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ABSTRACT
Encyclopedic knowledge graphs, such as Wikidata, host an ex-
tensive repository of millions of knowledge statements. However,
domain-specific knowledge from fields such as history, physics,
or medicine is significantly underrepresented in those graphs. Al-
though few domain-specific knowledge graphs exist (e.g., Pubmed
for medicine), developing specialized retrieval applications for
many domains still requires constructing knowledge graphs from
scratch. To facilitate knowledge graph construction, we introduce
WAKA: a Web application that allows domain experts to create
knowledge graphs through the medium with which they are most
familiar: natural language.
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1 MOTIVATION AND BACKGROUND
Knowledge graphs are a way to encode and store real world knowl-
edge by specifying semantic relationships (edges) between entities
(nodes). These datastructures have been used effectively for vari-
ous information retrieval applications like question answering [5],
recommendation systems [17], or search engines [10]. Knowledge
graphs are also popular for domain-specific applications in areas
such as cybersecurity, education, finance, medicine, or news [20],
which typically require domain-specific ontologies or knowledge.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHIIR ’24, March 10–14, 2024, Sheffield, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0434-5/24/03.
https://doi.org/10.1145/3627508.3638340

Figure 1: Visualization of a knowledge graph in the WAKA
frontend in which the entity university is highlighted.

Therefore, besides encyclopedic (e.g., Wikidata1) and common-
sense (e.g., OpenCyc2) knowledge graphs, there are also domain-
specific graphs, for example for medicine (e.g., Pubmed 3) or linguis-
tics (e.g., WordNet4). However, domain-specific knowledge graphs
exist only for few domains. The remaining domains require a con-
siderable amount of effort to create knowledge graphs in order to
use them in domain-specific information systems.

The manual creation of knowledge graphs and associated on-
tologies from scratch is a complex process and usually requires
much expertise and effort [1]. To tackle this, automatic methods
for constructing knowledge graphs from unstructured text have
been realized using open information extraction [12], a mixture
of information extraction pipelines [8] or recently large language
models [4]. Since there was no sufficient ground truth during the
development of mentioned methods, the quantitative evaluations of
these methods have been limited to components of the construction
algorithm (e.g. relation extraction, entity linking), but have never
been extended to the entire construction algorithm. Qualitative
evaluations by Martinez-Rodriguez et al. [12] and Kertkeidkachorn
and Ichise [8] have shown a precision of the resulting triples of 50%,
which underlines the need for human intervention in the construc-
tion process. Unfortunately, the above approaches do not provide
the source code for the above knowledge graph construction ap-
proaches and therefore cannot be included in our experiments.

With this paper, we introduce WAKA: a convenient Web applica-
tion to construct and author knowledge graphs from unstructered
1https://www.wikidata.org/
2https://sourceforge.net/projects/opencyc/
3https://pubmed.ncbi.nlm.nih.gov/
4https://wordnet.princeton.edu/
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text.5 WAKA takes advantage of the high-quality ontology and
the large number of entities in Wikidata by linking entities and
relations to corresponding entries in the knowledge base but also
allows adding new entities and relations. The application offers
an intuitive interface that allows to supervise, correct, extend, and
visualize the automatically proposed knowledge graph. Finally, the
authored knowledge graph can be stored in a standard data model
for Semantic Web—the Resource Description Framework6 (RDF).

2 AUTHORING INTERFACE
The interface of WAKA consists of two main components: a text
editor and an interactive graph visualization (see Figure 1). A user
may write or import a text into the editor from which knowledge
is to be derived. Based on the text in the editor, pressing a button
triggers the automatic construction of a knowledge graph (see
Section 3), which can then be corrected and extended by the user.

The proposed graph is shown to the user in the visualization
and the corresponding entities are annotated in the text editor. For
each of the entities that participate in a relation, all the mentions
in the text are annotated. Since relations are not always explicitly
mentioned but can be inferred from the text, we do not annotate
relations in the editor. The editor and the visualization represent
linked data views. Hovering over a node in the graph highlights
the node and all corresponding annotations and vice versa. Since
the resulting graphs can get quite large and the visualization may
get cluttered, WAKA supports navigation and graph manipulation
techniques such as zooming, camera movement or node dragging.

A user can use several interactions to validate and correct the
proposed knowledge graph via WAKA’s interface. Hovering over
an entity annotation or over a graph node reveals a label, a descrip-
tion, and a link to the corresponding Wikidata entity in a tooltip.
Hovering over edges in the knowledge graph, displays the label,
description, and Wikidata link of the associated Wikidata property.

To correct a wrong link to a Wikidata entity or property, a user
can click either on one of the corresponding annotations or on the
node in the visualization. An overlay menu will be opened which
shows the label and description of the currently linked entity or
property. Additionally, a list of other proposed entities or properties
is provided that originate from giving the mention span to the entity
retrieval pipeline described in Section 3.1. Clicking on any of the
proposals will establish the connection of the entity mention or
relation to theWikidata entry and the annotations and visualization
will be updated accordingly. If the correct entity or property is not
part of the proposals, a search box allows to freely enter a query
to retrieve the correct Wikidata entry from the entity retrieval or
relation retrieval pipelines, respectively. For the deletion of entities
or relations a button is provided in the overlay menu.

Entities can be added to the graph by highlighting a text span
in the editor. When a text span is highlighted a button appears
that opens the overlay menu to let the user select an entity from
Wikidata (or leave it unlinked if the entity does not exist yet). Anal-
ogously, relationships can be added by selecting two entities and
pressing a button or connecting two nodes in the visualization.
5Demo video: https://youtu.be/CwkW3Xwb5zg
Code: https://github.com/webis-de/waka

6https://www.w3.org/RDF/

The user can download the resulting knowledge graph by click-
ing on a download button in the interface. It is planned to make the
download format configurable. However, WAKA currently supports
to download the authored knowledge graph in N-Triples format
(i.e., a plain text serialisation for RDF triples).

The knowledge graph visualization has been realized with vis-
network.7 All other interface components are implemented in na-
tive Javascript without any required dependencies.

3 KNOWLEDGE GRAPH CONSTRUCTION
Our approach to automatically construct knowledge graphs from
unstructered text consists of three main components: an entity
discovery pipeline, a relation extraction pipeline, and final knowl-
edge fusion and evaluation steps. Figure 2 gives an overview of the
steps in the automatic knowledge graph construction algorithm.
For efficiency reasons, the entity discovery and relation extraction
pipelines are executed in parallel.

3.1 Entity Discovery
The entity discovery pipeline aims to detect all named entities in
the text, link them to entities in Wikidata and rank them according
to their relevance. We calculate the relevance of an entity based on
the findings of Kasturia et al. [7], who have found that the relevance
of an entity depends equally on how well it fits a mention and a
context. The set of discovered named entities forms the pool from
which subjects and objects are drawn in the knowledge fusion step,
rendering a high recall preferable to high precision.

Named Entity Recognition. The first step in the entity discovery
pipeline is to recognize named entities in the given text along with
their mention spans and entity types. In addition, we extract con-
cepts as noun phrases that were not recognized as named entities.
We use established named entity recognition methods that offer a
good tradeoff between effectiveness and efficiency.

According to a comparative study of open named entity recog-
nition frameworks [15], the Stanford NLP Toolkit [11] achieved
the highest recall on the CoNLL 2003 dataset [14]. The second-
highest recall was achieved by SpaCy from which we use the
en_core_web_sm pipeline. Both models take features at sentence-
level into account, and thus we employ the FLERT model [16]
through the Flair framework [2] which considers document-level
features for the named entity recognition. From all three frame-
works, we employ model versions that were trained on OntoNotes
5 [18], and thus classifies found entities into an 18-class ontology.

Based on the determined type of recognized entity, an entitymust
be either linked to an entry in the knowledge base or represents
a literal. We distinguish between numeric literals, consisting of
PERCENT, MONEY, QUANTITY, CARDINAL, and ORDINAL and temporal
types, such as DATE and TIME from the OntoNotes ontology. Entities
of the remaining entity types are linked to an entity in Wikidata.

Entity Retrieval. To leave the entity disambiguation to the user,
wemodel entity linking as a retrieval task.We build an Elasticsearch
index of entities from Wikidata (i.e., subjects and objects of RDF
statements). To keep Wikidata meta-information and irrelevant
entities out of the index, we define the following filtering rules:
7https://visjs.github.io/vis-network/docs/network/

https://youtu.be/CwkW3Xwb5zg
https://github.com/webis-de/waka
https://www.w3.org/RDF/
https://visjs.github.io/vis-network/docs/network/


Assisted Knowledge Graph Authoring: Human-Supervised Knowledge Graph Construction from Natural Language CHIIR ’24, March 10–14, 2024, Sheffield, United Kingdom

Knowledge
Fusion

Natural Language
Inference

<wd:E1,wd:P1,wd:E3>
<wd:E5,wd:P2,wd:E3>
<wd:E5,wd:P3,wd:E1>

...

<wd:E1,wd:P1,wd:E3> → 0.91
<wd:E5,wd:P2,wd:E1> → 0.64

...

t1 → E1
t2 → E2
t3 → E3

...

Relation
Extraction

t1 → {wd:E1 → 0.9, wd:E2  → 0.4,...}
t2 → {wd:E3 → 0.6, wd:E4  → 0.2,...}
t3 → {wd:E5 → 0.7, wd:E6  → 0.2,...}

...

<t1,P1,t2>
<t2,P2,t3>
<t4,P3,t5>

...

<t1,wd:P1,t2>
<t2,wd:P2,t3>
<t4,wd:P3,t5>

...

t1 → {wd:E1 → 0.8, wd:E2  → 0.7,...}
t2 → {wd:E3 → 0.9, wd:E4  → 0.5,...}
t3 → {wd:E5 → 0.7, wd:E6  → 0.2,...}

...

Text

Relation
Linking

Named Entity
Recognition

Entity
Retrieval

Entity
Reranking

Wikidata Knowledge
Graph

Entity Discovery Pipeline

Relation Extraction Pipeline

Text

Wikidata Text

Figure 2: Architecture of the automatic knowledge graph construction approach.

(1) An entity has a valid URI.
(2) An entity has at least one property (i.e., outoing edge).
(3) An entity is not a Wikimedia category.
(4) An entity is not a Wikimedia disambiguation page.

Following this rule set, we have collected about 109 million entities
fromWikidatawhich is well within range ofWikidatas self-reported
number of content pages of 107 million.8 For each entity, we store
its URI, its label (i.e., the entity name displayed on its Wikidata
page), its description, and a concatenation of the label, description,
and any available alternate names in English as a search key. To
approximate the ‘commonness’ of an entity for the retrieval ranking,
we store the number of incoming edges for each entity.

Each text span that represents an entity according to the named
entity recognition models is queried against our entity index and
ranked by BM25. However, we take into account that direct matches
of the entity label are more relevant than a match of the description
or alternate names. We compute the relevance score of an entity 𝑒
according to an entitymention 𝑡 as themaximumof BM25 according
to the label scaled by a parameter 𝛼 with 𝛼 > 1 and the (unscaled)
BM25 according to the search key of an entity.

𝑟𝑒𝑙𝑡 (𝑒) =𝑚𝑎𝑥 (𝛼 · 𝐵𝑀25 (𝑡, 𝑙𝑎𝑏𝑒𝑙 (𝑒)) , 𝐵𝑀25 (𝑡, 𝑘𝑒𝑦 (𝑒))) (1)

Pilot experiments have shown, that 𝛼 = 3 yielded best results. In
addition to an entities’ relevance, we take its commonness into
account. We scale the relevance of an entity by its commonness
𝑐𝑜𝑚𝑚(𝑒). To tune down the weight of the commonness, which can
reach into the millions, we take the common logarithm and add
one to account for cases where the commonness is zero.

𝑠𝑐𝑜𝑟𝑒𝑡 (𝑒) = 𝑟𝑒𝑙𝑡 (𝑒) · 𝑙𝑜𝑔(𝑐𝑜𝑚𝑚(𝑒) + 1) (2)

We retrieve at most 20 entities per mention and define a minimum
score threshold of at least 20 for considered entities.
8https://www.wikidata.org/wiki/Special:Statistics

Entity Reranking. The retrieval score of an entity approximates
how well an entity fits to a span of a text. However, the context in
which an entity is mentioned does not influence the retrieval. To
remedy this, we perform a reranking that evaluates how well an
entity fits semantically with the sentence it is mentioned in.

To calculate the semantic similarity between an entity and a
sentence from the text, we construct a short descriptive sentence
for the entity using the following template “{label} is a {descrip-
tion}”. For example, if we follow the template for the named entity
Germany, we obtain the descriptive sentence “Germany is a country
in Central Europe”. We embed the descriptive sentence and the sen-
tence from the text with DistilRoBERTa used through the Sentence
Transformer framework [13]. This model has been chosen since it
provides semantically representative embeddings in a reasonable
inference time. The semantic similarity is calculated by the cosine
similarity between the embedding vectors and is then multiplied
by the normalized retrieval score.

3.2 Relation Extraction and Linking
Relation extraction is the task of detecting semantic relations be-
tween entities that can be inferred from a text. In contrast to open
information extraction, these relations are usually grounded in an
existing ontology. The result of the relation extraction are triples
representing edges in a knowledge graph.

To solve relation extraction, we use mREBEL [6], a state-of-the-
art relation extraction model, which is a multilingual extension to
the original REBEL model [3]. Although we focus on extracting
knowledge graphs from English texts, we found that mREBEL per-
forms better and supports more relation types than the original
model. The creators of mREBEL defined relation extraction as a
seq2seq task and solved it by fine-tuning BART.

A major advantage of mREBEL is that it has been trained using
aligned pairs of Wikipedia abstracts and relations from Wikidata.

https://www.wikidata.org/wiki/Special:Statistics
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Consequently, it is trivial to link the extracted relations to the
corresponding relation in Wikidata.

We link the extracted relations to the corresponding Wikidata
relations by using the same retrieval pipeline than for the retrieval
of entities (cf., Section 3.1) on a separate relation index. However,
no reranking is necessary, and we disambiguate retrieved Wikidata
relations by choosing the best according to its retrieval score.

3.3 Knowledge Fusion
The knowledge fusion components of the algorithm aims to com-
bine knowledge triples from the relation extraction pipeline with
the linked entities from the entity discovery pipeline to build Wiki-
data grounded RDF triples. It does so by picking subject and object
entities for each extracted relation from the pool of linked entities.

Given a ranked list of entities for each recognized mention span
and a set of triples describing which entity mention spans are in
relation (e.g., <Weimar, wd:country, Germany>), we replace
the mention spans with their associated entity. We build a set of
RDF triple candidates by applying the cartesian product out of all
mentioned subject and object entities for each extracted relation.

3.4 Natural Language Inference
The natural language inference step ranks the RDF triple candidates
by whether (1) the triple exist in Wikidata and (2) the triple can
be inferred from the text. To also take the entity retrieval score
into account, we first assign the mean retrieval score of subject and
object entities as score for a triple candidate. If a triple candidate
does exist in Wikidata, it is most likely true, and thus we boost
the triples score by multiplying it with a constant factor. Prior
experiments revealed that the most effective factor is three.

To assess whether a triple can be inferred from the text is a
more challenging task. We base this computation on Facebook’s
BART-large-MNLI model9—a zero-shot natural language inference
(NLI) model based on BART-large [9] that was tuned on the multi-
genre NLI dataset MultiNLI [19]. The model predicts probabilities
of whether a text is about a set of freely selectable class labels. In
our case, we generate the class label of a triple by concatinating
the labels of the subject, predicate, and object. To disambiguate the
subject and object, we add the description in brackets. We scale the
score of each triple candidate by their corresponding probability.
For each extracted relation, we select the highest ranked triple
candidate as the final set of triples.

4 EVALUATION
To test the performance of the automatic knowledge graph con-
struction algorithm, a ground truth of aligned texts and Wikidata
grounded triples is required. There has been a lack of sufficiently
large knowledge graph construction benchmark datasets. However,
a new dataset for evaluating relation extraction, which also contains
links to their entities and relations in Wikidata, have been released
recently: the REDFM dataset [6]. The test set of this corpus contains
446 aligned pairs of Wikipedia abstracts and sets of Wikidata-linked
knowledge triples. With this dataset we compute precision, recall
and F1 of all components of the construction algorithm.
9https://huggingface.co/facebook/bart-large-mnli

Table 1: Precision, Recall, and F1 of the knowledge graph con-
struction components on the test set of the REDFM dataset.

Task Precision Recall F1

Named Entity Recognition 0.067 0.912 0.121
Entity Retrieval 0.004 0.765 0.007
Entity Reranking 0.011 0.739 0.020

Relation Extraction 0.303 0.778 0.407
Relation Linking 0.303 0.778 0.407

Knowledge Fusion 0.147 0.309 0.180
Natural Lanugage Inference 0.182 0.325 0.206

For named entity recognition, we consider a ‘hit’ if the cor-
rect mention span is recognized. For entity retrieval and entity
reranking, we compare the mention span and the Wikidata link.
To evaluate relation extraction and relation linking, we compare
the presence of the corresponding relation or Wikidata property,
respectively. A triple is considered a hit if there is a corresponding
triple with an identical subject, predicate, and object in the ground
truth. To evaluate the knowledge fusion, we select the best triple
by score for each set of triple candidates.

Table 1 shows the macro-averaged precision, recall, and F1 val-
ues of each step in the knowledge graph construction pipeline.
The entity discovery pipeline yields solid recall values which is
important for the knowledge fusion. We can also see an increase in
precision after reranking, without affecting recall too much.

The relation extraction and linking pipelines also scored high
recall values. However, high precision would have been desirable as
this pipeline controls how many triples are returned and therefore
sets an upper limit on the precision that can be achieved in the
final fusion and inference steps. Consequently, the precision values
for knowledge fusion and natural language inference are quite
disappointing. However, the natural language inference step is able
to increase both, precision and recall values of the algorithm.

In an error analysis, we found that some ‘errors’ are actually
related to the test set and not to the algorithm. With an average 2.7
triples per text with an average length of 464 characters, many of
the inferrable triples are not part of the ground truthwhichmight be
one of the reasons for the low precision. The low performance of the
knowledge graph construction algorithm underlines the difficulty
of the problem and emphasizes the need for human-supervision.

5 CONCLUSION
In this paper, we introducedWAKA: aWeb-based application to con-
struct and author knowledge graphs from unstructered text through
the convenience of an intuitive interface. As part of WAKA, we
proposed a novel approach for automatically constructing linked
knowledge graphs from unstructered text. However, a quantita-
tive evaluation of the automatic approach revealed low F1 which
indicates the complexitity of the task. The complexity of the task
emphasizes the need for a method to supervise the construction
and to support the correction of the resulting knowledge graphs.

https://huggingface.co/facebook/bart-large-mnli
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