Theorem 5.3. If any k distinct maximal independent sets of a hypergraph F
intersect in at most c vertices, then all mazimal independent sets can be computed
in time O(min{2°(m’)*poly(n, m), e/ *n+ poly(m, m’)}), where n = |V|, m =
|F| and m' = |Fde|.

Proof. (i) ¢ as a parameter: we first use APRIORI to find the set X of all
maximal subsets contained in at least k distinct maximal independent sets of F.
By (C1) the size of each such subset is at most ¢. To do this we use APRIORI
with the monotone Boolean function defined by f(X) = 0 if and only if X C
I N---N I, for k distinct maximal independent sets I, ..., Ix. The procedure
is given in Figure 4. By Lemmas 5.1 and 5.2, all the intersections in X can
be found in time 2¢ poly(n,m, k)e®/¢|X|. Thus the total running time can be
bounded by 2¢ poly(n, m, k)e®/¢(m’)* since |X| < (m’)*. It remains to argue
that any maximal independent set I € F% is generated by the procedure. To
see this, let Y be a maximal subset such that Y = I'NI; N...N I., where
I,I,...,1I,, are distinct maximal independent sets of F with » > k& — 1, and let
v € I\ (Njepl;). Note that such v exists since I & Mgyl since I, 1y,..., I,
are distinct maximal independent sets. Then by maximality of Y, Y U {v} is
contained in at most £ — 1 maximal independent sets, one of which is I, and
hence will be considered by the procedure in Step 7.

(ii) k as a parameter: Let ) = {I € F% : |I| < ¢} and Zp = Fé\ I;.
Elements of Z; can be found using the APRIORI procedure with the monotone
Boolean function, defined as f(X) = 0 if and only if X C V is independent
and has size at most ¢ (or by testing all subsets of size at most ¢ for maximal
independence). Elements of Z5 can be found by noting that each of them contains
a set of size ¢+ 1, and that each such set is contained in at most k& — 1 elements
of Zy by (C1). Thus for each set X of size ¢+ 1, we can use Lemma 5.2 to find
all maximal independent sets containing X. a

Corollary 5.4. Let F C 2V be a hypergraph on n = |V| vertices, and k,c be
positive integers.



Procedure MAX-INDP-GEN(F,V):
Input: a hypergraph F C 2V
Output: the set of maximal independent sets of F

1. C—0

2. Use APRIORI to find the set of maximal k-independent set intersections X’
3. for each X € X do

4. for each Y C X do

5. for each v € V\'Y do

6. if |[FlelY u{v}]| <k—1

7. C «— CUF*Y U {v}] (obtained using Corollary 2.5)

8. return C

Fig. 4. The fixed parameter algorithm for finding all maximal independent sets

(i) If any k distinct minimal transversals of F have a union of at least n — ¢
vertices, we can compute all minimal transversals in O(min{2¢(m’)*poly(n, m),
eflentpoly(m, m’)}) time, where m = F and m' = |F?|.

(i) If any k distinct hyperedges of F have a union of at least n — ¢ ver-
tices, we can compute all minimal transversals in time O(min{2°mFpoly(n, m’),
eFlentpoly(m, m’)}), where m = F and m' = |F?|.

Proof. Both results are immediate from Theorem 5.3. (i) follows by noting that
each minimal transversal is the complement of a maximal independent set, and
hence any k& maximal independent sets are guaranteed to intersect in at most ¢
vertices. (ii) follows by maintaining a partial list G C F¢, and switching the roles
of F and G in (i) to compute the minimal transversals of G using Theorem 5.4.
Since condition (i) is satisfied with respect to G, we can either verify duality of
F and G, or extend G by finding a witness for the non-duality (in a way similar
to Corollary 2.5). O

5.3 Maximal Frequent Sets

Consider the problem of finding the maximal frequent item sets in a collection
of m transactions on n items, stated in the Introduction. Here, a transaction
simply is a set of items. An item set is maximal frequent for a frequency t if it
occurs in at least t of the transactions and none of its supersets does. As another
application of the approach of the previous subsection we obtain the following.

Theorem 5.5. If any k distinct mazimal frequent sets intersect in at most c
items, we can compute all mazimal frequent sets in O(2¢(nm/)*poly(n, m)) time,
where m' is the number of mazimal frequent sets.

Proof. The proof is analogous to that of Theorem 5.3. Just note that the set of
transactions forms a hypergraph and replace “independent” by “frequent”. To
complete the proof, we need the following procedure to find k£ maximal frequent

10



sets containing a given set. For 1 < i < k and frequent set X, let Fy,..., F;_1 be
the maximal frequent sets containing X and let Y be the set with the property
that X UY is frequent and Vj < ¢,3y € Y : y ¢ F;. Then any maximal frequent
set containing X UY is different from F3 ... F;_; by construction and thus giving
us a new maximal frequent set. The running time of the above procudure can be
bounded by O(n*poly(n,m)). Combining it with Lemma 5.1 gives us the stated
running time. a

Corollary 5.6. If any k distinct transactions intersect in at most c items, then
all maximal frequent sets can be computed in time (’)(20(nm’)2Fl+1poly(n,m)),

where m' is the number of mazimal frequent sets.

Proof. Note that if ¢ > k then every maximal frequent set has size at most ¢
which in turn implies O(2¢poly(n, m)-m’) time algorithm using straightforward
Apriori approach, so we may assume otherwise. Consider the intersection X of
[ distinct maximal frequent sets and let |X| > ¢, we bound the maximum such
[. Since the intersection size is more then ¢, at most k — 1 transactions define

these [ disticnt maximal frequent sets and so [ < E?;tl (k;I) < ok-1, O

6 Concluding Remarks

Giving an FPT algorithm for DUAL with respect to the parameter size [ of a
largest edge remains open. Nevertheless, proving that DUAL is not FPT with
respect to [ seems to be tough as this would imply that there is no polynomial
time algorithm for DUAL assuming W[1] # FPT. Furthermore, this would be a
strong argument for a separation of polynomial and quasi-polynomial time in
“classical” computational complexity.

References

[AIS93] R. Agrawal, T. Imielinski, and A.N. Swami. Mining association rules
between sets of items in large databases. In Proc. SIGMOD’93, pages
207-216, 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Proc. VLDB’94, pages 487-499, 1994.

[BEGKO00] E. Boros, K. M. Elbassioni, V. Gurvich, and L. Khachiyan. An efficient in-
cremental algorithm for generating all maximal independent sets in hyper-
graphs of bounded dimension. Parallel Processing Letters, 10(4):253-266,
2000.

[BEGKO03] E. Boros, K. M. Elbassioni, V. Gurvich, and L. Khachiyan. An inequality
for polymatroid functions and its applications. Discrete Applied Mathe-
matics, 131(2):255-281, 2003.

[BEGK04] E. Boros, K.M. Elbassioni, V. Gurvich, and L. Khachiyan. Gener-
ating maximal independent sets for hypergraphs with bounded edge-
intersections. In Proc. LATIN 2004, pages 488-498, 2004.

11



[BGHOS]

[BGKMO02]

[BIOS]
[Dam06]

[Dam07]

[DF99]
[EG95)]
[EG02]

[EGMO3]

[Eit94]
[FK96]
[GBS5]

[GKM*03]

[Hag07]
[JPYSS]
[KS03]

[LLKS0]

[Mak03]
[MR92]
[Nie06]
[RT75]

[SS08]

E. Boros, V. Gurvich, and P.L. Hammer. Dual subimplicants of positive
Boolean functions. Optimization Methods and Software, 10(2):147-156,
1998.

E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On the complexity
of generating maximal frequent and minimal infrequent sets. In Proc.
STACS 2002, pages 133-141, 2002.

J.C. Bioch and T. Ibaraki. Complexity of identification and dualization
of positive Boolean functions. Inf. Comput., 123(1):50-63, 1995.

P. Damaschke. Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction. Theoret. Comput. Sci., 351(3):337-350, 2006.
P. Damaschke. The union of minimal hitting sets: Parameterized com-
binatorial bounds and counting. In Proc. STACS 2007, pages 332—-343,
2007.

R.G. Downey and M. R. Fellows. Parameterized Complezity. Springer,
1999.

T. Eiter and G. Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems. SIAM J. Comput., 24(6):1278-1304, 1995.
T. Eiter and G. Gottlob. Hypergraph transversal computation and related
problems in logic and AI. In Proc. JELIA 2002, pages 549-564, 2002.

T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization
and generating hypergraph transversals. SIAM J. Comput., 32(2):514—
537, 2003.

T. Eiter. Exact transversal hypergraphs and application to Boolean u-
functions. J. Symb. Comput., 17(3):215-225, 1994.

M. L. Fredman and L. Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. J. Algorithms, 21(3):618-628, 1996.
H. Garcia-Molina and D. Barbara. How to assign votes in a distributed
system. J. ACM, 32(4):841-860, 1985.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S.
Sharm. Discovering all most specific sentences. ACM Trans. Database
Syst., 28(2):140-174, 2003.

M. Hagen. On the fixed-parameter tractability of the equivalence test of
monotone normal forms. Inf. Process. Lett., 103(4):163-167, 2007.

D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. On generating
all maximal independent sets. Inf. Process. Lett., 27(3):119-123, 1988.
D.J. Kavvadias and E. C. Stavropoulos. Monotone Boolean dualization is
in coNP[log?n]. Inf. Process. Lett., 85(1):1-6, 2003.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Generating all
maximal independent sets: NP-hardness and polynomial-time algorithms.
SIAM J. Comput., 9(3):558-565, 1980.

K. Makino. Efficient dualization of O(logn)-term monotone disjunctive
normal forms. Discrete Applied Mathematics, 126(2-3):305-312, 2003.

H. Mannila and K.-J. Rdihd. On the complexity of inferring functional
dependencies. Discrete Applied Mathematics, 40(2):237-243, 1992.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Uni-
versity Press, 2006.

R.C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks, 5:237-252, 1975.

S. Sarkar and K.N. Sivarajan. Hypergraph models for cellular mobile
communication systems. IEEE Transactions on Vehicular Technology,
47(2):460-471, 1998.

12



