
How Train–Test Leakage Affects Zero-shot Retrieval

Maik Fröbe,1 Christopher Akiki,2 Martin Potthast,2 Matthias Hagen1

1 Martin-Luther-Universität Halle-Wittenberg
2 Leipzig University

Abstract Neural retrieval models are often trained on (subsets of) the
millions of queries of the MS MARCO / ORCAS datasets and then tested
on the 250 Robust04 queries or other TREC benchmarks with often only
50 queries. In such setups, many of the few test queries can be very
similar to queries from the huge training data—in fact, 69% of the Ro-
bust04 queries have near-duplicates in MS MARCO / ORCAS. We inves-
tigate the impact of this unintended train–test leakage by training neural
retrieval models on combinations of a fixed number of MS MARCO / OR-
CAS queries, which are very similar to actual test queries, and an increas-
ing number of other queries. We find that leakage can improve effective-
ness and even change the ranking of systems. However, these effects di-
minish the smaller, and thus more realistic, the extent of leakage is in all
training instances.

Keywords: Neural information retrieval; Train–test leakage; BERT; T5

1 Introduction

Training transformer-based retrieval models requires large amounts of data un-
available in many traditional retrieval benchmarks [34]. Data-hungry training
regimes became possible with the 2019 release of MS MARCO [10] and its
367,013 queries that were subsequently enriched by the ORCAS click log [8] with
10 million queries. Fine-tuning models trained on MS MARCO to other bench-
marks or using them without fine-tuning in zero-shot scenarios is often very ef-
fective [34, 36, 47]. For example, monoT5 [36] which was trained on MS MARCO
data only is the most effective model for the Robust04 document ranking task at
the time of writing.3 Furthermore, the reference implementations of monoT5 and
monoBERT [37] in retrieval frameworks such as PyTerrier [32] or Pyserini / Py-
Gaggle [26] all use models trained only on MS MARCO by default. However,
when MS MARCO was officially split into train and test data, cross-benchmark
use was not anticipated, so that MS MARCO’s training queries may overlap with
the test queries of other datasets (e.g., Robust04). We investigate the impact of
such a train–test leakage by training neural models on MS MARCO document
ranking data with different proportions of controlled leakage to Robust04 and
the TREC 2017 and 2018 Common Core tracks as test datasets.
3 https://paperswithcode.com/sota/ad-hoc-information-retrieval-on-trec-robust04



2 Fröbe et al.

Robust04 Topic 441

Title: lyme disease

Description: How do you
prevent and treat Lyme disease?

Narrative: Documents that
discuss current prevention
and treatment techniques for
Lyme disease are relevant.
Reports of research on new
treatments of the disease are
also relevant.

Query variants:
lyme disease treatments
prevent lyme disease
...

MS MARCO + ORCAS

lyme disease

how to treat lyme disease

how to prevent lyme disease

lyme disease treatment

prevent lyme disease

..
.

..
.

0.95

0.95

1.0

1.0

1.0

SBERT

Figure 1. MS MARCO / ORCAS queries with high Sentence-BERT (SBERT) simi-
larity to Robust04 Topic 441.

To identify probably leaking queries, we run a semantic nearest-neighbor
search using Sentence-BERT [38] and compare each MS MARCO / ORCAS
query to the title, description, and manual query variants [3, 4] of the topics in
Robust04 and the TREC 2017 and 2018 Common Core tracks. Figure 1 illus-
trates this procedure for Topic 441 (lyme disease) from Robust04. Our manual
review of the leakage candidates shows that 69% to 76% of the topics have
near-duplicates in MS MARCO / ORCAS. To analyze the effect of this po-
tential train–test leakage on neural retrieval models, we create three types of
training datasets per test corpus, in variants with 1,000 to 128,000 training
instances (query + (non-)relevant document): (1) a fixed number of instances
derived from test queries from the test corpora (1000 for Robust04 and 200 for
each of the two Common Core tracks), augmented by other random non-leaking
MS MARCO / ORCAS instances to simulate an upper bound on train–test
leakage effects, (2) a fixed number of leaking MS MARCO / ORCAS instances
(1000 for Robust04 and 200 each for the two Common Core tracks) supplemented
by other random non-leaking instances, and (3) random MS MARCO / ORCAS
instances, ensuring that no train–test leakage candidates are included.

In our experiments, we observe leakage-induced improvements in effective-
ness for Robust04 and the two Common Core tracks, which can even change the
ranking of systems. However, the average improvements in overall effectiveness
are often not significant and decrease as the proportion of leakage in the train-
ing data becomes smaller and more representative of realistic training scenarios.
However, given the swaps in system rankings as well as leakage effects on search
results that we observed, we do advise caution: In any case, a rigorous exper-
imental setup demands for maximizing its reliability, so that train–test leaks
should still be avoided.4

4 All code and data is publicly available at https://github.com/webis-de/SPIRE-22.



How Train–Test Leakage Affects Zero-shot Retrieval 3

2 Background and Related Work

Disjoint training, validation, and test datasets are essential to properly evaluate
the effectiveness of machine learning models [7]. Duplication between training
and test data can lead to incorrectly high “effectiveness” by memorizing instances
rather than learning the target concept. In practice, however, the training and
test data often still contain redundancies. For text data, paraphrases, synonyms,
etc., can be especially problematic, resulting in train–test leaks [19, 24, 29]. For
instance, the training and test sets of the ELI5 dataset [13] for question an-
swering were created using TF-IDF as a heuristic to eliminate redundancies
between them. This proved insufficient as 81% of the test questions turned out
to be paraphrases of training questions, which clearly favored models that mem-
orized the training data [24]. Recently, Zhan et al. [46] found that 79% of the
TREC 2019 Deep Learning track topics have similar or duplicated queries in the
training data and proposed new data splits to evaluate the interpolation and
extrapolation effectiveness of models. However, not all types of train–test leaks
are unintentional. The TREC 2017 and 2018 Common Core tracks [1] inten-
tionally reused topics from Robust04 to allow participants to use the relevance
judgments for training. Indeed, approaches trained on the Robust04 judgments
were more effective than others [1]. In this paper, we study whether a similar
effect can be observed for unintentional leakage from the large MS MARCO and
ORCAS datasets.

Training retrieval models on MS MARCO and applying them to another
corpus is a form of transfer learning [34]. Transfer learning is susceptible to
train–test leakage since the train and test data are often generated indepen-
dently without precautions to prevent leaks [6]. Research on leakage in transfer
learning focuses on membership inference [35, 41] (predicting if a model has seen
an instance during training) and property inference [2, 17] (predicting properties
of the training data). Both inferences rely on the observation that neural models
may memorize some training instances to generalize through interpolation [5, 7]
and to similar test instances [15, 16]. It is unclear whether and how neural re-
trieval models in a transfer learning scenario are affected by leakage. Memorized
relevant instances might reduce effectiveness for different test queries while im-
proving it for similar queries, like the examples in Figure 1. We take the first
steps to investigate the effects of such a train–test leakage.

When the target corpus contains only few training instances, transferred
retrieval models are often more effective without fine-tuning, in a zero-shot set-
ting [47]; for instance, when training on MS MARCO and testing on TREC
datasets [34, 36, 47]. A frequently used target TREC dataset is Robust04 [42]
with 250 topics and a collection of 528,155 documents published between 1989
and 1996 by the Financial Times, the Federal Register, the Foreign Broad-
cast Information Service, and the LA Times.5 Later, the TREC Common Core
track 2017 [1] reused 50 of the 250 Robust04 topics on the New York Times Anno-
5 https://trec.nist.gov/data/cd45/index.html



4 Fröbe et al.

tated Corpus [39]6 (1,864,661 documents published between 1987 and 2007) and
the Common Core track 2018 reused another 25 Robust04 topics (and introduced
25 new topics) on the Washington Post Corpus7 (595,037 documents published
between 2012 and 2017). At the Robust04 track, 311,410 relevance judgments
were collected, 30,030 at the TREC 2017 Common Core track, and 26,233 at
the TREC 2018 Common Core track. Interestingly, every Robust04 topic and
every topic from the Common Core tracks 2017 and 2018 was augmented with
at least eight query variants compiled by expert searchers, and made available
as an additional resource [3, 4].

Research on paraphrase detection [12, 43] and semantic question match-
ing [40] is of great relevance to the identification of potentially leaking queries
between training and test data. Reimers and Gurevych [38] and Lin et al. [28]
showed that pooling or averaging the output of contextual word embeddings of
pre-trained transformer encoders like BERT [11] is not suited for paraphrase
detection—both, with respect to efficiency and accuracy. Sentence-BERT [38]
solves this issue by adopting a BERT-based triplet network structure and a con-
trastive loss that attempts to learn a global and a local structure suited for
detecting semantically related sentences. We therefore use Sentence-BERT in a
version specifically trained for paraphrase detection to identify leaking queries.

3 Identifying Leaking Queries

To examine the impact of possible leaks from MS MARCO / ORCAS to the
TREC datasets Robust04 and Common Core 2017 and 2018, we compare the for-
mer’s queries (367,013 plus 10 million) to the 275 topics of the latter three. Since
lexical similarity may not be sufficient, as indicated by the ELI5 issue [24] men-
tioned above, we compute semantic similarity scores using Sentence-BERT [38].8
We store the Sentence-BERT embeddings of all MS MARCO and ORCAS queries
in two Faiss indexes [23] and query them for the 100 nearest neighbors (exact;
cosine similarity) of each topic’s title, description, and query variants.

To determine the threshold for the Sentence-BERT similarity score beyond
which we consider a query a source of leakage for a topic, one human annotator
assessed whether a query is leaking for a TREC topic (title, description, query
variants) for a stratified sample of 100 pairs of queries and topics with a similarity
above 0.8. Against these manual judgments, a similarity threshold of 0.91 is the
lowest that yields a 0.9 precision for deciding that a query is leaking for a topic.
Table 1 shows the number of topics for which queries above this threshold can
be found. From MS MARCO and ORCAS combined, 3,960 queries are leakage
candidates for one of 181 Robust04 topics (72% of the 250 topics). From the
two Common Core tracks, 37 and 38 topics have leakage candidates (76% of the
50 topics, respectively)—high similarities mostly against the query variants.
6 https://catalog.ldc.upenn.edu/LDC2008T19
7 https://trec.nist.gov/data/wapost/
8 Of the available pre-trained Sentence-BERT models, we use the paraphrase detection

model: https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2



How Train–Test Leakage Affects Zero-shot Retrieval 5

Table 1. Number of topics (T) in Robust04 and the TREC 2017 and 2018 Common
Core tracks for which similar queries (number as Q) in MS MARCO (MSM) and the
union of MSM and ORCAS (+ORC) exist in terms of the query having a Sentence-
BERT score > 0.91 against the topic’s title, description, or a query variant.

Candidates Robust04 Core 2017 Core 2018

MSM + ORC MSM + ORC MSM + ORC

T Q T Q T Q T Q T Q T Q

Title 33 83 140 1,775 2 12 23 176 2 2 21 110
Description 2 3 8 50 0 0 0 0 0 0 1 2
Variants 45 116 167 3,356 6 16 38 602 9 26 38 973

Union 53 151 181 3,960 7 18 38 645 9 26 38 973

Some of these leakage candidates still are false positives (threshold precision
of 0.9). To only use actual leaking queries in our train–test leakage experiments,
two annotators manually reviewed the 5 most similar candidates per topic above
the 0.91 threshold (a total of 827 candidates; not all topics had 5 candidates).
Given the title, description, and narrative of a topic, the annotators labeled the
similarity of a query to the topic title according to Jansen et al.’s reformula-
tion types [22]: a query can be identical to the topic title (differences only in
inflection or word order), be a generalization (subset of words), a specialization
(superset of words), a reformulation (some synonymous terms), or it can be on
a different topic. An initial kappa test on 103 random of the 827 candidates
showed moderate agreement (Cohen’s kappa of 0.59; 103 queries: we aimed for
100 but included all queries for a topic when one was selected). After discussing
the 103 cases with the annotators, they agreed on all cases and we had them
each independently label half of the remaining 724 candidates. Table 2 shows
the annotation results: 172 topics of Robust04 (i.e., 69%) have manually verified
leaking queries (648 total), as well as 37 topics of Common Core 2017 (74%) and
38 of Common Core 2018 (76%). A large portion of the true-positive leaking
queries are identical to or specializations of a topic’s title (57.5% of 721). In our
below train–test leakage experiments, we only use manually verified true-positive
leaking queries as the source of leakage from MS MARCO / ORCAS.

4 Experimental Analysis

Focusing on zero-shot settings, we train neural retrieval models on specifically de-
signed datasets to assess the effect of train–test leakage from MS MARCO / OR-
CAS to Robust04 and TREC 2017 and 2018 Common Core. We analyze the
models’ effectiveness in five-fold cross-validation experiments, report detailed
results for varying training set sizes for monoT5 (which has the highest effec-
tiveness in our experiments), and study the effects of leaked instances on the
retrieval scores and the resulting rankings.



6 Fröbe et al.

Table 2. Statistics of the 827 manually annotated leakage candidate queries. (a) Num-
ber of true and false candidates. (b) Annotated query reformulation types.

(a) Manually annotated candidates.
Corpus Candidates Queries Topics

Robust04 true 648 172
false 93 53

Core 2017 true 138 37
false 21 11

Core 2018 true 157 38
false 19 7

(b) Reformulation types.

Type Queries

Identical 187
Generalization 124
Specialization 228
Reformulation 182

Different Topic 106

Training Datasets. For each of the three test scenarios (Robust04 and the two
Common Core scenarios), we construct three types of training datasets: (1) ‘No
Leakage’ with random non-leaking queries (balanced between MS MARCO and
ORCAS as in previous experiments [8]), (2) ‘MSM Leakage’ with a fixed num-
ber of random manually verified leaking queries from MS MARCO / ORCAS
(500 queries for Robust04, 100 queries for Common Core) supplemented by no-
leakage queries until a desired size is reached, and (3) ‘Test Leakage’ with a fixed
number of queries from the actual test data (500 for Robust04, 100 for Common
Core; oversampling: each topic twice (but different documents) to match ‘MSM
Leakage’) supplemented by no-leakage queries until a desired size is reached.
‘Test Leakage’ is meant as an “upper bound” for any train–test leakage effect.

For each type, we construct datasets with 1,000 to 128,000 instances (500 to
64,000 queries; each with one relevant and one non-relevant document). Since
MS MARCO / ORCAS queries only have annotated relevant documents, we
follow Nogueira et al. [36] and sample “non-relevant” instances from the top-
100 BM25 results for such queries. For the ‘Test Leakage’ scenario, we use the
actual TREC judgments to sample the non-/relevant instances. In our 72 training
datasets (3 test scenarios, 3 types, 8 sizes), the number of leaked instances is
held constant to analyze the effect of a decreasing (and thus more realistic) ratio
of leakage. Larger training data would result in more costly training, but our
chosen sizes already suffice to observe a diminishing effect of train–test leakage.

Trained Models. For our experimental analyses, we use models based on mono-
BERT [37] and monoT5 [36] as implemented in PyGaggle [26], and models based
on Duet [33], KNRM [44], and PACRR [21] as implemented in Capreolus [45]
(default configurations each). In pilot experiments with 32,000 ‘No Leakage’ in-
stances, these models had higher nDCG@10 scores on Robust04 than CEDR [30],
HINT [14], PARADE [25], and TK [20]. Following Nogueira et al. [36], we use the
base versions of BERT and T5 to spend the computational budget on training
many models instead of a single large one. Since the training is not deterministic,
each model is trained on each of the 72 training sets five times for one epoch
with varying seeds (used to shuffle the training queries; configured in PyTorch).
We use ir_datasets [31] for data wrangling and, following previously suggested



How Train–Test Leakage Affects Zero-shot Retrieval 7

Training Instances

0.1

0.2

0.3

0.4

0.5

nD
C

G
@

10

Robust04

1k 2k 4k 8k 16k 32k 64k 128k

Training Instances
1k 2k 4k 8k 16k 32k 64k 128k

Common Core 2017

Training Instances
1k 2k 4k 8k 16k 32k 64k 128k

Common Core 2018

Training Dataset

Test Leakage

MSM Leakage

No Leakage

Figure 2. Effectiveness of monoT5 measured as nDCG@10 on the topics with leakage
(172 topics for Robust04, 37 and 38 for the 2017 and 2018 editions of the Common
Core track). Models trained on datasets of varying size with no leakage (No), leakage
from MS MARCO / ORCAS (MSM), or leakage from the test data (Test).

training regimes [36, 37, 45], pass the relevant and the non-relevant document
of a query consecutively to a model in the same batch during training. Dur-
ing inference, all models re-rank the top-100 BM25 results (Capreolus, default
configuration) and we break potential score ties in rankings via alphanumeric
ordering by document ID (with random IDs, this leads to a random distribution
for other document properties such as text length [27]).

Leakage-Induced nDCG Improvements for MonoT5. Figure 2 shows the average
nDCG@10 of monoT5, the most effective model in our experiments, for different
training set sizes, tested only on topics with leaked queries. For small train-
ing sets, monoT5 achieves rather low nDCG@10 values and cannot exploit the
leakage. The nDCG@10 increases with more training data on all benchmarks,
peaking at 16,000 or 32,000 instances. At the peaks, monoT5 trained with leak-
age is more effective than without, and training on test leakage leads to a slightly
higher nDCG@10 than leakage from MS MARCO / ORCAS (MSM). However,
the difference between test and MSM leakage is larger for Robust04 (with some
documents published as early as 1989) compared to the newer Common Core
tracks (with documents published closer to the publication date of MS MARCO).
On the Common Core data, MSM leakage is almost as effective as test leakage.

Leakage-Induced Effectiveness Improvements for Other Models. We employ a
five-fold cross-validation setup for Duet, KNRM, monoBERT, monoT5, and
PACRR to study whether leakage-induced effectiveness improvements can also
be observed for other models when a grid search in the cross-validation setup
can choose the training set size with the highest leakage effect for each model.
We report the effectiveness of the models as nDCG@10, Precision@1, and the
mean first rank of a relevant document (MFR) [18].9 While effectiveness scores
measured via nDCG@10 and Precision@1 have the property that higher values
are better (a score of 1 indicates “best” effectiveness), for MFR, lower scores
9 We use MFR instead of the mean reciprocal rank (MRR) as suggested by Fuhr [18].

His criticism of MRR was recently supported by further empirical evidence [48].



8 Fröbe et al.

Table 3. Effectiveness on Robust04 (R04) as nDCG@10, mean first rank of a rele-
vant document (MFR), and Precision@1 (Prec@1) in a five-fold cross-validation setup
on all test topics. Models are trained with no leakage (None), leakage from MS
MARCO / ORCAS (MSM), or leakage from the test data (Test). Highest scores in
bold; † marks Bonferroni-corrected significant differences to the no-leakage baseline
(Student’s t-test, p = 0.05). Model order swaps induced by MSM leakage in red.

Model nDCG@10 on R04 MFR on R04 Prec@1 on R04

None MSM Test None MSM Test None MSM Test

Duet [33] 0.201 0.198 0.224† 2.420 2.682 2.340 0.297 0.261 0.304
KNRM [44] 0.194 0.214† 0.309† 2.348 2.309 1.976† 0.293 0.313 0.329
monoBERT [37] 0.394 0.373† 0.396 1.688 1.725 1.639 0.434 0.454 0.414
monoT5 [36] 0.461 0.457 0.478† 1.443 1.416 1.417 0.562 0.578 0.590
PACRR [21] 0.382 0.364† 0.391 1.663 1.604 1.579† 0.458 0.462 0.502

are better—but still a score of 1 is the best case indicating that the document
on rank 1 always is relevant. In all effectiveness evaluations, we conduct signifi-
cance tests via Student’s t-test (p = 0.05) with Bonferroni correction for multiple
testing as implemented in PyTerrier [32].

Table 3 shows the five-fold cross-validated effectiveness on Robust04 for the
five models when optimizing each fold for nDCG@10, MFR, or Precision@1 in
a grid search. Models trained on test leakage almost always are more effective
than their no-leakage counterparts (exception: Precision@1 of monoBERT) and
actual test leakage usually helps more than leakage from MS MARCO / ORCAS
(MSM; exceptions: MFR of monoT5 and Precision@1 of monoBERT). Overall,
on Robust04, models trained with MSM leakage are often less effective than their
no-leakage counterparts (e.g., the nDCG@10 of monoBERT). A possible expla-
nation might be the large time gap between the Robust04 document publication
dates (documents published between 1987 and 2007) and the MS MARCO data
(crawled in 2018). A similar observation was made during the TREC 2021 Deep
Learning track [9]. The transition from Version 1 of MS MARCO to Version 2
(crawled three years later) caused some models to prefer older documents since
they saw old documents as positive instances and newer ones as negative in-
stances during training. Still, MSM leakage can lead to swaps in model ranking
on Robust04. For instance, KNRM trained with MSM leakage achieves a higher
nDCG@10 and Precision@1 than Duet without leakage, while KNRM trained
without leakage is less effective than Duet.

Table 4 shows the five-fold cross-validated effectiveness on the TREC 2017
Common Core track for the five models when optimizing each fold for nDCG@10,
MFR, or Precision@1 in a grid search. In contrast to Robust04, more models
improve their effectiveness when trained with MSM leakage as the time gap
between the New York Times Annotated Corpus and MS MARCO is smaller
than for Robust04. MonoT5 with actual test leakage is the most effective model
for all three measures, and monoT5 trained on MSM leakage is more effective



How Train–Test Leakage Affects Zero-shot Retrieval 9

Table 4. Effectiveness on Common Core 2017 (CC17) as nDCG@10, mean first rank of
a relevant document (MFR), and Precision@1 (Prec@1) in a five-fold cross-validation
setup on all test topics. Models are trained with no leakage (None), leakage from MS
MARCO / ORCAS (MSM), or leakage from the test data (Test). Highest scores in
bold; † marks Bonferroni-corrected significant differences to the no-leakage baseline
(Student’s t-test, p = 0.05). Model order swaps induced by MSM leakage in red.

Model nDCG@10 on R04 MFR on R04 Prec@1 on R04

None MSM Test None MSM Test None MSM Test

Duet [33] 0.374 0.373 0.376 1.620 1.512 1.485 0.500 0.480 0.540
KNRM [44] 0.316 0.343† 0.330 1.587 1.512 1.568 0.480 0.520 0.480
monoBERT [37] 0.402 0.407 0.419 1.625 1.605 1.634 0.480 0.460 0.460
monoT5 [36] 0.445 0.464 0.490† 1.363 1.384 1.359 0.660 0.620 0.680
PACRR [21] 0.406 0.403 0.413 1.390 1.515 1.546 0.540 0.520 0.580

Table 5. Effectiveness on Common Core 2018 (CC18) as nDCG@10, mean first rank of
a relevant document (MFR), and Precision@1 (Prec@1) in a five-fold cross-validation
setup on all test topics. Models are trained with no leakage (None), leakage from MS
MARCO / ORCAS (MSM), or leakage from the test data (Test). Highest scores in
bold; † marks Bonferroni-corrected significant differences to the no-leakage baseline
(Student’s t-test, p = 0.05). Model order swaps induced by MSM leakage in red.

Model nDCG@10 on R04 MFR on R04 Prec@1 on R04

None MSM Test None MSM Test None MSM Test

Duet [33] 0.285 0.301 0.295 1.993 1.812 2.231 0.320 0.380 0.260
KNRM [44] 0.201 0.256† 0.238† 3.099 2.768 3.125 0.100 0.160 0.140
monoBERT [37] 0.364 0.380 0.366 1.810 1.683 1.719 0.460 0.560 0.460
monoT5 [36] 0.417 0.448 0.445 1.577 1.503 1.512 0.480 0.540 0.540
PACRR [21] 0.376 0.406 0.393 1.649 1.383† 1.485 0.520 0.560 0.540

than the no-leakage counterpart in nDCG@10 and MFR. MSM leakage also may
cause model order swaps at higher positions in the systems’ nDCG@10 ordering:
monoBERT with MSM leakage would slightly overtake PACRR. Still, most of
the effectiveness improvements on this dataset caused by MSM leakage or test
leakage are not significant (exception: the nDCG@10 differences for monoT5 with
test leakage and KNRM with MSM leakage to the no-leakage counterparts).

Table 5 shows the five-fold cross-validated effectiveness on the TREC 2018
Common Core track for the five models when optimizing each fold for nDCG@10,
MFR, or Precision@1 in a grid search. In contrast to Robust04 and the 2017 edi-
tion of the Common Core track, training with MSM leakage improves the effec-
tiveness in all cases for all three measures. While most of the leakage-induced
effectiveness improvements are not statistically significant, the model order even
changes on the top MFR position, where PACRR with MSM leakage would
overtake monoT5 without leakage.



10 Fröbe et al.

Table 6. Mean rank of the (leaked) relevant training documents (± standard deviation)
for models trained with and without leakage from MS MARCO / ORCAS (MSM leak-
age) or from the test data (test leakage). Ranks macro-averaged over all topics for test
leakage and over all topics with leaking queries for MSM leakage.

Model Robust04 Common Core 17 Common Core 18

With Without With Without With Without

M
S
M

le
ak

. Duet 41.70 ±45.88 46.79 ±46.51 34.52 ±32.67 35.98 ±32.93 43.39 ±33.52 45.67 ±32.99

KNRM 82.36 ±31.88 84.74 ±30.15 43.24 ±31.74 43.68 ±31.50 53.12 ±32.14 53.45 ±32.14

monoBERT 23.08 ±28.71 23.58 ±28.22 46.97 ±34.95 47.11 ±35.49 41.79 ±36.16 42.48 ±36.39

monoT5 20.13 ±26.77 20.15 ±26.64 35.68 ±31.69 36.46 ±31.88 29.86 ±28.24 30.31 ±28.27

PACRR 42.41 ±44.86 42.43 ±44.67 35.79 ±33.71 36.28 ±33.83 34.76 ±36.45 35.70 ±36.87

T
es

t
le

ak
. Duet 90.04 ±26.98 90.65 ±26.41 45.78 ±30.03 46.55 ±30.34 46.31 ±29.85 46.35 ±30.13

KNRM 89.95 ±26.43 91.20 ±25.24 47.37 ±32.80 47.49 ±32.81 50.53 ±32.40 50.13 ±32.26

monoBERT 47.01 ±31.84 47.39 ±31.80 46.64 ±31.51 47.12 ±31.51 43.19 ±31.51 44.04 ±31.66

monoT5 45.28 ±32.09 45.37 ±31.96 46.35 ±31.47 47.45 ±31.83 40.16 ±31.18 40.95 ±31.24

PACRR 80.89 ±34.05 82.60 ±33.07 53.59 ±31.49 52.91 ±31.26 52.25 ±32.69 52.28 ±32.32

Discussion. The results in Tables 3–5 show that leakage from MS MARCO /
ORCAS (MSM) can have an impact on the retrieval effectiveness, even when only
a small number of instances are leaked, as in our experiments. While the changes
on Robust04 are rather negligible, the impact is larger for the Common Core
tracks with document publication dates closer to the ones from MS MARCO. In-
terestingly, MSM leakage-induced nDCG@10 improvements sometimes can lead
to swaps in model ordering despite the improvements not being significant in
most cases. This exemplifies that experimental effectiveness comparisons might
be invalid when some models had access to leaked instances during training.

Memorization of Leaked Instances. To analyze whether the models memorize
leaked instances, we compare the retrieval scores and resulting ranks of leaked
documents in the test rankings when training includes or does not include leak-
age. For leaked documents not returned in the top-100 BM25 results—the models
only re-rank these—, we determine a hypothetical rank by calculating the score
of this document for the query and inserting the document at the correspond-
ing rank in the to-be-re-ranked 100 documents (including breaking score-ties by
document ID). Each leaked document thus has a maximal rank of 101.

Table 6 shows the mean rank of relevant documents when they were included
during training (with leakage) or not (without leakage). Models perfectly memo-
rizing their positive training instances (i.e., relevant documents for test queries)
would rank these documents at substantially higher positions than models that
did not see the same instance during training. However, while the mean rank of
leaked relevant documents improves for most cases, the improvement is mostly
negligible. For instance, the mean rank of leaked relevant documents for the
very effective monoT5 and monoBERT models improves only slightly compared
to their no-leakage counterparts on all three corpora. But the difference increases



How Train–Test Leakage Affects Zero-shot Retrieval 11

Table 7. Mean retrieval score of the (leaked) relevant training documents (± standard
deviation; higher scores = “more relevant”) for models trained with / without leakage
from MS MARCO / ORCAS (MSM) or the test data (Test). Scores macro-averaged
over all topics for test leakage and over all topics with leaking queries for MSM leakage.

Model Robust04 Common Core 17 Common Core 18

With Without With Without With Without

M
S
M

le
ak

. Duet 0.89 ±1.22 0.78 ±1.18 0.52 ±1.18 0.47 ±1.17 0.16 ±0.79 0.09 ±0.75

KNRM -2.06 ±3.64 -2.58 ±3.43 -2.53 ±3.75 -3.08 ±3.52 -2.32 ±3.24 -2.78 ±3.01

monoBERT -0.75 ±0.44 -0.72 ±0.41 -0.88 ±0.49 -0.85 ±0.47 -0.92 ±0.50 -0.89 ±0.48

monoT5 -1.05 ±1.14 -1.19 ±1.20 -1.32 ±1.26 -1.48 ±1.31 -1.51 ±1.34 -1.65 ±1.38

PACRR 2.59 ±3.25 2.29 ±3.11 2.78 ±3.35 2.46 ±3.20 2.25 ±3.08 1.95 ±2.96

T
es

t
le

ak
. Duet 0.07 ±0.61 -0.11 ±0.56 0.22 ±0.68 -0.01 ±0.66 0.30 ±0.69 0.09 ±0.68

KNRM -2.71 ±3.79 -3.41 ±3.71 -2.78 ±3.65 -3.28 ±3.63 -3.08 ±4.14 -3.59 ±4.14

monoBERT -0.91 ±0.45 -1.04 ±0.53 -0.85 ±0.44 -0.90 ±0.48 -0.85 ±0.46 -0.92 ±0.49

monoT5 -1.70 ±1.24 -2.37 ±1.53 -1.47 ±1.09 -1.98 ±1.37 -1.52 ±1.24 -2.01 ±1.50

PACRR 2.31 ±4.27 1.92 ±3.09 1.83 ±4.40 1.98 ±3.13 2.66 ±3.31 2.26 ±3.23

(still rather negligibly, though) on the corpora on which leakage was more ef-
fective. In combination with the high standard deviations, one can hardly see
memorization effects for the positions of leaked relevant documents in the final
rankings. We thus also inspect the retrieval scores of the leaked documents.

Table 7 shows the mean retrieval score of the relevant documents when they
were included during training (with leakage) or not (without leakage). Models
that memorize the leaked relevant training documents should increase their score,
and we indeed observe that the retrieval score of leaked relevant documents in-
creases in most cases compared to their no-leakage counterpart (exception: mono-
BERT for MSM leakage and PACRR for test leakage from Common Core 2017).
The difference between the score differences of leakage models and non-leakage
models is larger for leakage from the test data than for MSM leakage in 13 of
the 15 cases (with a maximum difference for monoT5 from a test leakage differ-
ence of 0.67 = 2.37− 1.70 to an MSM leakage difference of 0.14 = 1.19− 1.05).
To investigate the “full picture” with respect to also negative leaked instances
(i.e., non-relevant documents), we next also study the rank offsets between the
positive and the negative leaked instances.

Table 8 shows the macro-averaged increase in the rank difference of the leaked
relevant and non-relevant documents between models trained with and without
leakage. The leakage increases the rank offset for all five analyzed models (e.g.,
6.4 ranks for Duet on Robust04 with MSM leakage). Interestingly, an in-depth
inspection showed that most of the increased differences are caused by lowered
ranks of the leaked non-relevant documents (e.g., 2 ranks lower for monoT5)
while the leaked relevant documents improve their ranks only slightly (e.g.,
0.3 ranks higher for monoT5).



12 Fröbe et al.

Table 8. Macro-averaged increase of the rank-offset between the leaked relevant and
non-relevant documents (± standard deviation) for models trained on MSM leakage
(∆ on MSM) or on test leakage (∆ on Test) over the no-leakage variants.

Model ∆ on MSM ∆ on Test

R04 C17 C18 R04 C17 C18

Duet 6.378 ±32.15 3.119 ±19.17 2.647 ±19.23 0.809 ±17.69 1.430 ±19.33 1.023 ±20.10

KNRM 0.640 ±19.22 0.979 ±15.23 0.398 ±14.55 1.335 ±11.75 0.012 ±14.92 0.140 ±15.18

monoBERT 0.692 ±17.97 0.076 ±17.19 0.369 ±20.04 3.886 ±20.39 0.980 ±17.44 3.497 ±25.98

monoT5 0.443 ±8.60 0.390 ±9.28 0.789 ±9.91 3.443 ±19.96 2.242 ±9.84 1.819 ±10.98

PACRR 0.043 ±19.30 0.764 ±10.93 0.452 ±12.38 1.952 ±17.71 0.271 ±16.96 0.753 ±14.16

Discussion. Overall, our results in Tables 6–8 indicate that memorization hap-
pens but has little impact. Larger memorization effects might be desirable in
practical scenarios where a retrieval system that memorizes good results can
simply present them when the same query is submitted again. However, for
empirical evaluations in scientific publications or at shared tasks, (unintended)
leakage memorization at a larger scale might still lead to unwanted outcomes.

5 Conclusion

Our study of train–test leakage effects for neural retrieval models was inspired
by the observation that 69% of the Robust04 topics, a dataset often used to
test neural models, have very similar queries in the MS MARCO / ORCAS
datasets, that are often used to train neural models. At first glance, this overlap
might seem alarming since train–test leakage is known to invalidate experimental
evaluations. We thus analyzed train–test leakage effects for five neural models
(Duet, KNRM, monoBERT, monoT5, and PACRR) in scenarios with different
amounts of leakage. While our experiments show leakage-induced effectiveness
improvements that may even lead to swaps in model ranking, our overall results
are reassuring: the effects on nDCG@10 are rather small and not significant in
most cases. They also become smaller the smaller (and more realistic) the amount
of leakage among all training instances is. Still, even if only a few nDCG@10
differences were significant, we noticed a memorization effect: the rank offset
between leaked relevant and non-relevant documents increased on all scenarios.

Train–test leakage should thus still be avoided in academic experiments but
the practical consequences for real search engines might be different. The ob-
served increased rank offset might be a highly desirable effect when presuming
that queries already seen during training are submitted again after a model has
been deployed to production. An interesting direction for future research is to
enlarge our experiments to investigate more of the few cases where train–test
leakage slightly reduced the effectiveness.



How Train–Test Leakage Affects Zero-shot Retrieval 13

Bibliography

[1] Allan, J., Harman, D., Kanoulas, E., Li, D., Gysel, C., Voorhees, E.: TREC
2017 Common Core track overview. In: Proc. of TREC 2017, vol. 500-324,
NIST (2017)

[2] Ateniese, G., Mancini, L., Spognardi, A., Villani, A., Vitali, D., Felici, G.:
Hacking smart machines with smarter ones: How to extract meaningful data
from machine learning classifiers. Int. J. Secur. Networks 10(3), 137–150
(2015)

[3] Benham, R., Gallagher, L., Mackenzie, J., Damessie, T., Chen, R., Scholer,
F., Moffat, A., Culpepper, J.: RMIT at the 2017 TREC CORE track. In:
Proc. of TREC 2017, NIST Special Publication, vol. 500-324, NIST (2017)

[4] Benham, R., Gallagher, L., Mackenzie, J., Liu, B., Lu, X., Scholer, F.,
Culpepper, J., Moffat, A.: RMIT at the 2018 TREC CORE track. In: Proc.
of TREC 2018, NIST Special Publication, vol. 500-331, NIST (2018)

[5] Berthelot, D., Raffel, C., Roy, A., Goodfellow, I.: Understanding and im-
proving interpolation in autoencoders via an adversarial regularizer. In:
Proc. of ICLR 2019, OpenReview.net (2019)

[6] Chen, C., Wu, B., Qiu, M., Wang, L., Zhou, J.: A comprehensive analysis
of information leakage in deep transfer learning. CoRR abs/2009.01989
(2020)

[7] Chollet, F.: Deep Learning with Python. Simon and Schuster (2021)
[8] Craswell, N., Campos, D., Mitra, B., Yilmaz, E., Billerbeck, B.: ORCAS:

20 million clicked query-document pairs for analyzing search. In: Proc. of
CIKM 2020, pp. 2983–2989, ACM (2020)

[9] Craswell, N., Mitra, B., Yilmaz, E., Campos, D.: Overview of the TREC
2021 Deep Learning Track. In: Voorhees, E.M., Ellis, A. (eds.) Notebook,
NIST (2021)

[10] Craswell, N., Mitra, B., Yilmaz, E., Campos, D., Voorhees, E.: Overview
of the TREC 2019 Deep Learning Track. In: Proc. of TREC 2019, NIST
Special Publication, NIST (2019)

[11] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of
deep bidirectional transformers for language understanding. In: Proc. of
NAACL 2019, pp. 4171–4186, Association for Computational Linguistics,
Minneapolis, Minnesota (2019)

[12] Dolan, W.B., Brockett, C.: Automatically constructing a corpus of senten-
tial paraphrases. In: Proc. of the Third International Workshop on Para-
phrasing (IWP 2005) (2005)

[13] Fan, A., Jernite, Y., Perez, E., Grangier, D., Weston, J., Auli, M.: ELI5:
Long form question answering. In: Proc. of ACL 2019, pp. 3558–3567, ACL
(2019)

[14] Fan, Y., Guo, J., Lan, Y., Xu, J., Zhai, C., Cheng, X.: Modeling diverse
relevance patterns in ad-hoc retrieval. In: Proc. of SIGIR 2018, pp. 375–
384, ACM (2018)

[15] Feldman, V.: Does learning require memorization? A short tale about a long
tail. In: Proc. of STOC 2020, pp. 954–959, ACM (2020)



14 Fröbe et al.

[16] Feldman, V., Zhang, C.: What neural networks memorize and why: Dis-
covering the long tail via influence estimation. In: Proc. of NeurIPS 2020
(2020)

[17] Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit
confidence information and basic countermeasures. In: Proc. of CCS 2015,
pp. 1322–1333, ACM (2015)

[18] Fuhr, N.: Some common mistakes in IR evaluation, and how they can be
avoided. SIGIR Forum 51(3), 32–41 (2017)

[19] He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl.
Data Eng. 21(9), 1263–1284 (2009)

[20] Hofstätter, S., Zlabinger, M., Hanbury, A.: Interpretable & time-budget-
constrained contextualization for re-ranking. In: Proc. of ECAI 2020, Fron-
tiers in Artificial Intelligence and Applications, vol. 325, pp. 513–520, IOS
Press (2020)

[21] Hui, K., Yates, A., Berberich, K., Melo, G.: PACRR: A position-aware neu-
ral IR model for relevance matching. In: Proc. of EMNLP 2017, pp. 1049–
1058, ACL (2017)

[22] Jansen, B., Booth, D., Spink, A.: Patterns of query reformulation during
web searching. J. Assoc. Inf. Sci. Technol. 60(7), 1358–1371 (2009)

[23] Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs.
IEEE Trans. Big Data 7(3), 535–547 (2021)

[24] Krishna, K., Roy, A., Iyyer, M.: Hurdles to progress in long-form question
answering. In: Proc. of NAACL 2021, pp. 4940–4957, ACL (2021)

[25] Li, C., Yates, A., MacAvaney, S., He, B., Sun, Y.: PARADE: Passage rep-
resentation aggregation for document reranking. CoRR abs/2008.09093
(2020)

[26] Lin, J., Ma, X., Lin, S., Yang, J., Pradeep, R., Nogueira, R.: Pyserini: A
Python toolkit for reproducible information retrieval research with sparse
and dense representations. In: Proc. of SIGIR 2021, pp. 2356–2362, ACM
(2021)

[27] Lin, J., Yang, P.: The impact of score ties on repeatability in document
ranking. In: Proc. of SIGIR 2019, pp. 1125–1128, ACM (2019)

[28] Lin, S., Yang, J., Lin, J.: Distilling dense representations for ranking using
tightly-coupled teachers. CoRR abs/2010.11386 (2020)

[29] Linjordet, T., Balog, K.: Sanitizing synthetic training data generation for
question answering over knowledge graphs. In: Proc. of ICTIR 2020, pp.
121–128, ACM (2020)

[30] MacAvaney, S., Yates, A., Cohan, A., Goharian, N.: CEDR: Contextualized
embeddings for document ranking. In: Proc. of SIGIR 2019, pp. 1101–1104,
ACM (2019)

[31] MacAvaney, S., Yates, A., Feldman, S., Downey, D., Cohan, A., Goharian,
N.: Simplified data wrangling with ir_datasets. In: Proc. of SIGIR 2021,
pp. 2429–2436, ACM (2021)

[32] Macdonald, C., Tonellotto, N., MacAvaney, S., Ounis, I.: PyTerrier: Declar-
ative experimentation in Python from BM25 to dense retrieval. In: Proc. of
CIKM 2021, pp. 4526–4533, ACM (2021)



How Train–Test Leakage Affects Zero-shot Retrieval 15

[33] Mitra, B., Diaz, F., Craswell, N.: Learning to match using local and dis-
tributed representations of text for web search. In: Proc. of WWW 2017,
pp. 1291–1299, ACM (2017)

[34] Mokrii, I., Boytsov, L., Braslavski, P.: A systematic evaluation of transfer
learning and pseudo-labeling with BERT-based ranking models. In: Proc.
of SIGIR 2021, pp. 2081–2085, ACM (2021)

[35] Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of
deep learning: Passive and active white-box inference attacks against cen-
tralized and federated learning. In: Proc. of SP 2019, pp. 739–753, IEEE
(2019)

[36] Nogueira, R., Jiang, Z., Pradeep, R., Lin, J.: Document ranking with a
pretrained sequence-to-sequence model. In: Findings of EMNLP 2020, vol.
EMNLP 2020, pp. 708–718, ACL (2020)

[37] Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking
with BERT. CoRR abs/1910.14424 (2019)

[38] Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using
Siamese BERT-networks. In: Proc. of EMNLP 2019, pp. 3980–3990, ACL
(2019)

[39] Sandhaus, E.: The New York Times Annotated Corpus. Linguistic Data
Consortium, Philadelphia 6(12), e26752 (2008)

[40] Sharma, L., Graesser, L., Nangia, N., Evci, U.: Natural language under-
standing with the Quora question pairs dataset. CoRR abs/1907.01041
(2019)

[41] Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference
attacks against machine learning models. In: Proc. of SP 2017, pp. 3–18,
IEEE (2017)

[42] Voorhees, E.: The TREC Robust Retrieval track. SIGIR Forum 39(1), 11–
20 (2005)

[43] Wahle, J.P., Ruas, T., Meuschke, N., Gipp, B.: Are neural language models
good plagiarists? A benchmark for neural paraphrase detection. In: Proc.
of JCDL 2021, pp. 226–229 (2021)

[44] Xiong, C., Dai, Z., Callan, J., Liu, Z., Power, R.: End-to-end neural ad-
hoc ranking with kernel pooling. In: Proc. of SIGIR 2017, pp. 55–64, ACM
(2017)

[45] Yates, A., Arora, S., Zhang, X., Yang, W., Jose, K., Lin, J.: Capreolus: A
toolkit for end-to-end neural ad hoc retrieval. In: Proc. of WSDM 2020, pp.
861–864, ACM (2020)

[46] Zhan, J., Xie, X., Mao, J., Liu, Y., Zhang, M., Ma, S.: Evaluating extrap-
olation performance of dense retrieval. CoRR abs/2204.11447 (2022)

[47] Zhang, X., Yates, A., Lin, J.: A little bit is worse than none: Ranking with
limited training data. In: Proc. of SustaiNLP 2020, pp. 107–112, Association
for Computational Linguistics (2020)

[48] Zobel, J., Rashidi, L.: Corpus bootstrapping for assessment of the properties
of effectiveness measures. In: Proc. of CIKM 2020, pp. 1933–1952, ACM
(2020)


