
Webis at TREC 2015:
Tasks and Total Recall Tracks

Matthias Hagen Steve Göring Magdalena Keil Olaoluwa Anifowose
Amir Othman Benno Stein

Bauhaus-Universität Weimar
99421 Weimar, Germany

<first name>.<last name>@uni-weimar.de

ABSTRACT
In this paper we give a brief overview of the Webis group’s
participation in the TREC 2015 Tasks and Total Recall
tracks.
In the task understanding subtask of the Tasks track, we

use different data sources (AOL query log, Freebase, etc.)
and APIs (Google, Bing, etc.) to retrieve topics related to a
given query. All sources are combined in our SQuare system.
The task completion subtask is based on combining the re-
sults of our ChatNoir 2 for the different topics identified in
the task understanding subtask. Finally, for the ad-hoc sub-
task (similar to the previous years’ Web tracks), we use an
axiomatic re-ranking approach of the search results obtained
from ChatNoir 2.
In the Total Recall track, we employ a simple SVM base-

line with variable batch sizes equipped with a keyqueries
step to identify potentially relevant documents.

1. TASKS TRACK
The Tasks track has three subtasks: task understanding,

task completion, and the ad-hoc subtask that is similar to
previous years’ TREC Web tracks. For each of the subtasks,
we briefly describe our approach.

1.1 Task Understanding
The goal of the task understanding subtask is to auto-

matically identify related queries for all possible aspects or
topics a given user query may consist of. For each of 50 given
user queries up to 100 related queries should be generated.
Our proposed system is implemented as a web service called
SQuare1 (search for queries that are related). The gen-
eral approach is divided in two steps: acquisition of related
queries and scoring of each query.

1.1.1 Acquisition of Related Queries
In the first step, we generate related queries using

different APIs and datasets: query suggestion APIs,
Graph/RDF-based, search result-based, AOL query log
analysis, Netspeak completion and ChatNoir phrase extrac-
tion.

Suggestion APIs.
We use the query suggestion APIs from Google and Bing

for each given query. Since both APIs typically cover similar
1http://webis16.medien.uni-weimar.de/square/

related queries, on average we obtained 6–8 related queries
from these APIs.

AOL query log analysis.
We have divided the AOL query log [8] into search ses-

sions and missions [5]. For a given query q, we then identify
all search sessions that contain a query with a tf -weighted
cosine similarity to q of at least 0.8. All queries of such
sessions are then used as potentially related queries.

Graph, RDF.
Since most queries of the Tasks track come with anno-

tated Freebase entities (ID and name), we submit requests
for similar entities/topics to the Interestgraph [11], Wiki-
Data [13], and Freebase [3]. All retrieved topics are used as
potentially related queries.

Search Results.
We submit the given user query to the general Google web

search [4] and to the Wikipedia search [14] to retrieve the
top-10 search results. For each search result we get the title
and use the terms with at least two characters as potential
query phrases.

Netspeak Frequent Phrases.
For a query q, we use Netspeak [10, 12] to find related

queries as follows. Let w1 and wn be the first and last word
in q, respectively. We then submit the request ∗ w1 ∗ wn∗ to
Netspeak. The query results are the most frequent phrases
containing w1 and wn, where the ∗-operator matches zero
or more words. The top-10 Netspeak results are used as
potentially related queries.

ChatNoir Keyphrase Extraction.
Our last data source for related queries is ChatNoir [9].

We retrieve the top-10 results and extract the top-10
keyphrases from the main content [7] using a head noun
phrase extractor [1].

1.1.2 Query Scoring
Based on the above different techniques of the acquisi-

tion step, we obtain a set Q of potentially related queries
for a given query q. For the different approaches, our pilot
studies showed different qualities of the found potentially re-
lated queries such that we assign different weights to queries
found by either technique reflecting the quality: Google sug-
gest 100, Bing suggest 90, AOL query log sessions 80, Inter-

http://webis16.medien.uni-weimar.de/square/


estgraph 70, Wikipedia search result titles 60, Google search
result titles 50, Freebase 40, Wikidata 30, Netspeak frequent
phrases 20, ChatNoir search result keyphrases 10.
A query found by different approaches gets the summed

weights as its score and the queries are ranked by descending
scores. Queries achieving the same score are ordered by
the number of ClueWeb12 results found with ChatNoir 2
preferring queries with more results.

1.1.3 Run webis1
We only had one run based on the top-100 related queries

we found. However, having known before that the pooling
depth for evaluation would be 20, we would have submit-
ted two other runs having ranks 21–40 and 41–60 also be
judged. On average, we extracted about 250 different re-
lated queries for a given query. From these, the highest
scoring 100 queries are used.

1.2 Task Completion
Our runs for the task completion and ad-hoc subtask

are on the full ClueWeb12 corpus (category A) using the
ChatNoir 2 search engine to retrieve an initial baseline re-
sult set, that is then potentially re-ranked. ChatNoir 2 is the
successor of ChatNoir [9]; it is built on ElasticSearch using
BM25F as the retrieval model.
As for the task completion subtask, based on a given user

query, all documents should be given as output that are
relevant to any task a user may be trying to fulfill. In our
general approach for this subtask, we use the related queries
from the task understanding subtask (cf. Section 1.1) as the
task set. For each related query individually, we retrieve
documents using ChatNoir 2. Afterwards, we combine the
top-10 retrieved documents of the different related queries
in different ways. Note that we do not include the original
query here although it might still be the best description of
the user need. The reason is that our runs for the ad-hoc
task will be based on the original query and we wanted to
avoid getting similar judgments for two different tasks. The
final result list containing results for the original query and
the related ones might of course achieve better evaluation
results than the combined list of the related queries or the
results of the original query individually.

1.2.1 Runs
For this subtask, we assume a low pooling depth having

the third run use documents not in the top-20 of the other
two runs. The underlying idea is to obtain judgments for
more documents.

webisC1.
In our first run, we use a simple interleaving approach.

The first result is the first rank from the highest scoring
related query, the second result is the highest rank from the
second highest scoring related query, etc. Results that are
already contained in the interleaved ranking are not used
again.

webisC2.
Our second run weights the top-10 retrieved documents

for each related query based on the number of related queries
that have the result in their top-10. The most frequent re-
sults form the combined result set. In case of same frequen-
cies, the task understanding score of the query that has the

result in the highest result rank determines; if even this is
equal, the order is chosen at random.

webisC3.
In our last run, we again use the interleaving approach

of our first run, but skip documents that are contained in
the top-20 of our first two runs. The idea is to obtain some
more judgments for other documents.

1.3 Ad-hoc Task
The ad-hoc subtask is similar to the past years’ TREC

Web tracks. For a given query, a ranked list of documents
should be returned. In the last year, we participated in the
Web track with an early prototype of an axiom-based re-
ranking framework [6]. As for this year’s ad-hoc subtask,
we improved many parts of the framework; especially we
added more axioms.
The basic idea remains the same but we use the new

ChatNoir 2 setup and pre-trained static axiom weights ob-
tained in pilot experiments for BM25F or tf ·idf as baseline
retrieval models.

1.3.1 Runs
Again, we have three runs that assume a low pooling

depth for judgment and have the lower ranks of our first
runs as the top ranks in the third run to obtain judgments
for more documents.

webisA1.
We axiomatically re-rank the ChatNoir 2 baseline results

using the BM25F axiom weights.

webisA2.
The results of webisA1 from which the top-20 were re-

moved. Again, the idea is to simply get more judgments in
case that the pooling depth will be set to 20.

webisA3.
We axiomatically re-rank the results of a tf · idf baseline

retrieval model. From the final ranking, the top-20 results of
our first two runs are excluded to obtain judgments for more
documents. The original tf ·idf ranking can be evaluated by
re-inserting the excluded documents.

2. TOTAL RECALL TRACK
The objective of the Total Recall track is to retrieve all

relevant documents for a given topic with as little effort as
possible. The components involved in our system include
Apache Lucene 5.3 (used for indexing and searching employ-
ing the BM25 retrieval model), MongoDB 3.0 (database for
storage), and LIBSVM (for training an SVM classifier). Our
two runs (baseline and keyphrase) are separated into four
separate steps: (1) initialization, (2) first iteration, (3) sub-
sequent iterations, (4) finalization. Basically, the only dif-
ference of our two runs is in the subsequent iterations step.

2.1 Baseline Run

Initialization.
As a preprocessing step, the tf · idf scores for the vocab-

ulary in the corpus are derived and stored in a key-value
store. The tf · idf weighted document vectors will serve as



the feature input of an SVM classifier used in later steps.
However, when the number of documents in the corpus in-
creases, there is a possibility that our system substantially
slows down due to the SVM classifier. Our pilot experi-
ments show that this effect occurs around corpus sizes of
300,000 documents. We perform sampling to remedy this
situation. If the corpus has more than 300,000 documents,
a subset of 300,000 documents would be chosen randomly.
An index for the corpus is built using Apache Lucene’s

BM25 retrieval model with default parameter settings.

First Iteration.
In each iteration, we send a number of documents to the

“user” (i.e., the organizer’s API) for relevance judgment. We
call this number the batch size. During the first iteration,
the batch size is set to 32. The size of 32 is chosen since our
pilot experiments showed it to represent a good compromise
between sending too many or too few documents for judg-
ment. And since it is a multiple of 2, it is easy to later halve
or double the batch size.
For a given topic, we start by removing the stop words;

however, when more than 50% of a topic’s terms are stop
words, we keep them. The processed topic is then run as
an ad-hoc query against the BM25 index. We consider the
top-128 results (again a multiple of 2) as relevant and label
them as positive examples for the SVM classifier. Another
128 random documents that do not appear in the ad-hoc
query’s result are labeled as negative examples for the SVM.
The SVM is then trained on the labeled documents and used
to classify all other corpus documents (remember that it
could only be a sample for large corpora). From the resulting
ranking, the 16 top-ranking documents are chosen that are
not among the top-16 results of the ad-hoc query. These
16 SVM-classified documents are combined with the top-
16 results of the ad-hoc query and submitted to the user
for judgment. The response is a list of true labels for the
32 documents (relevant or not) that is used in the subsequent
iterations.

Subsequent Iterations.
After each iteration, the batch size may change by being

doubled or halved (easy due to the initial multiple of 2).
There will be a point in a run where the next batch size
becomes zero due to rounding. At that point, our approach
decides to stop. In case that the batch size is not zero, the
following steps will be performed.
First, the relevance feedback from the previous iteration is

used to create a new training set for the SVM classifier. This
is done by labeling the user-defined relevant documents as
positive and the non-relevant documents as negative. Since
the number of relevant and non-relevant documents might
differ, we try to balance the sets to reduce bias. If the num-
ber of non-relevant documents is less than the number of rel-
evant documents, some random documents from the corpus
that have not been judged as relevant are added to the neg-
ative examples. If the number of non-relevant documents is
larger than the number of relevant documents, non-relevant
documents are removed at random until the number of rel-
evant document is reached.
The trained SVM classifier is then used to classify the

corpus documents not judged before. The top-n documents
the SVM classifier judges as relevant are selected to send for
judgment retrieval. Here, n is the batch size that depends

on the previous iteration: It is doubled from the previous
batch size if the ratio of relevant documents to non-relevant
documents was greater than 0.5 in the previous iteration. It
is halved if the ratio of relevant documents to non-relevant
documents was less than 0.4. Otherwise, the previous batch
size is not changed. To avoid sending too many documents,
we set the maximum batch size to 2048 for athome1 and
athome2 and to 4096 for all other corpora. If the maximum
batch size is reached, the above rules would be ignored and
the following would be applied: The batch size is divided
by 16 if the ratio of relevant documents to non-relevant doc-
uments is less than 0.4 and halved otherwise.

Finalization.
Eventually, the batch size will become smaller since the

number of relevant documents not shown to the user is
monotonically decreasing. When the next batch size be-
comes zero, a run on a topic is finalized.

2.2 Run with Keyphrase Extraction
In this run, a keyphrase extraction component is added

to enrich the set of potentially positive examples in each it-
eration instead of shrinking the set of judged non-relevant
documents. The only difference to the baseline is the treat-
ment of subsequent iterations (i.e., iterations following the
first iteration). The other parts are identical to the baseline
run.

Subsequent Iterations.
In case that more than 128 documents were judged as rel-

evant in previous iterations, we choose 128 at random that
were not used for keyphrase extraction in previous itera-
tions. For these 128 documents, we compute the pairwise
tf · idf -weighted cosine similarities and remove all similar-
ities below 0.2. From the remaining similarities, we select
the four documents with the highest pairwise cosine similar-
ities with the assumption that these deal with similar topics
and were judged as relevant by the user. If no such docu-
ments can be found (e.g., when all similarities are below 0.2
or no relevant documents exist), the keyphrase extraction is
skipped. In case that four documents could be identified,
we extract the top-10 head noun keyphrases [1] from their
concatenated main contents [7]. These keyphrases are used
to form a keyquery for as many of the documents as possi-
ble. A keyquery for a document set is a query that retrieves
the documents in its top-k results [2]. In our case, we em-
ploy the Lucene BM25 index as the reference search engine
and set k = 32. From a keyquery the top-128 results not
previously judged as relevant are used as additional positive
examples for training the SVM classifier (in addition to the
documents already judged as relevant). In this case, not that
many non-relevant documents have to be removed for bal-
ancing than was the case in the baseline run. The negative
examples again are the documents judged as non-relevant.

All other Steps.
The other three steps and the batch size adapting strategy

of the subsequent iterations step are identical to the baseline
run.



3. REFERENCES
[1] K. Barker and N. Cornacchia. Using noun phrase

heads to extract document keyphrases. In Proceedings
of AI 2000, pages 40–52.

[2] T. Gollub, M. Hagen, M. Michel, and B. Stein. From
keywords to keyqueries: Content descriptors for the
web. In Proceedings of SIGIR 13, pages 981–984.

[3] Google. Freebase data dumps.
https://developers.google.com/freebase/data,
2015.

[4] Google. Web search API, 2015.
[5] M. Hagen, J. Gomoll, A. Beyer, and B. Stein. From

search session detection to search mission detection. In
Proceedings of OAIR 2013), pages 85–92.

[6] M. Hagen, S. Göring, M. Michel, G. Müller, and
B. Stein. Webis at TREC 2014: Web, Session, and
Contextual Suggestion tracks. In Proceedings of TREC
2014.

[7] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proceedings of WSDM 2010, pages 441–450.

[8] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In Proceedings of Infoscale 2006, paper 1.

[9] M. Potthast, M. Hagen, B. Stein, J. Graßegger,
M. Michel, M. Tippmann, and C. Welsch. ChatNoir:
A search engine for the ClueWeb09 corpus. In
Proceedings of SIGIR 2012, page 1004.

[10] M. Potthast, M. Trenkmann, and B. Stein. Netspeak:
Assisting writers in choosing words. In Proceedings of
ECIR 2010, page 672.

[11] Prismatic. InterestGraph API.
http://interest-graph.getprismatic.com/, 2015.

[12] Webis. Netspeak API. http://netspeak.org, 2015.
[13] Wikidata. Knowledge base API.

https://www.wikidata.org/, 2015.
[14] Wikipedia. Web API, 2015.

https://developers.google.com/freebase/data
http://interest-graph.getprismatic.com/
http://netspeak.org
https://www.wikidata.org/

	Tasks Track
	Task Understanding
	Acquisition of Related Queries
	Query Scoring
	Run webis1

	Task Completion
	Runs

	Ad-hoc Task
	Runs


	Total Recall Track
	Baseline Run
	Run with Keyphrase Extraction

	References

