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Abstract

In this paper, we describe the Webis Group’s participation in the
2024 edition of TREC. We participated in the Biomedical Generative
Retrieval track, the Retrieval-Augmented Generation track, and
the Tip-of-the-Tongue track. For the biomedical track, we applied
different paradigms of retrieval-augmented generation with open-
and closed-source LLMs. For the Retrieval-Augmented Generation
track, we aimed to contrast manual response submissions with
fully-automated responses. For the Tip-of-the-Tongue track, we
employed query relaxation as in our last year’s submission (i.e.,
leaving out terms that likely reduce the retrieval effectiveness)
that we combine with a new cross-encoder that we trained on an
enriched version of the TOMT-KIS dataset.
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1 Introduction

Generative retrieval using large language models (LLMs) might
progressively change how people search the Web. From this trans-
formation, retrieval-augmented generation (RAG) emerged as a
promising way to combine the attributability of Web search with the
ability of large language models to generate concise answers [16].
Most importantly, RAG is seen as a possibility to reduce undesired
effects such as hallucinated, factually incorrect answers, or at least
trace back by looking at the referenced search results. We investi-
gate the effectiveness of RAG-based generative retrieval systems
on three distinct downstream tasks: web search, biomedical search,
and tip-of-the-tongue search. Our approaches use various LLMs
(GPT-4 [26], GPT-40 [27], and Mistral [14]) and context retrieved
with multi-stage retrieval pipelines that employ ChatNoir [4] or
Elasticsearch as first stage followed by cascading re-rankers.

For the Biomedical Generative Retrieval track, we submitted
seven runs that either apply retrieval-augmentated generation [16],
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generation-augmented retrieval, or both, using smaller, open-source
and larger, closed-source LLMs. Our retrieval uses an Elasticsearch
index of 37M biomedical abstracts from the PubMed, enriched with
open-access full texts. Instead of manually engineering prompts,
we rely on tuned few-shot prompting using DSPy [15].

For the Retrieval-Augmented Generation track, we submitted a
total of 15 runs across the three subtasks (5 runs for the retrieval
task, 4 runs for the augmented generation task, and 6 runs for the
retrieval augmented generation task). Our main motivation was to
contrast a manual run with fully automated runs, for which we did
create a manual submission for as many topics as our time budget
allowed (manually creating a RAG response often took between
1 and 2 hours per topic, we did create responses for 31 topics in
approximately 40 hours of work).

For the Tip-of-the-Tongue track, we submitted 5 runs that fo-
cused to improve our submission from last year [6]. Last year, we
participated with long-query reduction approaches aiming at the
idea to remove terms from the query that confuse the retrieval
model, i.e., improving the recall by making the query smaller. There-
fore, we improved our TOMT-KIS dataset and combined a cross-
encoder trained on our new improved dataset with our best query
reduction approach from last year.

2 Biomedical Generative Retrieval Track

In our seven submissions to the TREC Biomedical Generative Re-
trieval (BioGen) track, we explored different variants of retrieval-
augmented generation (RAG) [16] based on PubMed articles and
using two different proprietary, and open-source LLMs.!

2.1 Approach

Our RAG system employs a retrieval module using PyTerrier [21]
and Elasticsearch, that retrieves, ranks, and extracts relevant con-
text passages for a given biomedical question, and a generation
module using DSPy [15], that generates an answer to the ques-
tion based on the retrieved context. For the submitted runs, the
retrieval and generation modules were combined in different RAG
paradigms, going from retrieve-then-generate and generate-then-
retrieve paradigms to a more iterative refinement of the retrieved

1Code and data available at https://github.com/webis-de/trec24-biogen/
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Table 1: Parameter choices or ranges for the hyperparameter
optimization of our BioGen runs.

Parameter Range
Retrieval

Use topic question in query yes
Use topic title in query yes/no
Use topic narrative in query yes/no

Use summary answer in query yes/no

Use exact answer in query yes/no
Remove query stop words yes/no
Match on PubMed title must/should
Match on PubMed abstract must/should
Match on PubMed full text must/should

Match on PubMed MeSH terms must/should

Filter non-empty PubMed title yes/no

Filter non-empty PM abstract  yes/no

Filter peer-reviewed pub. types yes/no

Extract passages from abstract yes/no

Extract passages from full text yes/no

Passage max. sentences 1-3

Pointwise re-ranker monoT5 [25], TAS-B [12],
ANCE [33], TCT-ColBERT [18],
none

Pairwise re-ranker duoT5 [28], none

Generation

LLM Mistral-7B [14], GPT-40
mini [27]

Context references cutoff 3,5,10

few-shot, CoT few-shot
few-shot, CoT few-shot

Summary answer prompting
Exact answer prompting

Augmentation

Augmentation type cross-augmentation,
independent augmentation, none
Augmentation steps 1-3

Back-augmentation yes/no

passages and generated answers in multiple augmentation rounds,
building on our previous work [11, 22].

Specifically, our modularized approach allows to change the
usual retrieve-then-generate order of doing RAG [11, 16] to more
flexible execution orders like generate-then-retrieve [3] or (by iter-
atively augmenting the retrieval and generation steps), even new
RAG paradigms like retrieve-then-generate-then-retrieve, or sim-
ilar. To this end, we implement two approaches: (1) independent
augmentation, where the generation module is (optionally itera-
tively) augmented by a number of retrieval steps and vice-versa, but
also (2) “cross-augmentation”, where the output of the first retrieval
step is used to augment the second generation step and the output
of the first generation step is used to augment the second retrieval
step. Both paradigms allow for repeated application, the goal being
that the information from both retrieval and generation “converge”
towards the user’s information need.

Frobe et al.

All our retrieval runs use an index of 37 million scientific ab-
stracts from the 2024 PubMed baseline,? 21 million of which are
included in the subset selected by the TREC BioGen organizers.
We enriched 3.4 million articles with their full texts by querying
the OpenAlex API>—the same API used by popular browser ex-
tension Unpaywall*—for open-access PDF sources of each article,
and subsequently extracting the text from the downloaded PDF
using pypdf®. The final index of 792 GB is hosted on a 130-node
Elasticsearch cluster, and contains 2.8 million full texts for the TREC
BioGen-selected subset of the PubMed.

We used Optuna [1] and DSPy [15] to jointly tune model choices
(e.g., RAG paradigm, retrieval model) and hyperparameters (e.g.,
number of augmentation rounds, number of few-shot-examples)
based on 10 randomly sampled instances from the training data
of the BioASQ lab at CLEF 2024 [31] (BioASQ 12b). While the
questions from the BioASQ 12b instances could be used as is for
the TREC BioGen task, the ground-truth answers from BioASQ do
not give references in the text. Yet, at least 10 ground-truth context
passages were given per question. Hence, to be able to tune our
RAG systems to cite references, for each BioASQ answer, we first
constructed a list of references by using the PubMed IDs of all given,
de-duplicated context passages. This references list was then added
to each sentence from the BioASQ’s ground-truth answer, as split
by spaCy’s sentence parser [23].°

To cover both proprietary and open-source LLMs, we performed
the hyperparameter tuning separately with the larger GPT-40 mini
model [27] and the smaller Mistral-Instruct-v0.3 model [14].7 For
both LLMs, we first ran 100 trials and ranked the trials by the geo-
metric mean of two retrieval-focused measures, Recall@1000 and
nDCG [13] (evaluated using ir_measures [19]), and two generation-
focused measures, ROUGE-1 F1 and ROUGE-L F1 [17]. Then, for
each LLM, the top-10 trials are again evaluated for the Recall@1000,
nDCG, ROUGE-1 F1, ROUGE-L F1, and two additional LLM-based
measures, faithfulness and answer relevance (from the RAGAS
toolkit [5]). For submission, we selected up to five of the best, non-
equivalent® trials per LLM, again ranked by the geometric mean of
all six evaluated measures.

For the selected hyperparameter choices, we finally run the
system again on all topics from the current TREC BioGen track
and store the answers in the specified JSON format. In the JSON
output of the selected systems, we then semi-automatically fixed
minor format issues in the generated answers by: (1) Removing
dangling references, (2) merging wrongly split sentences (e.g., in
implantation and pregnancy. [19464684].), and (3) removing
repeated dots or spaces.

2.2 Submitted Runs

We submitted seven runs, four using the Mistral-Instruct-v0.3 LLM
and three using the GPT-40 mini model:

Zhttps://pubmed.gov/download/

Shttps://docs.openalex.org/

*https://unpaywall.org/

Shttps://pypi.org/project/pypdf/

®Model: en_core_web_sm

7GPT-40 mini accessed via the OpenAl APL; Mistral-Instruct-v0.3 accessed via the free
Blablador API: https://helmholtz-blablador.fz-juelich.de/

8E.g., when certain modules were not used due to the hyperparameter choice.
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webis-1. This run retrieves up to ten PubMed articles from our
index of 21 M valid abstracts. As the query, we use the concatenated
question, title, and narrative from the topic, as well as (when aug-
menting a previous answer) the simple yes-no, factual, or list answer
(if the question type is known). No stop words are removed from
the query. The query is matched against just the article’s abstract
text using Elasticsearch’s BM25. We exclude non-peer-reviewed or
non-human-health-related publications by a manually curated dis-
allow list.” After retrieval, passages are extracted from the retrieved
article’s abstract text by splitting it into sentences and returning
all sentence n-grams up to three sentences. The top-50 passages
from Elasticsearch are subsequently re-ranked with a (pointwise)
TCT-ColBERT model!? [18].

For generation, the run generates a summary answer for each
question with DSPy using a Mistral model!! [14]. The question and
the top-10 passages are given to the model as context (numbered ac-
cording to their rank after retrieval and re-ranking), and the model is
prompted to return a summary answer with (numbered) references
given in the text. Using DSPy, we optimize the prompt by labeled
few-shot prompting with three examples from the BioASQ 12b
training set. After generation, the internal (rank-based) reference
numbering is converted back to PubMed IDs according to the format
required by TREC BioASQ.

In this run, retrieval and generation are independently aug-
mented with the other, generation and retrieval, respectively. For
generation-augmented retrieval, we augment three times while
not feeding back retrieval results to the generation module. For
retrieval-augmented generation, we also augment three times, but
feed back generation results to the retrieval module.

webis-2. Our second run uses the same retrieval as in webis-1
except for not using the topic title as the query and applying an ad-
ditional (pairwise) re-ranking step using a duoT5 model'? [28]. Sim-
ilarly, the generation step is the same as in webis-1 except for only
giving the model the top-3 passages and using chain-of-thought
prompting [32]. Again, the generation prompts are optimized with
DSPy. The run uses the same augmentation setup as webis-1.

webis-3. This run similarly retrieves up to ten articles from Elas-
ticsearch, and uses the concatenated question and narrative from
the topic, as well as previous exact answer (yes/no, factual, or list)
as the query. No stop words are removed from the query. In this
run, the query is matched against the article’s abstract text and the
article title (both title and abstract must match). Additionally, the
MeSH terms'3 extracted from the query (using scispaCy’s medical
entity recognition [24]) are matched to the MeSH terms of the in-
dexed PubMed abstracts (“should” match). Like in the previous runs,
non-peer-reviewed or non-human-health-related publications are
excluded. For passage extraction, we again use sentence n-grams of

“Disallowed publication types: Letter, Comment, Editorial, News, Biography, Congress,
Video-Audio Media, Interview, Overall, Retraction of Publication, Retracted Publi-
cation, Newspaper Article, Bibliography, Legal Case, Directory, Personal Narrative,
Address, Randomized Controlled Trial (Veterinary), Autobiography, Dataset, Clinical
Trial (Veterinary), Festschrift, Webcast, Observational Study (Veterinary), Dictionary,
Periodical Index, Interactive Tutorial.
Ohttps://hf.co/castorini/tet_colbert-v2-hnp-msmarco

" Model version: Mistral-7B-Instruct-ve. 3; via Blablador APL
2https://hf.co/castorini/duot5-base-msmarco

Bhttps://nlm.nih.gov/mesh/
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up to three sentences plus the article’s title as another passage. The
top-10 passages are re-ranked using monoT5!4 [25]. The generation
and RAG approaches are the same as for run webis-1.

webis-5. Run webis-5 uses a similar retrieval as webis-3 except
for only matching the query to the abstract and title (title should
match, abstract must match; no matching of MeSH terms). Before
passage splitting, also articles with an empty (or without) title are
excluded. The generation approach and RAG paradigm are the same
as for runs webis-1 and webis-3.

webis-gpt-1. This generation-only run generates answers with
GPT-40 [27] and does not use any retrieval (“vanilla” generation).
Just the topic’s question is prompted to the LLM. We optimize the
prompt by labeled few-shot prompting with three examples from
the BioASQ 12b train set, using DSPy. As no retrieval is used, also
no RAG paradigm applies.

webis-gpt-4. In contrast to webis-gpt-1, here we again retrieve
up to ten articles from Elasticsearch, using the concatenated ques-
tion, narrative, and previous exact answer as the query. This time,
stop words are removed from the query (using spaCy’s stop word
list [23]). The query is matched only against the article’s abstract
text and articles with an empty abstract are excluded. No filtering
is applied based on publication types. For passage extraction, we
again use sentence n-grams of up to three sentences. The top-50
passages are re-ranked with a monoT5 model'® [25].

We give the top-3 re-ranked passages to the model as additional
context for answering the question, again using GPT-4o for gen-
eration. The unoptimized, templated prompt from DSPy is used
without few-shot examples. The retrieval and generation of this
run are jointly cross-augmented in two rounds, meaning that twice
the generated answer is used as additional query input and the
retrieved passages are used as additional context for generation.

webis-gpt-6. The retrieval of this run is similar to webis-gpt-
4, but uses only the topic’s question and previous answer as the
query, does not remove stop words, and further excludes non-
peer-reviewed or non-human-health-related publications. More-
over, only the top-10 passages are re-ranked by monoT5, and the
top-3 of monoT5 is again re-ranked with a duoT5 model [28].1° Gen-
eration for this run is the same as webis-gpt-5 except that DSPy is
used to tune a labeled few-shot-prompting with one example. This
run uses independent augmentation, doing generation-augmented
retrieval in two rounds (feeding back retrieved results to the gener-
ation model) and retrieval-augmented generation in a single round.

2.3 Results

Submissions to the BioGen track were evaluated based on the an-
swer accuracy, quality, and completeness, and based on citation
quality and document relevance. Table 2 shows the number and
fraction of acceptable answers, answer precision, redundancy, harm-
fulness, and completeness in terms of recall on three scenarios:
(1) strict recall, counting only required and supported sentences,
(2) lenient recall, that counts all required sentences, and (3) relaxed

Yhttps://hf.co/castorini/monot5-base-msmarco
Dhttps://hf.co/castorini/monot5-base-msmarco
LShttps://hf.co/castorini/duot5-base-msmarco
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Table 2: Answer generation and retrieval effectiveness results of our runs submitted to the BioGen track, compared to the
track’s best, mean, and worst results per measure. Measured are the number of acceptable answers (# OK), answer accuracy
(Acc.), precision (Prec.), redundancy (Red.), harmfulness (Harm.), and completeness / recall (strict: only required and supported
sentences; lenient: all required sents.; relaxed: required and borderline sents.; using either Sentence Transformer (ST) or SimCSE
(SCSE) embeddings). For citations, we report coverage (Cov.), and support/contradict rates (SR/CR); for referenced documents
recall (Rec.) and precision (Prec.). Better than average results are highlighted in bold.

System Answer Acc. Answer Quality Answer Completeness/Recall Citation Quality Doc. Rel.
#OK Acc. Prec. Red. Harm. Strict Lenient Relaxed Cov. SR CR  Rec. Prec.
ST SCSE ST SCSE ST SCSE
webis-1 53 0.82 0.66 0.12 0.00 0.07 0.08 0.10 0.10 0.11 0.11 0.53 042 004 0.03 0.51
webis-2 43 0.66 0.53 0.12 0.00 0.05 0.05 0.08 0.08 0.08 0.08 034 042 005 0.01 0.52
webis-3 39 0.60 0.53  0.07 0.00 0.06 0.06 0.08 0.08 008 0.08 043 045 005 001 047
webis-5 43 0.66 0.56  0.09 0.00 0.03  0.03 0.08 0.08 0.09 0.09 0.29 035 0.01 0.01 0.41

0.00 0.07  0.07
0.00 0.07  0.07

webis-gpt-4 54 083 064 017
webis-gpt-6 60 092  0.63  0.26

0.14 0.14 015 0.14 042 0.69 0.02 0.02 0.78
0.16 016 0.17  0.17 032 038 004 003 055
0.20 020 020 0.21 0.00 0.00 0.00 0.00 0.00

webis-gpt-1 65 1.00 082 0.15 0.00 0.00  0.00
Best 65 1.00 0.91 0.04 0.00 043 043
Mean 60 0.93 0.77  0.11 0.00 0.20  0.21
Worst 39 0.60 0.53  0.26 0.02 0.00  0.00

046 047 046 047 092 080 000 024 090
0.27 027 028 0.28 0.64 0.57 002 0.08 0.66
0.08 0.08 0.08 0.08 0.00 0.00 006 0.00 0.00

recall, where borderline sentences are considered in addition to
required sentences. The three answer recall scenarios are each evalu-
ated using either Sentence Transformer!” [29, 30] or SimCSE'® [10]
embeddings. Citations are evaluated based on their coverage and
support or contradict rates, respectively. For retrieval, recall and
precision of documents referenced in the answer were considered.

Across many evaluated metrics, our Mistral-based runs yield
below-average results. Mistral particularly struggles with answer
completeness and precision. From the GPT-based runs, the “vanilla”
run, webis-gpt-1, that did not use any retrieval, outperformed all
runs in terms of answer accuracy (perfect accuracy on the 65 eval-
uated topics) and precision. Overall, our GPT-based runs generated
more accurate, precise, and complete answers than our Mistral-
based runs. Yet, GPT generates more redundant answers while
not substantially improving answer completeness compared to our
Mistral runs. Our Mistral runs yield overall less redundant but also
less precise answers. All of our runs struggle with recall, both on the
answer level (i.e., low answer completeness) and on the referenced
document level (i.e., few relevant documents referenced). Looking
at our runs, no clear pattern regarding the RAG paradigm used nor
the re-ranking of the retrieval-step can be identified.

We note, however, that the document relevance evaluation is
biased by the RAG pipeline’s generation step, as participants were
only allowed to include in their run documents that were also ref-
erenced in the generated answer. In future editions of the task,
an insightful addition would be an independent evaluation of the
retrieval step, decoupled from which documents were actually refer-
enced from generated answer. We believe that a document which is
not cited can still influence the answer generation (e.g., the answer
might reference a survey article but still also be based on individual
studies that were summarized in the survey).

https://hf.co/sentence-transformers/all-mpnet-base-v2
18https://hf.co/princeton-nlp/sup-simcse-roberta-large

AT -
vl

Search results 1-10 for “Do goldfish grow?” Total results: 3,557 (retrieved in 832 ms)
aquaristcourses.org/how-fast-do-goldfish-grow/

How Fast Do Goldfish Grow

MSMARCO V21 }

How Fast Do Goldfish Grow How Fast Do Goldfish Grow? How Fast Do Goldfish Grow? How Big Do Goldfish Get?
How Fast Do Goldfish Grow? Tips For Keeping Your Goldfish Healthy Conclusion Toby Sanders How Fast Do Goldfish
Grow How Fast Do Goldfish Grow?

www.goldfishcareinformation.com
How Fast Do Goldfish Grow - Goldfish Care Information Diseases & Treatments

MSMARCO V21 }

How Fast Do Goldfish Grow - Goldfish Care Information Diseases & Treatments How Fast Do Goldfish Grow How Fast
Do Goldfish Grow How Fast Do Goldfish Grow - Goldfish Care Information Diseases & Treatments Categories
Aquarium Care Garden Ponds Goldfish Geldfish Care How Fast Do Goldfish Grow Post author

'01/how-fast-do-goldfish-grow.htmi

Figure 1: Overview of the ChatNoir search engine result pages
that we used for TREC RAG.

3 Retrieval-Augmented Generation Track

We use ChatNoir [4] into which we indexed MS MARCO v2.1
(see Figure 1). Documents in ChatNoir indexed differently than
in Anserini [34] following the draft pull request to ir_datasets [20]
that indexes each segment via its default_text attribute that is iden-
tical to the implementation of MS MARCO v2. We re-rank with
monoT5 [28] dockerized from TIRA / TIREx [7, 9].

3.1 Submissions to the Retrieval Task

webis-01. We use multiple systems to create a re-ranking pool
for MonoT5 and MonoElectra that are subsequently fused and re-
ranked with RankZephyr. The re-ranking pool was created by fus-
ing the results of traditional retrieval systems with a learned dense
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model and automatically created boolean query variants retrieved
against traditional retrieval systems and additionally enriched by
corpus graph retrieval. For the traditional retrieval, we submitted
the original queries against Anserini (BM25, INL2, QLD) and Chat-
Noir (BM25F with a boost for Wikipedia). For the dense retrieval,
we used weaviate. We created boolean query variants by using GPT-
40-mini and Llama3.1 by first extracting potential aspects of the
query and subsequently generating boolean queries with the LLMs
to capture those aspects, the boolean queries were retrieved against
ChatNoir. We did re-rank the pools with monoT5-3b and Mono-
Electra, and used the top-results for-adaptive re-ranking against
ChatNoir (i.e., the corpus graph concept). The top-100 monoT5 and
monoElectra documents were re-ranked with RankZephyr yielding
two runs that we fused with reciprocal rank fusion. On this run,
we again re-ranked the top-100 results with RankZephyr, using
cascading re-ranking (i.e., re-rank the results of RankZephyr mul-
tiple times, we stopped after three iterations). For retrieval, we
used the segment, headings, and titles as text. For re-ranking (i.e.,
with MonoT5, MonoElectra, and RankZephyr), we used only the
segment text, i.e., not the title and headings.

webis-02. This run aims to increase the recall base, therefore, the
run only consists of documents that are not retrieved within the
top-1000 of BM25, QLD, INL2 as implemented in Anserini, BM25F
as implemented in ChatNoir, and the top-1000 of our weaviate
implementation (dense retrieval). The documents were retrieved
via adaptive re-ranking (i.e., the corpus graph) of the top results
of RankZephyr and our boolean query formulation (as used in
the run webis-01). To not waste judgment budget, we only include
documents that make it into the top-75 of our webis-01 run (that
incorporated cascading re-ranking). For some topics that did not
retrieve new documents we pad with the baseline.

webis-03. This is our run webis-01 but diversified so that each
segment is removed for which a neighbouring segment was al-
ready retrieved. This aims to ensure that an LLM (for the retrieval
augmented generation) sees more diverse retrieval content.

webis-04. This is our run webis-01 but diversified so that per page
only the top-segment retrieved. This aims to ensure that an LLM
(for the retrieval augmented generation) sees more diverse retrieval
content.

webis-05. We use multiple systems to create a re-ranking pool
for MonoElectra. The re-ranking pool was created by fusing the
results of traditional retrieval systems with a learned dense model
and automatically created boolean query variants retrieved against
traditional retrieval systems and additionally enriched by corpus
graph retrieval. For the traditional retrieval, we submitted the orig-
inal queries against Anserini (BM25, INL2, QLD) and ChatNoir
(BM25F with a boost for Wikipedia). For the dense retrieval, we
used weaviate. We created boolean query variants by using GPT-
40-mini and Llama3.1 by first extracting potential aspects of the
query and subsequently generating boolean queries with the LLMs
to capture those aspects, the boolean queries were retrieved against
ChatNoir. We did re-rank the pools with MonoElectra.
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3.2 Submissions to the Augmented Generation
Task

webis-taskrag-gpt4omini-k10. We decompose the RAG pipeline
into 3 individual generation tasks: (1) ‘Extract’ yields the most
salient information form a doc given a query-doc pair; (2) ‘Combine’
merges the extracted information of two docs; and (3) ‘Condense’
reformulates the merged evidence into a final response. The pipeline
first applies extract to each document, then combines all documents
with pairwise merges in a tree-like fashion. Prompts for each task
are shown in Table 3. Documents are merged in relevance ordering,
i.e., first taking each subsequent pair (rank 1 and rank 2, rank 3
and rank 4, ...), and then recursively applying that to the newly
combined texts. On the overall resulting text, i.e., the root node, we
apply the condense task to infer the final response. Attribution is
achieved via prompting the model to include explicit references, i.e.,
[0], at each step. References are then parsed using regex to conform
with the final submission format. Prompts were formulated using an
iterative manual reformulation approach, with feedback regarding
the quality of each prompted task at each step. For this run, we
use the top-10 ranked documents, and iteratively prompt OpenAI’s
GPT-40-mini model.

webis-taskrag-gpt4domini-k20. This run uses the same approach
as the previous one, but instead using the top-20 documents.

webis-reuserag-promptedreuse-clustered. This run uses the base-
line retrieval run as retrieval input. For generation, we split all
sentences into 3 groups based on the prompt sentences by calculat-
ing semantic similarity with SBERT. We then concatenate the top
ranked sentences together to form the response. Baseline introduc-
tion, middle, and conclusions sentences were used as “prompts’ to
cluster sentences into 3 groups.

webis-reuserag-baseline-promptedreuse-clustered. Segments from
the baseline run were clustered automatically using SBERT embed-
dings. The top ranked sentences from each cluster were concate-
nated to form the response.

3.3 Submissions to the Retrieval Augmented
Generation Task

webis-manual. We did create manual responses for 31 topics
(ca. 40 hours of manual work; creating a manual response for a
topic often takes between 1 and 2 hours per topic). The responses
that are padded from the baseline are from baseline_rag24.test_gpt-
40_top20 without any modification.

webis-taskrag-zephyr-gptdomini-k10. This run follows the same
approach to generation as describe for the run webis-taskrag-
-gpt4omini-k1@ submitted to the augmented generation task. Yet,
instead, it uses the top-10 documents of the webis-01 retrieval run.

webis-taskrag-zephyr-gpt4omini-k20. This run uses the same ap-
proach as the previous one, but instead using the top-20 documents.

webis-taskrag-zephyr-gpt4omini-k10-shuffled. This run uses the
webis-01 retrieval run as retrieval input, and additionally shuffles
the set of retrieved documents. For generation, we decompose the
RAG pipeline into 3 individual generation tasks. ’Extract’ yields
the most salient information form a doc given a query-doc pair;
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Table 3: Task prompts as used in our TaskRAG approach.

Task Prompt

You will be provided with two texts: a query and
a context. Your task is to generate a text that
reflects the parts of the context that best answers
the query, possibly rephrasing or shortening it. The
context may contain IDs noted in brackets that indicate
sources, for example [1]; keep these IDs intact and
correctly reference sources. The answer must include
the context’s given ID. Do not insert facts, knowledge,
or information not contained in the context. Reply only
with the answer. Only generate full sentences. If no
information relevant to query is found, reply with
’<empty>’

Extract

You will be provided with two texts: a first context
and a second context. Your task is to generate a text
that combines both contexts into a single coherent

text, shortening or summarizing key points if necessary.
The order of contexts can be changed if necessary.

The contexts may contain IDs noted in brackets that
indicate sources, for example [1] or [1,2]; keep
these IDs intact and correctly reference sources. Each

Combine

sentence should be attributed with relevant sources.
The answer must include a context’s given IDs if used.

Do not insert facts, knowledge, or information not

contained inthe context. Reply only with the answer.

Only generate full sentences.

You will be provided with two texts: a query, and
a context. Your task is to generate a single coherent
conclusive answer to the query based on the information
given in the context. Include as much information from
the context as possible. The context may contain IDs
noted in brackets that indicate sources, for example
[1] or [1,2]; keep these IDs intact and correctly
reference sources. Each sentence should be attributed
with relevant sources. Do not insert facts, knowledge,
or information not contained in the context. Reply only
with the answer. Only generate full sentences.

Condense

’Combine’ merges the extracted information of two docs; ’Condense’
reformulates the merged evidence into a final response. The pipeline
first applies extract to each document, then combines all documents
with pairwise merges in a tree-like fashion, and finally condense the
final response. Attribution is achieved via prompting the model to
include explicit references, i.e., [0], at each step. References are then
parsed using regex to conform with the final submission format.
Prompts were formulated using an iterative manual reformulation
approach, with feedback regarding the quality of each prompted
task at each step.

webis-taskrag-zephyr-llama31-k10. This run uses the webis-01
retrieval run as retrieval input. For generation, we decompose the
RAG pipeline into 3 individual generation tasks. ’Extract’ yields
the most salient information form a doc given a query-doc pair;
’Combine’ merges the extracted information of two docs; ’Condense’
reformulates the merged evidence into a final response. The pipeline
first applies extract to each document, then combines all documents

Frobe et al.

Table 4: Effectiveness of our 5 runs in the retrieval task of
TREC RAG.

Approach Recall@1000 nDCG@10 RR

webis-01 0.8102 0.6590 0.9006
webis-02 0.1067 0.4277 0.8755
webis-03 0.4825 0.6423 0.9041
webis-04 0.3200 0.6340 0.9049
webis-05 0.8063 0.6370 0.9048

Table 5: Effectiveness of our 5 runs in the augmented genera-
tion task of TREC RAG.

Approach nDCG@10
webis-ag-run0-taskrag 0.5345
webis-ag-runl-taskrag 0.6006
webis-ag-run3-reuserag 0.6330
webis-ag-run2-reuserag 0.6330

Table 6: Effectiveness of our 5 runs in the retrieval augmented
generation task of TREC RAG.

Approach nDCG@10
webis-rag-run3-taskrag 0.4936
webis-rag-runl-taskrag 0.6253
webis-manual 0.5857
webis-rag-run0-taskrag 0.5637
webis-rag-run4-reuserag 0.6590
webis-rag-run5-reuserag 0.6590

with pairwise merges in a tree-like fashion, and finally condense the
final response. Attribution is achieved via prompting the model to
include explicit references, i.e., [0], at each step. References are then
parsed using regex to conform with the final submission format.
Prompts were formulated using an iterative manual reformulation
approach, with feedback regarding the quality of each prompted
task at each step.

webis-reuserag-promptedreuse-k10. This run uses the webis-01
retrieval run as retrieval input. For generation, split all sentences
into 3 groups based on the prompt sentences by calculating se-
mantic similarity with SBERT. We then concatenate the top ranked
sentences together to form the response. Baseline introduction, mid-
dle, and conclusions sentences were used as “prompts’ to cluster
sentences into 3 groups.

webis-reuserag-promptedreuse-clustered. The segments from the
webis-01run were clustered automatically using SBERT embeddings.
The top ranked sentences from each cluster were concatenated to
form the response.
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3.4 Results

Table 4 shows the results for the retrieval task of TREC RAG. Table 5
shows the results for the augmented generation task. Table 6 shows
the results for the retrieval augmented generation task.

4 Tip-of-the-Tongue Track

We submit 5 runs to the Tip-of-the-Tongue track. All our submis-
sions use ChatNoir, a BM25-F search engine that retrieves on the
text and the title as first stage system (we re-use parameters tuned
on the ClueWeb09 as this is the default of ChatNoir. We use query
relaxation implemented with GPT-40-mini in multiple variants to
generate relaxed queries by instructing the large language model to
leave out terms that likely reduce the retrieval effectiveness. Our ap-
proaches were informed by our submission to the 2023 edition [2],
i.e., we only applied query relaxation approaches that worked well
in the previous year. All our submitted runs did not use the offi-
cial baseline runs. For two runs, we derived a triplet dataset from
the existing TOMT-KIS dataset [8].1° The triplet dataset is avail-
able on Hugging Face,?’ and suitable for training of cross-encoder
models (for every TOMT-KIS query one positive and one negative
document). This TOMT-KIS dataset has overlapping queries to the
test set removed and uses used BM25 retrieval against the title of
wikipedia articles to include positive matches that have no explicit
link to Wikipedia. In cases when we used monoT5 as re-ranker, we
used the versions dockerized from TIRA / TIREx [7, 9].

4.1 Submitted Approaches

Our 5 runs are:

webis-base. This run uses ChatNoir as first-stage retrieval system.
We use the union of six queries submitted against ChatNoir (retriev-
ing always the top-1000 per query), the original query and five long
query reduction approaches (i.e., GPT-40-mini prompted in differ-
ent ways to reduce the long original query). All retrieved results are
subsequently re-ranked by monoT5-base (castorini/monot5-base-
msmarco-10k) using the original query.

webis-tot-01. This run uses ChatNoir as first-stage retrieval sys-
tem. We use the union of six queries submitted against ChatNoir
(retrieving always the top-1000 per query), the original query and
five long query reduction approaches. All retrieved results are re-
ranked by monoT5-base (castorini/monot5-base-msmarco-10k) base
using the original query and two reduced queries. For each of those
monoT5-base scored-queries, we re-score the top-100 with monoT5-
3b against the original query that yield our top-results. We fill up
with the monoT5-base scored queries.

webis-tot-02. This run uses the first stage as webis-base to score
candidates for six queries submitted against ChatNoir (original
query and five long query reduction approaches). We re-score all
top-100 candidates with monoT5-3b against the original query and
two reduced queries, yielding 3 scores per top-document that we
subsequently fuse with min-max-normalized reciprocal rank fusion
implemented in ranx. We fill up with the monoT5-base scored
queries.

https://hf.co/datasets/webis/tip- of-my-tongue-known-item-search
2https://hf.co/datasets/webis/tip-of-my-tongue-known-item-search- triplets
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Table 7: Effectiveness of our 5 runs in the Tip-of-the-Tongue
track.

Approach Recall@1000 Recall@100 nDCG@10
webis-base 0.6633 0.2750 0.0487
webis-tot-01 0.8200 0.4567 0.0652
webis-tot-02 0.8200 0.7550 0.3193
webis-tot-03 0.8200 0.5083 0.0534
webis-tot-04 0.8200 0.7450 0.4588

webis-tot-03. We use the initial stages as in webis-tot-01 and re-
score the top-100 candidates with a DeBerta model trained on the
TOMT-KIS dataset.

webis-tot-04. We use the initial stages as in webis-tot-01 and re-
score all top-100 candidates with monoT5-3b that used the query
relaxation strategy that was the most effective in our 2023 submis-
sion.

4.2 Results

Table 7 shows the effectiveness in terms of Recall at 1000 and at 100
and nDCG@10 on the Tip-of-the-Tongue track.
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