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ABSTRACT
Search mission detection aims at identifying those queries a user
submits for the same information need. Such knowledge offers
interesting insights into behavioral usage patterns and often can help
to better support a user. However, most existing query log studies
focus on search sessions only (consecutive queries for the same
need) and ignore multitasking behavior (interleaved information
needs) as well as hierarchies of short-term search goals in multiple
sessions that form a long-term search task such as vacation planning.
To better understand the dialog between user and search engine we
distinguish between (1) physical search sessions, characterized by
the time gap between queries, (2) logical search sessions, character-
ized by consecutive queries for the same information need within a
physical session, and (3) search missions, characterized by logical
sessions, multitasking behavior, and hierarchical goals.

Our contributions are threefold. First, we present a new algorithm
for logical session detection, which follows the state-of-the-art cas-
cading method’s rationale of combining effectiveness with efficiency.
Our approach is applicable within the time-critical online scenario,
where a search engine tries to support users by incorporating knowl-
edge about their search history on the fly, as well as within the offline
scenario, where the objective is to accurately partition a collected
log. We improve several steps of the cascading method, among
others by exploiting Linked Open Data information. Second, we
demonstrate our new algorithm’s applicability to accurately detect
search missions. Third, we introduce a new publicly available cor-
pus of 8800 queries labeled with session and mission information.
Categories and Subject Descriptors: H.3.3 [Information Storage
and Retrieval]: Query formulation, Search process
General Terms: Algorithms, Experimentation
Keywords: Web search, Session detection, Mission detection

1. INTRODUCTION
Session detection has a long history in the field of query log

analysis for web search. A major goal of session detection is the
identification of typical patterns the users follow in their search
processes, and, based on these patterns, to develop search support
tools such as smart query suggestions learned from the reformula-
tions of other users. In the early days of session detection the rather
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Table 1: Example query log (clicks omitted) divided into physi-
cal search sessions with a threshold of 30 minutes.

Line Query Timestamp

1 ancient turkey 2012-12-20 20:02:44
2 history istanbul 2012-12-20 20:24:17

— — — — — — — — — — — — — — — —
3 istanbul archeology 2012-12-21 12:02:54

— — — — — — — — — — — — — — — —
4 istanbul archeology 2012-12-21 18:31:21
5 weather new york 2012-12-21 18:45:23
6 constantinople 2012-12-21 18:45:36
7 footbal lisbon 2012-12-21 19:14:01
8 football lisbon 2012-12-21 19:14:11

— — — — — — — — — — — — — — — —
9 benfica vs sporting 2012-12-21 20:23:04

— — — — — — — — — — — — — — — —
10 derby eterno 2012-12-21 22:42:48
11 constantinople 2012-12-21 23:09:02
12 constantinople 2012-12-21 23:27:38

simplistic understanding of physical sessions was prevailing: all con-
secutive queries of a user without some longer time gap (typically
30 minutes or more) were considered a search session. Physical
sessions can be easily detected, but the obtained insights are limited
to basic statistical analyses such as the number of queries submitted
per time frame. Similarly, exploiting queries from a physical session
for query reformulation purposes is limited as well: often, pairs of
consecutive queries do not target the same information need and
hence are not related (e.g., the lines 4–7 in the example query log
given in Table 1). As a consequence, the focus of session detection
research turned to a content-related view, called logical sessions,
which designate series of consecutive queries within a physical ses-
sion that target the same information need. Logical sessions can
provide us with deeper insights on how users refine their searches,
or help us to identify cases when users encounter problems, indi-
cated for example by the formulation of numerous related queries
accompanied by few result clicks.

Note, however, that relying on series of consecutive queries alone
will miss important connections, even if the targeted information
need is considered (as is done by a logical session analysis). This
shortcoming is rooted in the fact that behavioral patterns of search
engine users include interleaving searches in a multitasking man-
ner [23, 24], as well as hierarchies of different search goals within
so-called search missions [15]. For example, a user may shortly
interrupt a longer search task for checking the weather forecast (e.g.,
line 5 in the example log in Table 1), or she may follow subordinate
search goals spanning several days, which altogether form a larger
mission (e.g., all the queries on Turkish history in the example).
Ideally, different logical sessions targeting the same information
need should be connected, which actually is the task of search mis-



Table 2: Example query log divided into search missions.

Query Timestamp Search mission

1 ancient turkey 2012-12-20 20:02:44

M1: Turkish history2 history istanbul 2012-12-20 20:24:17
3 istanbul archeology 2012-12-21 12:02:54
4 istanbul archeology 2012-12-21 18:31:21

— — — — — — — — — — — — — — — — — — — —
5 weather new york 2012-12-21 18:45:23 M2: Weather NYC

— — — — — — — — — — — — — — — — — — — —
6 constantinople 2012-12-21 18:45:36 M1: Turkish history

— — — — — — — — — — — — — — — — — — — —
7 footbal lisbon 2012-12-21 19:14:01

M3: Lisbon football8 football lisbon 2012-12-21 19:14:11
9 benfica vs sporting 2012-12-21 20:23:04

10 derby eterno 2012-12-21 22:42:48
— — — — — — — — — — — — — — — — — — — —

11 constantinople 2012-12-21 23:09:02 M1: Turkish history12 constantinople 2012-12-21 23:27:38

sion detection: identify those queries that a user submits for the
same information need. The example log in Table 1 should hence
be divided into the three missions shown in Table 2. Note that the
labeling of the missions with an expressive phrase in the rightmost
column is not part of the mission detection problem but provided
only for readability purposes. In the mission detection problem as
understood here, assigning an information need ID such as M1, M2,
or M3 to each query is sufficient.

The paper in hand presents three main contributions to the state of
the art of search mission detection. First, it provides a new method
for logical session detection as a building block of mission detection.
This method follows the stepwise paradigm of the recent cascad-
ing method [8]. By improving the single steps and adding a new
step that employs Linked Open Data analyses to detect a possible
semantic relatedness of queries, the new approach achieves a better
efficiency and effectiveness in extensive experiments. Second, we
show that applying our new method in a two-phase strategy (first
logical session detection, then merging sessions into missions) pro-
vides a very efficient means to tackle the mission detection problem.
Third, we publicly release a new large scale corpus of 8800 queries
annotated with search session and search mission information.

2. FRAMEWORK AND RELATED WORK
For each query q a search engine query log contains the query

string, a user ID and a time stamp denoting when q was submitted.
We assume that the query log for one user is ordered by time stamp.
Information on clicked search results (e.g., rank or domain), shown
snippets, etc. might be additionally available but is not necessary
for running our proposed method. We view a query as a set of
keywords, such that for instance q ⊂ q′ for a query pair means that
the keywords from q form a subset of the keywords from q′.

The problems we are dealing with can be formally described as
follows. Given the query log of one user, the problem of physical
session detection is to split the log at those pairs of consecutive
queries q, q′ where the time elapsed between submission of q and
submission of q′ exceeds some given threshold. Given the query log
of one user, the problem of logical session detection is to split the
log into those series of consecutive queries within physical sessions
that are submitted for the same information need. Given the query
log of one user, the problem of search mission detection is to identify
which queries are submitted for the same information need. Note
that an alternative formulation of search mission detection is to
connect those logical sessions of one user that concern the same
information need. Hence, search missions can be built upon logical
sessions which in turn can be built upon physical sessions.

Our two formulations of session detection distinguish between
the simple time based notion of a physical session and the more
contextually oriented logical sessions. Published studies on query
log analysis often do not explicitly state which notion of a search ses-
sion they follow. Even worse, often logs are just split into physical
sessions when the study context suggests that indeed logical sessions
should be used. One reason might be that typically detecting phys-
ical sessions is much more easy (just check some time threshold)
than logical session detection. However, with our newly developed
efficient logical session detection method this should be no argu-
ment anymore. Note that some studies even follow another different
concept of a “search session” viewing them as all the consecutive
queries that are submitted for the same information need (regardless
of the time gaps!). However, we believe that in these cases the term
“session” with its typical flavor of some temporal connection should
be replaced by the more general notion of a search mission (not just
consecutive queries) established by Jones and Klinkner [15].

The earliest methods for session detection aimed at the detection
of physical sessions (without explicitly saying so) and hence were
time based: two consecutive queries belong to the same session
whenever the time elapsed is smaller than some threshold. Different
time gaps have been tried and documented in the literature: 5 min-
utes [4], 10–15 minutes [9], 30 minutes [20], 60 minutes [2], or
even 120 minutes [2]. But note that with the detection of physi-
cal sessions it is very likely that queries for different information
needs are mixed. The logical session accuracy achievable with
any time threshold as the only feature is rather low in the range of
70–80% [15]. Nevertheless, many researchers unfortunately still
apply time thresholds to gather sessions in the “modern” notion of
logical sessions; as elaborated earlier, one reason might be the very
attractive simplicity compared to more sophisticated methods.

To overcome the bad logical session detection accuracy of time
thresholds, other methods also incorporate lexical features. For
instance, queries that do not share any term often indicate a new
session [13]. Other applied lexical features are the Levenshtein
distance [15] (how many characters need to be changed to transform
one query into the other) or the Jaccard coefficient [17] (how large
is the character or word overlap). Some methods judge typical
patterns like repeated query, specialization, or generalization as
session continuations [14] or try to identify reformulations based
on rules for changed words, deleted word suffixes, etc. [12]. The
geometric method by Gayo-Avello [6] is a very fast and simple
combination of a time threshold and lexical query similarity.

However, note that lexical features are not able to determine se-
mantic relatedness. Consider for instance the two queries istanbul
archeology and constantinople. Both queries share no term
and have very few overlapping character n-grams; still they are
related as Constantinople is the ancient name of Istanbul. For such
cases several semantic features have been examined. An interesting
idea is to enrich the short query strings in order to get a longer rep-
resentation of the underlying information need. One possibility is to
use the actual search results and researchers have tried the first 10 re-
sults [20], 50 results [22], 100 results [3], or even 500 results [18].
The methods then check the overlap of the set of URLs, the standard
cosine similarity of the page titles and snippets, or even the cosine
similarity of the result documents themselves [21]. Still, obtaining
actual search results can be quite costly. Thus, in a very recent
method [17] the well-known ESA framework [5] is used to check
the semantic similarity of query representations in a background
collection (e.g., Wikipedia articles).

Most of the aforementioned features are not used alone (time
thresholds being the main exception) but often applied simultane-
ously in different combinations. However, different features come



with different computation costs and thus influence efficiency. For
a query repetition it is obviously not necessary to check the search
results in order to assign both queries to the same session. This is the
idea of the cascading method by Hagen et al. [8] that was designed
with respect to efficiency aspects. It also combines several features
but involves time-consuming features only when cheaper features
do not allow for a reliable decision. In their paper, Hagen et al. show
their method to outperform the previous state-of-the-art geometric
method in terms of detection accuracy while at the same time even
being faster. As the cascading method sensibly involves different
features in different steps considering the increasing computational
costs, it is much faster than other methods that combine all features
simultaneously. However, the cascading method also follows the
notion of a “session” as the consecutive series of queries (very long
inactivity gaps allowed) and thus can neither detect interleaved infor-
mation needs nor can it cope with long-term search missions spread
over several sessions. In both cases the cascading method would
just identify the smaller (interleaved) pieces of longer missions in
isolation without recognizing their connections.

Only three methods for multitasking and mission detection are
published yet [15, 16, 17]. They apply the entire feature set at
once and do not follow the cascading method’s idea of deferring
the exploitation of computationally costly features [8]. In contrast,
our proposed new approach adopts the cascading framework for
the first time in the context of multitasking and mission detection
and improves the cascading method in three respects: (1) by adding
a new first step for physical session detection, (2) by tailoring the
cascading method’s steps for logical session detection, and (3) by
adding a new step for the semantic similarity check of two queries.
The new step is based on an analysis of Linked Open Data connec-
tions, a technique previously used for the identification of typical
query reformulation patterns [10, 11]. We show that a two-round
protocol of running the improved cascade twice is able to identify
multitasking behavior and search missions with good accuracy.

As only one small scale corpus for multitasking detection eval-
uation is publically available [17], we develop a new one order of
magnitude larger corpus with about 8800 queries based on the stan-
dard corpus for session accuracy evaluation by Gayo-Avello [6].

3. LOGICAL SESSION DETECTION
As for logical session detection, we improve the original cascad-

ing method that had four steps with increased feature (computation)
cost from step to step [8]. However, we have to carefully adapt the
original cascading method as its underlying concept of a “session”
significantly differs. The original cascade tries to identify sequences
of consecutive queries for the same information need without explic-
itly looking at the intermediate time gaps. For instance, whenever
two queries are identical, the original cascade puts them in the same
“session” even when weeks have passed. Our conceptual framework
differs in the sense that such long gaps indicate different physical
sessions whose contained logical sessions might then be merged in
a mission detection phase. Hence, the notion of a search mission is
more general than Hagen et al.’s “session” concept that only looks
for sequences of consecutive queries. Missions instead also allow
multitasking behavior in physical sessions and even several other
physical sessions between queries for the same information need.

Even though our concept of a search session differs, we follow
the cascading method’s paradigm of combining effectiveness and
efficiency considerations (i.e., we also use expensive features only
when cheaper features fail to provide reliable decisions). In the first
step of the original cascade, query pairs that are repetitions, general-
izations, or specializations are put in the same session. The second
step involves the geometric method [6] that combines both lexical

Table 3: Example after Step 1 (asterisks tag trusted decisions).

Line Query Timestamp

1 ancient turkey 2012-12-20 20:02:44
2 history istanbul 2012-12-20 20:24:17

* — — — — — — — — — — — — — — — —
3 istanbul archeology 2012-12-21 12:02:54

* — — — — — — — — — — — — — — — —
4 istanbul archeology 2012-12-21 18:31:21
5 weather new york 2012-12-21 18:45:23
6 constantinople 2012-12-21 18:45:36
7 footbal lisbon 2012-12-21 19:14:01
8 football lisbon 2012-12-21 19:14:11
9 benfica vs sporting 2012-12-21 20:23:04

* — — — — — — — — — — — — — — — —
10 derby eterno 2012-12-21 22:42:48
11 constantinople 2012-12-21 23:09:02
12 constantinople 2012-12-21 23:27:38

similarities and the time elapsed between two queries. Whenever
the time is below a predefined threshold and the lexical similarity is
high, the two consecutive queries are assigned to the same session.
However, when only a short period of time passed between two
consecutive queries and the lexical similarity is low, the second step
will miss semantically related queries. To address this problem, the
cascade involves an ESA step (Explicit Semantic Analysis) [5] to
identify semantically related query pairs. In a final fourth step, the
top-10 search results of the two queries are compared.

We improve the individual steps and adapt the cascade to our
framework of first detecting physical sessions and only then tack-
ling logical sessions. Therefore, we will use a simple time-based
first step splitting a log into physical sessions and add a new step
following ESA that is based on Linked Open Data connections.

Finally, we propose a two-phase protocol of the improved cascade
for mission detection: a first phase on query level detects logical
sessions, a second phase on session level merges them into missions.

Step 1: Time-based Physical Sessions
As for physical session detection, we stick to a quite conservative
approach and view sequences of consecutive queries without a time
gap of more than 90 minutes as one physical session (i.e., the log is
split into physical sessions at gaps of more than 90 minutes). The
rationale for not using a shorter gap (e.g., 30 minutes is employed in
many studies) is that shorter gaps still might split at points where the
user was just on a longer reading + click trail which should be seen
as the same physical session although not every interaction is with
the search engine. But not interacting with the search engine for
90 minutes could be easily regarded as having finished one physical
session; it could for instance be interpreted as the typical duration
of a lunch break. However, any time threshold is debatable and
our suggested method does not really depend on the exact value.
Further note that our focus is not on physical session detection but
on logical session detection and mission detection. Any queries
for the same information need, that might have been split into two
physical sessions by whatever threshold value applied, should finally
be merged into one mission such that the exact physical session
threshold in the end does not really matter.

The example log after applying Step 1 is shown in Table 3. When
turning to logical sessions it becomes clear that any split decision
made by Step 1 is correct as logical sessions are defined as parts of
physical sessions. Hence, any query pair where Step 1 decides to
break does not have to be handed to Step 2: it is already decided with
high confidence (depicted by an * in the table). All the non-split
decisions of Step 1 cannot be trusted (for logical session detection)
but have to go deeper down the cascade to decide whether both
queries are submitted for the same information need or not.



Table 4: Example after Step 2 (asterisks tag trusted decisions).

Line Query Timestamp

1 ancient turkey 2012-12-20 20:02:44
— — — — — — — — — — — — — — — —

2 history istanbul 2012-12-20 20:24:17
* — — — — — — — — — — — — — — — —

3 istanbul archeology 2012-12-21 12:02:54
* — — — — — — — — — — — — — — — —

4 istanbul archeology 2012-12-21 18:31:21
— — — — — — — — — — — — — — — —

5 weather new york 2012-12-21 18:45:23
— — — — — — — — — — — — — — — —

6 constantinople 2012-12-21 18:45:36
— — — — — — — — — — — — — — — —

7 footbal lisbon 2012-12-21 19:14:01
— — — — — — — — — — — — — — — —

8 football lisbon 2012-12-21 19:14:11
— — — — — — — — — — — — — — — —

9 benfica vs sporting 2012-12-21 20:23:04
* — — — — — — — — — — — — — — — —

10 derby eterno 2012-12-21 22:42:48
— — — — — — — — — — — — — — — —

* 11 constantinople 2012-12-21 23:09:02
12 constantinople 2012-12-21 23:27:38

Step 2: Simple Patterns
The most simple patterns that two consecutive queries q and q′ for
the same information need may form can be detected by a simple
comparison of the keywords: repetition (q = q′), generalization
(q′ ⊂ q), and specialization (q ⊂ q′). Whenever two consecutive
queries within a physical session represent one of these three cases,
our method assigns the queries to the same logical session. For
efficiency reasons, the step is not implemented on keyword sets (as
in the original cascade) but as a substring test on the query strings.

The effect of Step 2 in the example scenario is shown in Table 4.
Note that for all the pairs that Step 2 assigns to the same logical
session (only the pair in lines 11 and 12 in the example scenario)
no other features have to be involved as the decisions already are
reliable (again, all high confidence decisions so far that are not
handed to later steps are depicted by a *). However, all the logical
session boundaries detected by Step 2 within physical sessions
cannot be trusted. Hence, for these cases, our method invokes a
more sophisticated lexical similarity check in Step 3.

Step 3: Lexical Similarity and Time
The original cascade uses the geometric method by Gayo-Avello [6]
to detect lexical similarity. This method computes a time feature
ftime = max{0, 1 − t′−t

24h
} for the submission times t, t′ of a

pair q, q′ of consecutive queries as well as the cosine similarity
flex between the character 3- / 4- / 5-grams of the query q′ and the
session s whose current last query is q. The geometric method votes
for a session continuation iff

√
(ftime)2 + (flex)2 ≥ 1. Whenever

flex < 0.4 and ftime > 0.8, the original cascade does not trust
the geometric method’s decision but invokes a semantic similarity
check (ESA) in a next step. The rationale is that for query pairs
relatively close in time that have a low lexical n-gram similarity,
still some semantic relatedness could be found showing both queries
to be related (and probably having the same intent).

We will not directly use the geometric method as described above.
In our improved lexical similarity step we change the feature compu-
tation, the session continuation condition, and the above described
“trust” range for invoking the ESA step. First note that the original
cascade and the geometric method allow two queries to fall in one
session even when the time gap is more than one day (24h)—due to
the definition of ftime. But our notion of a session is different and
Step 3 is guaranteed to be called only on pairs where t′−t ≤ 90min.

Table 5: Example after Step 3 (asterisks tag trusted decisions).

Line Query Timestamp

1 ancient turkey 2012-12-20 20:02:44
— — — — — — — — — — — — — — — —

2 history istanbul 2012-12-20 20:24:17
* — — — — — — — — — — — — — — — —

3 istanbul archeology 2012-12-21 12:02:54
* — — — — — — — — — — — — — — — —

4 istanbul archeology 2012-12-21 18:31:21
— — — — — — — — — — — — — — — —

5 weather new york 2012-12-21 18:45:23
— — — — — — — — — — — — — — — —

6 constantinople 2012-12-21 18:45:36
— — — — — — — — — — — — — — — —

* 7 footbal lisbon 2012-12-21 19:14:01
8 football lisbon 2012-12-21 19:14:11

— — — — — — — — — — — — — — — —
9 benfica vs sporting 2012-12-21 20:23:04

* — — — — — — — — — — — — — — — —
10 derby eterno 2012-12-21 22:42:48

— — — — — — — — — — — — — — — —
* 11 constantinople 2012-12-21 23:09:02

12 constantinople 2012-12-21 23:27:38

Hence, we can easily change ftime = 1− t′−t
90min

. This even saves
some operations (= runtime) as no maximum has to be computed.

From our newly developed query corpus (cf. Section 5), we use a
25% sample as the training set for tuning parameters. We evaluated
the original geometric method with our new ftime-definition and
made the following observations. For flex we can use only character
3- and 4-grams saving runtime and not impairing the session accu-
racy. Furthermore, for flex > 0.15 (all feature values identified by a
grid search on the 25% training set with steps of 0.05) we can simply
ignore the time aspect for a moment (saving another four arithmetic
operations per query pair) and assign both queries to the same ses-
sion. The reason again is the guarantee that our new method invokes
Step 3 only for query pairs pretty close in time. The original geomet-
ric method would often also have assigned such pairs to the same
session due to the existing lexical similarity compared to the short
time gap in its underlying 24h-frame. However, when flex ≤ 0.15
the time comes in again. Such query pairs with low lexical similarity
are split into two logical sessions when ftime < 0.6.

The remaining query pairs with flex ≤ 0.15 and ftime ≥ 0.6
constitute the range where semantic similarity should be checked.
All these pairs have low lexical similarity but were submitted within
36 minutes such that semantic relatedness could be supposed. Hence,
our new method invokes the original cascade’s next step (ESA) on all
these pairs and otherwise trusts the third step’s decisions. Due to the
much simpler feature computation and decision criteria, our lexical
similarity step is much more efficient than the original cascade’s
geometric method—while not harming effectiveness.

The effect of Step 3 in the example scenario is shown in Table 5.
Note that the geometric method is especially good at detecting typo
corrections (lines 7 and 8) that typically come with a very short time
gap and high lexical similarity. All the decisions with low lexical
similarity and small time gap cannot be trusted. Hence, for these
cases, our method invokes a semantic similarity check in Step 4.

Step 4: Semantic Similarity Using ESA
Gabrilovich and Markovitch [5] suggested an explicit semantic
analysis (ESA) method to compare the semantic similarity of two
short texts. Basically, the two texts are not compared directly but
similarities against documents in an indexed background collection
are calculated. The indexed collection (often Wikipedia articles) can
be preprocessed and stored, such that using ESA is not too expensive
compared to for instance lexical cosine similarity.



Table 6: Example after Step 4 (asterisks tag trusted decisions).

Line Query Timestamp

* 1 ancient turkey 2012-12-20 20:02:44
2 history istanbul 2012-12-20 20:24:17

* — — — — — — — — — — — — — — — —
3 istanbul archeology 2012-12-21 12:02:54

* — — — — — — — — — — — — — — — —
4 istanbul archeology 2012-12-21 18:31:21

— — — — — — — — — — — — — — — —
5 weather new york 2012-12-21 18:45:23

— — — — — — — — — — — — — — — —
6 constantinople 2012-12-21 18:45:36

— — — — — — — — — — — — — — — —
* 7 footbal lisbon 2012-12-21 19:14:01

8 football lisbon 2012-12-21 19:14:11
— — — — — — — — — — — — — — — —

9 benfica vs sporting 2012-12-21 20:23:04
* — — — — — — — — — — — — — — — —

10 derby eterno 2012-12-21 22:42:48
— — — — — — — — — — — — — — — —

* 11 constantinople 2012-12-21 23:09:02
12 constantinople 2012-12-21 23:27:38

We employ the ESA method as follows. In a preprocessing step, a
tf ·idf -weighted term-document-matrix of the Wikipedia articles is
stored as the ESA matrix. During runtime, the two to-be-compared
queries q and q′ represented as term vectors are multiplied with
the ESA matrix and the cosine similarity of the resulting vectors
yields the ESA similarity feature fesa. Using all the keywords of the
queries in the logical session s of query q instead of only keywords
from q did not show much difference in pilot experiments on our
25% training set.

Anderka and Stein [1] showed that the ESA performance varies
only very little with the size of the index collection. In our pilot
experiments on the 25% training set we also tried different numbers
of randomly sampled English Wikipedia articles (10 000, 100 000,
1 million, all) and verified that the accuracy of the logical session
decisions did not really differ—except that 10 000 articles performed
a little worse. Hence, our implementation of Step 4 uses a random
sample of 100 000 Wikipedia articles as the ESA index collection.
Our pilot experiments also revealed that for fesa ≥ 0.28 (we tested
in steps of 0.01) a high confidence decision can be made that the
two examined queries belong to the same session.

Table 6 shows the effect of Step 4 in the example scenario. The in-
tent switch between the queries ancient turkey and istanbul

archeology is correctly removed. However, the session break
between football lisbon and benfica vs sporting still re-
mains as the corresponding ESA similarity is too low. Hence, for
fesa < 0.28 the decision is still questionable (remember that both
Benfica and Sporting are football clubs from Lisbon). Accordingly,
the cascading method does not immediately view q′ as the start of
a new session in the case of fesa < 0.28 but invokes Step 5 that
checks semantic similarity based on Linked Open Data connections.

Step 5: Semantic Similarity Using LOD
In addition to semantic similarity from the ESA step described
above, we equip the cascading method with a new fifth step. Within
this new step, the semantic similarity of a pair q, q′ of consecutive
queries from a physical session is analyzed via the Linked Open
Data (LOD) graph of DBpedia.1 Hollink et al. [10, 11] used Linked
Open Data for detecting typical reformulation patterns in an image
search query log and suggested to test the potential for web search
as well—an idea that we now pick up.

DBpedia contains RDF triples representing entities and relation-
ships between entities mined from Wikipedia. Viewing entities as
1http://dbpedia.org/

nodes and relationships as edges, the data defines a graph. Find-
ing a path in this graph from one entity to another is a means of
establishing some semantic relationship between these two entities.
Typically, the more paths between two entities exist and the shorter
these paths are, the more related (semantically similar) are the two
entities. There is for instance a two step path from benfica to
sporting since both are football clubs in Lisbon.

To efficiently find paths in the DBpedia graph, a preprocess stores
the entities and the relationship RDF triples in an index as follows.
For each entity e there is a postlist that contains all entities occurring
in an RDF triple with e. An entity e has an idf -inspired associated
value idf e = log

(
pl
ple

)
, where pl is the total number of postlists

and ple is the number of postlists that contain e (which equals
the length of e’s postlist). The weight of an entity e is set to the
[0, 1]-normalized value weighte =

idf e
idfmax

, where max is the entity
with largest idf -value. The idea of these idf -style weights follows
the usage of idf -values in information retrieval: paths containing
entities that occur in a lot of RDF triples (i.e., that have long postlists)
are probably less descriptive of a semantic similarity than paths
with less frequently occurring entities. Note for instance that all
person entities have a relationship to their respective home country
such that a path including a country is a rather weak evidence of
semantic similarity between two persons. However, when both have
played for the same football club this can be viewed as a “stronger”
relationship and thus a much better similarity indicator.

In practice, the new LOD step is implemented as follows. First,
the main DBpedia entities in the queries q and q′ are identified via a
slightly modified version of the Wikipedia title query segmentation
algorithm [7] (the modification is to also allow 1-word segments
that are ignored by traditional segmentation algorithms). Thereby,
the main entities of a query are the Wikipedia title segments chosen
by the Wikipedia title segmentation approach (basically, in case of
overlapping Wikipedia titles the ones with higher web frequency
are favored). These main entities are mapped to their corresponding
DBpedia entities by employing a dictionary that unifies different
“names” of an entity to the same generic entity in the LOD graph
(e.g., benfica is unified to s.l. benfica). The LOD step then
identifies all one- and two-step paths (i.e., at most one intermediate
entity) from one main entity e in q to one main entity e′ in q′. This
can be accomplished efficiently by merging the indexed postlists
of e and e′. The feature value flod is obtained by the maximum
weight of any of the found paths. The weights of one-step paths
are set to 1.0 and the weight of a two-step path is set to weightp of
the intermediate entity p connecting e and e′. The queries q, q′ are
assigned to the same logical session iff flod > 0.6 (value determined
on our 25% training set by a search with 0.01 steps). Otherwise, q′

is viewed as the start of a new session.
Table 7 shows the effect of Step 5 in the example scenario.

The intent switch between football lisbon and benfica vs

sporting is correctly removed as there are short paths from
both football clubs to the football entity and the Lisbon entity in
Wikipedia. But note that still none of the logical session split deci-
sions made by Step 5 is a high confidence split. In the example query
log all the splits of Step 5 (all the splits not tagged with a *) are
correct but in real world scenarios there often exist cases of query
pairs with low ESA and low LOD similarity that still belong to the
same logical session (e.g., in our newly developed search mission
corpus presented in Section 5). These might for instance be pairs
without LOD entities. Hence for all split decisions of Step 5, we
adopt the final step of the original cascading method that compares
the queries’ actual search results.



Table 7: Example after Step 5 (asterisks tag trusted decisions).

Line Query Timestamp

* 1 ancient turkey 2012-12-20 20:02:44
2 history istanbul 2012-12-20 20:24:17

* — — — — — — — — — — — — — — — —
3 istanbul archeology 2012-12-21 12:02:54

* — — — — — — — — — — — — — — — —
4 istanbul archeology 2012-12-21 18:31:21

— — — — — — — — — — — — — — — —
5 weather new york 2012-12-21 18:45:23

— — — — — — — — — — — — — — — —
6 constantinople 2012-12-21 18:45:36

— — — — — — — — — — — — — — — —
* 7 footbal lisbon 2012-12-21 19:14:01

* 8 football lisbon 2012-12-21 19:14:11
9 benfica vs sporting 2012-12-21 20:23:04

* — — — — — — — — — — — — — — — —
10 derby eterno 2012-12-21 22:42:48

— — — — — — — — — — — — — — — —
* 11 constantinople 2012-12-21 23:09:02

12 constantinople 2012-12-21 23:27:38

Step 6: Comparing search results
Using web search results to identify semantic similarity of a query
pair q, q′ is part of many session detection algorithms (cf. Section 2).
We evaluated different settings in a pilot study on our 25% training
sample. As a result, Step 6 compares the sets of URLs of the top-10
retrieved documents via the Jaccard coefficient. Whenever q′ returns
at least one of the top-10 results of q, we view this as an argument
for a same information need and thus as a continuation of a logical
session. Otherwise, q′ is viewed as starting a new logical session.
However, retrieving search results requires time-consuming index
accesses at search engine site or even the submission of two web
queries from an external client. Hence, the web results are applied
only when all previous steps fail to provide a trusted decision. In
our running example scenario, Step 6 does not remove any intent
switches such that the result stays the same as after Step 5.

Discussion
Note that after the six steps there are “new session” decisions that
still are not guaranteed to be correct logical session splits. It is
always more difficult to automatically decide that a query pair is
not related than finding some evidence for lexical or semantic simi-
larity. In real world settings, related queries do exist that have low
flex-, fesa-, and flod-values, and no shared top-10 search results.
Our current cascade will wrongly split such pairs (but not with
high confidence). Developing sophisticated steps that can identify
such involved related information needs is a very interesting fu-
ture research direction—but probably also rather challenging when
efficiency issues have to be considered.

Despite the difficulty of establishing trustable splits, note that all
“same session” decisions after Step 6 are high confidence decisions
(from the definition of the single step’s trust ranges). This means that
the connections within the logical sessions detected at the end of the
cascading process always come with high confidence evidence for
their underlying same information need—which is what logical ses-
sion detection should aim for. Merging related logical sessions into
search missions forms the second phase of our proposed algorithm.

4. TWO-PHASE MISSION DETECTION
The above described six step scheme can be viewed as the first

phase of a mission detection algorithm. Assume that a query log is
already split into logical sessions after this first phase. By applying a
similar cascade on the detected logical sessions, they can be merged
into missions also accounting for multitasking behavior. Hence, the

first phase runs the six step cascade on query level, the second phase
then runs a similar cascade on logical session level.

A straightforward idea is to merge two logical sessions s and s′,
when an adapted variant of the cascade would assign the last query q
of s and the first query q′ of s′ to the same logical session—this
way masking out all the queries from intermediate sessions. One
might argue that q′ could be checked against all queries from s and
its assigned mission m or even a pairwise comparison of all queries
from s′ to all from m could be performed. However, we restrain
from such a protocol as it is not practical in the online scenario (live
observing one user’s interactions) due to runtime issues coming
with the large number of potential comparisons. Furthermore, our
experiments will show that comparing the last and first query of two
to-be-merged logical sessions very often suffices.

Note that for mission detection, time gaps between queries do not
play the same role as for logical session detection. Hence, Step 1
(physical sessions) and Step 3 (lexical similarity) where time is
involved as a feature have to be changed: we want to be able to
merge logical sessions with more than 90 minutes time gap (e.g.,
lines 2 and 3 in the example). Step 1 is omitted completely and from
Step 3 time is removed. All remaining steps remain unchanged.

In practice, for some logical session s′ the cascade first checks
against the preceding mission m. When s′ is assigned to the same
mission, the mission detection cascade can move on to the logical
session following s′. Otherwise, s′ is checked against the mission
preceding m etc. On the training set, we recognized that when a
mission is picked up in a later logical session there are hardly more
than ten intermediate other logical sessions (more than ten in only
15% of the cases). For efficiency reasons, we thus use the following
cascading mission detection protocol. The first query q′ of s′ is
first checked for simple patterns (Step 2 of the session detection
cascade) against the last queries of the preceding ten logical sessions
one after the other. Whenever a high confidence merge decision
is possible, the mission detection cascade does not invoke more
costly steps. If no simple pattern merge is detected, the lexical
similarity step (Step 3 of the session detection cascade) runs against
the last queries of the preceding ten logical sessions etc. This way,
the mission detection misses all continuations with more than ten
intermediate sessions but also saves a lot of runtime (especially for
sessions that have no related previous session).

In the example scenario, mission detection is done on the logical
sessions given in Table 7. The first two logical sessions (lines 1–2
and line 3) are merged by the ESA step as the query pair in lines 2
and 3 has high enough fesa. Line 4 is merged into the same mission
because it is a query repetition of line 3. The first four lines now form
one intermediate mission. Line 5 is checked against that mission but
no cascade step detects a similarity from line 5 to 4. Line 6 is first
checked against line 5 without success but then checked against the
line 1–4 mission and merged because ESA detects a similarity of
lines 6 and 4. The lines 7–9 logical session is checked (using line 7)
without success against lines 6 and 5. Then line 10 is merged with
lines 7–9 as the LOD step finds paths from benfica and sporting
to derby eterno (which is the name of that classic Lisbon football
derby). Finally, line 11 is checked without success against line 10
but then against line 6 a query repetition is triggered such that the
final outcome is the mission splitting from Table 2 as desired.

Practical Remarks
Having established the stepwise cascading process of using one
feature after the other and the two phases for mission detection, one
could assume that using the cascade would require several runs over
a data set. Note however, that all steps can be applied one after the
other on one query pair until a decision is reached before moving



on to the next pair. In fact, reusing computed time gaps from Step 1
in Step 3 even saves some operations. Also the second phase for
mission detection can be implemented directly after the cascade
finished logical session detection on one query pair: whenever a
split decision is made, the current query can directly be checked
against the last queries of previous missions before moving with the
first phase to the next query pair.

5. EXPERIMENTAL EVALUATION
The accuracy of detected logical sessions or missions is usually

evaluated against corpora of manually labeled query logs. So far,
only two such corpora are publically available. Gayo-Avello’s cor-
pus [6] consists of 11 484 queries from 215 users sampled from the
2006 AOL query log [19] with respect to the representativeness of
typical querying behavior (ratio of repeated queries, click through
rate, etc.). A single human annotator subdivided the sample into
4040 sessions with an average of 2.70 queries per session. The main
drawbacks of Gayo-Avello’s corpus are (1) that the underlying no-
tion of a “session” is only focused on series of consecutive queries
submitted for the same information need (e.g., very long periods of
inactivity are contained in the sessions and no relationships between
different sessions on the same information need are annotated),
(2) that query submission times and clicks are not included but have
to be reconstructed from the original AOL log, (3) that almost half
of the sampled users submitted less than 4 queries such that session
detection for them makes no real sense, (4) that sometimes the order-
ing of the queries in the sample does not reflect the original ordering
in the AOL log, and finally, (5) that some queries from some users
are left out with no reason (not even privacy).

Lucchese et al.’s corpus [17] consists of 1424 queries from
13 users also sampled from the AOL log. However, not all queries
from the sampled users are contained in the corpus but only very few
selected periods of querying where no gap between two subsequent
queries is longer than 26 minutes (i.e., only few physical sessions
but not the whole query stream). This invalidates any attempt at
identifying long term tasks spanning several physical sessions as
about 97% of the original queries from the 13 users in the AOL log
are discarded from the sample. As a result, the rather small Luc-
chese et al. sample does not reflect typical querying behavior with
respect to long-term or reoccurring tasks.

New Corpus for Session and Mission Analysis
The described drawbacks render the available corpora not applicable
to the evaluation of search mission detection. Hence, to reliably
evaluate our method, we do not use the existing corpora but create a
new one. To still ensure some level of comparability with previous
studies, we choose the large Gayo-Avello sample as our basis. From
the AOL log we extracted all queries of the 215 users contained in
the Gayo-Avello sample. We removed the few queries that are empty
or just a URL (probably submitted by users mixing up the search
field with the address bar) and all queries from the 88 users that
submitted less than 4 queries in total (too few queries for reasonable
logical sessions). The final query sample contains 8840 queries
from 127 users. Two human annotators divided this sample into
2881 logical sessions and 1378 missions. Cases where the annotators
did not agree initially were discussed to reach a consensus. This
new corpus is made freely available as the Webis Search Mission
Corpus 2012 (Webis-SMC-12).2

On average, a user in our corpus conducts 10.85 missions with
6.42 queries each. A mission on average contains 2.09 logical ses-
sions. Missions and sessions are interrupted by a different session or
2http://www.webis.de/research/corpora

Table 8: Stepwise performance on the Webis-SMC-12 test set.
decided F1.5-Measure time factor

Step 1 23.87% 0.807 0.033 ms 16.5
Step 2 48.72% 0.845 0.002 ms 1.0
Step 3 13.28% 0.925 0.178 ms 89.0
Step 4 0.60% 0.930 0.237 ms 118.5
Step 5 0.11% 0.930 12.770 ms 6385.0
Step 6 2.03% 0.946 13.359 ms 6679.5

mission and later picked up again in 1505 cases by 93 users. About
76.3% of all the missions are finished within one day (about 34.5%
contain just one query); the longest non-trivial mission runs 88 days
(a user comparing banks in St. Louis).

Performance of the Improved Cascade
Our evaluation test set is formed by the 75% of our new mission
detection corpus that were not used as the training set for tuning the
cascade’s parameters in Sections 3 and 4.

Session detection.
For evaluation of logical session accuracy, we employ the F -

Measure Fβ = (1+β2)·prec·rec
β2·prec+rec

, where precision and recall of the
detected logical session breaks are measured against the human gold
standard. We set β = 1.5, which emphasizes wrong logical session
continuations as the bigger problem compared to wrong breaks.

The stepwise results of the cascading process are shown in Ta-
ble 8 and should be read as follows. After Step 1 (physical sessions)
about 24% of the test set’s query pairs are decided with high con-
fidence (column “decided”) such that they will not be touched by
later steps. The logical session accuracy however is rather low as
expected (F -Measure of 0.807). After Step 2 (substring test) another
49% of the query pairs are decided and the F -Measure is 0.845 if
one would stop the processing after Step 2. Note that the runtime for
invoking Step 2 on a pair of queries is really fast—around 0.002 ms
on a standard quad-core PC with 8 GB RAM; runtime factors of
other steps in column “factor”. After Step 3 (lexical similarity)
another 13% of all queries are decided (altogether about 86% after
three steps) with an F -Measure of 0.925.

Step 4 (ESA) is invoked on about 14% of all queries and runs
with a pre-computed ESA matrix in main memory. Nevertheless,
Step 4 is a little slower than Step 3 with an average time of about
0.24 ms per query pair. Step 4 with high confidence assigns “same
session” for another 0.40% of the pairs, thus only slightly raising
the F -Measure to 0.930 if one would stop the cascading method
after Step 4. Note that after Step 4 our improved cascade is still
faster than the original three step cascade or the geometric method.

The only crucial issue for runtime are Steps 5 and 6 which are
invoked on about 13.5% of all query pairs. Both are more than
50 times slower than ESA even though the search result step was
modeled as follows for our experimental setting. All the queries on
which Step 6 would be invoked were submitted to a commercial
search engine and the top-10 result URLs stored. On runtime of the
cascading method, these result lists were held in memory to simulate
a very fast index lookup at search engine site. Nevertheless, even in
this artificial setting, Step 6 on average needs about 13 ms per query
pair. This yields a factor of almost 6700 compared to the time needed
for Step 2 (substring test). However, Step 6 assigns a reliable “same
session” decision for about 2% of all queries (column “decided”)
and increases the resulting F -Measure to 0.946. But when efficiency
is an issue, Steps 5 and 6 are the obvious bottlenecks.

Note that the original cascading method [8] achieves an F -
Measure of only 0.853 on the test set (when equipped with the
90 minute physical session detection step for a fair comparison
it still is just 0.93). Our improved cascade is faster (more pairs



decided with fast steps) and after Step 6 achieves an F -Measure
of 0.946. However, the main reason for the improvement is not
the new LOD step (Step 5) but the improved variant of Step 3.
There is no change in the F -Measure from Step 4 to Step 5 (the
LOD step correctly identifies six continuations and has one wrong
continuation). The main problem is the characteristic of the web
queries. A detailed analysis shows that most query pairs on which
the LOD step is invoked, are hard pairs with no LOD entity at all—
the LOD step cannot do anything then. Thus, to show the potential
effectiveness of the LOD step, we also compare it to the ESA step
on a manually developed sample of 100 pairs of person and place
names that are semantically related. On this set, the LOD analysis
identifies 77 of the semantically related pairs while the ESA step
can only identify 59. Despite its rather weak performance on the
Webis-SMC-12, the LOD analysis potentially has a much better
coverage than ESA (only the Webis-SMC-12 query sample does
not reflect that). Possible further improvements of the LOD step’s
time efficiency and effectiveness could be pruning the LOD graph
or indexing complete Wikipedia articles (cf. Section 6).

Mission detection.
To evaluate the mission detection accuracy, we run the second

phase of the mission detection cascade on the logical sessions an-
notated in the test set (75% of the new corpus). The cascade cor-
rectly identifies 865 of the 1134 mission continuations missing only
269 continuations (157 due to the horizon effect of just checking
against the previous ten sessions). This clearly shows the improved
cascade’s applicability to mission detection. However, there also
is an error rate of 307 sessions that are wrongly assigned to be a
continuation. Most of the errors are due to the semantic steps that for
instance identify a similarity between health related queries that the
annotators split due to different diseases tackled. Without the three
semantic steps, the mission detection would still correctly identify
807 continuations and only vote for 113 wrong ones. As a side
remark, note that this is a strong evidence for the hypothesis that
users often pick up an abandoned mission by using a lexically very
similar query. Since the runtime without the semantic steps is much
faster and the accuracy is much better, we suggest the restricted
cascade for mission detection.

6. CONCLUSION AND OUTLOOK
We have presented an improved cascading method for logical

session detection that can also be applied to mission detection. The
improvements relate to the original cascade’s geometric method step
and a new step that checks the semantic similarity of two queries
based on a Linked Open Data (LOD) analysis. Just like with the
original cascade, time-consuming features are applied only when
the cheaper features failed to provide a reliable session detection.

As for the evaluation, we have developed a new publicly available
corpus of 8800 queries annotated with logical session and mission
information. On this corpus, our improved cascade outperforms
the original method with respect to the detected logical sessions’
accuracy while being comparably efficient. Our experiments have
also demonstrated the potential of the improved cascade for the
detection of multitasking behavior at user side and for merging
shorter logical sessions into longer search missions.

An interesting topic for future research are efficient semantic
steps to identify more of the “hard” relations. One idea could be
to speed up the LOD step by pruning the underlying graph in a
preprocessing. Another step might have an index of the complete
Wikipedia to check the pages of the LOD entities for semantic
similarity instead of just the connections in the LOD graph. Also the
search engine result step could be improved. In the online scenario,

the results (or snippets) of the previous query are known and it
would be quite cheap to for instance check whether the keywords of
the following query are related to these results (no additional index
access necessary). With logged snippets and top-10 URLs, such a
step could also be very efficient in the offline scenario.
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