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Abstract

We experimentally compare the two algorithms A and B
by Fredman and Khachiyan [FK96] for the problem
Monet—given two monotone Boolean formulas ϕ in
DNF and ψ in CNF, decide whether they are equiva-
lent. Currently, algorithm B is the Monet algorithm
with the best known worst-case performance. However,
there is no experimental evaluation of its practical per-
formance yet, mainly due to the following two reasons.
Firstly, implementation of algorithm B is usually consid-
ered to be more involved than for algorithm A. Secondly
and probably more importantly, there is the assumption
that the operations performed by algorithm B to ensure
recursion on smaller sub-problems do only pay off the-
oretically.

In this paper, we contrast this assumption by
experimentally showing algorithm B to be competitive
and even superior to algorithm A on many instances.

1 Introduction

The problem Monet—Mo(notone) n(ormal form)
e(quivalence) t(est)—asks for the equivalence of two
monotone (a synonym for positive) Boolean formulas
ϕ in DNF and ψ in CNF. Algorithms solving Monet
can be easily transformed to solve the computational
variant Monet′—given a monotone DNF, compute the
equivalent CNF—and vice versa. Hence, Monet and
Monet′ are equivalent in the sense of solvability in
appropriate terms of polynomial time [BI95]. Further-
more, Monet′ is equivalent to the problems Dualiza-
tion of monotone CNFs and Transversal Hyper-
graph Generation. This means that any Monet
or Monet′ algorithm is applicable to many fundamen-
tal problems in such different fields like artificial in-
telligence and logic [EG95, EG02], computational bi-
ology [Dam06], database theory [MR92], data mining
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and machine learning [GKMT97], mobile communica-
tion systems [SS98], distributed systems [GB85], and
graph theory [JPY88, LLK80]. See [Hag08, Chapter 3]
for a more detailed list of equivalent problems and pos-
sible applications. The currently best known Monet
algorithms run in quasi-polynomial no(logn) time or use
O(log2 n) nondeterministic bits [EGM03, FK96, KS03].
Thus, on the one hand, Monet is probably not coNP-
complete, but on the other hand a polynomial time al-
gorithm is not yet known. This situation turns Monet
into one of the very few problems “between” P and NP-
resp. coNP-hard—the other famous such problem be-
ing Graph Isomorphism. Actually, there are polyno-
mial time algorithms for many special Monet classes—
e.g. when ϕ is a k-DNF, 2-monotonic, µ-equivalent, or
acyclic [BHIK97, Eit94, EG95]—but the exact complex-
ity of the general problem Monet is a long standing
famous open question [Pap97].

As for evaluating the practical performance, there
have been several experimental studies on known al-
gorithms for Monet or equivalent problems [BMR03,
DL05, KBEG06, KS05, LJ03, TT02, US03]. Unfortu-
nately, all have some lack of coverage. None of the pub-
lished studies include the algorithm B by Fredman and
Khachiyan [FK96], the Monet algorithm with the best
known worst-case performance. Actually, the usual as-
sumption in the literature is that the operations per-
formed by algorithm B to ensure recursion on smaller
sub-problems compared to the less involved algorithm A
just complicate the implementation and do only pay off
theoretically [BMR03, KBEG06]. Thus, the practical
performance of algorithm B has not been systematically
examined. Hence, it is not clear at all, which of the cur-
rently known algorithms is the best choice on which kind
of instances.

In this paper we start working on closing this
gap. Contrasting the somehow folklore assumption, we
experimentally show algorithm B to be competitive and
even superior to algorithm A on many instances.

2 Preliminaries

Two Boolean formulas are equivalent if they have the
same truth table. Monotone formulas are Boolean for-
mulas with ∧ and ∨ as only connectives. No negation
signs are allowed. A monomial (resp. clause) is the
conjunction (disjunction) of variables. We often refer
to monomials or clauses simply as terms. A monotone



DNF (resp. CNF ) is the disjunction (conjunction) of
monomials (clauses). A monotone DNF or CNF α is
said to be irredundant if there are no two terms in α
such that one is contained in the other. The irredundant
DNF and CNF of monotone formulas are unique [Qui53]
and can be obtained from respective redundant nor-
mal forms in quadratic time (by deleting the superset
terms). Since terms that contain other terms are “use-
less” in case of equivalence testing (absorption rule!),
we only concentrate on irredundant inputs yielding the
following formal definition.

Monet
instance: irredundant, monotone DNF ϕ

and CNF ψ
question: are ϕ and ψ equivalent?

The size of the Monet-instance (ϕ, ψ) is the num-
ber of variable occurrences in ϕ and ψ. An assignment

for ϕ and ψ is a subset A ⊆ V , where V is the set of
variables of ϕ and ψ. We write A(ϕ) for the evaluation
of formula ϕ with respect to the assignmentA. Thereby,
the notion is that variable x is set to true iff x ∈ A.
This means that the powerset P(V ) can also be seen as
the set of all assignments for ϕ and ψ. In the same way
we consider the terms of ϕ and ψ to be sets of variables.
Hence, they can also be viewed as assignments.

Note that throughout the paper ϕ always denotes a
monotone DNF and ψ always denotes a monotone CNF.

3 The FK-algorithms

In 1996 Fredman and Khachiyan developed two Monet
algorithms, FK-algorithm A and the improved version
FK-algorithm B [FK96]. Both algorithms exploit the
self-reducibility of Monet. Namely, ϕ and ψ are equiv-
alent iff setting any variable x to false resp. true yields
two respectively equivalent DNF/CNF-pairs. In case
of non-equivalence, both FK-algorithms return an as-
signment A with A(ϕ) 6= A(ψ) as a witness for non-
equivalence. Furthermore, both algorithms work recur-
sively, but before exploiting the self-reducibility they
check some basic conditions that can easily guarantee
non-equivalence in case of monotone normal forms.

3.1 Preconditions Let (ϕ, ψ) be a pair of an irre-
dundant, monotone DNF ϕ and an irredundant, mono-
tone CNF ψ that are equivalent. Then the following
three conditions hold. Firstly,

(3.1) any term of ϕ and any term of ψ intersect.

Assume there exists a monomial m ∈ ϕ and a clause
c ∈ ψ with m ∩ c = ∅. Now consider the assignment
A = m and note that A(ϕ) = 1 and A(ψ) = 0.

Secondly,

(3.2) ϕ and ψ contain exactly the same variables.

Assume that there is a variable x in ϕ that is not present
in ψ (the argumentation is similar if ψ contains a “new”
variable). Let m be a monomial of ϕ containing x and
consider the assignmentA = m\{x}. We haveA(ϕ) = 0
and A(ψ) = 1 as A has a non-empty intersection with
every clause of ψ due to condition (3.1).

Thirdly, denote by |ϕ| and |ψ| the number of terms
of ϕ and ψ, and let max(ϕ) and max(ψ) be the size of
a largest term in ϕ resp. ψ, then

(3.3) max(ϕ) ≤ |ψ|, max(ψ) ≤ |ϕ|.

Assume that there is a monomial m ∈ ϕ that contains
more variables than clauses are contained in ψ (the
argumentation is similar if ψ contains a clause that is
“too large”). Now let m′ ⊂ m be a proper subset of m
satisfying m′ ∩ c 6= ∅ for any clause c of ψ. Consider
the assignment A = m′ and note that A(ϕ) = 0 and
A(ψ) = 1.

Conditions (3.1)–(3.3) can be easily tested in linear
resp. quadratic time which is done by both FK-
algorithms as a preprocessing step. We now come to
the description of FK-algorithm A. In Section 3.3 we
then discuss the improvements of FK-algorithm B.

3.2 FK-algorithm A FK-algorithm A uses an addi-
tional precondition that holds for any equivalent (ϕ, ψ)
pair. For the number v of variables we have

(3.4)
∑

m∈ϕ

2v−|m| +
∑

c∈ψ

2v−|c| ≥ 2v.

The left hand side of condition (3.4) sums up the
assignments that satisfy ϕ and the assignments that
do not satisfy ψ. Hence, if the left hand side of
condition (3.4) is smaller than 2v, there must be an
assignment A∗ that does not satisfy ϕ but ψ. Such an
assignmentA∗ can be found iteratively as follows. Start
with the empty assignment and at step i include variable
xi iff ℓ(A∗

i−1∪{xi}) ≤ ℓ(A
∗
i−1), whereA∗

i−1 is the partial
result from step i − 1 and ℓ(A) gives the number of
monomials of ϕ satisfied by A plus the the number of
clauses of ψ not satisfied by A. Hence, A∗

i is computed
in a way as to minimize the value of ℓ where ℓ is
similar to the left hand side of condition (3.4). Fredman
and Khachiyan [FK96] mainly include condition (3.4) in
their algorithm A to ensure the existence of a sufficiently
frequent variable that then guarantees the validity of
estimations made in their worst-case analysis.

A pseudocode listing of FK-algorithm A is given as
Algorithm 1. We give some further brief remarks. As



for the initial call of FK-A, the global variable A is the
empty set. Note that we have to check irredundancy
of the input as this property of the original input
might get lost during the recursion process. We already
discussed how appropriate assignments are found in case
of violation of conditions (3.1)–(3.4).

In case of small inputs consisting of at most one
term each (line 4 of FK-algorithm A), there are only
very few possibilities. If there are no variables at all, ϕ
is the empty DNF (which is unsatisfiable) or contains
the empty monomial (which is valid). The equivalent
CNF of the empty DNF contains the empty clause only,
and the equivalent CNF of the empty monomial is the
empty CNF. Hence, if the inputs are not equivalent but
contain no variables, any assignment serves as a witness.
If the formulas contain variables but only one term each,
the previous check of condition (3.2) already ensures
equivalence as then the formulas must be identical!

As for the recursive process, the FK-algorithm A
decomposes the original input instance (ϕ, ψ) as fol-
lows. It selects a “splitting” variable x that appears
with frequency at least 1/ log(|ϕ| + |ψ|) in either ϕ or
ψ. The existence of such a variable is ensured by con-
dition (3.4) [FK96]. Then ϕ and ψ can be rewritten
as

ϕ ≡ (x ∧ ϕ0) ∨ ϕ1,

ψ ≡ (x ∨ ψ0) ∧ ψ1,

where ϕ1 (resp. ψ1) contains the monomials (resp.
clauses) of ϕ (resp. ψ) that do not contain x and ϕ0

(resp. ψ0) are the other monomials (resp. clauses)
from which x was excluded. Now deciding equivalence
of (ϕ, ψ) is equivalent to deciding equivalence of the two
smaller problems

(ϕ1, ψ0 ∧ ψ1) and(3.5)

(ϕ0 ∨ ϕ1, ψ1).(3.6)

Note that (3.5) corresponds to setting x to false in the
original instance (ϕ, ψ) whereas (3.6) corresponds to set-
ting x to true. Hence, if the call on subproblem (3.5) re-
turns an assignment showing non-equivalence, the orig-
inal call can return exactly this assignment (remember
the set notion of assignments). In case that the second
subproblem (3.6) is not equivalent, the algorithm adds
the splitting variable x to the assignment.

Fredman and Khachiyan showed the following
worst-case performance.

Proposition 3.1. ([FK96]) FK-algorithm A runs in

time nO(log2 n).

The main tool in their analysis of FK-algorithm A is to
base the estimation of the number of recursive calls on

Algorithm 1 The FK-algorithm A (FK-A)

Input: irredundant, monotone DNF ϕ and CNF ψ
Output: ∅ in case of equivalence; otherwise, assign-
ment A with A(ϕ) 6= A(ψ)

1: make ϕ and ψ irredundant
2: if one of conditions (3.1)–(3.4) is violated then
3: return appropriate A

4: if |ϕ| · |ψ| ≤ 1 then
5: return appropriate A found by a trivial check

6: find a variable x appearing with frequency
≥ 1/ log(|ϕ|+ |ψ|) in either ϕ or ψ

7: A ← FK-A(ϕ1, ψ0 ∧ ψ1)
8: if A = ∅ then
9: A ← FK-A(ϕ0 ∨ ϕ1, ψ1)

10: if A 6= ∅ then return A ∪ {x}

11: return A

the fact that for equivalent normal forms condition (3.4)
holds and hence the splitting variable is sufficiently
frequent.

As for the practical performance, an experimen-
tal study of a randomized version of FK-algorithm A
showed it to be quite efficient [KBEG06]. Furthermore,
there is also a version by Tamaki designed to run with
polynomial space [Tam00].

3.3 FK-algorithm B FK-algorithm A does not ex-
ploit the fact that the second recursive call is only per-
formed if the first call did not yield a witness for non-
equivalence, but FK-algorithm B does. Assume that
the input (3.5) of the first recursive call is an equivalent
pair. Now in the second call, we try to find an assign-
ment A with A(ϕ0∨ϕ1) 6= A(ψ1) (a witness for the non-
equivalence of the second pair (3.6)). As ϕ1 is equivalent
to ψ0 ∧ψ1 this then gives A(ϕ0)∨A(ψ0 ∧ψ1) 6= A(ψ1).
If now A(ψ0) = 1, we have A(ϕ0) ∨ A(ψ1) 6= A(ψ1),
which implies A(ψ1) = 1 and A(ϕ0). However, this
is a contradiction to condition (3.1). Hence, actually,
for the second recursive call on (3.6) it suffices to find
an assignment A with A(ψ0) = 0 and A(ψ1) 6= A(ϕ0).
As for A(ψ0) = 0, note that we only have to check the
maximal assignments (with respect to set inclusion) not
satisfying ψ0, of which there are exactly |ψ0| (for each
clause c ∈ ψ0 the assignment that does not contain ex-
actly the variables of c). Hence, for each clause c of ψ0,
FK-algorithm B is recursively called on an adjusted pair
(ϕc0, ψ

c
1), where the superscript c denotes that all vari-

ables from c are set to false in the respective formula.
Note that in case we started testing equivalence

of ϕ and ψ by first examining the second pair (3.6),
an analogous argumentation yields that the second call



Algorithm 2 The FK-algorithm B (FK-B)

Input: irredundant, monotone DNF ϕ and CNF ψ
Output: ∅ in case of equivalence; otherwise, assign-
ment A with A(ϕ) 6= A(ψ)

1: make ϕ and ψ irredundant; ν = |ϕ| · |ψ|;
2: if one of conditions (3.1)–(3.3) is violated then
3: return appropriate A

4: if min{|ϕ|, |ψ|} ≤ 2 then
5: return appropriate A found by a trivial check

6: choose some variable x from the formulas
7: ε(ν)← 1/χ(ν)
8: εϕx ← |{m ∈ ϕ : x ∈ m}|/|ϕ|
9: εψx ← |{c ∈ ψ : x ∈ c}|/|ψ|;

10: if εϕx ≤ ε(ν) then
11: A ← FK-B(ϕ1, ψ0 ∧ ψ1)
12: if A 6= ∅ then return A

13: for all clauses c ∈ ψ0 do
14: A ← FK-B(ϕc0, ψ

c
1)

15: if A 6= ∅ then return A∪ {x}

16: else if εψx ≤ ε(ν) then
17: A ← FK-B(ϕ0 ∨ ϕ1, ψ1)
18: if A 6= ∅ then return A ∪ {x}

19: for all monomials m ∈ ϕ0 do
20: A ← FK-B(ϕm1 , ψ

m
0 )

21: if A 6= ∅ then return A∪m

22: else
23: A ← FK-B(ϕ1, ψ0 ∧ ψ1)
24: if A = ∅ then
25: A ← FK-B(ϕ0 ∨ ϕ1, ψ1)
26: if A 6= ∅ then return A∪ {x}

27: return A

then is equivalent to finding an assignment A with
A(ϕ0) = 1 and A(ϕ1) 6= A(ψ0). Hence, for each
monomial m of ϕ0, FK-algorithm B is recursively called
on an adjusted pair (ϕm1 , ψ

m
0 ), where the superscript

m in this case denotes that all variables from m are
set to true in the respective formula. Note that in
case of non-equivalence we now also have to include
the corresponding monomialm in the respective witness
(remember our set notion of assignments).

A pseudocode listing of FK-algorithm B is given
as Algorithm 2. The algorithm exploits the above
described decomposition of the second recursive call
whenever useful. The decision, if it is useful and which
of the two recursive calls is performed first, is done
according to the frequency of the “splitting” variable x
(chosen in line 6). Therefore, in line 7 the algorithm
computes a “threshold” frequency ε(ν) = 1/χ(ν) ,
where ν = |ϕ| · |ψ| is the volume of ϕ and ψ and χ
is the function defined by χ(n)χ(n) = n. Note that

χ(n) ∼ logn/ log logn = o(logn).
If the frequency of the splitting variable in ϕ is less

than ε(ν), the FK-algorithm B uses (3.5) as input of
the first recursive call and uses the more sophisticated
version of the second call to solve (3.6). If elsewise
the frequency of the splitting variable in ψ is less than
ε(ν), the FK-algorithm B uses (3.6) as input of the first
recursive call and then solves (3.5) using the improved
decomposition. If otherwise the splitting variable is
more frequent than ε(ν) in both, ϕ and ψ, the FK-
algorithm B just branches as FK-algorithm A. Note
that condition (3.4) is not necessary any more as we do
not have to guarantee a sufficiently frequent splitting
variable.

As for the easy cases in line 4, note that if
min{|ϕ|, |ψ|} ≤ 1 we have a similar argumentation as
for FK-algorithm A. If the formulas are not empty, one
contains just one term and the other then has to con-
tain singleton terms for each variable. If not, it is easy
to give a witness for non-equivalence according to the
situation. Similarly, if the minimum is 2, a brute force
multiplication of the two terms and a following compar-
ison to the other normal form is sufficiently efficient.

As for the worst-case analysis, Fredman and
Khachiyan give a better upper bound on the runtime
than for FK-algorithm A.

Proposition 3.2. ([FK96]) FK-algorithm B runs in

time no(logn).

The main tool in the analysis is that the new branching
guarantees better bounds on the size of the inputs of
recursive calls than in the analysis of FK-algorithm A.

As for the practical performance, none of the so far
published experimental studies of Monet algorithms
include FK-algorithm B as the assumption usually
is that, despite the theoretically worse runtime, FK-
algorithm A will perform better than FK-algorithm B in
experiments [BMR03, KBEG06]. However, we will show
in Section 5 that this assumption has to be adjusted, as
in fact FK-algorithm B turns out to be competitive in
practical experimentation.

4 A few implementation details

The algorithms were implemented using Java. We
decided to represent variable sets—like terms and
assignments—as bitmaps which is just a sequence of
bits where bit i is set iff xi is contained in the corre-
sponding term. This allows us to process operations on
formulas as logical operations on bitmaps, which can
be performed very fast if using some Java predefined
data type. Hence, our choice for internally represent-
ing bitmaps is the long data type—one of the primitive
Java data types. Note that we can use only 63 of the



64 bits of a long variable (the remaining bit being the
reserved sign bit). This restricts us to formulas with at
most 63 variables. Hence, we compared several other
possibilities of representing bitmaps. Namely, we tried
using BigInteger, BitSet, and an own structure com-
posed of an array of sufficiently many long’s. Somehow
surprisingly, the best overall performance for formulas
with more than 63 variables was achieved by our own ar-
ray of long’s structure that beats the Java proprietary
data types in our pretests. However, not that surpris-
ingly, for formulas with less than 63 variables, a single
long turns out to be the best choice.

Now that we know how to represent variable sets,
we still have to internally represent complete normal
forms. In our pretests we compared implementations of
the FK-algorithms using the classes Array and Vector

to store a set of bitmaps. An advantage of Array is
the faster access compared to Vector, whereas Vector
might have advantages in the process of making inputs
irredundant as in an Array implementation we have to
manually close “gaps” in the array due to redundant
terms. However, our pretests favored the Array imple-
mentation.

Hence, in our implementations a formula is stored as
an Array of bitmaps—that itself are stored as long resp.
Array of long according to the number of variables.

Both FK-algorithms use an irredundancy procedure
in line 1 (as in recursive calls irredundancy of the
original inputs might get lost). But note that when
making the DNF/CNF of a recursive call irredundant
not the whole DNF/CNF have to be considered as the
terms that included the splitting variable cannot be
redundant in the resulting formulas. Redundancy can
only appear in the formulas ϕ0 ∨ ϕ1 and ψ0 ∧ ψ1 and
there only terms in ϕ1 and ψ1 have to be checked for
redundancy. Hence, in our implementations, the process
of making formulas irredundant is always carried out
before a recursive call. This significantly speeds up
computation. Note that in case of FK-algorithm B we
can analogously save some processing time when making
the inputs of the many calls replacing the second call
irredundant. If we set the variables of a monomial m of
ϕ0 to true only monomials of ϕm1 may be redundant.
Analogously, in case of setting the variables of a clause
c of ψ0 to false only clauses of ψc1 may be redundant.

In our implementations we also slightly adopt the
choice of the splitting variable to speed up computation
but not affecting the theoretical runtime guarantees. As
for FK-algorithm A we do not check which variables are
sufficiently frequent but choose a variable with the high-
est frequency in either ϕ or ψ. As for FK-algorithm B
we always choose a variable with the smallest frequency
in either ϕ or ψ to reach the improved branching when-

ever possible. Furthermore, we do not really compute
the “threshold” frequency as there is no closed form for
the function χ. Hence, instead of computing ε(ν) via
χ, we compute the frequencies of our splitting variable
xi (defined in lines of Algorithm 2) and set yϕ = 1/εϕi .
When we now have to check whether εϕi ≤ ε(ν) we in-
stead perform the equivalent check y

yϕ

ϕ ≥ ν that can be
implemented more easily. An analogous check is per-
formed for εψi .

5 Experimental results

To ensure comparability, we use test instances that were
also used in previous studies [KBEG06, KS05]. We only
slightly changed the known test bed in the sense that
we added some additional instances not used before.
Namely, we have so-called DTH instances that we derive
by a role exchange from the known TH instances.
Furthermore, we use a class of instances that are
“hard” for several other Monet algorithms in the sense
of theoretical lower bound analysis [Tak07, Hag07].
The DNFs of our test instances are defined as follows
(equivalent CNFs were previously computed by a brute
force multiplication using the DL-algorithm [DL05] if
necessary):

Matching (M(v)): v variables (v is even) x1, . . . , xv
and the monomial set {{xi−1, xi} : 2 ≤ i ≤
v, i is even} (in a graph this would form an induced
matching). Hence, the DNF has v/2 monomials
and the CNF has 2v/2 clauses.

Dual Matching (DM(v)): roles of DNF and CNF of
the respective M(v) instance are exchanged. Hence,
the CNF is very small.

Threshold (TH(v)): v variables (v is even) x1, . . . , xv
and the monomial set {{xi, xj} : 1 ≤ i < j ≤
v, j is even}. This yields v2/4 monomials and
v/2 + 1 clauses.

Dual Threshold (DTH(v)): roles of DNF and CNF
of the respective TH(v) instance are exchanged.

Self-Dual Threshold (SDTH(v)): the monomial set
of SDTH(v) is obtained from the TH and DTH
instances as follows: {{xv−1, xv}} ∪ {{xv−1} ∪m :
m ∈ TH(v−2)}∪{{xv}∪m : m ∈ DTH(v−2)}. The
effect is that the equivalent CNF has the same set of
terms. The number of terms is (v−2)2/4+v/2+1.

Self-Dual Fano-Plane (SDFP(v)): the DNF con-
tains v variables and (k− 2)2/4+ k/2+1 monomi-
als, where k = (v − 2)/7. The construction starts
with the DNF ϕ0 that contains the monomials
{x1, x2, x3}, {x1, x5, x6}, {x1, x7, x4}, {x2, x4, x5},



v = 20 v = 24 v = 28 v = 30 v = 32 v = 34 v = 36 v = 38 v = 40
M FK-A 0.94 2.25 14.14 45.28 108.58 264.68 677.69 1888.78 5396.90

FK-B 0.54 1.36 6.25 19.94 68.43 245.36 944.16 3538.28 15107.78

v = 20 v = 24 v = 28 v = 30 v = 32 v = 34 v = 36 v = 38 v = 40
DM FK-A 0.88 3.78 19.36 45.10 107.20 267.32 684.25 1970.00 5962.20

FK-B 0.53 1.45 6.46 19.67 69.70 256.71 905.17 3575.83 14130.80

v = 40 v = 60 v = 80 v = 100 v = 120 v = 140 v = 160 v = 180 v = 200
TH FK-A 0.68 1.73 1.47 1.93 2.89 4.52 6.85 10.64 16.79

FK-B 0.04 0.30 0.51 0.61 0.94 0.90 1.19 1.71 2.00

v = 40 v = 60 v = 80 v = 100 v = 120 v = 140 v = 160 v = 180 v = 200
DTH FK-A 0.48 1.29 1.48 2.09 3.06 4.66 6.67 10.23 13.92

FK-B 0.04 0.30 0.48 0.65 0.96 0.93 1.47 1.56 2.04

v = 42 v = 62 v = 82 v = 102 v = 122 v = 142 v = 162 v = 182 v = 202
SDTH FK-A 1.28 1.39 1.72 3.06 5.13 9.24 16.84 27.08 41.33

FK-B 0.30 0.51 0.83 1.16 1.41 2.49 4.81 7.35 10.81

v = 16 v = 23 v = 30 v = 37
SDFP FK-A 0.47 2.42 15.40 801.17

FK-B 0.10 1.44 6.52 113.68

Table 1: Performance of the FK-algorithms. Runtime in seconds.

{x2, x6, x7}, {x3, x4, x6}, and {x3, x5, x7}, repre-
senting the set of lines in a Fano plane. Now let
ϕ = ϕ1 ∨ · · · ∨ ϕk, where ϕ1, . . . , ϕk are k dis-
joint copies of ϕ0. Furthermore, let ψ be the equiv-
alent CNF of ϕ; its 7k clauses are obtained by
taking one monomial from each of the k copies of
ϕ0. We obtain the monomial set of SDFP(v) as
{{xv−1, xv}} ∪ {{xv−1} ∪m : m ∈ ϕ} ∪ {{xv} ∪ c :
c ∈ ψ}.

Takata: these DNFs are “hard” for several Monet
algorithms and are used in proving lower
bounds [Tak07, Hag07]. The starting point is
ϕ1 = x1. The DNF ϕi is then obtained by mul-
tiplying out ϕi = (α ∨ β) ∧ (γ ∨ δ), where α, β,
γ, and δ are disjoint copies of ϕi−1. This gives

22(2i−1) monomials in the DNF and 22i−1 clauses
in the equivalent CNF.

The experimentation was done on an AMD
Athlon 64 3700+ with 2,2 GHz and 1GB RAM running
a Debian/GNU Linux 4.0 with kernel version 2.6.18. As
for compiling and interpreting the bytecode we used the
JDK and JRE by Sun in version 1.5.0.10 in the 64 bit
variant. Table 1 summarizes our experimental results
on equivalent input instances. In the table, we show
the total CPU time, in seconds. Times are normalized
over five runs for each instance. Furthermore, Figures 1
to 4 graphically show our results on several of the test
instance classes. Note the the time axes are scaled log-
arithmically.

In Table 1 there are no results for the Takata in-
stances or for non-equivalent inputs. As for the Takata
instances, the reason is their exponential growing term
set. The Takata DNFs ϕ1 or ϕ2 and their equivalent
CNFs are just too small to give meaningful runtimes.
Furthermore, storing ϕ4 would require more than 1GB
so that we decided to only test ϕ3 and its equivalent
CNF. This instance is solved by FK-algorithm B in
753.62 seconds whereas FK-algorithm A did not finish
within 5 hours (18,000 seconds).

As for non-equivalent inputs, we tested both FK-
algorithms on non-equivalent inputs that we consider to
be “hardest”. Namely, leaving out just one term of the
DNF or CNF results in “nearly” equivalent instances.
Consequently, the runtimes of our implementations then
are just a little faster than the ones we report for the
respective equivalent inputs. Not surprisingly, leaving
out more terms or using some completely different
CNFs speeds up computation as then larger and larger
parts of the recursion tree are not traversed. Hence,
the runtimes in Table 1 are somehow the “worst” for
the respective instance classes with the FK-algorithms
traversing the whole recursion tree.

6 Conclusion

Comparing our results for FK-algorithm A and FK-
algorithm B, we can conclude that FK-algorithm B is
competitive on all classes, except for large Matching or
Dual Matching instances. What exactly happens on
these instances is an interesting issue to be addressed
in future research. Utz-Uwe Haus mentioned that one
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reason might be internal sorting of the terms [Hau08].
Anyway, our experiments show that FK-algorithm B
should not a priori be excluded from experimental
studies of Monet algorithms any more.

As for the computational variants of the FK-
algorithms—given the DNF, compute the CNF—the
relative behavior stays the same. However, runtime in-
creases dramatically and, compared to a Java implemen-
tation of the DL-algorithm [DL05], our implemented
computational variants of the FK-algorithms currently
are rather slow.

A promising future research task would be the
development of an unbiased, comprehensive, systematic
experimental evaluation of all the known algorithms
for Monet and the computational variant Monet′.
Unfortunately, the existing studies mostly just show the
potential of a single algorithm (and are often authored
by the algorithm’s developers), usually implemented on
different platforms. From a more theoretical perspective
it would be really interesting to have a theoretical lower
bound for the FK-algorithms. Though Gurvich and
Khachiyan [GK97] note that it should be possible to
give a superpolynomial lower bound for FK-algorithm A
using Takata-like instances, the proof is still open.

Giving a lower bound for FK-algorithm B seems to be
even more involved.
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