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ABSTRACT
This paper presents an unsupervised framework for dynamic,
subject-oriented taxonomy composition in digital libraries, which
can naturally integrate existing library classification systems. The
taxonomy classes in our approach correspond to so-called key-
queries that are run against the digital library’s full-text retrieval
system. Given a document, a keyquery is a set of few keywords for
which the document achieves a high relevance score. Keyqueries
can hence be viewed as a general and concise description of the
returned retrieval results. The keyquery framework addresses im-
portant problems of static classification systems: overlarge classes
and overly complex taxonomy structures. If, for instance, a leaf
class grows to an indigestible size, keyqueries for the contained
documents provide a suitable split mechanism. Since queries are
well-known to library users from their daily web search experience,
they increase the structural complexity in a transparent way.

The paper presents also a strategy for taxonomy-based library
exploration. Given a user’s information need in the form of library
documents, we synthesize a hierarchy of keyqueries that covers
this library subset. We manage to solve this difficult set covering
problem on-the-fly by combining inverted and reverted indexes
along with heuristic search space pruning within a map-reduce
application. An empirical evaluation with an ACM collection of
scientific papers demonstrates the efficiency and effectiveness of
our taxonomy composition framework.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Retrieval Models, Query Formulation
General Terms: Algorithms, Experimentation, Performance
Keywords: dynamic taxonomy composition, keyquery, classifica-
tion systems, reverted index, big data problem

1. INTRODUCTION
A classification system or taxonomy consists of a set of classes

and a set of instances, where each instance is assigned to or tagged
with some of the classes. In a hierarchical classification system,
classes are usually arranged to as a class tree, where the root is
divided into subclasses until leaf classes are reached.1 In this paper
1The Colon Classification is a noteworthy exception.
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we use the term “taxonomy” to refer to all kinds of hierarchical
classification systems that employ such a class tree. We present a
framework for the unsupervised composition and maintenance of
subject-oriented taxonomies for digital libraries.

Subject-oriented classification systems have a long tradition in
libraries as a tool to find and locate relevant documents. The today’s
most widely used systems, the Dewey Decimal Classification and
the Library of Congress Classification, look back on a history of
successful application spanning more than a century [25]. However,
since the digital age hit the library world in the late 20th century, the
usefulness of maintaining a subject-oriented classification system
for the users is not that obvious anymore. Digital content renders
shelves obsolete, and, with them, the indispensable need for a loca-
tion encoding based on subjects. Furthermore, querying a search
engine that indexes the documents’ meta-data and full-texts turns
out to be more effective for identifying an initial set of relevant
library documents than browsing a classification system [24]. Given
this situation, we ask if and in which form a classification system
could be beneficially applied in a digital library.

1.1 Use Case Study
The following paragraphs present four use cases that go beyond

the identification of relevant documents; they discuss how a taxon-
omy or classification system can complement the capabilities of a
query-based search engine. The four use cases are (a) the recommen-
dation of documents on the basis of given ones, (b) the appreciation
of serendipities, (c) the exploration of large information spaces, and
(d) the profiling of entities.
(a) Document Recommendation. In a document recommendation
setting, users have an incomplete set of relevant documents at hand
(e.g., references in a paper or search results for a specific subject),
and want to complement this set with other relevant documents from
the library. A conventional query-based search engine is not really
capable to support this user need, since its inputs are keywords and
not document sets. Most existing document recommender systems
are based on citation information for the documents, from which
they infer semantic relations. In addition, and in the general case
where no citation graph is given, some measure of topical similarity
is used to identify documents which address a common subject [33].
To this end, a reasonable approach for document recommendation
is to identify the most specific set of classes which cover the given
documents. The recommendation can then be comprised of the other
documents from these classes. We refer to the most specific classes
covering a set of documents as complementation classes.
(b) Serendipity Search. In a serendipity search setting, users al-
ready know the documents they want to retrieve, but appreciate
the discovery of other interesting documents. Serendipities are a
well-known phenomenon in physical libraries that employ a subject-
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Figure 1: Conceptual illustration of our dynamic taxonomy
composition approach. An initial library subset is subdivided
by the means of complementation, exploration, and serendipity
classes. The filling level of the classes denotes the precision of a
class with respect to the initial library subset.

oriented location encoding. On their way to the books of interest,
users pass book shelves on related subjects, allowing some of the
books to catch their attention. In a digital environment, designing
for serendipity is centered around the presentation of visual clues
that trigger the formation of a new information need in the user’s
mind [27]. If we assume a user who submits a query to a search
engine, a possibility to foster serendipities would be the presentation
of search results which are related to the original information need.
However, the top entries of a search result list are very precious, and
devoting them to serendipity candidates seems not a good idea. On
the other hand, serendipity candidates put somewhere in the result
list’s tail would just get lost in the shuffle. A more reasonable ap-
proach is to find classes which are semantically close to the subjects
of the search results, and to present those classes next to the results.
We refer to such semantically close classes as serendipity classes.
(c) Exploratory Search. In an exploratory search setting, users are
faced with a large set of documents and want to learn about their
contents [32]. The given document set may be the result set of a
broad query, the combined results of a longer search session, or
be provided by a third party (e.g., in an e-discovery setting). If
the documents are presented as a long list, it is hard for users to
get an overview of the collection. More likely, they just lose track.
In this respect, studies on search behavior reveal that result lists
are examined only rarely beyond the top results, and that only 8%
of users ever click on results beyond rank 30 [24]. To provide a
structured access to the documents, a taxonomy can be composed
that iteratively subdivides the given documents into more specific
subtopics, until subclasses of manageable sizes are reached(typically,
< 30 documents).2 The subclasses then serve as reference points
users could use to infer higher level concepts and to work out an
exploration strategy. We refer to subclasses which subdivide the
complementation and serendipity classes as exploration classes.
(d) Profiling. In a profiling setting, users have a document set which
refers to a specific entity, and are interested in obtaining a conceptual
map of the entity’s contributions. In the context of digital libraries,
users may be interested in profiling authors, journals, or the library
as a whole. A popular visualization of profiles are word clouds,
where the relevance of a subject is shown in terms of font size
or color. As the profile classes of an entity from the library, the
complementation classes and the exploration classes can be used;
rendering profiling as special case of an exploratory search setting.

A common theme of the above described four use cases is that
users are equipped with an initial set of documents (e.g., by querying
2The Open Directory Project guidelines suggest to already subdivide
a class if it exceeds 20 documents.

the library’s full-text search engine), and benefit from classes which
are tailored to this initial set. For taxonomies or classification sys-
tems in digital libraries, this indicates that the user’s need for a single
one-fits-all classification system, which lets her browse for relevant
documents, is not the dominant task anymore. This task, once driv-
ing library classification research, is almost completely subsumed
by the provision of decent query-based search engines. Instead,
the task important for users is to provide a taxonomy consisting of
complementation, serendipity, and exploration classes tailored to a
given but arbitrary library subset—the user’s information need. We
illustrate this concept in Figure 1. Stated more formally, the Aris-
totelean classification philosophy that distinguishes essential from
accidental document properties, and which strives for one classifica-
tion of literature along its natural joints, should be complemented by
a more holistic philosophy in the vein of the Web 2.0 movement—to
include and postpone [31]. Including every class that is potentially
useful to describe a library subset, and postponing the instantiation
of the classification system to the moment where the information
need of a user is known.

1.2 Keyqueries as Taxonomy Classes
There are two principal approaches to compose a taxonomy for

a given set of documents: (1) applying a hierarchical clustering
algorithm to the documents and labeling the resulting clusters, and
(2) compiling a set of candidate classes with labels and document
assignments, and composing a taxonomy for the given documents
on their basis. With respect to the first option, the unsolved cluster
labeling problem prevents an effective application to our use cases
(cf. Section 2 for a more detailed discussion on the issues of doc-
ument clustering). We thus turn to the second option—dynamic
taxonomy composition with a given set of classes. To obtain a set
of classes with labels and document assignments, we identify the li-
brary’s query-based search engine as a powerful and flexible choice.
We exploit the “wisdom” of the search engine by taking as classes
the set of queries that can be formulated on the basis of the search
engine’s vocabulary, and as class members their respective search
results. In other words, we apply the keyquery concept to dynamic
taxonomy composition [11].

The use of the library’s search engine as the source for classes has
two big advantages compared to the use of other knowledge bases,
but also one caveat that has to be handled in a reasonable way.

The first advantage is that both systems, the search engine and the
taxonomy composition framework, are always in sync. Whenever
the search engine indexes a new document, the taxonomy compo-
sition will instantly feature the new document without the need
for an additional integration process. If a document introduces a
new subject, the set of classes is dynamically extended with the
new subject. In this respect, we can think of the search engine as
an implicit tagging mechanism which tags each document with its
keyqueries. This automated tagging mechanism introduces a great
deal of flexibility to the library management. Since the documents
are automatically integrated and annotated with classes, human in-
tervention can concentrate on documents for which no reasonable
taxonomy can be composed. In those cases, library experts can
formulate appropriate classes, assign them to the documents, and
force a re-indexing to commit the changes to the search engine (and
hence to the taxonomy composition framework).

The second advantage of our approach is that search engine the-
ory provides a well-defined concept for the integration of multiple
knowledge resources into a common representation, as well as for
the combination of queries to a joint class: retrieval models. A re-
trieval model is the formalization of a linguistic theory that describes
how to quantify the relevance of a document for a query, or, in our



view, for a class. In sophisticated search engines, hundreds of fea-
tures influence the relevance computation, and machine learning is
used to find the optimum feature weights [3]. There is an enormous
amount of research that has been dedicated to the development of
retrieval models for search engines, and this knowledge is now at our
disposal. For instance, a retrieval model could be employed which
indexes the existing meta-data about the documents with learned
feature weights [22]. The retrieval model could itself classify the
documents into a hierarchical classification system [14], or tag the
documents according to a vocabulary of subject headings [29]. Even
further, sophisticated retrieval models employ linguistic resources
and thesauri like WordNet3 or lexical taxonomies like Probase4

to infer further classes through synonym and hypernym relation-
ships [16].

Though the presented advantages are appealing, there is one issue
with the use of search engines in taxonomy generation. For a reason-
able use of queries and their search results as classes, inconsistencies
with the common perception of classes in a library classification sys-
tem have to be fixed. To this end, we introduce five constraints for
the dynamic composition of taxonomies on the basis of queries (cf.
Section 3 for more details). Two class label constraints ensure that
the queries used have the look and feel of conventional class labels,
one class assignment constraint ensures that only those documents
are assigned to a class for which relevance is substantial, and two
class composition constraints control the taxonomy’s structure and
introduce the notion of class generality.

1.3 Taxonomy Composition
LetDu denote a set of documents andQ denote a set of candidate

queries that adhere to the five constraints. The problem of taxonomy
composition for Du using classes from Q can then be stated as
an optimization problem that has to be solved iteratively until leaf-
classes are reached:

maximize
|Q|∑
i=1

xi |Di ∩Du|

subject to
|Q|∑
i=1

xi ≤ k,

where xi ∈ {0, 1}.

The objective is to find in each iteration the k-subset of Q that
maximizes the recall with respect to Du, subject to the constraint
that the maximum fan-out k is never exceeded. The sets Di in the
formula refer to the documents which are assigned to the classQi,
and the xi are indicator variables where a value of one denotes that
class Qi is included in a particular k-subset. In Section 3.2, we
present a time efficient greedy set-cover algorithm for this optimiza-
tion problem.

In Section 4, we report on a series of experiments that demonstrate
the feasibility of our approach for a digital library of 30,000 sci-
entific papers. In the first experiment, we study the runtime char-
acteristics of our approach by simulating a library which grows
over the years. Our results show, that our approach can serve as
an online library tool that dynamically composes a taxonomy for
initial library subsets up to sizes of several thousand documents.
In the second experiment, a taxonomy is computed for the whole
library, and its profile is compared to a hand-crafted reference tax-
onomy for the library. In a third experiment, the effectiveness of
dynamic taxonomy composition for document recommendation is
3
http://wordnet.princeton.edu/

4
http://research.microsoft.com/en-us/projects/probase/

studied. Compared to the reference taxonomy, our approach yields
much higher recommendation precision while keeping recall at an
acceptable rate.

Our scientific contributions are fourfold. (1) We suggest dynamic
taxonomy composition for various real-life use cases of classifica-
tion systems in digital libraries (cf. the introductory discussion).
(2) We suggest the retrieval model of query-based search engines as
a powerful and flexible implicit tagging mechanism that can be used
to infer a rich set of diverse classes for the library documents (cf.
Section 3). (3) We present a greedy set-cover algorithm for the iter-
ative composition of query-based taxonomies for arbitrary library
subsets (cf. Section 3.2). (4) We demonstrate the efficiency and
effectiveness of our approach in a case study with 30,000 scientific
papers (cf. Section 4).

Related scientific literature is discussed in the following section.

2. RELATED WORK
In this section, we review research related to our dynamic taxon-

omy composition framework from the broader spectrum of informa-
tion systems that provide a combination of querying and browsing
facilities to their users. We describe the various approaches, point
out the major differences to our approach, and give references to the
state of the art. For a general introduction to classification theory
and historical background information, we refer the interested reader
to Arlene Taylor’s “The Organization of Information” [25]. An ex-
cellent discourse about the Web 2.0 and its implications for digital
libraries is given by David Weinberger in his book “Everything is
Miscellaneous” [31].

The spectrum of information systems we consider is spanned
by search engines on the one end, and hierarchical classification
systems on the other. Between these boundaries, there are extensions
of the systems at either extreme that add browsing or querying
facilities to their basis. In the following paragraphs, we traverse
the spectrum of information systems from systems conceptually
closer to query-based search engines to those that are closer to
classification systems.
Diversified Query Suggestions. In most modern search engines for
the Web, the user is provided a list of up to ten query suggestions
(or auto-completions) while typing a query into the search box. The
query suggestions are usually mined from the search engine’s query
log (Wikipedia topics constitute an alternative source [13]), and
contain the most popular queries that are syntactically similar to
the entered query artifact. To increase the probability of a relevant
suggestion, diversification of query suggestions has been proposed
recently [13, 17, 23]. The aim of diversification is to compose a list
of syntactically similar queries that are semantically diverse. Diver-
sified query suggestions can hence be interpreted as a dynamically
composed, flat classification system for the given query artifact. In
contrast to our approach, candidate classes are not derived from the
query artifact’s search results, but rather from its character sequence.
Through this difference, the two systems support different use cases
and complement each other: Query suggestions help users find an
initial query, while our approach provides a hierarchical structuring
of the results once retrieved.
Diversified Query Recommendation. Query recommendation refers
to the task of providing, next to the search results, a list of queries
that are semantically equivalent to the user’s submitted query. Se-
mantic equivalence is typically measured by click through logs.
From the set of candidate recommendations, the most popular (=
most frequent in the query log) are chosen for presentation [2].
The rationale behind query recommendation is to educate the user
about the “better” or more common ways of expressing her infor-



mation need. As for query suggestions, diversification has been
proposed also for query recommendations. Li et al. cluster queries
into so-called query concepts (i.e., query groups of high semantic
equivalence), and draw a single query from each concept as candi-
date recommendation to compile a diversified, non-redundant query
recommendation list [15]. This kind of diversification is most use-
ful for ambiguous queries, where diverse recommendations allow
users to pick a query that specifies their information need more
precisely. The problem of dynamic taxonomy composition is re-
lated, in that it can also be used to add a list of queries next to the
search results. However, dynamic taxonomy composition strives
for queries dividing the search results into more specific subclasses,
and hence is best applied to non-ambiguous queries (for exploration,
recommendation, and serendipities).
Query-Based Taxonomy Composition. The task of composing a
taxonomy for a given set of documents falls into two principal
steps: the acquisition of classes and their arrangement to a taxonomy.
For the first step, the majority of existing taxonomy composition
approaches employ keyphrases extracted from the documents as the
class set [16, 19, 21]. Liu et al. submit individual keyphrases as
queries to a search engine, but solely for the purpose of building
a bag-of-words representation of the keyphrase classes [16]. The
use of queries as classes—as we propose it—can be regarded as an
extension to the keyphrase strategy. Our framework comes with two
advantages: First, the combination of keyphrases to joint classes
has a well-defined interpretation: the underlying conjunctive query.
Second, employing a topic model like ESA [10], it is possible to
find keyphrases that do not explicitly appear in a document’s text.

Queries have been considered as classes by Chuang et al. [7]
and Bonchi et al. [5]. In their work on query clustering, Chuang et
al. use the query log of a search engine for class acquisition, and
apply a multi-branch hierarchical clustering algorithm to compose
a taxonomy for the queries. We see the clustering approach as a
bottom-up alternative for the greedy set-cover algorithm we employ
for taxonomy composition. A bottom-up strategy is efficient, when
the task is to include the whole class set into the taxonomy. However,
in our scenario, where only a subset of the classes is chosen for the
taxonomy, a top-down approach like ours is much more efficient. A
greedy set-cover algorithm similar to ours is employed by Bonchi
et al. in their work on query decomposition, but with different
constraints. While we strive for an iterative decomposition into
gradually more specific queries on every level, the goal of Bonchi et
al.’s query decomposition is a flat classification system of queries
that have small overlap and maximum precision, irrespective of their
generality. A further difference is that topical query decomposition
starts from an initial query, while our approach starts from a given
library subset for which a single query might not exist.

As an alternative for the second principal step—taxonomy
composition—Navigli et al. [19] mine hypernym relationships from
the documents’ texts to build up a graph of class relationships, and
prune the graph to a tree in a post-processing step. Thanks to the flex-
ibility of the retrieval models behind query-based search engines,
our framework can integrate an approach like that: the retrieval
model can simply assign to the library documents all known hy-
pernym relationships. A query with a hypernym then retrieves the
appropriate documents and can also be used by our greedy set-cover
algorithm.
Document Clustering. Document clustering is the unsupervised
complement to classification. It aims at grouping similar documents
into one cluster. The objective of document clustering hence aligns
well with the objective of dynamic taxonomy composition. The best
known approach to document clustering is Scatter/Gather [8], which,
like our approach, creates a cluster (class) hierarchy in an iterative

process. In the Scatter phase of the two-step approach, documents
are clustered by some cluster algorithm, and the resulting clustering
is presented to the user. The user then selects the clusters of interest
in the Gather phase, and the documents that belong to the selected
clusters are used as input for the next iteration. This unsupervised
discovery of classes has the potential to reveal semantic concepts
that have no representation in the query space. But there are a
couple of drawbacks often preventing document clustering from
being effective. The most severe issue of clustering is that the
problem of finding a meaningful label, from which the major cluster
characteristics can be inferred, is not sufficiently solved [24].

Recent document clustering approaches (cf. [6] for an overview)
thus turn to monothetic clustering, producing cluster labels from
the terms that appear in each document of a cluster. However, we
argue that this approach trades the discovery of sophisticated con-
cepts against an ineffectual use of queries as labels. Furthermore,
clustering acts only locally on the given document set and is not
directly connected to the underlying search engine. Hence, no ad-
ditional library documents can be efficiently retrieved for a cluster,
preventing complementation and serendipities. Finally, clustering
constitutes a shift in the interaction paradigm that is hard to com-
municate to the user: Clicking on a cluster label reveals documents
different from a search for the cluster label. Our proposed dynamic
taxonomy composition sidesteps these issues by considering only
classes with a representation in the query space. We also suggest the
implementation of a feedback loop into our approach that drives the
(manual) annotation of documents for which no proper taxonomy
can be found.

3. DYNAMIC TAXONOMIES
In this section, we formalize our approach and explain how to

compute a keyquery-based taxonomy for a set of library documents.
Our proposed strategy is outlined in Figure 2. The upper part shows
the class acquisition process: tagging the library documents with
their keyqueries. This process runs offline and generates the queries
used as candidate classes in taxonomy composition. The lower part
of the figure illustrates the online taxonomy composition process.
Each level of the taxonomy is computed by solving the optimization
problem introduced in Section 1.3. The computation of subsequent
taxonomy levels is triggered by the user, who selects a query from
the current taxonomy level. We present the two parallel processes
in detail in the following, including five constraints that control the
various subroutines.

3.1 Class Acquisition
To compose a taxonomy for a set of library documents, a set of

classes to draw from has to be acquired. Our approach derives this
class set from the query-based search engine, a component com-
monly available in modern digital libraries [12]. To facilitate the
retrieval of documents through queries, the search engine extracts
the vocabulary V from the library documents’ meta-data and full
text, and then indexes the library documents D with respect to V
(left column in Figure 2). In the resulting data structure, the inverted
index µ, each phrase in V constitutes a key pointing to a postlist
that contains all documents with a non-zero retrieval score for that
phrase. If a query Q ⊂ V is submitted to the search engine, the
search engine takes each term from Q, collects the documents in
the respective postlists, and ranks them according to their aggre-
gated retrieval scores (both sum and product are common for the
aggregation).

For the computation of retrieval scores, a large variety of retrieval
models are available [18]. These range from simple bag-of-words
models like Tf-Idf or BM25 to more sophisticated topic models like
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Figure 2: Strategy overview: How to for compose dynamic tax-
onomies for arbitrary library subsets. The upper part of the fig-
ure shows the offline component that continuously determines
all keyqueries for the library documents and stores them in the
reverted index. The lower part of the figure shows the online
component that iteratively composes taxonomy levels Qc for a
user provided library subset Du. The composition of sublevels
is triggered by the user who selects a queryQu from the current
taxonomy levelQc.

LDA (latent topics) or ESA (explicit topics). Note that the choice of
the retrieval model is crucial to our approach, and has a large impact
on the quality of the composed taxonomies.

To acquire a set of classes for taxonomy composition from the
search engine, we propose to generate a suitable subset Q of all
queries that can be formulated from V , submit these queries to the
search engine, and tag the returned documents with the respective
query as class (right column of Figure 2). An efficient access to
the classes (or queries) for a document is provided by a reverted
index µ−1. In the reverted index, each library document serves as
the key for a postlist that contains all queries for which the document
is relevant [20].

The queries that can be formulated on the basis of V theoretically
comprise all 2|V | subsets of V . To prune the query set, we consider
only those queries as classes that meet the common perception of
class labels in conventional classification systems. Specifically, we
introduce the following two class label constraints:

1. Part-of-speech constraint. The parts of speech used for class
labels in most classification systems are noun phrases (e.g.,
“information system” or “topic model”). We hence add toQ
only queries that are combinations of noun-phrases.

2. Query combination constraint. A class label is usually made
up of one noun phrase or two noun phrases joined by a con-
junction (e.g., “digital libraries and archives”). In extreme
cases, three phrases are joined. We hence discard fromQ all
queries that consist of more than three noun phrases.

Given the class label constraints, an upper bound on the number
of queries can be stated as |Q| <

∑3
k=1

(|V |
k

)
. Note that the ac-

tual number of queries will be lower, since the fraction of k-phrase
queries that return a relevant document decreases for larger k. Fol-
lowing Stein et al. [11], we view the query space as the hypercube
of phrase combinations illustrated in Figure 3 (the partitioning of
the query space in the figure will be explained later). Each level l of
the hypercube contains all l-combinations of phrases from V . To
populate the reverted index efficiently, we explore the query space
in a level-wise manner using the Apriori algorithm [1] starting with
all single-phrase queries. For each subsequent level l, we consider
only those l-phrase queries that can be generated by adding a phrase
from V to an (l− 1)-phrase query that returns more than one result.
This way, the query space is pruned whenever a query reaches the
maximum degree of specificity.

In addition to the class label constraints, we introduce a class
assignment constraint controlling the fraction of a query’s search
results that are tagged with the query in the reverted index. The
class assignment constraint ensures that the queries in a document’s
postlist are all keyqueries for the document (i.e., that the document
is returned in the top results):

3. Relevance constraint. Users expect that documents assigned
to a class in a taxonomy contain content about the subject
represented by the class label, and do not just mention the
class label in the text. However, determining at which position
in a query result list the mere occurrence of the query phrases
turns into “aboutness” is not trivial. Most retrieval models
assign retrieval scores greater than zero already if a document
contains any of the query phrases. To facilitate a binary
decision upon the membership of a document to a class, we
suggest the introduction of a retrieval score threshold: The
retrieval score must exceed the score of a fictitious document
with average length and average click rate that contains all
query terms once.

The use of a retrieval score threshold may appear a bit old-
fashioned compared to the use of click through information from the
search engine’s query log. But we argue that our constraint would
account for users’ click behavior if the employed search engine
takes click behavior into account for retrieval score computation.
Furthermore, a score threshold circumvents the cold-start problem
inherent to any pure query log-based method (a query log is empty
at first).

Once the postlists of the reverted index are filled with the library
documents’ keyqueries, the online process can compose dynamic
taxonomies for user-provided library subsets. Before we turn to the
online process, however, we emphasize that the reverted index is
not a static data structure. Whenever the search engine indexes a
new document, the reverted index allocates a new postlist for the
document and computes the respective keyqueries. If the new docu-
ment adds new noun phrases to V , the query space Q is extended
accordingly, and the search results for the new queries are incorpo-
rated into the reverted index. Through this tight interplay with the
search engine, our taxonomy composition approach always reflects
the current state of the library.

3.2 Taxonomy Composition
Whenever a user turns to the system with a set of library docu-

ments Du, the taxonomy composition process responds with a set
of queriesQc that represents the first level of the taxonomy for Du.
If the user selects a query fromQc for further subdivision, the same
process is repeated for that query’s result set as the new Du. This
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Figure 3: The search space for a five-phrase vocabulary P = {p1, . . . , p5}. The two boundaries shown divide the search space into
three subspaces of queries returning too few, the desired number, or too many documents (from top to bottom). The dashed line
illustrates the query combination constraint prohibiting the use of more than three phrases in a query.

gives rise to an iterative process, where the taxonomy composition
adapts interactively to the user’s information need.

In each iteration, we strive for a subdivision into gradually more
specific complementation classes which cover all the documentsDu

and contain further topically similar library documents. To reach
these goals, we introduce the following class composition con-
straints:

4. Fan-Out Constraint. In conventional classification systems,
the maximum number k of subclasses into which a class can
fall is about ten. For example, every internal class in the
Dewey Decimal Classification System is divided into exactly
ten subclasses. For our intended presentation of the composed
taxonomy in a grid on a computer screen, we argue that twelve
subclasses constitutes a more appropriate choice, and in ad-
dition allots more space for serendipity classes. Twelve sub-
classes can be placed evenly in a grid of one, two, three, four,
six, and twelve columns, and hence allows a space efficient
presentation on many devices from mobile to large desktop
screens. Note that for the same reason, today’s most popu-
lar responsive design framework, Bootstrap, uses a twelve-
column grid.5

5. Level of Generality Constraint. One of the design goals for
hierarchical classification systems is to compose a balanced
taxonomy where each level constitutes a gradual specification
of the parent classes [25]. Given a maximum fan-out of k, a
balanced subdivision distributes the documents D of a parent
class into disjunct subclasses of size t = |D|/k. Since the
division into subclasses must be backed up by a semantic
justification, the target subclass size t is only a rough reference
point even in conventional classification systems. We thus add
a margin m to t, and consider as candidates for the subclasses
of a parent class all queries inQ with a search result size in
the interval [t−m, t+m]. As a default, we suggest a margin
of 50% of the target size.

The above level of generality constraint reduces the set of can-
didate queries that can be taken as subclasses in each iteration of
the composition process. In Figure 3, the boundaries drawn into the
query space indicate the separation of valid candidate queries from
overly specific and overly generic ones.
5
http://getbootstrap.com

To obtain the optimal set of subclasses in each iteration, we em-
ploy Greedy Document Cover given in Algorithm 1. Using the
reverted index, the algorithm first compiles the set of candidate
queries Qu. Each query from Qu returns at least one of the docu-
ments from Du, and satisfies the level of generality constraint.

The algorithm then finds an approximate solution for the opti-
mization problem stated in Section 1.3 using a greedy set cover
strategy [30]. It initializes the sets Dc (the document cover) andQc

(the queries representing the subclasses for Du) to the empty set.
For up to k iterations, it then selects the query Q∗ fromQu that cov-
ers the maximum number of documents not yet covered by previous
queries, and adds it to the subclassesQc. This process is repeated
until the maximum fan-out is reached, or no more candidate queries
are available.

The queries in Qc, when submitted to the search engine, return
a family of subsets of Du. These can be displayed to the user as
the classification of her search results. Note that, depending on Du

(and the corresponding queries in the reverted index), it may not be
possible to construct a cover of the entire set Du. In this case, the

Algorithm 1 Greedy Document Cover

Input: reverted index µ−1, document set Du,
number of subclasses k,
target class size t, margin m

Output: taxonomy sublevelQc

/ / Collect candidate queries for Du :
1: Qu ←

⋃
d∈Du

{ Q | Q ∈ µ−1(d), |DQ| ∈ [t±m] }

/ / Build a document cover Dc for Du:
2: Qc ← ∅
3: Dc ← ∅
4: while |Qc| < k ∧ Qu 6= ∅ do
5: Q∗ ← argmax

Q∈Qu

{|DQ ∩ (Du \Dc)|}

6: Qu ← Qu \ {Q∗}
7: Qc ← Qc ∪Q∗

8: Dc ← Dc ∪DQ

9: returnQc



remaining documents inDu\Dc may be added to a “miscellaneous”
class. As previously noted, the algorithm is intended to be applied
iteratively to subsets of Du, including the query result sets for the
classes in Qc. Since any label in the taxonomy is a valid query,
retrieving the result set of a class for further partitioning is a simple
matter of submitting the class label as a query to the search engine
(illustrated through the arrow at the bottom of Figure 2).

3.3 Discussion
The constraints on candidate queries ensure that the set cover

algorithm produces a reasonably well-balanced cover; at any level
of the taxonomy, a given class can at worst be twice as large as any
other. The reverted index must contain a sufficient number of queries
satisfying the level of generality constraint for the documents in Du.
Otherwise, the dynamic classification cannot cover all of Du, and
will contain a large “miscellaneous” class.

Conversely, if the reverted index contains several disjoint queries
near the upper bound of the required level of generality, the dynamic
taxonomy may cover all of Du in as few as 2

3
k iterations. In this

case, additional queries can be added toQc to form the serendipity
classes discussed in Section 1. As a first basic approach, we pick
serendipity classes randomly from the remaining candidate queries
inQu.

For the online part of our system, it is prudent to consider the
runtime complexity since the response time of the digital library re-
trieval system needs to be kept within reasonable limits for the sake
of user experience. Compiling the set Qu of candidate queries re-
quires O(|Du|) accesses to the reverted index, and at most O(|Qu|)
operations to select from the results those queries that fit the re-
quired specificity bounds. In order to solve the actual document
covering, the algorithm requires O(|Qu|) queries to the search en-
gine (independently of the number of iterations), as well asO(|Qu|)
set-intersection operations per iteration.

Considering that this procedure is repeated iteratively for all sub-
classes in the dynamic taxonomy, the amount of computation may
seem prohibitive for guaranteeing responsiveness at query time.
However, only the initial document covering ofDu needs to be com-
puted at query time. While the user studies the first taxonomy level,
the computation of subsequent taxonomy levels can be initiated and
the respective subclasses be cached. This introduces a tradeoff be-
tween storage and processing requirements at preprocessing versus
at query time, and middle-ground solutions are conceivable. For
instance, analysis of the query logs for the digital library’s search en-
gine can motivate long-term caching for frequently used taxonomy
classes, while rarely issued classes are computed online.

In this respect, taxonomy composition can be framed as an in-
stance of a slow search problem, a class of search scenarios where
traditional speed requirements are relaxed in favor of a high quality
search experience [26]. Due to the top-down nature of the document
cover algorithm, the taxonomy composition follows the user’s ex-
ploration of the information need, generating class subdivisions on
demand.

4. EMPIRICAL EVALUATION
Due to the combinatorial complexity of the search space, dy-

namic taxonomy composition is clearly a big data problem. Even
for relatively small collections, the size of the query space quickly
grows to a magnitude that requires the use of distributed process-
ing techniques in order to be at all feasible. For the experiments
reported in this section, we employ the MapReduce programming
model [9], as implemented by the Apache Hadoop software library.6

6
https://hadoop.apache.org/

Our experiments run on a 40-node cluster of off-the-shelf desktop
machines, each equipped with four 2.4GHz CPU cores and 8–16 GB
of RAM.

In order to evaluate the utility and feasibility of our proposed
dynamic classification system, we apply our approach to a dataset
of 30,000 scientific papers—manually collected from the ACM
digital library over the course of several years—which we refer
to as Webis-CSP-Corpus. The corpus contains various metadata,
including conference, year of publication, and the classification
according to the ACM CCS taxonomy. With our experiments, we
explore the following research questions:

1. What additional processing requirements are imposed by the
dynamic classification system, both online and offline?

2. How useful are dynamic taxonomies in fulfilling a profiling-
oriented information need?

3. How well do dynamic taxonomies support serendipity search
or document recommendation? How do they compare to
human-made taxonomies in this regard?

As a preprocessing step, we extract a set of keyphrases from
each document in the collection, using the approach proposed by
Barker et al. [4], in which prominent head noun phrases function
as keyphrases for a document. We use the log-linear part-of-speech
tagger implementation by Toutanova et al. [28] to identify candidate
noun phrases. For the purpose of our experiments, the extracted
keyphrases form the vocabulary V which gives rise to the queries
in the search space. While we do not aim to replace traditional
static classification systems entirely, they serve as baseline for the
experiments described below.

4.1 Processing requirements
To map out the processing requirements for dynamic taxonomy

composition, we generate the query space on corpus subsets of
various sizes, and then compute a document cover for the set of all
documents in the collection. For each year from 1990 through 2010,
we take from the Webis-CSP-Corpus those documents published
that year or earlier. Table 1 shows the number of documents, the
number of keyphrases in the vocabulary and the resulting query
space sizes for a sample of years, as well as the corresponding
offline and online processing times. Note that the figures reported
for the size of the query space Q refer to the pruned search space
shown in Figure 3—the set of all possible queries constructed from
the vocabulary is larger by several orders of magnitude.

As discussed in Section 3, offline processing involves acquiring a
set of candidate queries from which to compose taxonomy classes.
We implement class acquisition as a processing pipeline of MapRe-
duce jobs which evaluate the Okapi BM25 retrieval function. By
computing document relevance scores for the entire collection in
parallel, this approach facilitates the large number of query evalu-
ations needed to compileQ. If our system were implemented in a
digital library setting, this type of batch processing could easily be
integrated with the library’s other data preprocessing efforts. As the
penultimate column of Table 1 shows, even using our modestly-sized
Hadoop cluster, the investment in processing time is manageable,
and much smaller than the time required for a taxonomy built by
human experts.

Digital library users would expect their search results to be clas-
sified and displayed in a timely fashion. This constrains the time
available to compute the document cover for the initial query result
set Du. Since starting up a MapReduce job involves significant
overhead, the document cover for user queries needs to be handled



Table 1: Query space sizes and processing times for corpus sub-
sets of different magnitudes.

Year Dataset sizes Run time [h:m:s]
|D| |V | |Q| Q Cover

1990 4,784 3,670 174,605 6:17 4.9 s
1995 8,593 5,982 607,615 14:39 7.1 s
2000 12,901 8,431 1,677,217 35:21 11.3 s
2005 19,288 11,893 4,577,178 1:24:24 17.7 s
2010 28,950 15,807 13,516,167 3:09:00 27.2 s

differently. For this part of the experiment, we use an implementa-
tion of the document cover algorithm running on a single machine.
The two indexes required for the computation are accessed via an
efficient inverted index implementation developed in-house. The
numbers in the last column of Table 1 report the time needed to
compute the document cover for the entire collection on a single
2.4GHz CPU core. The 27 seconds of processing time on the largest
subset of the collection is arguably too long to guarantee a respon-
sive user experience. However, the experiment represents a worst
case, in that the document cover is computed for the entire collec-
tion. Whereas in the main use case for dynamic classification we
envision—classification of search result sets—the set of documents
to cover is much smaller. This impacts performance greatly, as the
last column of Table 1 indicates. Each additional document to cover
implies an access to the reverted index, yielding additional queries,
each of which implies an additional access to the inverted index. In
the reverted index for Webis-CSP-Corpus, each individual document
is associated with an average of 10,000 queries, which supports the
intuition that smaller subsets of the collection will be significantly
less costly to process.

4.2 Profiling
A user with a profiling-oriented information need (e.g., identify-

ing all the classes of the papers from a specific conference) is best
served by a classification system that subdivides the document set in
a maximally informative way. We investigate a dynamic classifica-
tion system generated for the documents in the Webis-CSP-Corpus,
and compare it to the static, human-made ACM CCS classification
system. Owed to its organic growth over time, we expect the static
taxonomy to exhibit a lower information content than the dynamic
classification system.

The ACM CCS taxonomy for the documents in the Webis-CSP-
Corpus is three levels deep. The median number of subdivisions
under a given CCS class is 11, 6 and 3, for the top, middle, and leaf
level of the taxonomy. For the sake of comparability, we generate
a dynamic taxonomy of the same depth, with the fan-out param-
eters set to the CCS median at each level. As we are comparing
taxonomies for the entire corpus, the document set Du input to the
covering algorithm comprises the entire collection D.

Figure 4 shows the distribution of taxonomy class sizes for both
the human-made and the dynamic classification system. The left
chart shows taxonomy classes taken from the corpus documents’
metadata. On the right, the classification system was generated
by the document cover algorithm, using queries formulated from
keyphrases extracted from the documents’ text. In each chart, bar
height shows the total number of documents covered per depth of
the classification. Both classification systems assign more than one
class label to some documents—hence the number of documents
covered by the classification exceeds the total number of documents
in the collection. The shading of the bars illustrates how class size
is distributed among the branches of the taxonomy.

The figure demonstrates the high level of imbalance in the human-
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Figure 4: Distribution of class sizes in the human-made taxon-
omy, and a dynamic classification system generated from ex-
tracted keyphrases.

made taxonomy—especially on the highest level of classification.
Here, the largest branch subsumes more than 16,000 documents,
whereas any other class is at most one third that size. By contrast,
the dynamic query-based classification system results in a taxon-
omy where the number of documents per class is uniform within
any given level, and distinct across levels. Owed to the class size
imbalance, the static taxonomy covers a much larger number of
documents on the middle and leaf level. For instance, the static
taxonomy contains a leaf class of comparable size to the top-level
classes in the dynamic classification system.

To assess the usefulness of each classification system in a
profiling-oriented task, we compute the entropy at each branch in
the classification tree, as well as the number of redundant document-
class assignments. Table 2 shows the results aggregated by hierarchy
level. With entropy, we measure the information content in bits of
the class assignments, averaged over each level of classification. En-
tropy is measured at each branch in the taxonomy and corresponds
to the probability of a randomly sampled document belonging to a
given subclass below the branch—it is maximal if all subclasses are
the same size. The dynamic taxonomy achieves higher entropy than
the human-made classification system on the upper two levels of
the hierarchy, whereas the human-made classification system carries
more information at the leaf level. Both taxonomies are similar with
respect to the number of classes per document. While outliers in the
dynamic classification system tend to have higher redundancy than
in the static one, the average document is assigned to two classes at

Table 2: Comparison of entropy and redundancy for dy-
namic and human-made classification systems in the Webis-
CSP-Corpus by hierarchy level.

Depth Avg. Classes per document
Entropy µ σ Min Median Max

Static
1 2.79 1.59 0.74 1 1 5
2 1.94 1.93 1.01 1 2 8
3 1.84 2.11 1.16 1 2 10

Dynamic
1 3.46 1.93 1.01 1 2 7
2 2.58 2.19 1.47 1 2 13
3 1.58 1.93 1.32 1 1 19
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Figure 5: Average precision-recall curve, showing the perfor-
mance of the dynamic and human-made classification systems
at the document-recommendation task.

each level of classification in both cases.
These results demonstrate that it is possible to generate a dynamic

taxonomy with desirable structural properties, using only automati-
cally extracted head noun phrases as class labels. The dynamic tax-
onomy outperforms the human-made reference taxonomy especially
with respect to the information content of the higher-level subdivi-
sions of the document set. However, the human-made taxonomy is
superior in other regards, and we expect the best performance using
a retrieval model that combines information from both sources—
our described idea of backing up a traditional classification with a
dynamic query-based component.

4.3 Document Recommendation
In a final avenue of inquiry, we investigate the suitability of dy-

namic classification systems for document recommendation. In this
scenario, the user has already retrieved a set of documents relevant
to her information need. The retrieval system’s task is to present
related relevant documents, helping the user uncover new aspects of
the subject under investigation. Dynamic classification systems, be-
ing tailored to the user’s specific information need, should perform
considerably better at this task than a static classification system
that has to take the entire document collection into account.

To test this hypothesis, we perform the following experiment:
First, we sample a random query Q from the reverted index. This
query represents the overall information need. Second, we randomly
partition the result set of Q into two subsets D+ and D− of equal
size, whereD+ represents the known aspect of the information need,
and D− represents the unknown aspect (i.e., the set of documents
that the retrieval system should recommend). Third, we construct
a dynamic classification system for D+ using queries fromQ \Q.
Fourth, we measure the number of documents from D− that are
retrievable via the leaf classes of the classification system.

Table 3: Distribution of maximum recall, and precision at max-
imum recall, for the human-made and the dynamic taxonomy
in the document recommendation task.

µ σ Min Median Max

Static
Max. Recall 0.82 0.04 0.76 0.84 0.89
Max. Precision 0.02 0.01 0.01 0.02 0.05

Dynamic
Max. Recall 0.40 0.11 0.26 0.34 0.62
Max. Precision 0.61 0.08 0.47 0.63 0.73

We model a user who scans all leaf classes for relevant documents.
For the purpose of this experiment, the hypothetical user pursues an
optimal strategy: in each step, she examines the class that contains
the maximum number of previously unseen documents from D−.
The user stops when all retrievable documents from D− have been
considered. For each taxonomy class the user considers, we measure
the cumulative recall for hidden relevant documents, that is, the
proportion of documents from D− that the user has retrieved so far.
We also measure the precision with respect to D− at each step. In
total, we perform forty runs of the above experiment, with different
initial information needs. To put the performance of the dynamic
classification system into context, we perform the same experiment
using the leaf classes of the static CCS taxonomy, using the same
optimal search strategy as above.

Figure 5 shows a set of precision-recall curves depicting the
performance averaged over all forty experiments, comparing the
static and dynamic classification system. As the hypothetical user
examines taxonomy classes, each curve plots the fraction of all
documents in D− that the user has seen (recall) against the frac-
tion of previously unseen documents from D− out of all retrieved
documents (precision). The curves end at the point of maximum
recall, where no further documents from D− can be found in the
taxonomy. Due to the much larger leaf classes, the human-made
taxonomy achieves better maximum recall, at the cost of much lower
precision. In the dynamic taxonomy, nearly all documents are rele-
vant to the user’s information need, and out of these, close to half
are related to the unknown aspect of the information need. Table 3
shows the distribution of maximum recall for D− and precision at
maximum recall, over all forty experiments. In other words, the
numbers in the table show the distribution for the rightmost point in
the precision recall curve for the hidden relevant documents. The
table demonstrates a larger trend: while the large leaf classes in the
static taxonomy allow for consistently higher recall, the ratio of rel-
evant documents found is much better for the dynamic classification
system.

5. CONCLUSIONS AND FUTURE WORK
The rise of digital content in libraries has a deep impact on the

foundations of library management and forces us to revisit and re-
think the established library tools and processes. In this paper, we
revisit library classification systems and analyze their application
portfolio in the digital era. What we find is that classification sys-
tems are no longer urgently required to retrieve relevant documents,
but are rather supposed to complement the abilities of a query-based
search engine. Classification systems are a valuable tool for digital
libraries if they provide structured access to any given library subset,
if they complement the set with further relevant documents, and
if they embed the relevant documents into a broader context. To
this end, we present a dynamic taxonomy composition framework,
which acquires its classes directly from keyqueries against the li-
brary’s search engine. This close connection to the search engine
brings a variety of advantages compared to existing approaches,
including cost-efficient maintenance and seamless integration into
search interfaces. Our experiments demonstrate the feasibility of
our approach despite the complexity of the query space.

For future work, we propose a qualitative assessment of our
framework under different retrieval models. Most promising in this
regard seems the use of explicit topic models in combination with
lexical knowledge bases. We expect a retrieval model of this kind
to improve the quality of the class labels compared to standard bag
of word models. This is especially likely for macroscopic concepts
that appear only rarely as words in the documents’ text.
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