
Query Session Detection as a Cascade
∗

Matthias Hagen Benno Stein Tino Rüb

Bauhaus-Universität Weimar
99421 Weimar, Germany

<first name>.<last name>@uni-weimar.de

ABSTRACT

We propose a cascading method for query session detection, the
problem of identifying series of consecutive queries a user sub-
mits with the same information need. While the existing session
detection research mostly deals with effectiveness, our focus also
is on efficiency, and we investigate questions related to the analy-
sis trade-off: How expensive (in terms of runtime) is a certain im-
provement in F -Measure? In this regard, we distinguish two major
scenarios where query session knowledge is important: (1) In an
online setting, the search engine tries to incorporate knowledge of
the preceding queries for an improved retrieval performance. Obvi-
ously, the efficiency of the session detection method is a crucial is-
sue as the overall retrieval time should not be influenced too much.
(2) In an offline post-retrieval setting, search engine logs are di-
vided into sessions in order to examine what causes users to fail
or to identify typical reformulation patterns etc. Here, efficiency
might not be as important as in the online scenario but the accuracy
of the detected sessions is essential.

Our cascading method provides a sensible treatment for both sce-
narios. It involves different steps that form a cascade in the sense
that computationally costly and hence time-consuming features are
applied only after cheap features “failed.” This is different to pre-
vious session detection methods, most of which involve many fea-
tures simultaneously. Experiments on a standard test corpus show
the cascading method to save runtime compared to the state of the
art while the detected sessions’ accuracy is even superior.

Categories and Subject Descriptors: H.3.3 [Information Storage
and Retrieval]: Query formulation, Search process
General Terms: Algorithms, Experimentation
Keywords: Web Search, Session Detection, Cascading Method

1. INTRODUCTION
We tackle the problem of query session detection, which aims

at identifying consecutive queries a user submits for the same in-
formation need. Detecting such search sessions is of major inter-
est as they offer the possibility to analyze potential techniques for
supporting users stuck in longer sessions, to learn from the users’
query reformulation patterns, or to obtain knowledge on how users
behave when their initial queries were not satisfactory.

∗Extended version of a paper presented at the ECIR 2011 Work-
shop on Information Retrieval over Query Sessions (SIR 11) [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

Usually, the queries of a user form a stream ordered by submis-
sion time and are recorded in a query log by the search engines.
Session detection for a single user then can be modeled as the task
of deciding for each pair of chronologically consecutive queries
whether the two queries were submitted for the same information
need or not. This applies for an online scenario where the search
engine is observing the user while searching, but also for an of-
fline scenario where a recorded query log should be divided into
the contained query sessions for further examination.

In an online scenario, session detection aims at supporting the
user in satisfying her information need. Incorporating the knowl-
edge of the queries that belong together may help the engine to
present better results (e.g., the task of the TREC Sessions track) or
to suggest queries that other users used in similar situations. Since
online session detection is most useful when applied pre-retrieval,
the efficiency of the detection method plays a crucial role. The
overall retrieval time should not be increased too much in order not
to cause a worse search experience at user site.

In an offline post-retrieval scenario, the goal of session detec-
tion is to identify typical reformulation patterns or to examine how
search processes that finished satisfactory are different from such
that are not. The efficiency of the session detection method is not
as crucial as in the online scenario although faster methods are still
favorable. However, the accuracy of the detected sessions is even
more important than in the online scenario as conclusions drawn
from examining large logs become more reasonable when the un-
derlying data in form of detected query sessions is more reliable.

Our new approach for session detection—the cascading
method—addresses both scenarios, online and offline detection.
Unlike former approaches to the problem the cascading method
does not require the simultaneous evaluation of all features. In-
stead, it processes the features in different steps one after the other
by increasing computational costs and thus by increasing runtime
requirements. Whenever a computationally cheap feature allows
for a reliable decision, features with higher cost and runtime are
not considered. If, however, the cheaper features do not provide
a reliable decision basis, additional features are involved. For ex-
ample, if a query contains the preceding query (e.g., istanbul
and istanbul archeology), it is reasonable to assume that both
queries belong to the same session. No other feature besides a sim-
ple query subset test is needed for that decision. For more complex
situations like istanbul archeology and constantinople,
the simple subset test fails but computationally more costly fea-
tures that are able to identify semantic similarities can support the
desired decision of also assigning these two queries to the same
session (as Constantinople is the ancient name of Istanbul).

Query sessions are an interesting field of research with many
published detection methods and also many studies that examine
search behavior in sessions, query reformulation patterns, or im-
proved retrieval techniques for known query sessions. In such stud-

ies, session detection is applied in a pre-processing step to obtain
experimental data in form of sessions from a stored log. However,
there is a huge gap between the state-of-the-art session detection
methods and the ones that are practically used in the pre-processing
of such studies. Most often the studies apply a simple time thresh-
old: two queries belong to the same session iff the time gap between
the queries is smaller than a given threshold (e.g., 5 or 10 minutes).
The time threshold criterion is a very fast method but with a bad
accuracy compared to more sophisticated methods. Is it the run-
time alone that “bribes” so many studies to use time thresholds,
although the bad accuracy is well known? In our opinion, there
is an additional third critical issue that influences success of ses-
sion detection methods besides the already mentioned efficiency
and effectiveness: the simplicity of the method or, more precisely,
the ease of re-implementation. In fact, time threshold methods are
both very easy to be operationalized and extremely fast—two argu-
ments that might give a reasonable trade-off for accepting inferior
accuracy. In order to have a practical impact and to be applied by
researchers, we argue that new detection methods should be equally
fast and simple as time thresholds (and by far more accurate).

Our cascading method aims at bridging the described gap be-
tween developed and practically used methods. It is more easy to
be implemented than many sophisticated state-of-the-art detection
methods which often require intricate and not documented param-
eter tuning or training on data not available to the public. Further-
more, the cascading method is only about 4–5 times slower than
a simple time threshold, making it faster than the current state of
the art. These features come with an even superior accuracy of the
detected sessions on a standard test corpus.

2. RELATED WORK
The earliest methods for session detection were mostly time

based: two consecutive queries belong to the same session when-
ever the time elapsed is smaller than some threshold. Different
time gaps have been tried and documented in the literature: 5 min-
utes [4], 10–15 minutes [8], 30 minutes [16], 60 minutes [2], or
even 120 minutes [2]. The time thresholds were usually not in-
tended to detect queries with the same information need but rather
to study search behavior on bunches of queries. Nevertheless, time
thresholds are an often used method to gather sessions in the “mod-
ern” notion of queries with the same information need (although the
achievable accuracy is at most 70% [12]). As elaborated earlier,
one reason for using time thresholds might be the very attractive
simplicity compared to other existing session detection methods.

To overcome the bad accuracy of time thresholds, other methods
also incorporate lexical features. For instance, queries that do not
share any term often indicate a new session [10]. Other applied lex-
ical features are the Levenshtein distance (how many operations are
needed to transform one query into the other) [12] or the Jaccard
coefficient (how large is the overlap) [13]. Some methods judge
typical patterns like repeated query, specialization, or generaliza-
tion as session continuations [11] or try to identify reformulations
based on rules for changed words, deleted word suffixes, etc. [9].

However, all these lexical features are not able to determine se-
mantic relatedness like in our introducing istanbul archeology

vs. constantinople example. These two queries share no term
and have very few overlapping character n-grams. For such cases
several semantic features have been examined. An interesting idea
is to enrich the short query strings in order to get a longer represen-
tation of the underlying information need. One possibility is to use
the actual search results and researchers have tried the first 10 re-
sults [16], 50 results [18], 100 results [3], or even 500 results [14].
The methods then check the overlap of the set of URLs, the stan-

Table 1: Example query log. First the user had a Turkish his-

tory intent and then turned to a CIKM venue sports intent.

ID Query Click domain + rank Time

42 istanbul en.wikipedia.org 1 2011-05-22 20:34:17
42 istanbul archeology 2011-05-23 12:02:54
42 istanbul archeology www.turizm.tr 6 2011-05-23 12:03:15
42 istanbul archeology www.arkeoloji.tr 13 2011-05-23 18:24:07
42 constantinople 2011-05-23 19:12:40
42 constantinople en.wikipedia.org 4 2011-05-23 19:13:02

—— ————————————————
42 soccr glasgo 2011-05-23 19:16:01
42 soccer glasgow 2011-05-23 19:16:11
42 soccer glasgow www.soccer.uk 3 2011-05-23 19:16:15
42 celtics vs rangers 2011-05-23 20:33:04
42 celtics vs rangers en.wikipedia.org 5 2011-05-23 20:33:12
42 old firm 2011-05-23 22:42:48

dard cosine similarity of the page titles and snippets, or even the
cosine similarity of the result documents themselves [17]. In a very
recent method the well-known ESA framework is applied for se-
mantic similarity checks [13]. The ESA framework evaluates se-
mantic similarity by comparing representations of the queries in a
background collection (like Wikipedia documents) [5].

Most of the aforementioned features are not used alone (time
thresholds being the main exception) but applied in different com-
binations. However, different features come with different compu-
tation costs and thus influence efficiency. For a query repetition
it is obviously not necessary to check the search results in order
to assign both queries to the same session. But none of the pub-
lished session detection methods explicitly examines the efficiency
aspect. Different to that line of research, we carefully design our
new cascading method with respect to efficiency aspects. We also
combine several features but involve time-consuming features only
when cheaper features do not allow for a reliable decision.

We compare our method to the state-of-the-art geometric method
by Gayo-Avello [6]. In his survey, Gayo-Avello compares most of
the existing session detection approaches on a gold standard of hu-
man annotated queries and shows the geometric method’s superi-
ority in terms of detection accuracy. The geometric method is a
very simple and fast method; it involves only the two basic features
time threshold and lexical similarity. However, as a stand-alone
approach, the geometric method is not able to detect semantic sim-
ilarities. Hence, our cascading method builds upon the geometric
method but equips it with simple additional steps. Our objective
is threefold: a runtime performance comparable to the geometric
method, a similar ease of implementation, and a further improved
accuracy. In our cascading method we use an adapted version of
the geometric method as the second of our four steps. In a first
pre-processing step, simple patterns (repetitions, specializations, or
generalizations) are identified and in two post-processing steps se-
mantically related queries are detected. The pre-processing step
ensures to save runtime compared to the original geometric method
while the post-processing further improves accuracy.

3. PRELIMINARIES
A query q consists of a set of keywords. The search engine log

additionally contains a user ID and a time stamp. If the user clicked
on a result, the clicked result’s rank and URL are also logged. We
explain our cascading framework for the queries submitted by one
user ordered by submission time. The problem of session detec-
tion is modeled as the problem of deciding for each consecutive
pair q, q′ of queries whether the session s that contains q continues
with q′ or whether q′ starts a new session.

An example of a typical query log is given in Table 1 (the log

Table 2: Detected sessions after processing Step 1.

ID Query Click domain + rank Time

42 istanbul en.wikipedia.org 1 2011-05-22 20:34:17
42 istanbul archeology 2011-05-23 12:02:54
42 istanbul archeology www.turizm.tr 6 2011-05-23 12:03:15
42 istanbul archeology www.arkeoloji.tr 13 2011-05-23 18:24:07

——————————————————

42 constantinople 2011-05-23 19:12:40
42 constantinople en.wikipedia.org 4 2011-05-23 19:13:02

——————————————————

42 soccr glasgo 2011-05-23 19:16:01
——————————————————

42 soccer glasgow 2011-05-23 19:16:11
42 soccer glasgow www.soccer.uk 3 2011-05-23 19:16:15

——————————————————

42 celtics vs rangers 2011-05-23 20:33:04
42 celtics vs rangers en.wikipedia.org 5 2011-05-23 20:33:12

——————————————————
42 old firm 2011-05-23 22:42:48

even contains a misspelled query right after the indicated intent
boundary). Note that time is not a good indicator of session bound-
aries in the example as the user sometimes stopped working for
longer time periods and then continued a pending session. For in-
stance, in the last two queries, old firm is the name of the Glas-
gow celtics vs rangers soccer derby and both queries obvi-
ously have the same search intent. Regardless of the time passed,
we assume that in such cases the user just continued the session.
Another interesting observation is that at the highlighted search in-
tent switch the passed time is quite short.

4. THE CASCADE: STEP BY STEP
Our cascading session detection method consists of four steps.

From step to step the required features get more expensive in the
sense of needed runtime but later steps are invoked only if the pre-
vious steps were not able to come to a reliable decision.

Step 1: Simple Query String Comparison

The most simple patterns that two consecutive queries q and q′ may
form can be detected by a simple comparison of the keywords:
repetition (q = q′), generalization (q′ ⊂ q), and specialization
(q ⊂ q′). Whenever two consecutive queries represent one of these
three cases, the cascading method assigns the queries to the same
session regardless of the time that has passed between their submis-
sion. The rationale is that in case of a longer time gap, we assume
the user to have continued a pending session. The effect of Step 1
in the example scenario is shown in Table 2. Note that Step 1 re-
liably detects generalizations and specializations, and captures all
the interactions for the same queries. No other features have to be
involved “inside” of the sessions that Step 1 detected. However, all
the session boundaries cannot be trusted. Hence, for these cases,
our cascading method invokes the geometric method [6] in Step 2
as a more sophisticated comparison of the query strings.

Step 2: Geometric Method

The geometric method [6] relaxes Step 1’s query overlap condition
with respect to the elapsed time between the queries. Let t and t′

be the submission times of a pair q and q′ of consecutive queries.
Using the offset t′ − t, the geometric method computes the time

feature ftime = max{0, 1 − t′−t

24h
}. Thus, chronologically very

close queries achieve scores near to 1 whereas longer time peri-
ods between query submissions decrease the score until it gets 0
for queries with a gap of 24 hours or larger. The lexical similar-
ity flex for q′ is computed as the cosine similarity of the character
3- to 5-grams of the query q′ and the session s whose current last
query is q. The geometric method votes for a session continuation

Table 3: Detected sessions after processing Step 2.

ID Query Click domain + rank Time

42 istanbul en.wikipedia.org 1 2011-05-22 20:34:17
42 istanbul archeology 2011-05-23 12:02:54
42 istanbul archeology www.turizm.tr 6 2011-05-23 12:03:15
42 istanbul archeology www.arkeoloji.tr 13 2011-05-23 18:24:07

—— ————————————————

42 constantinople 2011-05-23 19:12:40
42 constantinople en.wikipedia.org 4 2011-05-23 19:13:02

—— ————————————————

42 soccr glasgo 2011-05-23 19:16:01
42 soccer glasgow 2011-05-23 19:16:11
42 soccer glasgow www.soccer.uk 3 2011-05-23 19:16:15

—— ————————————————
42 celtics vs rangers 2011-05-23 20:33:04
42 celtics vs rangers en.wikipedia.org 5 2011-05-23 20:33:12

—— ————————————————

42 old firm 2011-05-23 22:42:48

iff
√

(ftime)2 + (flex)2 ≥ 1. This inequality can be geometrically
interpreted as plotting the point (ftime, flex) in the R2 and check-
ing whether it lies inside or outside the unit circle (cf. Figure 1 (a)).

The effect in our example scenario is shown in Table 3 (remem-
ber that Step 2 is invoked only when Step 1 decided for new ses-
sion). The geometric method correctly decides to remove the intent
switch between the queries soccr glasgo and soccer glasgow

as the elapsed time is rather short and many character n-grams
overlap. This way, the geometric method is able to catch many ty-
pos and their corrections as often the corrected queries are lexically
very similar and submitted within a small time gap.

Nevertheless, there are problematic cases where the geometric
method cannot be trusted. There are three such session boundaries
in Table 3 where this happens. One example is the pair istanbul
archeology and constantinople. The only overlapping 3- to
5-grams of constantinople with the previous session are sta,
stan, and tan such that the geometric method decides for a new
intent. However, knowing that the ancient name of Istanbul was
Constantinople, one would expect both queries to belong to the
same session as semantically they are very similar. The other
pairs in our example scenario are soccer glasgow and celtics
vs rangers, and celtics vs rangers and old firm. As the
Celtics and the Rangers are soccer teams from Glasgow and their
derby is named “Old Firm,” there should be no intent breaks.

Common to all three cases in the example scenario is that for
the query pairs ftime is large (i.e., queries are chronologically
close) but the lexical similarity reflected by flex is rather low. We
conducted a pilot experiment to further examine where the geo-
metric method fails. Therefore, we took a 10% sample of con-
secutive query pairs from the standard session detection corpus
by Gayo-Avello [6] and analyzed the accuracy of the geometric
method. Note that the remaining 90% of the corpus form our test
set also used for evaluation in Session 5. Especially for pairs with
flex < 0.4 and ftime > 0.8 the sample contained many wrong
decisions (feature values tested in steps of 0.2).

To show that the derived bounds flex < 0.4 and ftime > 0.8
are also reasonable for the test set, Figures 1 (b) and (c) show the
points in the R2 that the geometric method derives on the test set.
Obviously, most pairs within a session are close to the right ver-
tical border of the diagram, while pairs with a session break are
close to the lower border. Cases where the geometric method de-
cides wrongly are all the black dots in Figure 1 (b) that lie inside the
unit circle and all the red dots in Figure 1 (c) that lie outside the unit
circle. Figure 1 (d) gives the frequencies of the geometric method’s
errors. In the lower right corner (flex < 0.4 and ftime > 0.8) there
are 583 + 14 query pairs wrongly assigned to different sessions

7 5 5 14 583

1 0 4 6 14

1 0 2 4 2

1 2 0 1 0

11 0 0 0 0

0 0 0 0 50

0 0 0 0 23

0 0 0 0 8

0 0 0 0 7

47 10 11 2 11

0 0.2 0.60.4 1.00.8

0.2

0.6

0.4

1.0

0.8

0
0 0.2 0.60.4 1.00.8

0.2

0.6

0.4

1.0

0.8

0
0 0.2 0.60.4 1.00.8

0.2

0.6

0.4

1.0

0.8

0
0 0.2 0.60.4 1.00.8

0.2

0.6

0.4

1.0

0.8

0

Nearly identical
queries at long

temporal distance

Same session

New session

Different
queries with no

temporal distance

L
e
x
ic

a
l
s
im

il
a
ri

ty

Temporal similarity Same session New session Same | New

(a) (b) (c) (d)

Figure 1: (a) Geometric interpretation of the geometric method. (b) Feature values of the geometric method for query pairs with

“same session” annotation in the test corpus. (c) Feature values of the geometric method for query pairs with “new session” anno-

tation in the test corpus. (d) Error frequency distribution of the geometric method’s decisions. Black frequencies are query pairs

wrongly assigned to different sessions. Red frequencies are pairs wrongly assigned to the same session.

although semantically related and 23 + 50 query pairs wrongly as-
signed to the same session although semantically different.

Hence, for query pairs that are chronologically very close and
lexically very different, the decisions of the geometric method are
not reliable. Some of the respective pairs will not be related and
correspond to real intent switches but some will have high semantic
similarity and thus correspond to session continuations with differ-
ent wordings. To detect these semantic relatedness or difference of
queries, our cascading method drops the geometric method’s deci-
sion for pairs that fall in the lower right corner and invokes Step 3
to further analyze semantic similarity.

Step 3: Explicit Semantic Analysis

An elegant way to compare semantic similarity of two short texts
is the explicit semantic analysis (ESA) introduced by Gabrilovich
and Markovitch [5]. The idea is to not compare the given two
texts directly but to use an indexed background collection against
which similarities are calculated. Since the index collection (e.g.,
the Wikipedia articles) can be pre-processed and stored, invoking
ESA is not too expensive compared to the basic session detection
features such as n-gram overlap or query submission time.

The ESA principle works as follows. During a pre-processing
step, a tf · idf -weighted term-document-matrix of the Wikipedia
articles is stored as the ESA matrix. During runtime, the two to-be-
compared texts represented as vectors are multiplied with the ESA
matrix and the cosine similarity of the resulting vectors yields the
ESA similarity feature fesa. In our setting, the two texts that should
be ESA-compared are the keywords of q′ and all the keywords of
the queries in the session s to which the previous query q belongs.
As Anderka and Stein [1] showed that the ESA performance varies
only very little with the size of the index collection, we conducted
a pilot experiment on the 10% subsample of Gayo-Avello’s corpus
also used in the analysis of Step 2. We randomly sampled English
Wikipedia articles (10 000, 100 000, 1 million, all) and could verify
Anderka and Stein’s observation that the size of the index collec-
tion did not really matter for the accuracy of the session decisions
except that 10 000 articles performed a little worse than the larger
sizes. Hence, the cascading method’s Step 3 implementation uses
a random sample of 100 000 Wikipedia articles as the ESA index
collection. Our pilot experiment also reveals that for fesa ≥ 0.35
(we tested in steps of 0.05) a quite reliable decision can be made
that the two examined queries belong to the same session.

Table 4 shows the effect of Step 3 in our example scenario. The
intent switches between the queries istanbul archeology and
constantinople and between soccer glasgow and celtics

vs rangers are correctly removed. However, the session break

Table 4: Detected sessions after processing Step 3.

ID Query Click domain + rank Time

42 istanbul en.wikipedia.org 1 2011-05-22 20:34:17
42 istanbul archeology 2011-05-23 12:02:54
42 istanbul archeology www.turizm.tr 6 2011-05-23 12:03:15
42 istanbul archeology www.arkeoloji.tr 13 2011-05-23 18:24:07
42 constantinople 2011-05-23 19:12:40
42 constantinople en.wikipedia.org 4 2011-05-23 19:13:02

—— ————————————————

42 soccr glasgo 2011-05-23 19:16:01
42 soccer glasgow 2011-05-23 19:16:11
42 soccer glasgow www.soccer.uk 3 2011-05-23 19:16:15
42 celtics vs rangers 2011-05-23 20:33:04
42 celtics vs rangers en.wikipedia.org 5 2011-05-23 20:33:12

—— ————————————————

42 old firm 2011-05-23 22:42:48

between celtics vs rangers and old firm still remains as
the corresponding ESA similarity is to low. Hence, for fesa < 0.35
the decision is still questionable (remember that old firm is just
another name for the celtics vs rangers soccer match). Ac-
cordingly, the cascading method does not immediately view q′ as
the start of a new session in this case but invokes Step 4 that aims
at further enlarging the representation of the queries.

Step 4: Search Result Comparison

Step 4 compares the search results of the queries. As retrieving
such results requires time-consuming index accesses at search en-
gine site or even the submission of two web queries from an exter-
nal client, the web results are applied only when all previous steps
failed to provide a reliable decision. Using web search results to
detect semantically similar queries is applied in different variants
in the literature (cf. the discussion in Section 2). We evaluated dif-
ferent settings in a pilot study on the 10% sample of Gayo-Avello’s
test corpus also used in the analyses of Steps 2 and 3. As a result,
we chose to compare the sets of URLs of the top-10 retrieved doc-
uments via the Jaccard coefficient. Whenever q′ returns at least one
of the top-10 results of q, we view this as an argument for a session
continuation. Otherwise, q′ starts a new session.

In our running example scenario, Step 4 correctly removes the
intent switch between the queries celtics vs rangers and old
firm as both return the “Old Firm” Wikipedia article in their top-
10 Google results. Hence, the decisions after processing all four
steps of the cascading method match the desired outcome depicted
in Table 1. But note that a “new session” decision after Step 4 still
cannot be guaranteed to be correct as semantically related queries
may exist with low fesa-value and no shared top-10 search results.

The Complete Cascade

Putting all the pieces together, the cascading method’s pseudo code
is given as Algorithm 1.

Algorithm 1 Cascading method for one query pair q and q′

1: if q ⊆ q′ or q ⊃ q′ then “same session” ⊲ Step 1
2: else if flex ≥ 0.4 or ftime ≤ 0.8 then

3: if
√

(ftime)2 + (flex)2 ≥ 1 then “same session” ⊲ Step 2
4: else “new session”
5: else if fesa ≥ 0.35 then “same session” ⊲ Step 3
6: else if shared top-10 result then “same session” ⊲ Step 4
7: else not sure, but probably “new session”

5. EXPERIMENTAL EVALUATION
We conduct a two-part experimentation to examine the perfor-

mance of our new cascading method. In a first experiment, we
compare against the state-of-the-art geometric method on a stan-
dard session detection test corpus. In a second experiment, we
show the scalability of our method on a large query log.

Comparison with the State of the Art

To ensure comparability, we evaluate our cascading method on
the annotated gold standard query corpus that Gayo-Avello used
in his experiments showing the geometric method to be superior
to other approaches for session detection [6]. Note that using
the same corpus, we have to compare our cascading method only
with the best performing method of Gayo-Avello’s comprehensive
study to ensure comparability with all other approaches as well.
The corpus contains 11 484 queries of 223 users sampled from the
2006 AOL query log [15]. The queries are manually subdivided
into 4 254 sessions with an average of 2.70 queries per session.
As we have sampled 10% of the corpus for parameter tuning of
Steps 2–4, the experimental evaluation is done on the remaining
90% of the corpus. For evaluation purposes we use the F -Measure

Fβ = (1+β2)·prec·rec
β2

·prec+rec
, where precision and recall of the detected

sessions are measured against the human gold standard. We follow
Gayo-Avello and set β = 1.5, which emphasizes wrong session
continuations as the bigger problem compared to wrong breaks.

The results of this experiment can be found in Table 5. First of
all, we could verify Gayo-Avello’s reported good performance of
his geometric method achieving an F -Measure of 0.9181. Note
however, that the cascading method improves upon this value and
achieves an F -Measure of 0.9327 (the difference is statistically
significant according to a paired t-test with confidence level p =
0.05). The better accuracy is due to an improved session recall that
more than compensates for a slightly worse precision.

We further analyze the impact step by step. The results are given
in Table 6 and should be read as follows. After Step 1 (the subset
test) about 40% of the test set’s query pairs are reliably judged (col-
umn “reliable”) and the F -Measure is 0.8303 if one would stop the
processing after Step 1. Note that the runtime for invoking Step 1
on a pair of queries is about 0.08ms on average (experimentation
done on a standard quad-core desktop PC with 8GB RAM). Af-
ter Step 2 another 35% of all queries are judged reliably (altogether
about 75%) with anF -Measure of 0.9292. Hence, applying the pre-
processing Step 1 improves the accuracy of the geometric method.

Table 5: Accuracy values on the Gayo-Avello corpus.

Precision Recall F-Measure

Geometric method 0.8667 0.9430 0.9181
Cascading method 0.8622 0.9679 0.9327

Table 6: Step by step performance on the Gayo-Avello corpus.

reliable F-Measure time factor

Step 1 40.49% 0.8303 0.08ms 1.0
Step 2 35.15% 0.9292 0.20ms 2.5
Step 3 2.05% 0.9316 0.27ms 3.4
Step 4 0.85% 0.9327 9.85ms 123.1

That the pre-processing also significantly speeds up the whole pro-
cess can be seen as Step 2 requires about 0.20ms per query pair
(2.5 times more than Step 1 (column “factor”)).

Step 3 is invoked on about 25% of all queries and runs with a
pre-computed ESA matrix in main memory. Nevertheless, Step 3
is a little slower than Step 2 with an average time of about 0.27ms
per query pair. Step 3 reliably assigns “same session” for another
2.05% of all queries raising the F -Measure to 0.9316 if one would
stop the cascading method after Step 3. Note that after Step 3 the
cascading method is still faster than the original geometric method:
2.5 times faster on about 40% of the queries and 1.35 times slower
on about 25% (0.27ms vs. 0.20ms).

The only crucial issue for runtime is Step 4 which is invoked
on about 22% of all query pairs. For our experimental setting we
modeled Step 4 as follows. All the queries on which Step 4 would
be invoked were submitted to the Bing-API and the top-10 result
URLs stored. On runtime of the cascading method, these result lists
were held in memory to simulate a very fast index lookup at search
engine site. Nevertheless, even in this artificial setting, Step 4 on
average needs about 9.35ms per query pair. This yields a factor of
more than 100 compared to the time for Step 1. Applying Step 4
against the API’s of commercial search engines would be even infe-
rior as then a typical query needs at least 200ms. Furthermore, note
that Step 4 only assigns a “same session” decision to about 0.85%
of all queries (column “reliable”) and only slightly increases the
resulting F -Measure by 0.011. That the improvement is so small
is due to the fact that the ESA step already catches many of the
semantically related query pairs that can be detected automatically.
Hence, when efficiency is an issue, Step 4 is the obvious bottleneck
even in the simulated environment of having the results in memory.

Improved Cascading Method: Drop Last Step

As Step 4 is the clear efficiency “problem” within the cascading
method, we also suggest a very fast three-step variant of the cas-
cade by removing Step 4. As described above, the resulting method
is about 15% faster than the original geometric method while the
accuracy of the detected sessions is even improved from 0.9181
to 0.9316 (again found to be a statistically significant difference).

Furthermore, consider the scenario in which session detection is
applied offline and not at search engine site with access to a web
index etc. Consider for instance some academic non-industry re-
searcher whose use case is not to break a complete search engine
log into all contained sessions but just to sample sessions with very
high detection accuracy for further experiments. This might for in-
stance be the case in the pre-processing step of studies that want
to evaluate new retrieval ideas for improved handling of query ses-
sions etc. In this scenario, Step 4 of the original cascade would
have to be implemented against the public API of some commercial
search engine with time requirement of at least 200ms per query.
For larger logs this is prohibitive and for such cases we suggest
an additional tweak to the three-step cascading method. This sec-
ond variant of the three-step cascading method assigns a “not sure,
maybe new session” decision when Step 3 votes for a new session
(about 22% of all query pairs in the Gayo-Avello test corpus). In
a post-processing, all sessions starting with such a “not sure” de-
cision can be deleted. In case of the Gayo-Avello test corpus this
removes about 30% of the sessions but the remaining ones then

achieve an almost perfect F -Measure of 0.9755. Hence, this ver-
sion of the three-step cascading method with post-processing can
be used as a very fast and very accurate session detection method
that extracts very high quality sessions for further experimentation.

Scalability on a Large Log

We tested the suggested three-step variants of the cascading method
on the 2006 AOL query log [15]. To this end, we cleaned the orig-
inal log of about 36.4 million interactions collected in 3 months
from about 650 000 users in order to remove users that proba-
bly are bots or that are not relevant for session detection. We
had three simple rules for the cleaning: (1) we removed all users
that only had one interaction (session detection would be senseless
on these), (2) we removed all users that on average had less than
10 seconds between two consecutive interactions (probably bots),
and (3) we removed all users whose median query length is more
than 100 characters (probably bots). All in all, the cleaning re-
moved about 1 million interactions and 130 000 users. Hence, the
remaining log contains about 35.4 million interactions. With the
figures from the experiments on Gayo-Avello’s corpus one would
expect about 8 million queries (22% of 35.4 million) to have to
be submitted to a search engine when applying the full four-step
cascade. Further assuming an average time of about 300ms per
web query against a typical API of some commercial search engine
would yield 1 month of processing time. Of course, some queries
could be parallelized etc.; but nevertheless the time consumption
remains in the order of days compared to several minutes for the
other three steps. Hence, these figures emphasize the fact that for
larger analyses the three-step cascading method should be applied.

The three-step cascade on the cleaned AOL log takes about
27 minutes on a standard quad-core desktop PC with 8GB RAM
(compare this to several days for the full four step variant). We also
tested the effect of removing all the sessions starting with a “not
sure” decision after Step 3: as in the Gayo-Avello test corpus this
affects about 30% of the sessions.

Altogether, our experiments show that for analyses of smaller
logs the full four-step cascade can be applied although the accuracy
is only slightly better than for the three-step cascade. If, however,
the focus is on larger logs or the online scenario, the efficiency is-
sue comes into play and the three-step cascading method should be
chosen. It is about 15% faster than the original geometric method
and comes with an even improved accuracy. Furthermore, for the
task of sampling a few sessions with very high detection accuracy,
an adapted version of the three-step cascade can remove the about
30% of sessions on which it is not sure. The remaining sessions
then have a very good quality compared to human judgments.

6. CONCLUSION AND OUTLOOK
We have presented the cascading method for query session detec-

tion, which is based on the combined use of the geometric method
and the well-known ESA model. The cascading method achieves a
very high detection accuracy against a human gold standard and is
superior to the current state-of-the-art geometric method. In con-
trast to other published methods, the cascading method sensibly
invokes time-consuming features only if cheaper features fail to
provide a reliable session detection. In its three-step variant our
method is more accurate than the geometric method while saving
15% of the runtime. If equipped with a post-processing step that
drops sessions with “not sure” decisions, the achieved accuracy is
almost perfect on Gayo-Avello’s gold standard. Hence, the cas-
cading method is an ideal pre-processor for many evaluations that
need to extract high quality sessions from query logs as experimen-
tal data. Another salient characteristic of the cascading method

is its simplicity, which renders costly training data or an intricate
hyperparameter tuning superfluously: the three-step cascade just
involves a basic pre-processing, the simple geometric method, and
the standard ESA framework.

An interesting aspect for future research is the integration of a
post-processing that accounts for multitasking at user site, or for
hierarchies of different search goals and missions [12, 13, 19, 20].
The idea of multitasking is that users may shortly interrupt longer
search sessions for some completely different intent, and, after the
short interruption, continue the original session. The idea of search
goals and missions is that larger user search missions like planning
the next vacation comprise of smaller goals like booking a flight,
searching a nice hotel, etc. In future work, we plan to enhance the
cascading method to also find search hierarchies or goals/missions.
A potential way to achieve this would be to run the current cascade
and then carefully merge the detected sessions into an appropriate
hierarchy also respecting multi-tasking issues.

7. REFERENCES
[1] M. Anderka and B. Stein. The ESA retrieval model revisited. In

SIGIR 2009, pp. 670–671.
[2] N. Buzikashvili and B. J. Jansen. Limits of the web log analysis

artifacts. In WWW 2006 Workshop on Logging Web Activity.
[3] S.-L. Chuang and L.-F. Chien. A practical web-based approach to

generating topic hierarchy for text segments. In CIKM 2004, pp.
127–136.

[4] D. Downey, S. T. Dumais, and E. Horvitz. Models of searching and
browsing: languages, studies, and application. In IJCAI 2007, pp.
2740–2747.

[5] E. Gabrilovich and S. Markovitch. Computing semantic relatedness
using Wikipedia-based explicit semantic analysis. In IJCAI 2007, pp.
1606–1611.

[6] D. Gayo-Avello. A survey on session detection methods in query
logs and a proposal for future evaluation. Information Sciences, 179
(12):1822–1843, 2009.

[7] M. Hagen, B. Stein, and T. Rüb. Query Session Detection as a
Cascade. In ECIR 2011 Workshop on IR over Query Sessions.

[8] D. He and A. Göker. Detecting session boundaries from web user
logs. In BCS-IRSG Colloquium 2000, pp. 57–66.

[9] J. Huang and E. N. Efthimiadis. Analyzing and evaluating query
reformulation strategies in web search logs. In CIKM 2009, pp.
77–86.

[10] B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. Defining a
session on web search engines. JASIST, 58(6):862–871, 2007.

[11] B. J. Jansen, A. Spink, and B. Narayan. Query modifications patterns
during web searching. In ITNG 2007, pp. 439–444.

[12] R. Jones and K. L. Klinkner. Beyond the session timeout: automatic
hierarchical segmentation of search topics in query logs. In
CIKM 2008, pp. 699–708.

[13] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei.
Identifying task-based sessions in search engine query logs. In
WSDM 2011, pp. 277–286.

[14] D. Metzler, S. T. Dumais, and C. Meek. Similarity measures for short
segments of text. In ECIR 2007, pp. 16–27.

[15] G. Pass, A. Chowdhury, and C. Torgeson. A picture of search. In
Infoscale 2006, paper 1.

[16] F. Radlinski and T. Joachims. Query chains: learning to rank from
implicit feedback. In KDD 2005, pp. 239–248.

[17] M. Sahami and T. D. Heilman. A web-based kernel function for
measuring the similarity of short text snippets. In WWW 2006, pp.
377–386.

[18] X. Shen, B. Tan, and C. Zhai. Implicit user modeling for
personalized search. In CIKM 2005, pp. 824–831.

[19] A. Spink, H. C. Özmutlu, and S. Özmutlu. Multitasking information
seeking and searching processes. JASIST, 53(8):639–652, 2002.

[20] A. Spink, M. Park, B. J. Jansen, and J. O. Pedersen. Multitasking
during web search sessions. Inf. Process. Manage., 42(1):264–275,
2006.

