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Abstract

We investigate the complexity of finding prime implicants and minimum equiv-
alent DNFs for Boolean formulas, and of testing equivalence and isomorphism of
monotone formulas. For DNF related problems, the complexity of the monotone case
differs strongly from the arbitrary case. We show that it is DP-complete to check
whether a monomial is a prime implicant for an arbitrary formula, but the equiva-
lent problem for monotone formulas is in L. We show PP-completeness of checking
if the minimum size of a DNF for a monotone formula is at most k, and for k
in unary, we show that the complexity of the problem drops to coNP. In [Uma01]
a similar problem for arbitrary formulas was shown to be Σp

2-complete. We show
that calculating the minimum equivalent DNF for a monotone formula is possible
in output-polynomial time if and only if P = NP. Finally, we disprove a conjecture
from [Rei03] by showing that checking whether two formulas are isomorphic has the
same complexity for arbitrary formulas as for monotone formulas.
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1 Introduction

Monotone formulas are Boolean formulas that contain only conjunction and disjunc-
tion, but not negation, as connectives (cf. Section 2 for formal definitions). To solve the
satisfiability problem for monotone formulas is trivial: the only unsatisfiable monotone
formulas are the constant 0 and equivalent formulas, as every other monotone formula
can be satisfied by setting all variables to true. Hence, to check whether a given (ar-
bitrarily nested) monotone formula (potentially including the constant 0) is satisfiable
it suffices to check only one assignment. the computational complexity of the satis-
fiability problem for monotone formulas is thus much simpler than the NP-complete
satisfiability problem for arbitrary Boolean formulas. Counting the number of satis-
fying assignments, however, has the same complexity for monotone and for arbitrary
formulas [Val79]. Hence, it is interesting to compare the complexity of problems for
arbitrary formulas and for monotone formulas.

In the first part of this paper (Sections 3–7), we investigate the complexity of problems
related to calculating smallest equivalent disjunctive normal forms (DNFs), which
consist of prime implicants of the formula. For arbitrary Boolean formulas, a smallest
equivalent DNF must be constructed from the set of prime implicants, and the problem
of deciding if a given DNF is a smallest equivalent DNF of a given formula is not known
to be computable in polynomial space.

Note that for monotone formulas, there is no choice as the smallest DNF consists of
all prime implicants. In Sections 3–5 we consider problems of checking, finding, and
counting prime implicants (cf. the first four questions in Figure 1 for more precise prob-
lem statements and respective results). We show that checking whether a monomial is
a prime implicant for a formula is DP-complete for arbitrary formulas, whereas it is in
L for monotone formulas. DP [PY84] contains both NP and coNP and is contained in
Σp

2 in the Polynomial Time Hierarchy. The question of whether a prime implicant of
a certain size exists for a given formula was shown to be Σp

2-complete in [Uma01]; we
show that the same question is only NP-complete for monotone formulas. Counting
satisfying assignments is shown to have the same complexity for monotone formulas
as for arbitrary formulas. Counting prime implicants for monotone formulas we show
to be PP-complete, whereas for arbitrary formulas, an upper bound for this problem
is PPNP, but the exact complexity — in terms of completeness — is open.

Next, in Section 6, we consider the complexity of calculating the size of a smallest DNF
(cf. the fifth question in Figure 1), which, it turns out, depends on the representation
of the problem. Umans [Uma01] showed that given a formula ϕ in DNF and an integer
k, it is Σp

2-complete to decide whether ϕ has a DNF of size at most k. Notice that
the length of the input DNF is greater than the size of the DNF that is searched for
(excepting trivial cases). It would seem that this is necessary to allow the problem to
be decided within an alternating nondeterministic polynomial time bound, because
the smallest DNF of a (monotone) formula may have size exponential in the length
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question about a formula ϕ complexity for

arbitrary ϕ monotone ϕ

Is C a prime implicant of ϕ ? DP-complete in L

(Theorem 5) (Theorem 6)

Does ϕ have a prime implicant of size ≤ k ? Σp
2-complete NP-complete
[Uma01] (Theorem 7)

Does ϕ have ≥ k prime implicants ? in PPNP PP-complete
(Theorem 8)

Does ϕ have an odd number of prime implicants ? in ⊕PNP ⊕P-complete
(Theorem 13)

Does ϕ have a DNF of size ≤ k ?

k in unary Σp
2-complete coNP-complete

(Theorem 17) (Theorem 18)

k in binary in EXPTIME PP-complete
(Theorem 16)

Is S a set of prime implicants of ϕ and S 6≡ ϕ ? DP-complete NP-complete
(Theorem 22) (Theorem 19)

Fig. 1. Summary of complexity results of Sections 3–7

of the formula. The exact complexity of this problem for arbitrary formulas is open,
though it is Σp

2-hard (which follows from [Uma01]) and in EXPTIME. For monotone
formulas, however, we exactly characterize the complexity of this problem by showing
it to be PP-complete. If one encodes the upper bound of the DNF length in unary
instead — i.e. given formula ϕ and string 1k, decide whether ϕ has a DNF of size ≤ k
— we prove the problem to be Σp

2-complete for arbitrary formulas, and coNP-complete
for monotone formulas.

In Section 7 we investigate the problem of checking whether a set S of prime implcants
of a formula ϕ contains all prime implicants of ϕ (cf. the last question in Figure 1)
and show it to be DP-complete for arbitrary formulas whereas it is NP-complete
for monotone formulas. Furthermore, we consider the complexity of calculating the
smallest DNF for a monotone formula, and it becomes clear that the smallest DNF
is not polynomial time computable as the output might be too large. Therefore, we
consider the notion of output-polynomial time: a function is in output-polynomial
time if it can be computed in time polynomial in the length of the input plus the
length of the function value [JPY88]. We show that the smallest DNF for a monotone
formula is output-polynomial time computable if and only if P = NP. Note that even
calculating the size of the smallest DNF is shown to be PP-complete in Section 6.
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In the second part of the paper (Section 8) we turn to considering equivalence and
isomorphism problems. The problem of deciding whether monotone formulas ϕ and ψ
are equivalent is known to be coNP-complete [Rei03]. For arbitrary formulas the same
completeness holds. If ϕ is in DNF and ψ is in CNF (conjunctive normal form), the
equivalence problem remains coNP-complete for arbitrary formulas, but for monotone
formulas an upper bound between P and coNP-complete was proven in [FK96, GK99].
In the case that one of the input formulas consists only of terms of bounded length,
it is known that the problem is in P [EG95, MP97], even in RNC [BEGK00]. We give
an L-algorithm improving these results. Finally, we refute a conjecture from [Rei03],
by showing that checking whether two given formulas are isomorphic has exactly the
same complexity for arbitrary formulas as for monotone formulas.

2 Definitions

We consider Boolean formulas with connectives ∧ (conjunction), ∨ (disjunction), and
¬ (negation). We assume that the negations appear directly in front of variables.
(Other connectives are used as abbreviations, whereas we use the ↔ only once be-
cause of the doubling of the formula length.) Actually this is no limitation because
every formula may be transformed in polynomial time to fulfill these assumptions.
A monotone Boolean formula is a Boolean formula without negations. A term is a
conjunction or a disjunction of literals, i. e., of variables and negated variables; a con-
junction is called a monomial, and a disjunction is called a clause. The empty clause
is unsatisfiable, and the empty monomial, denoted λ, is valid. A monotone term is a
term without negations. Terms are also considered as sets of literals. Term T1 covers
term T2 if T1 ⊆ T2.

An assignment A for a Boolean formula ϕ is a mapping of the variables of ϕ to
the truth values true and false. An assignment A is said to satisfy formula ϕ if
ϕ evaluates to true under A. For monotone formulas we regard A also as a set Am
where variable x is in Am if and only if x gets value true under A. Notice that in this
way every monotone monomial can also be interpreted as an assignment.

An implicant of a formula ϕ is a monomial C such that C → ϕ is valid. A monomial
C is a prime implicant of ϕ if and only if (1) C is an implicant of ϕ and (2) for every
proper subset S ⊂ C it holds that S is not an implicant of ϕ. Notice that case (1) is
easy to decide for monotone formulas, but is coNP-complete for arbitrary formulas.
In order to check condition (2) it suffices to check for C = {`1, `2, . . . , `k} whether for
each `i ∈ C it holds that C − {`i} is not an implicant of ϕ. Every proper subset S of
C is a subset of C − {`i} for some i. For S ⊆ C − {`i} it holds that (C − {`i})→ S
is valid. If S is an implicant of ϕ, then S → ϕ is valid. Both valid formulas together
yield that (C−{`i})→ ϕ is valid, inducing that C−{`i} is an implicant of ϕ. Hence,
if no C − {`i} is an implicant of ϕ, then no proper subset of C is an implicant of ϕ.
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In our proofs, we will define reductions that transform formulas into monotone for-
mulas, such that satisfying assignments of the basic formula induce prime implicants
of the monotone formula.

Definition 1 Let ϕ be a Boolean formula with variables x1, . . . , xn and connectives
∧, ∨, and ¬, in which all negation signs appear directly in front of variables. Then
r(ϕ) denotes the formula obtained by replacing all appearances of ¬xi in ϕ by the
new variable yi (for i = 1, 2, . . . , n). Let c(ϕ) denote the conjunction

∧n
i=1(xi ∨ yi)

and d(ϕ) denote the disjunction
∨n
i=1(xi ∧ yi). The formulas ϕc and ϕcd are defined as

ϕc = r(ϕ) ∧ c(ϕ) and ϕcd = ϕc ∨ d(ϕ) = (r(ϕ) ∧ c(ϕ)) ∨ d(ϕ).

Since ϕc and ϕcd do not contain any negation signs, they are monotone formu-
las. Let A be an assignment for ϕ. Then A′

m denotes the assignment A′
m = {xi |

A maps xi to true} ∪ {yi | A maps xi to false}. Such an assignment, which con-
tains exactly one from xi and yi, is called conform. Notice that there is a one-to-one
relation between assignments to ϕ and conform assignments to ϕc and ϕcd.

Proposition 2 Let A be an assignment for ϕ. The following are equivalent.

(1) A satisfies ϕ.
(2) A′

m is a prime implicant of ϕc.
(3) A′

m is a prime implicant of ϕcd.

PROOF. If A satisfies ϕ, then A′
m satisfies r(ϕ). Since A′

m is conform, it satisfies
c(ϕ) too. Let z be any variable in A′

m. Then for some a, z ∈ {xa, ya}. Since A′
m is

conform, A′
m − {z} does not satisfy xa ∧ ya, and hence A′

m − {z} does not satisfy ϕc.
Hence, A′

m is a prime implicant of ϕc.

Since prime implicant A′
m satisfies ϕc, it also satisfies ϕcd. By the same argument as

above it follows that removing any variable z from A′
m leaves an assignment A′

m−{z}
that satisfies neither xa ∨ ya nor xa ∧ ya for some a, and hence it does not satisfy ϕcd.

Finally, take any conform prime implicant A′
m for ϕcd. Since it is conform, it does not

satisfy d(ϕ). Hence, it satisfies r(ϕ). By construction of A′
m and r(ϕ) it follows that

A satisfies ϕ. 2

Proposition 3 Let ϕ be a formula with variables x1, x2, . . . , xn. ϕ has m satisfying
assignments if and only if ϕcd has n+m prime implicants.

PROOF. Every non-conform prime implicant of ϕcd has the form {xi, yi}, and there
are n of these non-conform prime implicants. It follows from Proposition 2 that m is
the number of conform prime implicants of ϕcd. Hence, n+m is the number of prime
implicants of ϕcd. 2
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Proposition 4 Let ϕ be a formula with variables x1, x2, . . . , xn. ϕ has m satisfying
assignments if and only if ϕcd has 22n − 3n +m satisfying assignments.

PROOF. Consider any conform assignment for ϕcd. It sets exactly one of xi and yi to
true. Every “larger” assignment — i.e., an assignment that sets additional variables
to true — is a non-conform assignment satisfying ϕcd, because for some i, both xi
and yi are set to true by such an assignment. Using this observation, the assignments
that satisfy ϕcd can be split into two disjoint sets: the set Ac of assignments that are
conform to satisfying assignments of ϕ, and the set S of non-conform assignments that
satisfy at least one pair xi ∧ yi. The set Ac has the same size as the set of satisfying
assignments of ϕ. The set of assignments that, for each i, contain at most one variable
of xi and yi, has size 3n. Since ϕcd has 2n variables, there are 22n−3n+ |Ac| satisfying
assignments for ϕcd. 2

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses.
Similarly a formula is in disjunctive normal form (DNF) if it is a disjunction of
monomials. It is said to be in k-CNF (k-DNF), if all clauses (monomials) consist of
at most k literals. A monotone formula ϕ in normal form is irredundant if and only
if no term of ϕ covers another term of ϕ. For a monotone formula, the disjunction
of all its prime implicants yields an equivalent monotone DNF. On the other hand,
every prime implicant must appear in every equivalent DNF for a monotone formula.
Hence, the smallest DNF for a monotone formula is unique and equals the disjunction
of all its prime implicants [Qui53]. This is not the case for non-monotone formulas,
where the smallest DNF is a subset of the set of all prime implicants, and it is NP-hard
to select the prime implicants which give the smallest equivalent DNF [Mas79]. See
also [Czo99] for an overview on the complexity of calculating equivalent DNFs.

We use complexity classes L (logarithmic space), P, NP, coNP, DP (difference poly-
nomial time, which appears to be the class for “exact cost” optimization), Σp

2 (NP
with NP oracle), PP (probabilistic polynomial time), ⊕P (parity P), and PSPACE
(polynomial space). The inclusion structure is

L ⊆ P ⊆
NP

coNP
⊆ DP ⊆

Σp
2

PP
⊆ PSPACE

and P ⊆ ⊕P ⊆ PSPACE. All considered classes except L are closed downwards under
≤pm-reduction, and both PP and ⊕P are closed under complement. Closely related to
PP is the function class #P. See [Pap94] for definitions of these classes. As natural
complete problems for NP, coNP, DP, PP, and ⊕P we consider Sat (is the Boolean
formula ϕ satisfiable?), Unsat (is ϕ unsatisfiable?), Sat-Unsat (given (ϕ, ψ), is
ϕ ∈ Sat and ψ ∈ Unsat?), MajSat (do at least half of the assignments satisfy ϕ?),
and ⊕Sat (is the number of satisfying assignments for ϕ odd?), respectively.
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3 Checking prime implicants

Prime implicants are the basics of minimum equivalent DNFs. In this section we
concentrate on checking whether a monomial is a prime implicant of a formula and
consider the following problems.

IsPrimi : instance: Boolean formula ϕ and monomial M

question: is M a prime implicant of ϕ ?

IsPrimimon : instance: monotone formula ϕ and monotone monomial M

question: is M a prime implicant of ϕ ?

For arbitrary formulas, this problem is shown to be DP-complete (Theorem 5), whereas
for monotone formulas it is much easier, namely in L (Theorem 6).

Theorem 5 IsPrimi is DP-complete. 3

PROOF. We show that Sat-Unsat ≤pm IsPrimi. The reduction function is the
mapping (ϕ, ψ) 7→ (¬ϕ ∨ (¬ψ ∧ z), z), where z is a new variable that neither appears
in ϕ nor in ψ. It is clear that this mapping is polynomial time computable.

If (ϕ, ψ) ∈ Sat-Unsat, then ¬ψ is valid, and therefore ¬ψ∧z has z as prime implicant.
Hence z is an implicant of ¬ϕ ∨ (¬ψ ∧ z). Because ϕ ∈ Sat, its negation ¬ϕ is not
valid. Therefore, the empty monomial λ is not an implicant of ¬ϕ. Hence, z is a prime
implicant of ¬ϕ ∨ (¬ψ ∧ z). Next we consider the case that (ϕ, ψ) 6∈ Sat-Unsat.
If ϕ 6∈ Sat, then ¬ϕ ∨ (¬ψ ∧ z) is valid and λ is the only prime implicant of this
formula. If ϕ ∈ Sat and ψ 6∈ Unsat, then ¬ψ is not valid and therefore z is not an
implicant of ¬ψ ∧ z. Because ¬ϕ is not valid, it follows that z is not an implicant of
¬ϕ ∨ (¬ψ ∧ z). This proves the DP-hardness of IsPrimi.

A set A is in DP [PY84] if and only if A is the intersection of a set in NP and a set in
coNP. The set

L1 = {(ϕ,M) | for all literals ` ∈M : M − {`} is not an implicant of ϕ}

is clearly in NP, and the set

L2 = {(ϕ,M) | M is an implicant of ϕ}

is clearly in coNP. It is straightforward that IsPrimi is L1 ∩ L2. 2

3 This result was independently shown in [UVS06].
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For monotone formulas, the same problem is much easier: a monotone monomial is
an implicant of a monotone formula if and only if the assignment that corresponds to
the monomial satisfies the formula. It can be checked in logarithmic space whether an
assignment satisfies a monotone formula.

Theorem 6 IsPrimimon is in L.

PROOF. On input ϕ and M , there are two things to do: check whether M is an
implicant of ϕ — i.e., check whether assignment M satisfies ϕ — and check for all
xi ∈ M that M − {xi} is not an implicant of ϕ — i.e., check whether assignment
M − {xi} does not satisfy ϕ. Evaluating a formula under a given assignment can be
performed in logarithmic space [Lyn77]. It follows directly that IsPrimimon is in L. 2

4 Existence of prime implicants

A valid formula has the empty monomial λ as its only prime implicant. An unsatisfiable
formula has no prime implicant at all. In general, a formula ϕ has a prime implicant if
and only if ϕ is satisfiable. Therefore, the question of whether a formula has a prime
implicant is NP-complete, and it is in L for monotone formulas.

The problem of checking whether a formula ϕ has a prime implicant of size at most k
was shown to be Σp

2-complete [Uma01]. We show, that the same problem for monotone
formulas is NP-complete only.

PrimiSizemon : instance: monotone Boolean formula ϕ and integer k

question: does ϕ have a prime implicant consisting of at most
k variables?

Theorem 7 PrimiSizemon is NP-complete.

PROOF. PrimiSizemon is in NP: given a monotone formula ϕ with n variables and
an integer k, guess a term of at most min{k, n} variables and check whether the guess
is an implicant of ϕ. Both the guess and the check can be performed in polynomial
time.

PrimiSizemon is NP-hard: we show that Sat ≤pm PrimiSizemon. The reduction func-
tion maps every Sat instance ϕ with variables x1, . . . , xn to (ϕc, n). This reduction is
polynomial time computable.

If ϕ ∈ Sat, then there exists a satisfying assignment A for ϕ. By Proposition 2 it
follows that A′

m is a prime implicant of ϕc. Because A′
m is conform, it contains exactly
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one variable from each of the n pairs xi, yi. Hence, (ϕc, n) ∈ PrimiSizemon.

If (ϕc, n) ∈ PrimiSizemon, then there exists an implicant M of ϕc with exactly n
variables. Because M then is an implicant of every (xi ∨ yi), exactly one of xi and
yi is contained in M . Hence, M is conform to a satisfying assignment A for ϕ, and
therefore ϕ ∈ Sat. 2

5 Counting prime implicants

We consider the complexity of counting the number (resp., the parity) of satisfy-
ing assignments and of prime implicants of monotone formulas. Counting satisfying
assignments turns out to have the same complexity for monotone formulas as for ar-
bitrary formulas (Theorems 8 and 10). Counting prime implicants seems easier for
monotone formulas than for arbitrary ones (Theorem 11).

⊕Satmon: instance: monotone Boolean formula ϕ

question: does ϕ have an odd number of satisfying assign-
ments?

ThreshSatmon: instance: monotone Boolean formula ϕ and integer k

question: does ϕ have at least k satisfying assignments?

Theorem 8 ThreshSatmon is PP-complete.

PROOF. ThreshSatmon is in PP. Let (ϕ, k) be an instance of ThreshSatmon,
where ϕ has n variables. The nondeterministic computation that guesses an assign-
ment A and accepts it if and only if A satisfies ϕ is polynomial time bounded and
has 2n computation paths. If k > 2n, reject, else, if k ≤ 2n−1, add 2n − 2k accepting
paths; otherwise, when k > 2n−1, add 2k − 2n rejecting paths. This nondeterministic
computation has at least half of all computation paths accepting if and only if ϕ has
at least k satisfying assignments.

To prove PP-hardness, we give a polynomial time reduction from MajSat. It maps
ϕ to (ϕcd, 22n − 3n + 2n−1), where ϕ has variables x1, x2, . . . , xn. By Proposition 4, it
follows for all instances ϕ of MajSat, that ϕ ∈MajSat⇔ (ϕcd, 22n − 3n + 2n−1) ∈
ThreshSatmon. 2

Notice that in [Val79] it is shown that given a monotone formula in 2CNF (all clauses
consist of at most two variables) the function that calculates the number of satisfy-
ing assignments is #P-complete. From this result, it follows that deciding whether
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a monotone formula in 2CNF with n variables has at least 2n−1 satisfying assign-
ments is PP-complete under polynomial time Turing reductions. Our approach yields
PP-completeness under the stronger polynomial time many-one reduction.

With the same proof idea we characterize the complexity of calculating the num-
ber of satisfying assignments for monotone formulas. Valiant [Val79] proved #P-
completeness of computing the number of satisfying assignments for monotone formu-
las in 2CNF under polynomial time truth table reduction.

Corollary 9 The function, which on input ϕ, a monotone formula, outputs the num-
ber of satisfying assignments of ϕ, is #P-complete under polynomial time many-one
reduction.

Theorem 10 ⊕Satmon is ⊕P-complete.

PROOF. It is straightforward to see that ⊕Satmon is in ⊕P. To prove ⊕P-hardness,
we use the construction from the proof of Theorem 8. For an instance ϕ of ⊕Sat
with variables x1, x2, . . . , xn having m satisfying assignments, ϕcd has 22n − 3n + m
satisfying assignments by Proposition 4. This number is odd if and only if m is even,
hence, the function that maps ϕ to ϕcd polynomial time reduces ⊕Sat to ⊕Satmon.
Since ⊕P is closed under complement, the ⊕P-hardness of ⊕Satmon follows. 2

As mentioned before, the problem of finding short prime implicants for Boolean for-
mulas is Σp

2-complete [Uma01], mostly because checking whether a guessed term is
an implicant requires a coNP oracle. This gives rise to the conjecture that counting
the number of prime implicants is PPNP-hard for Boolean formulas. We consider the
problem for monotone formulas and prove that its complexity is lower.

⊕Primimon: instance: monotone Boolean formula ϕ

question: does ϕ have an odd number of prime
implicants?

ThreshPrimimon: instance: monotone Boolean formula ϕ and integer k

question: does ϕ have at least k prime implicants?

Theorem 11 ThreshPrimimon is PP-complete.

PROOF. It is straightforward to see that ThreshPrimimon is in PP. To show PP-
hardness of ThreshPrimimon, we give a reduction from MajSat. For an instance ϕ of
MajSat with variables x1, . . . , xn, let ϕcd be the monotone formula as in Definition 1.
The polynomial time reduction function maps ϕ to (ϕcd, 2n−1 + n).
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Consider ϕ ∈ MajSat, where ϕ has n variables. It follows that there are at least
2n−1 satisfying assignments to ϕ. Every satisfying assignment of ϕ induces a conform
prime implicant of ϕc and hence of ϕcd. Every i ∈ {1, 2, . . . , n} induces the non-
conform prime implicant xi ∧ yi. Hence, ϕcd has at least 2n−1 + n prime implicants,
i. e., (ϕcd, 2n−1 + n) ∈ ThreshPrimimon.

If ϕ 6∈ MajSat, then there are fewer than 2n−1 conform prime implicants of ϕcd.
However, there may be implicants of ϕcd that are not conform to an assignment of ϕ.
Consider such an implicant C; then C contains both xi and yi for some i. Then C
is covered by the prime implicant xi ∧ yi of ϕcd. Hence, ϕcd has fewer than 2n−1 + n
prime implicants, i. e., (ϕcd, 2n−1 + n) 6∈ ThreshPrimimon. 2

The arguments of the above proof can also be used to show the following.

Corollary 12 ([Val79]) The function, which on input ϕ, a monotone formula, yields
the number of prime implicants of ϕ, is #P-complete.

Theorem 13 ⊕Primimon is ⊕P-complete.

PROOF. Containment of ⊕Primimon in ⊕P is straightforward. To prove ⊕P-hard-
ness, we give a reduction from ⊕Sat. The reduction function maps an instance ϕ of
Sat with n variables to a monotone formula f(ϕ) where

f(ϕ) =

ϕcd, if n is even

ϕcd ∨ z, if n is odd (for a new variable z)

Consider ϕ with n variables and m satisfying assignments. If n is even, then f(ϕ) has
n+m prime implicants (Proposition 3), and m is odd if and only if n+m is odd. If
n is odd, then f(ϕ) has n+m+ 1 prime implicants (Proposition 3), and m is odd if
and only if n+m+ 1 is odd. That is, ϕ ∈ ⊕Sat⇔ f(ϕ) ∈ ⊕Primimon. 2

6 Size of disjunctive normal forms

An arbitrary Boolean formula may have several different DNFs. Since minimum equiv-
alent DNFs of a formula are disjunctions of prime implicants, a natural question arises.
How hard is it to calculate the size of a minimum equivalent DNF?

The respective problem for arbitrary DNF formulas was shown to be Σp
2-complete

in [Uma01].
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MinDnfSizednf : instance: Boolean formula ϕ in DNF and integer k

question: does ϕ have a DNF with at most k occurrences of
variables?

Theorem 14 ([Uma01]) MinDnfSizednf is Σp
2-complete.

For monotone formulas, the minimum equivalent DNF is unique, and can be obtained
from any monotone DNF by removing monomials. This makes it possible to decide
the problem under consideration in L.

MinDnfSizemondnf : instance: monotone Boolean formula ϕ in DNF and inte-
ger k

question: does ϕ have a DNF with at most k occurrences
of variables?

Lemma 15 MinDnfSizemondnf is in L.

PROOF. For a monotone DNF ϕ = M1 ∨ M2 ∨ . . . ∨ Mm it holds that ϕ is not
minimum if and only if two monomials are equal (i. e., Mi = Mj for some i 6= j) or
contained in another (i. e.,Mi ⊂Mj for some i, j). Essentially, the minimum equivalent
DNF for ϕ is

∨
i∈IMi for

I = {j | 1 ≤ j ≤ m ∧ ∀i 6= j: (Mi 6⊃Mj ∨ Mi = Mj → i < j)} .

The algorithm given as Algorithm 1 calculates the size of
∨
i∈IMi and compares it to

the given upper bound.

The correctness of algorithm minDNFSize for monotone DNFs is straightforward, but
we must check the space required. The for-loops require two logspace counters. The
checks Mi ⊃ Mj and Mi = Mj can also be performed in logspace. The variable
sizesum requires at most space logarithmic in the length of the input formula. 2

If the input is an arbitrary formula, the problem of deciding whether there is an
equivalent DNF with at most k variable occurences is Σp

2-hard (which follows from
[Uma01]). It is clear that the problem is in EXPTIME, but it is not known if the
problem is in PSPACE. We show PP-completeness when the input is monotone.

MinDnfSizemon : instance: monotone Boolean formula ϕ and integer k

question: does ϕ have a DNF with at most k occurrences
of variables?

Theorem 16 MinDnfSizemon is PP-complete.
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Algorithm 1 minDNFSize(ϕ, k)

Input: a monotone formula ϕ = M1 ∨M2 ∨ . . . ∨Mm in DNF and integer k
Output: Yes, if ϕ has a DNF of size ≤ k, and No, otherwise

1: sizesum← 0
2: for i← 1,m do
3: countthismonomial← true

4: for j ← 1,m; j 6= i do
5: if Mi ⊃Mj then
6: countthismonomial← false

7: else if Mi = Mj and i > j then
8: countthismonomial← false

9: end if
10: end for
11: if countthismonomial then
12: sizesum← sizesum+ |Mi|
13: end if
14: end for
15: if sizesum ≤ k then
16: output Yes and stop
17: end if
18: output No

PROOF. A set A is in PP if there exists a polynomial time bounded non-determi-
nistic machine M that on input x has at least as many accepting as rejecting com-
putation paths iff x ∈ A. The machine M is allowed to have accepting, rejecting,
and non-deciding computation paths on which the machine enters a “?” state that
is distinct from the accept and reject states. Our polynomial-time machine M that
decides MinDnfSizemon roughly works as follows. Consider input (ϕ, k). Let l be the
maximum length of a monomial with variables from ϕ. Then M guesses a sequence w
of l+ 1 bits. If the first bit of w equals 0, then it accepts if the remaining bits encode
an integer < k− 1, otherwise it halts undecided. This produces k accepting computa-
tion paths. If w = 1v has first bit 1, then M checks in polynomial time (Theorem 6)
whether v encodes a prime implicant (with variables in increasing order) for ϕ. If so,
then this computation path splits into as many rejecting paths as the monomial v
has variables, otherwise it halts undecided. The smallest DNF of a monotone formula
consists of all prime implicants of the formula. Hence, M on input (ϕ, k) has at least
as many accepting as rejecting computation paths if and only if ϕ has a DNF with at
most k occurrences of variables. This shows that MinDnfSizemon is in PP.

To show PP-hardness, we give a reduction MajSat ≤pm MinDnfSizemon. Consider an
instance ϕ of MajSat with variables x1, . . . , xn and m satisfying assignments. Then
ϕcd has m+ n prime implicants (Proposition 3), of which m are conform and contain
n variables each, and n are not conform and contain 2 variables each. The minimum
DNF of a monotone formula consists of all prime implicants. If ϕ ∈MajSat, it follows
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that the minimum DNF of ϕcd has size at least n · 2n−1 + 2 · n. If ϕ 6∈MajSat, then
the minimum DNF of ϕcd has size at most n · (2n−1 − 1) + 2 · n. The function that
maps ϕ to (ϕcd, n · (2n−1 − 1) + 2 · n) is polynomial time computable, and by the
above observations it reduces MajSat to MinDnfSizemon. Since PP is closed under
complement, the PP-hardness of MinDnfSizemon follows. 2

Accordingly, we can show that the function, which on input ϕ, a monotone formula,
outputs the size of the smallest DNF of ϕ, is #P-complete. In [Val79] it is shown that
computing the number of prime implicants of a monotone formula is #P-complete.
Our result extends the latter since it additionally takes the size of the prime implicants
into account.

One of the main reasons that an analogue to Theorem 16 for arbitrary formulas is
unknown is the fact that polynomial time does not allow on input (ϕ, k) to guess a
candidate for a DNF of length k. Therefore, we consider a variant of MinDnfSize
where k is given in unary.

MinDnfSize′ : instance: Boolean formula ϕ and string 1k

question: does ϕ have a DNF with at most k occurrences
of variables?

Theorem 17 MinDnfSize′ is Σp
2-complete.

PROOF. MinDnfSizednf ist Σp
2-complete [Uma01], and reduces to MinDnfSize′

by the following function f . Let |ϕ| denote the number of occurrences of variables
in ϕ. If k ≥ |ϕ|, then (ϕ, k) ∈ MinDnfSizednf and f(ϕ, k) is some fixed element in
MinDnfSize′. If k < |ϕ|, then f(ϕ, k) = (ϕ, 1k). Clearly, the reduction function f is
polynomial time computable. MinDnfSize′ ∈ Σp

2 can be shown using the standard
guess-and-check approach. 2

If we restrict the input to monotone formulas, the complexity is lower.

MinDnfSize′mon : instance: monotone Boolean formula ϕ and string 1k

question: does ϕ have a DNF with at most k occurrences
of variables?

Theorem 18 MinDnfSize′mon is coNP-complete.

PROOF. MinDnfSize′mon is coNP-hard: Let ϕ be a formula with variables x1, . . . , xn.
Then ϕ is unsatisfiable if and only if ϕcd has (x1 ∧ y1),. . . ,(xn ∧ yn) as its only prime
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implicants. Hence, ϕ is unsatisfiable if and only if (ϕcd, 12n) ∈MinDnfSize′mon. This
shows that MinDnfSize′mon is coNP-hard.

MinDnfSize′mon ∈ coNP: Consider the problem A = {(ϕ, 1k)| the monotone formula
ϕ has a minimum equivalent DNF of size > k}. Note that A is the complement of
MinDnfSize′mon. A is in NP since one has to guess a disjunction D of monomials
of size greater than k and less than k + |ϕ| and check that all are different prime
implicants for ϕ. Both the guess and the check are polynomial time computable.
Hence, MinDnfSize′mon ∈ coNP. 2

7 Computing disjunctive normal forms

A DNF of a formula is a disjunction of (prime) implicants. For monotone formulas, the
minimum equivalent DNF is unique and it is the disjunction of all prime implicants.
In order to investigate the complexity of the search for all prime implicants, we use
the following problem, MorePrimimon. It has instances (ϕ, S), where ϕ is a formula
and S is a set of monomials. A pair (ϕ, S) belongs to MorePrimimon if S is a proper
subset of a minimum equivalent DNF of ϕ. In other words, every monomial in S is a
prime implicant for ϕ, but there is at least one more prime implicant for ϕ that must
be added to S in order to make S a DNF for ϕ.

MorePrimimon : instance: monotone Boolean formula ϕ and set S of
monomials

question: is S a set of prime implicants of ϕ and ϕ 6≡ S ?

In order to prove the NP-completeness of MorePrimimon, we just count the number
of prime implicants of ϕcd.

Theorem 19 (see also [EG95]) MorePrimimon is NP-complete.

PROOF. Given a monotone formula ϕ and a set S of monomials, it is an easy
polynomial test to check whether S is a set of prime implicants for ϕ. If this holds,
then (ϕ, S) ∈MorePrimimon iff there exists a prime implicant for ϕ that is not in S.
Hence, MorePrimimon is in NP. To prove NP-hardness, we give a reduction from Sat.
For an instance ϕ of Sat with variables x1, . . . , xn, let S be the set S = {(xi ∧ yi) |
i = 1, 2, . . . , n}. We show that ϕ ∈ Sat if and only if (ϕcd, S) ∈MorePrimimon.

Consider ϕ ∈ Sat. Then ϕcd has at least n+1 prime implicants, by Proposition 3. Since
S consists only of n prime implicants of ϕcd, it follows that (ϕcd, S) ∈MorePrimimon.

Consider ϕ 6∈ Sat. Then ϕcd has n prime implicants (Proposition 3). Since S contains
all n prime implicants of ϕcd, it follows that (ϕcd, S) 6∈MorePrimimon. 2
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There are monotone formulas whose minimum equivalent DNFs have size exponential
in the size of the formula. Therefore it is clear that the DNF cannot be computed in
time polynomial in the length of the input. For such problems it would be advantageous
to have algorithms that run in time polynomial in the length of the input plus the
length of the output.

Definition 20 ([JPY88]) A function f can be computed in output-polynomial time,
if there is an algorithm A that for all x on input x outputs f(x) and there is a
polynomial q such that for all x, A on input x has running time q(|x|+ |f(x)|).

An algorithm that cycles through all monomials and outputs those that are prime
implicants of the monotone input formula, eventually outputs the minimum equivalent
DNF of its input. For the special case of formulas that have exponetially long DNFs,
this algorithm can be seen to have running time polynomial in the length of the output.
For formulas with short DNFs, the running time of this straightforward algorithm is
exponential in the length of the output. We show that we cannot expect to find an
algorithm that behaves significantly better than this straightforward approach.

Theorem 21 The function, which on input ϕ, a monotone formula, outputs the
smallest DNF for ϕ, is in output-polynomial time if and only if P = NP.

PROOF. Assume that A is an output-polynomial time algorithm for the considered
problem, and let q be the polynomial bounding the run time of A. We show how to
solve MorePrimimon in polynomial time. For an instance (ϕ, S) of MorePrimimon,
first check whether S is a set of prime implicants for ϕ, and reject if this is not the
case. Then start A on input ϕ for q(|ϕ|+ |S|) steps. If A does not halt after q(|ϕ|+ |S|)
steps, then S does not contain all prime implicants of ϕ, and our algorithm accepts.
If A halts after q(|ϕ|+ |S|) steps, then accept if and only if S is a proper subset of the
output of A. It is clear that this algorithm decides MorePrimimon. Its run time is
bounded by the polynomial q, plus some polynomial overhead. Since MorePrimimon

is NP-complete (Theorem 19), it solves an NP-complete problem in polynomial time,
and therefore P = NP.

For the other proof direction, assume that P = NP. The set V = {(w, S, ϕ) | w is a
prefix of a prime implicant C for ϕ and C 6∈ S } is in NP. Our algorithm that computes
a minimum equivalent DNF of a monotone input formula ϕ starts with S being the
empty set, and uses V as an oracle to make S the set of all prime implicants of ϕ
— and hence the minimum equivalent DNF of ϕ — using a prefix search technique.
Intuitively spoken, every query to V yields one bit for the output. From P = NP it
then follows that the algorithm runs in output-polynomial time. 2

Notice that a similar result is not known for arbitrary formulas. For monotone CNF
one can use the algorithm from [FK96] in order to obtain the DNF in output-quasi-
polynomial time.
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As a final remark we return to the complexity of MorePrimimon (Theorem 19). We
have seen that the complexities of IsPrimimon (Theorem 6) and MorePrimimon differ.
This is not the case for non-monotone formulas: the complexities of MorePrimi and
IsPrimi (Theorem 5) for non-monotone formulas are equal.

MorePrimi : instance: Boolean formula ϕ and set S of monomials

question: is every monomial C ∈ S a prime implicant of
ϕ, and ϕ 6≡ S ?

Theorem 22 MorePrimi is DP-complete.

PROOF. The proof relies on the same ideas as the proof of Theorem 5. We show
that IsPrimi ≤pm MorePrimi, using the polynomial time reduction function given
by the mapping

(ϕ,C) 7→

 (ϕ ∧ (z ∨ z′), {z}), if C = λ

(ϕ ∨ z, {C}), if C 6= λ

where z and z′ are new variables that do not appear in ϕ nor in C.

If C = λ is a prime implicant of ϕ, then ϕ is valid, and therefore both z and z′ are
prime implicants for ϕ∧ (z∨ z′). Hence, (ϕ∧ (z∨ z′), {z}) is in MorePrimi. If C 6= λ
is a prime implicant of ϕ, then ϕ is not valid, and therefore z is a prime implicant for
ϕ ∨ z. Hence, (ϕ ∨ z, {C}) is in MorePrimi.

If C is not a prime implicant for ϕ, then (ϕ∨ z, {C}) is not in MorePrimi. If C = λ,
then ϕ is not valid, and therefore z is not a prime implicant for (ϕ ∧ (z ∨ z′), {z}),
which shows that (ϕ ∧ (z ∨ z′), {z}) is not in MorePrimi.

To show that MorePrimi is in DP, consider an instance (ϕ, S) for MorePrimi,
where S = {C1, C2, . . . , Ck} and Ci = {`i1, `i2, . . . , `iki

}. We express ϕ 6≡ S as a query
q(y) to a Sat oracle with

q(ϕ, S) = ¬(ϕ↔ S) .

Moreover, we can express that the Cis are prime using the function p from the proof
of Theorem 5 as

p′(ϕ, S) =
k∧
i=1

p(ϕ,Ci) .

Finally, we can express that all monomials in S are implicants for ϕ as a query to an
Unsat oracle using the function n from the proof of Theorem 5 by

t(ϕ, S) =
k∨
i=1

n(ϕ,Ci) .

It is not difficult to see that (ϕ, S) ∈ MorePrimi iff (q(ϕ, S) ∧ p′(ϕ, S), t(ϕ, S)) ∈
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Sat-Unsat. Since q, p′, and t are polynomial time computable, MorePrimi ∈ DP
follows. 2

8 Equivalence and isomorphism of monotone formulas

Deciding equivalence for arbitrary Boolean formulas is coNP-complete. The same holds
for monotone formulas [Rei03]. The problem Monet — Mo(notone) n(ormal form)
e(quivalence) t(est) — asks for the equivalence of two monotone formulas ϕ in DNF
and ψ in CNF. Monet is decidable in time O(nlogn) [FK96], and it belongs to coNP
using only log2 n many nondeterministic bits [EGM03, KS03]. We consider its restric-
tion where the size of the monomials in the DNF is bounded. A formula is in k-DNF
if it is in DNF and each monomial has at most k literals.

Monetk: instance: irredundant, monotone Boolean formulas ϕ in k-DNF
and ψ in CNF

question: are ϕ and ψ equivalent?

Monetk is known to be in P [EG95, MP97], even in RNC [BEGK00]. We improve
these results by showing that Monetk can be decided in logarithmic space.

Theorem 23 Monetk is in L, for every integer k.

In order to proof Theorem 23 we use a property of transversal hypergraphs given as
Lemma 24.

A hypergraph H is a family E of subsets of a finite set V . The elements of V are
called vertices, the elements of E, edges. A set T ⊆ V is called a transversal of H if
T has a non-empty intersection with every edge of H. The minimal transversals of H
with respect to set inclusion form the transversal hypergraph Tr(H). The problem of
deciding if a given hypergraph G is the transversal hypergraph of another hypergraph
H is called Trans-Hyp. Monetk is equivalent to the problem Trans-Hyp with
bounded edge-size (see [EG95]), because the monomials of ϕ and the clauses of ψ can
be seen as edges of two hypergraphs that are transversal hypergraphs of each other.

The following Lemma is proven in [EG95] as part of Theorem 5.2. Note that we only
changed notation to better fit in the Monet setting.

Lemma 24 ([EG95]) Let ϕ in k-DNF with the set of monomials Mϕ and ψ in CNF
with the set of clauses Cψ be two irredundant, monotone Boolean formulas. If k ≥ 2,
then:

(ϕ, ψ) ∈Monetk⇐⇒Cψ ⊆ Tr(Mϕ) ∧ E1 ∧ E2, (1)

18



with

E1≡¬∃M ⊆ V, |M | ≤ k : M ∈ Tr(Cψ) ∧M 6∈Mϕ

E2≡¬∃C ′
ψ ⊆ Cψ, |C ′

ψ| = k + 1 : ∀C ∈ Cψ : C 6⊆ {x ∈ V : d(x,C ′
ψ) > 1},

where d(x,C ′
ψ) denotes the number of sets in C ′

ψ that contain the variable x.

We now analyze the complexity of the test implicit in Lemma 24 with the intention of
tightening the complexity bound for Monetk. Therefore, we examine the complexity
of checks that will be used in the proof of Theorem 23 below.

We first show that we can check in logarithmic space whether ϕ and ψ are irredundant.

IsIrredmon: instance: monotone Boolean formula ϕ in CNF/DNF with
variable set V

question: is ϕ irredundant?

Lemma 25 IsIrredmon is in L.

PROOF. An appropriate algorithm is given as Algorithm 2. The correctness of Al-
gorithm 2 is straightforward, but we must check the space required. The for-loops
require three logspace counters: the counters in lines 3 and 4 need only count to |ϕ|,
the number of terms in ϕ. The counter in line 5 need only count to |Mi|. Another
two logspace counters are used for checkvariable2 and for counting to |Mi| in line 10.
The checkvariable1 requires constant space. The terms of ϕ need not be copied to be
compared. The counters add up to logarithmic space. 2

We next have to examine the test whether a set of variables is contained in a family
of variable sets.

IsIn: instance: a set M of subsets Mi ⊆ V and a subset S ⊆ V

question: S ∈M?

Lemma 26 IsIn is in L.

PROOF. An appropriate algorithm is given as Algorithm 3. The correctness of Algo-
rithm 3 is straightforward, but we must check the space requirements. The for-loops
require two logspace-counters to count to |M | and |S|. The checkvariable requires
constant space. This all adds up to logarithmic space. 2
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Algorithm 2 is irred(ϕ)

Input: a monotone formula ϕ in normal form with the set V of variables
Output: Yes, if ϕ is irredundant, and No, otherwise

1: checkvariable1 ← 1
2: checkvariable2 ← 0
3: for all terms Ti of ϕ do
4: for all other terms Tj 6= Ti of ϕ do
5: for all variables x ∈ Ti do
6: if x ∈ Tj then
7: checkvariable2 ← checkvariable2 + 1
8: end if
9: end for

10: if checkvariable2 = |Ti| then
11: checkvariable1 ← 0
12: end if
13: end for
14: end for
15: if checkvariable1 = 1 then
16: output Yes
17: else
18: output No
19: end if

Algorithm 3 is in(M,S)

Input: a set M of subsets Mi ⊆ V and a subset S ⊆ V
Output: Yes, if S ∈M , and No, otherwise

1: for all Mi ∈M do
2: checkvariable ← 1
3: for all x ∈ S do
4: if x 6∈Mi then
5: checkvariable ← 0
6: end if
7: end for
8: if checkvariable = 1 then
9: output Yes and stop

10: end if
11: end for
12: output No

Finally, we need a test to decide whether a monotone clause is contained in the
irredundant CNF of a monotone DNF.
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IsClause: instance: a monotone clause C and an irredundant, monotone
DNF ϕ with the set Mϕ of monomials

question: Is C contained in the irredundant CNF of ϕ?

Lemma 27 IsClause is in L.

PROOF. An appropriate algorithm is given as Algorithm 4. It checks whether C
has a non-empty intersection with every monomial of ϕ (lines 1 to 11 of the listing
below), and whether no C \ {x} for each x ∈ C has a non-empty intersection with
all monomials (lines 12 to 28). The correctness of Algorithm 4 is straightforward, but
we must check the space requirements. Let the input size n be the number of variable
occurences in ϕ and C.

To know the current monomial, the for-loops in line 1 and line 14 could manage coun-
ters that give the number of already checked monomials. These counters have to count
till |Mϕ|. Hence, they are logarithmically bounded in n. An analogous argumentation
holds for the for-loops in line 3 and line 16. To know the current variable, they manage
a counter that gives a variable index, which is clearly logarithmic in n. And again,
the for-loop in line 12 is handled analogously.

It remains to check the variables count and hit. The maximal value of count is the
size of a largest monomial of ϕ, which is logarithmic in n. The maximal value of hit
is |Mϕ|, which is also logarithmic in n. Altogether, logarithmic space suffices to run
the described algorithm. 2

Using the procedures for IsIrred, IsIn, and IsClause we can now prove Theorem 23.

PROOF. [of Theorem 23] Let n denote the number of variable occurrences in ϕ and
ψ. We assume that every monomial of ϕ has size at most k for a constant k. An
appropriate machine is able to determine this k by counting in logarithmic space.
The irredundancy of ϕ and ψ can be checked in logarithmic space according using the
procedure from the proof of Lemma 25. We will show that the right hand side of (1) can
be verified in logarithmic space. Therefore, we describe the work of an appropriate
machine T . The machine uses the logspace procedures is in (cf. Lemma 26) and
is clause (cf. Lemma 27) as subroutines. Note that procedure calls can be space-
efficiently simulated by using pointers to cells on input or working tapes of T where
parameters needed for the procedure call start.

Cψ ⊆ Tr(Mϕ): T calls is clause systematically for ϕ and every clause in Cψ. To
know which clause is currently tested, T counts the number of tested clauses. This
counter can be managed in logarithmic space in the size of Cψ.
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Algorithm 4 is clause(C,ϕ)

Input: monotone clause C and monotone DNF ϕ with the set Mϕ of monomials
Output: Yes, if C is contained in the irredundant CNF of ϕ, and No, otherwise

1: for all Mi ∈Mϕ do
2: count← 0
3: for all x ∈Mi do
4: if xj ∈ C then
5: count← count+ 1
6: end if
7: end for
8: if count = 0 then
9: output No and stop

10: end if
11: end for
12: for all xi ∈ C do
13: hit = |Mϕ|
14: for all Mj ∈Mϕ do
15: count← 0
16: for all xk ∈Mj do
17: if xk ∈ C and k 6= i then
18: count← count+ 1
19: end if
20: end for
21: if count > 0 then
22: hit← hit− 1
23: end if
24: end for
25: if hit = 0 then
26: output No and stop
27: end if
28: end for
29: output Yes

E1: Every constant-sized M has to be checked. To do this, T systematically generates
the candidates. To know which candidate is the actual candidate, T counts the number
of already checked candidates. The number of possible candidates is bounded by 1 +(
n
1

)
+

(
n
2

)
+ . . .+

(
n
k

)
= O(nk). Hence the counter needs k · log(n) bits. Because of the

constant size of M the machine T can write down the whole current candidate. For
every candidate M a procedure described in the proof of Theorem 6 and analogous to
is clause answers the question whether M is a prime implicant of ψ. If the answer
is Yes, then T calls is in to know whether M is in ϕ. Altogether E1 can be verified
in logarithmic space.

E2: Only a constant number of clauses form the current candidate set for the E2-test.
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By systemtically generating the candidate sets, T is able to know the monomials that
form the current candidate by counting the candidates. The counter must count to(

n
k+1

)
= O(nk+1), hence, logarithmic space suffices. Because of the constant size of

the candidates C ′
ψ, the machine T can manage pointers to each clause in the current

candidate set C ′
ψ on some working tape. Hence, using is in, T is able to check, for

every variable in every clause, if the variable is contained in more than one element
of C ′

ψ.

Altogether we can conclude that logarithmic space suffices to decide Monetk. 2

Two Boolean formulas ϕ and ψ are isomorphic if and only if there exists a permutation
— a bijective renaming — π of the variables such that ϕ and π(ψ) are equivalent.
Two Boolean formulas are congruent if they are isomorphic after negating some of
the variables. For example x1 ∧ x2 and ¬x3 ∧ x4 are congruent. Such a negation of
some variables with the bijective renaming of the variables is called n-permutation. A
witness for the congruence of the above example is the n-permutation π that maps
¬x3 to x1 and x4 to x2.

We want to compare the problem of testing isomorphism for monotone Boolean for-
mulas to the case of arbitrary Boolean formulas. We provide a negative answer to a
conjecture from [Rei03] by showing that testing isomorphism for monotone Boolean
formulas is as hard as for arbitrary formulas.

BoolIsomon: instance: monotone Boolean formulas ϕ and ψ

question: are ϕ and ψ isomorphic?

BoolIso: instance: Boolean formulas ϕ and ψ

question: are ϕ and ψ isomorphic?

BoolCon: instance: Boolean formulas ϕ and ψ

question: are ϕ and ψ congruent?

In [BRS98] it was shown that (1) BoolCon is polynomial time equivalent to BoolIso,
(2) BoolIso is coNP-hard, and (3) the graph isomorphism problem reduces in poly-
nomial time to BoolIso.

Theorem 28 BoolIsomon is polynomial time equivalent to BoolIso.

PROOF. To show BoolIsomon ≤pm BoolIso we can choose the identity function
as reduction function. We now show BoolIso ≤pm BoolIsomon. In [BRS98] it was
shown that BoolIso ≤pm BoolCon. Therefore, it suffices to show BoolCon ≤pm
BoolIsomon. The reduction function maps the instance (ϕ, ψ) of BoolCon to the
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pair (ϕcd, ψcd) (cf. Definition 1). It is therefore sufficient to show (ϕ, ψ) ∈ BoolCon⇔
(ϕcd, ψcd) ∈ BoolIsomon.

(ϕ, ψ) ∈ BoolCon ⇒ (ϕcd, ψcd) ∈ BoolIsomon: Let (ϕ, ψ) ∈ BoolCon by an n-
permutation π. Hence, ϕ and π(ψ) are equivalent. We derive a permutation π̃ for
(ϕcd, ψcd) from the n-permutation π in an elementary way. If π maps xi to xj, then π̃
maps xi to xj as well as yi to yj. And if π maps xi to ¬xj, then π̃ maps xi to yj as
well as yi to xj. Note that π̃ does not make any remarkable changes on the c(ψ)- and
d(ψ)-part of ψcd other than rearranging the terms in c(ψ) and d(ψ). We must prove
that ϕcd and π̃(ψcd) are equivalent and proceed by case differentiation of all possible
monotone assignments.

∃i[xi, yi ∈ Am]: Such assignments satisfy ϕcd and π̃(ψcd) by satisfying the conjunction
(xi ∧ yi).

(¬∃i[xi, yi ∈ Am]) ∧ (∃j[xj, yj /∈ Am]): None of the conjunctions of d(ϕ) and d(ψ) are
satisfied by Am. Furthermore the disjunction (xj ∨yj) in c(ϕ) and c(ψ) is not satisfied
by Am and consequently ϕcd and π̃(ψcd) are not satisfied.

It remains to verify the conform assignments: these are assignments that contain only
one of the variables xi and yi for every i ≤ n. They do not satisfy d(ϕ) and d(ψ) but do
satisfy c(ϕ) and c(ψ). It remains to check r(ϕ) and π̃(r(ψ)). Given that ϕ and π(ψ) are
equivalent, and that a conform assignment for ϕcd and π̃(ψcd)simulates an assignment
for ϕ and π(ψ), it follows that the truth tables of ϕcd and π̃(ψcd) are identical in this
case. Thus the truth tables of ϕcd and π̃(ψcd) are identical with respect to all possible
assignments and therefore ϕcd and ψcd are isomorphic.

(ϕ, ψ) ∈ BoolCon ⇐ (ϕcd, ψcd) ∈ BoolIsomon: A permutation π̃ for (ϕcd, ψcd) ∈
BoolIsomon is called proper if and only if (1) whenever xi is mapped to xj, so is yi
to yj, and (2) whenever xi is mapped to yj, so is yi to xj.

Claim 29 For all (ϕcd, ψcd) ∈ BoolIsomon with more than two x-variables there is
a proper permutation π̃p that ensures the equivalence of ϕcd and π̃p(ψ

cd).

PROOF. Suppose that the proposition of the claim does not hold. Then there exists
a pair of formulas (ϕcdim, ψ

cd
im) ∈ BoolIsomon with more than two x-variables for which

no proper permutation exists. As a consequence ϕcdim and π̃im(ψcdim) are equivalent for
some improper permutation π̃im. We distinguish between the two cases of π̃im being
improper.

∃i[π̃im maps xi to xj but not yi to yj]: Hence, π̃im maps yi to some b ∈ {xk : k ≤ n, k 6=
j} ∪ {yk : k ≤ n, k 6= j}. We examine the assignment Am = {xj, b}. The conjunction
(xj ∧ b) in π̃im(d(ψ)) is satisfied by Am and so is π̃im(ψcdim), but Am does not satisfy
ϕcdim. Note that the conjunction (xj∧b) is not present in d(ϕ) and therefore Am cannot
satisfy d(ϕ). Furthermore, not all of the disjunctions of c(ϕ) contain xj or b because
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there are more than two x-variables in ϕcdim and ψcdim. Thus, the two formulas ϕcdim and
π̃im(ψcdim) cannot be equivalent. This is a contradiction to our assumption.

∃i[π̃im maps xi to yj but not yi to xj]: An analogous argument to the above shows
that the formulas ϕcdim and π̃im(ψcdim) cannot be equivalent. This is a contradiction to
our assumption. Hence, the claim follows. 2

As a consequence, there is a proper permutation π̃p for every (ϕcd, ψcd) ∈ BoolIsomon.
A proper permutation only works on the r(ψ)-part of the ψcd-formula and only rear-
ranges the terms in c(ψ) and d(ψ). Given a proper permutation π̃p we can easily derive
an n-permutation π for (ϕ, ψ). If π̃p maps xi to xj and yi to yj, then π maps xi to xj.
And if π̃p maps xi to yj as well as yi to xj, then π maps xi to ¬xj. Since the y-variables
are placeholders for the negative literals, we see that π ensures (ϕ, ψ) ∈ BoolCon.
This concludes the proof of BoolCon ≤pm BoolIsomon.

Thus we have established BoolIso ≡pm BoolIsomon. 2

In [AT00] it is shown that BoolIso is not complete for Σp
2 unless the Polynomial Time

Hierarchy collapses. As a consequence of Theorem 28, this holds for BoolIsomon as
well.

9 Concluding remarks

We compared the complexity of problems related to the construction of disjunctive
normal forms for non-monotone and monotone formulas. We proved that finding an
algorithm that computes the minimum equivalent DNF for a monotone formula in
output-polynomial time is the same as solving P = NP, though a similar result for
arbitrary formulas is still open, and we assume that at least P = PSPACE is the
consequence. Although we proved that calculating the size of a minimum equivalent
DNF for a monotone formula is PP-complete (resp., #P-complete), even a PSPACE
upper bound for the non-monotone case is open.

Some problems for formulas are easier to decide in the monotone case than for arbi-
trary formulas. Among them are finding short prime implicants (NP- vs. Σp

2-complete)
and calculating the size of a smallest equivalent DNF (PP-complete vs. unknown). On
the other hand, there are problems whose complexity stays the same for monotone
formulas. We could show this polynomial time equivalence for isomorphism testing
and counting satisfying assignments.

Deciding equivalence for monotone formulas is coNP-complete [Rei03] as for arbitrary
Boolean formulas. Nevertheless we were able to prove a log-space upper bound for
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the special case, Monetk, of equivalence testing. The complexity of the general prob-
lem Monet without a constant bound for the clause size (which is equivalent to
MorePrimimon for instances (ϕ, S) with ϕ in CNF) remains open.
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