
Capacity-constrained Query Formulation

Matthias Hagen and Benno Maria Stein

Faculty of Media
Bauhaus University Weimar, Germany

Abstract Given a set of keyphrases, we analyze how Web queries with these
phrases can be formed that, taken altogether, return a specified number of hits.
The use case of this problem is a plagiarism detection systemthat searches the
Web for potentially plagiarized passages in a given suspicious document. For the
query formulation problem we develop a heuristic search strategy based on co-
occurrence probabilities. Compared to the maximal termsetstrategy [3], which
can be considered as the most sensible non-heuristic baseline, our expected sav-
ings are on average 50% when queries for9 or 10 phrases are to be constructed.

1 Introduction
The problem considered in this paper appears as an importantsub-task of automatic text
plagiarism detection. Plagiarized passages in a suspicious document can be found via direct
comparisons against potential source documents. Todays typical source of plagiarism is the
Web, which obviously contains too many documents for directcomparisons. The straight-
forward solution is to extract keyphrases from the suspicious document and to retrieve a
tractable number of documents containing these phrases. These documents are considered
as the best potential sources of plagiarism since they probably cover similar topics. Our
contribution is a strategy for finding a family of “promising” Web queries whose combined
results will be used for direct comparisons. The paper in hand does not deal with the com-
plete plagiarism detection task; its focus is on the Web query pre-computation step.

The number of source documents a detection system can consider for direct compar-
isons is constrained by some processing capacityk. If all the extracted keyphrases (usually
about 10) from the suspicious document are submitted as one single Web query, probably
too few documents are returned with respect tok. Similarly, queries containing only few of
the extracted phrases are likely to yield a huge number of hits; from these only a fraction,
typically the Web search engine’s top-ranked results, could be processed by the detection
system. We argue that the probability to find potential plagiarism sources becomes maxi-
mum if the combined result list length of the promising queries is in the order of magni-
tude of the processing capacityk. We term this argumentthe-user-knows-better hypothesis
or, more formally,user-over-ranking hypothesis: the detection system as the “user” of the
search engine simply processes all of the promising queries’ combined results, this way
avoiding any search engine ranking issues that cannot be influenced.

Under the user-over-ranking hypothesis the CAPACITY CONSTRAINED QUERY FOR-
MULATION problem analyzed in this paper is defined as follows. Given is(1) a setW of
keyphrases, (2) a Web search engine’s query interface, and (3) an upper boundk on the
number of desired documents. The task is to find a familyQ ⊆ 2W of queries, together
returning at mostk documents and containing all the phrases ofW , if possible. Obviously,
a series of queries must be submitted to the search engine forfindingQ, and we focus on
the following optimization problem from the detection system’s perspective: What strategy

2 Matthias Hagen and Benno Maria Stein

Table 1.Keyphrase-document-relationships for the example scenario.

Keyphrase d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

w1 • • • • •
w2 • • •
w3 • • • • • • • •
w4 • • • • • •
w5 • • • • • • •

minimizes the average number of submitted queries? Two previous papers analyze related
query formulation problems: Shapiro and Taksa [4] suggest the rather simple open end query
formulation approach, for generating queries that each return at most an upper bound num-
ber of hits. Unfortunately, it is straightforward to construct situations in which the approach
fails although adequate queries exist. A more involved maximal termset query formulation
method is proposed by Pôssas et al. [3]; we use an adapted version as our baseline.

2 Basic Definitions and the Baseline Method
Any subsetQ ⊆ W can be submitted as a Web query, with the notion that phrases are in-
cluded in quotation marks. An engine’s reply contains an estimation lQ for the total number
of results matching the query. Our task is to find a simple family Q = {Q1, . . . , Qm}; sim-
ple means thatQi 6⊆ Qj for anyi 6= j. AltogetherQ’s queries should not yield more than
k results. Fromk we will derive an upper boundlmax with the notion that a single query
Q is promising iff lQ ≤ lmax. Another lower boundlmin is introduced for convenience
reasons. We say that forlQ < lmin the queryQ is underflowing, whereas forlQ > lmax it
is overflowing. Queries that are neither under- nor overflowing arevalid. A valid queryQ is
minimal iff omitting any phrase will result in an overflowing query. We propose the family
Qlo of all the minimal valid queries as a solution to CAPACITY CONSTRAINED QUERY

FORMULATION.Qlo is simple and covers all phrases that are contained in any valid query.
During the computation we count the overall numbercost of submitted Web queries.

Consider the following example scenario: Given are 10 indexed documentsd1, . . . , d10

and the setW = {w1, . . . , w5} with the keyphrase-document-relationships shown in
Table 1. Note that, submitted as a query, the setW itself will not result in any hit.
Figure 1 shows a part of the hypercube of the possible25 queries; the valid queries
for lmin = 3 and lmax = 4 are shown highlighted. The query{w3, w5} is over-
flowing (six hits) whereas{w1, w5} is underflowing (two hits). The familyQlo =
{{w1, w3}, {w1, w4}, {w2}, {w3, w4}, {w4, w5}} corresponds to the lower border in Fig-
ure 1; it will return all documents exceptd3.

As a baseline we adapt the maximal termset approach by Pôssaset al. [3], but we do not
use GENMAX as a subroutine to enlarge promising keyphrase subsets. Instead, we adopt

underflowing

overflowing

valid

{w2}

{w1, w3} {w1, w4} {w2, w3} {w4, w5}

{w3,w4,w5}

{w1} {w3} {w4} {w5}

{w1, w2} {w1, w5} {w2, w4} {w2, w5} {w3, w5}

{w1,w2,w3} {w1,w2,w4} {w1,w2,w5} {w1,w3,w4} {w1,w3,w5} {w1,w4,w5} {w2,w3,w4} {w2,w3,w5} {w2,w4,w5}

{w1, w2, w3, w4} {w1, w2, w3, w5} {w1, w2, w4, w5} {w1, w3, w4, w5} {w2, w3, w4, w5}

{w3, w4}

Figure 1. Hypercube of possible queries in the example scenario.

Capacity-constrained Query Formulation 3

Input: W , lmin, lmax Output: Qlo

if W is not overflowingthen
Q ← {{w} : w ∈ W and{w} is valid}
C1 ← {{w} : w ∈ W and{w} is overflowing}
i← 1

while Ci 6= ∅ do
for all Q, Q′ ∈ Ci, |Q ∩Q′| = i− 1 do
Qcand ← Q ∪Q′

if Qcand \ {w} ∈ Ci for all w ∈ Qcand then
if Qcand is valid thenQ ← Q∪ {Qcand}

if Qcand overflowsthen Ci+1 ← Ci+1 ∪ {Qcand}

i← i + 1

output Q

0.67

0.67

0.4

0.29

0.57

0.38

0.33

1.0

0.2

0.29

0.33

0.17

0.67
0.5 0.71

0.63

0.5
0.6

0.5

0.8

w1

w5

w4

w3

w2

Figure 2. Left: Apriori algorithm. Right: co-occurrence graph of Table 1’s example scenario.

the classic Apriori algorithm that also stems from the field of frequent itemset mining [1]
(cf. Figure 2 (left) for a basic pseudo-code listing). Apriori traverses the search space of all
possible queries (cf. Figure 1) in a level-wise manner. Whenever the validity of a queryQ has
to be checked Apriori submits it to the Web search engine and obtainslQ. The problem now
is to find an appropriatelmax. We start withlmax ← k, computeQlo using Apriori and count
the results all queries inQlo return. Usually this will be too many and we then use a binary
search for an appropriatelmax by halving the value as long as the computedQlo returns
too many results. If at one intermediate step aQlo returns approximatelyk results (we set
the bound to at least 90%), the computation stops and outputsthisQlo. If eventually too
few results are returned we enlargelmax according to the binary search paradigm. Note that
whenever we enlargelmax for the first time, all of the remaining evaluations have already
been done during the previous step such that no further queries have to be submitted.

3 Outline of the Heuristic Search Strategy
To improve the performance of the baseline with respect to the number of submitted queries
we propose a heuristic that mimics Apriori’s workflow but tries to avoid submission of Web
queries. In a pre-processing step the heuristic derives a directed edge- and vertex-weighted
co-occurrence graphGW . The graph contains a vertexvw for each keyphrasew ∈ W .
The weight ofvw is set tol{w}. An edgee = vw → vw′ from vw to vw′ gets as weight
the yield factorγ(e) = l{w,w′}/l{w}. Semantics: the yield factor multiplied by the weight
of vw gives the yield of Web hits whenw′ is added to the query{w}. Note that the yield
factor is reminiscent of the co-occurrence probability forthe keyphrasesw andw′; GW is
reminiscent of a mutual information graph (cf. Figure 2 (right)). ObtainingGW during pre-
processing involves the same computations and Web queries that Apriori processes during
the first two levels (queries with at most two keyphrases).

After the pre-processing step the heuristic starts an Apriori-like candidate generation
on the third level (queries containing three phrases). Hence our technique does not save
queries on the first two levels compared to Apriori, and no overall savings are achievable
for initial keyphrase sets of size three. However, from Level 3 on GW is used to assess a
query before submitting it as a Web query. Assume we are on some level i ≥ 2 (queries
with i keyphrases). All processed queriesQ from lower levels have a stored valueestQ

indicating an estimation of the length of their result lists. Let the current candidate query
Qcand be obtained by merging queriesQ andQ′ from leveli− 1. Before submittingQcand

as a Web query (like the baseline would do) the estimationestQcand
= estQ · avg{γ(vw →

4 Matthias Hagen and Benno Maria Stein

Table 2.Experimental results.

Number of keyphrases: 4 5 6 7 8 9 10 15

1 Complete query overflows 647 535 444 351 274 229 212 18
2 Remaining documents 465 567 668 752 838 883 900 757

3 Avg. cost heuristic 10.33 16.33 26.25 39.93 62.11 98.73 150.37 1 379.33
4 Avg. cost baseline 11.09 19.66 36.33 64.92 117.05 207.20 342.95 3 020.34
5 Micro-averaged cost ratio 0.93 0.83 0.72 0.62 0.53 0.48 0.44 0.46

vw′) : w ∈ Q} is computed. SubmittingQcand as a Web query and obtaining the engine’s
lQcand

is done iff the estimationestQcand
is in the order oflmax. Otherwise, no Web query

is submitted;estQcand
is remembered. This heuristic is not guaranteed to output the same

family Qlo as the baseline. However, experiments show good conformityof the output with
the baseline’sQlo while saving a significant number of queries at the same time (see below).

4 Experimental Analysis and Conclusion
We experimentally compare our heuristic and the baseline asfollows: for a given document
we extract a number of keyphrases and then formulate queriesusing these phrases. Key-
word extraction is managed by the head noun extractor [2]. Our document collection was
obtained by crawling papers on computer science from major conferences and journals. We
also added some books. From the established corpus we removed the documents for which
we were not able to extract 10 reasonable keyphrases. Our test collection was formed by
the 1112 remaining documents. We set the boundsk = 1000 and lmin = 1. For each
document of the test collection we had 7 runs of the baseline and our heuristic with 4, 5,
. . . , 10 extracted keyphrases. Another run was done on the 775documents of our collection
from which 15 reasonable keyphrases could be extracted. As Web search engine we used
the Microsoft Bing API. A typical Web query took about 300–550ms.

Table 2 shows the results of our experiments. For small keyphrase sets the complete
query with all phrases often overflows (cf. first row). We filtered out such keyphrase sets and
derived the statistics (rows 3 to 5) for the remaining documents (number given in second
row). In rows 3 and 4 we state the average numbercost of Web queries the approaches
submitted. The average ratio of submitted queries of the heuristic over the baseline is given
in row 5. The possible savings are substantial: Even for 7 phrases our heuristic saves 30–40%
of the queries and for 9 phrases possible savings reach 50%. Altogether, our results suggest
that a near real-time plagiarism detection service with processing capacityk = 1000 should
try to extract9 or 10 keyphrases as then the heuristic computesQlo in about1 minute.

Bibliography
[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. InProc. of VLDB 1994, pages 487–499.
[2] K. Barker and N. Cornacchia. Using noun phrase heads to extract document keyphrases.

In Proc. of AI 2000, pages 40–52.
[3] B. Pôssas, N. Ziviani, B. A. Ribeiro-Neto, and W. Meira Jr. Maximal termsets as a query

structuring mechanism. InProc. of CIKM 2005, pages 287–288.
[4] J. Shapiro and I. Taksa. Constructing web search queriesfrom the user’s information

need expressed in a natural language. InProc. of SAC 2003, pages 1157–1162.

