
TIREx Tracker: The Information Retrieval Experiment Tracker
Tim Hagen

University of Kassel and hessian.AI
Germany, Kassel

Maik Fröbe
Friedrich-Schiller-Universität Jena

Germany, Jena

Jan Heinrich Merker
Friedrich-Schiller-Universität Jena

Germany, Jena

Harrisen Scells
University of Kassel and hessian.AI

Germany, Kassel

Matthias Hagen
Friedrich-Schiller-Universität Jena

Germany, Jena

Martin Potthast
University of Kassel,

hessian.AI, and ScaDS.AI
Germany, Kassel

Abstract
The reproducibility and transparency of retrieval experiments de-
pends on the availability of information about the experimental
setup. However, since the manual collection of experiment meta-
data can be tedious, error-prone, and inconsistent, it should be
collected systematically and automatically. Expanding ir_metadata,
we present the TIREx tracker, a tool to collect hardware config-
urations, power/CPU/RAM/GPU usage, and experiment/system
versions. Implemented as a lightweight platform-independent C bi-
nary, the TIREx tracker seamlessly integrates into Python, Java, or
C/C++ workflows. Furthermore, it can be easily incorporated into
run submissions of shared tasks, as we showcase for the TIRA/TIREx
platform. Code, binaries, and documentation are publicly available
at https://github.com/tira-io/tirex-tracker.

CCS Concepts
• Applied computing → Document metadata; • Information
systems → Evaluation of retrieval results.

Keywords
IR Metadata; Reproducibility; Information Retrieval Evaluation
ACM Reference Format:
Tim Hagen, Maik Fröbe, Jan Heinrich Merker, Harrisen Scells, Matthias
Hagen, and Martin Potthast. 2025. TIREx Tracker: The Information Retrieval
Experiment Tracker. In Proceedings of the 48th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’25), July 13–18, 2025, Padua, Italy. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3726302.3730297

1 Introduction
In information retrieval (IR), reproducibility and transparency of
experiments are receiving increasing attention: comparative evalu-
ation has a long traditions at TREC, CLEF, NTCIR, and FIRE, data
and code sharing are increasingly promoted (also through peer
review), and many IR conferences now have dedicated resource
and reproducibility tracks. In addition, initiatives such as artifact
review and badging [7], model cards [14], and ir_metadata [3], as
well as sharing model weights on platforms such as Hugging Face

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1592-1/2025/07
https://doi.org/10.1145/3726302.3730297

promoted openness in IR. Moreover, efficiency has become a focus
recently as larger transformer-based models and more computa-
tionally demanding systems are used in retrieval experiments. In
this respect, the ACL has included resource and environmental im-
pact reporting in their checklist for responsible NLP.1 Tracking and
comparing resource consumption alongside effectiveness has thus
become another important aspect of retrieval experiments—a key
focus of the ReNeuIR workshop series [4].

However, despite its importance, tracking the use of computa-
tional resources is still tedious (e.g., tools such as ir_metadata [3]
require manual work) and approaches to automate the collection
of metadata for IR experiments (setup, conditions, etc.) are so far
limited to Python [2]. To address these problems, we develop the
TIREx tracker,2 a lightweight and easy-to-integrate tool for auto-
matically capturing efficiency aspects and experiment metadata.
Our approach extends ir_metadata to include various reproducibil-
ity and efficiency aspects such as hardware specifications, energy
consumption, and hardware utilization. The TIREx tracker’s API is
kept as simple as possible to lower the barrier to entry. We demon-
strate the tracker’s versatility through seamless integration with
TIREx [8]. By automating metadata and efficiency data collection,
the TIREx tracker improves reproducibility and transparency of IR
experiments—without placing additional demands on researchers.

2 Related Work
Reproducibility in IR. Reproducibility in information retrieval (IR)

is an ongoing challenge [19]. Recent efforts have focused on meta-
data collection and dockerization since metadata plays an impor-
tant role to improve replicability [11]. Breuer et al. [3] propose the
ir_metadata specification for IR experiments, which is based on the
PRIMADmodel [6], which identifies six major components of an ex-
periment: Platform,Research goal, Implementation,Method,Actor,
and Data. As such, ir_metadata includes, among others, metadata
about the operating system, hardware specifications, dependencies,
the researcher themselves, and their research goal. It also specifies
limited Git repository metadata (remote URL and commit hash).
However, richer Git metadata, such as whether the commit is up-to-
date, whether untracked files exist, or whether tracked files contain
uncommitted changes, would further improve reproducibility.

To our knowledge, repro_eval [2], is the only tool that automati-
cally generates ir_metadata, but its scope is limited to Python-based
experiments. Beyondmetadata collection, containerization has been
1https://aclrollingreview.org/responsibleNLPresearch/
2https://github.com/tira-io/tirex-tracker

https://github.com/tira-io/tirex-tracker
https://doi.org/10.1145/3726302.3730297
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3726302.3730297
https://aclrollingreview.org/responsibleNLPresearch/
https://github.com/tira-io/tirex-tracker

SIGIR ’25, July 13–18, 2025, Padua, Italy Tim Hagen et al.

explored as a means to ensure reproducibility. The Open-Source
IR Replicability Challenge [5] proposed a Docker specification for
IR experiments, while TIREx [8] extends the Shared Task Platform
TIRA [9] with IR-specific features. TIREx enforces replicability by
executing Docker-submissions in a sandboxed environment, pre-
venting external dependencies (e.g., internet access).

Despite the advantages of containerization for reproducibility,
adoption remains limited—likely due to the overhead of defining
and managing Docker containers. Our approach with the TIREx
tracker seeks to address this by automatically collecting metadata
needed to reconstruct a Docker image after an experiment is run.
This reduces the manual effort required from researchers but gives
detailed insight into the environment the experiments were run in,
improving reactive reproducibility actions [16].

When used with TIREx, the TIREx tracker enables seamless
evaluation on TIRA by automatically collecting metadata for the
Platform, Implementation, Method, and Data. Researchers are then
providedwith a link to claim ownership of their submission, thereby
incorporating the Actor component of PRIMAD. In cases where the
experimental setup does not require network access or extensive
software dependencies, this approach allows for easy reconstruction
of the runtime environment using Docker.

Energy Tracking. The introduction of transformer-based models
has significantly impacted information retrieval, primarily due to
their superior language modeling capabilities. However, this im-
provement typically comes at the cost of efficiency (in terms of
training or inference costs), as transformer models require substan-
tially more computational resources. These additional resources
lead to higher energy consumption per query. With the widespread
adoption of such models, the environmental impact of information
retrieval research has become a growing concern [18, 21]. This has
led to initiatives such as the ReNeuIR workshop series—now in its
fourth edition at SIGIR—and, more broadly, the inclusion of envi-
ronmental impact reporting in ACL’s Responsible NLP Checklist.

Efficiency tracking in IR is not new, but modern models’ in-
creasing computational demands made energy tracking more criti-
cal than ever. Several frameworks were developed to address this.
Research-focused solutions include Carbontracker (420 GitHub
stars, actively maintained) [1] and experiment-impact-tracker (281
stars, last commit four years ago) [10]. More general-purpose tools,
such as pyJoules3 (79 stars) and CodeCarbon4 (1.3k GitHub stars, ac-
tively maintained), aim to track energy consumption and emissions
across diverse applications.

A key limitation of these tools is their language dependence.Most
of them, including Carbontracker and CodeCarbon, are Python-
specific. To address the lack of energy tracking solutions for C++,
CPPJoules [17] was recently introduced as a C++ alternative in-
spired by pyJoules. However, this results in separate language-spe-
cific libraries, whereas a unified, language-agnostic solution would
be preferable. A cleaner approach would be a central native C inter-
face that enables seamless integration across different programming
languages and adding language integration through thin wrappers.
3https://github.com/powerapi-ng/pyJoules
4https://github.com/mlco2/codecarbon

Beyond language constraints, certain design choices in exist-
ing tools affect their accuracy and usability. Notably, CodeCar-
bon resorts to approximations when direct energy data is unavail-
able. Its methodology page states: “We could not find any good
resource showing statistical relationships between TDP and av-
erage power, so we empirically tested that 50% is a decent ap-
proximation [of the power consumption].”5 Such assumptions can
lead to inaccurate energy estimates. Additionally, CodeCarbon’s
installation instructions6 omit crucial dependencies, such as In-
tel Power Gadget on Windows or the necessary permissions for
/sys/class/powercap/intel-rapl on Linux. Since it silently falls
back to estimation rather than alerting users to missing configura-
tions, users may unknowingly rely on incorrect measurements.7

Most existing tools rely on Intel Power Gadget to track energy
consumption on Intel CPUs in Windows environments. However,
Intel Power Gadget presents two key issues: (1) it requires a separate
installation, complicating deployment, and (2) it was deprecated at
the end of 2023, replaced by Intel PCM, which current tools do not
yet support. CodeCarbon is actively working on integrating Intel
PCM, but broader adoption remains an open challenge.

3 Implementation
To provide a flexible and lightweight mechanism for collecting
runtime environment data and resource consumption metrics, we
separate the TIREx tracker into a minimal native tracking layer
and language-specific bindings (see Figure 1). The native library
provides a minimal interface to track most metrics and is indepen-
dent of both the operating system and the hardware architecture.
The TIREx tracker’s native library tracks system metrics (e.g., CPU
and GPU utilization, energy consumption, and memory usage) and
system metadata (e.g., the operating system’s name and version).
Additional language-specific bindings allow capturing language-
specific metadata (e.g., installed packages) and facilitate easy inte-
gration with different programming environments of information
retrieval experiments. Currently, bindings are provided for Python
and JVM-based languages (e.g., Java, Kotlin), but since the TIREx
tracker’s C library is a self-contained shared library, bindings for
other languages can easily be added.

In the following sections, we first describe which measures are
tracked and how (Section 3.1), then we detail how the native, low-
level, cross-platform C library is designed (Section 3.2), how the
Python/Java language-specific, high-level wrappers are used (Sec-
tion 3.3), and, lastly, how the results can be exported to ir_metadata-
compatible files (Section 3.4). Figure 1 provides an overview of these
components and interactions with third party APIs.

3.1 Measuring System Metrics and Metadata
Reliably measuring system metrics and collecting metadata across
diverse computing environments presents several challenges (see
also Section 2). To unify and simplify this tedious task, we have
designed the TIREx tracker to support the most popular operating
systems (Linux/Windows/macOS), CPU architectures (x86/ARM),
and hardware vendors (Intel/AMD/Apple CPUs, and Nvidia/Apple
5https://mlco2.github.io/codecarbon/methodology.html
6https://mlco2.github.io/codecarbon/installation.html
7See for example issues #515 and #677 in CodeCarbon’s GitHub repository.

https://github.com/powerapi-ng/pyJoules
https://github.com/mlco2/codecarbon
https://mlco2.github.io/codecarbon/methodology.html
https://mlco2.github.io/codecarbon/installation.html
https://github.com/mlco2/codecarbon/issues/515
https://github.com/mlco2/codecarbon/issues/677

TIREx Tracker: The Information Retrieval Experiment Tracker SIGIR ’25, July 13–18, 2025, Padua, Italy

Table 1: All measures of the TIREx tracker and their supported platforms (✓ supported, ✓ partial, p unsupported, ò Linux,
¯ Windows, macOS). Partial support indicates support for only some vendors (e.g., only Nvidia GPUs). Python (3) and
Java (Ú) metrics are only available in their respective wrappers. Measures are constant (�, i.e., never change during tracking),
cumulative (�, e.g., time or energy) or periodically polled time series values (!).

Identifier Description Platform Type

ò ¯

�
O
S OS_NAME Name and version of the operating system under which is currently running. ✓ ✓ ✓ �

OS_KERNEL The version of the kernel that the operating system is running on. ✓ ✓ ✓ �

Â
T
im

e

TIME_START Timestamp when the tracking was started. ✓ ✓ ✓ �

TIME_STOP Timestamp when the tracking was stopped. ✓ ✓ ✓ �

TIME_ELAPSED_WALL_CLOCK_MS The (“real”) wall clock time elapsed during tracking. ✓ ✓ ✓ �

TIME_ELAPSED_USER_MS Time spent in the platform’s user mode. ✓ ✓ ✓ �

TIME_ELAPSED_SYSTEM_MS Time spent in the platform’s system mode. ✓ ✓ ✓ �

>
C
P
U

CPU_USED_PROCESS_PERCENT CPU usage of the tracked process in percent per logical CPU cores. ✓ ✓ ✓ !

CPU_USED_SYSTEM_PERCENT CPU usage of the entire system in percent per logical CPU cores. ✓ ✓ ✓ !

CPU_AVAILABLE_SYSTEM_CORES Number of CPU cores available in the system. ✓ ✓ ✓ �

CPU_ENERGY_SYSTEM_JOULES The energy consumed by the CPU by the entire system over the tracked period in joules. ✓ ✓ ✓ �

CPU_FEATURES List of hardware features the CPU supports (e.g., the instruction set, encryption capabilities). ✓ ✓ ✓ �

CPU_FREQUENCY_MHZ Current CPU speed in megahertz. ✓ ✓ p !

CPU_FREQUENCY_MIN_MHZ Minimum possible CPU speed in megahertz. ✓ ✓ p �

CPU_FREQUENCY_MAX_MHZ Maximum possible CPU speed in megahertz. ✓ ✓ p �

CPU_VENDOR_ID A textual name for the vendor of the CPU. ✓ ✓ ✓ �

CPU_BYTE_ORDER The endianness (big-, little-, or mixed-endian) used by the CPU. ✓ ✓ ✓ �

CPU_ARCHITECTURE The architecture (x86, x86_64, ARM, . . .) of the CPU. ✓ ✓ ✓ �

CPU_MODEL_NAME The name of the concrete CPU model. ✓ ✓ ✓ �

CPU_CORES_PER_SOCKET Number of CPU cores located on a single physical socket. ✓ ✓ ✓ �

CPU_THREADS_PER_CORE Number of logical CPU cores (threads) per core. ✓ ✓ ✓ �

CPU_CACHES The sizes of each CPU cache (e.g., L1, L2, L3) in kilobytes. ✓ ✓ ✓ �

CPU_VIRTUALIZATION The virtualization technology supported by the CPU (VT-x or AMD-V), if any. ✓ ✓ ✓ �

:
R
A
M RAM_USED_PROCESS_KB RAM usage of the tracked process in kilobytes. ✓ ✓ ✓ !

RAM_USED_SYSTEM_MB RAM usage of the entire system in megabytes. ✓ ✓ ✓ !

RAM_AVAILABLE_SYSTEM_MB Amount of RAM available in the system in megabytes. ✓ ✓ ✓ �

RAM_ENERGY_SYSTEM_JOULES The energy consumed by the DRAM by the entire system over the tracked period in joules. ✓ ✓ p �

4
G
P
U

GPU_SUPPORTED True if a GPU is detected in the system, and we support tracking it. ✓ ✓ ✓ �

GPU_MODEL_NAME The name of the GPU model detected in the system. ✓ ✓ p �

GPU_DRIVER_VERSION The version of the installed GPU drivers. ✓ ✓ p �

GPU_NUM_CORES Number of GPU cores available in the system. ✓ ✓ p �

GPU_USED_PROCESS_PERCENT GPU usage of the tracked process in percent. ✓ ✓ p !

GPU_USED_SYSTEM_PERCENT GPU utilization of the entire system in percent. ✓ ✓ p !

GPU_VRAM_USED_PROCESS_MB GPU VRAM usage of the tracked process in megabytes. ✓ ✓ p !

GPU_VRAM_USED_SYSTEM_MB GPU VRAM usage of the entire system in megabytes. ✓ ✓ p !

GPU_VRAM_AVAILABLE_SYSTEM_MB Amount of GPU VRAM available in the system in megabytes. ✓ ✓ p �

GPU_ENERGY_SYSTEM_JOULES The energy consumed by the GPU for the entire system in joules. ✓ ✓ p �

¦
G
it

GIT_IS_REPO True if the current working directory is (part of) a Git repository. ✓ ✓ ✓ �

GIT_ROOT Holds the “working directory” of the repository (the path to root of the repository’s file tree). ✓ ✓ ✓ �

GIT_HASH SHA1 hash of all files checked into the repository. ✓ ✓ ✓ �

GIT_LAST_COMMIT_HASH Latest Git commit SHA1 hash. ✓ ✓ ✓ �

GIT_BRANCH Checked-out Git branch name. ✓ ✓ ✓ �

GIT_BRANCH_UPSTREAM Upstream branch of the checked-out Git branch name. ✓ ✓ ✓ �

GIT_TAGS List of Git tag(s) at the current commit, if any. ✓ ✓ ✓ �

GIT_REMOTE ORIGIN URL of the origin remote if exists. ✓ ✓ ✓ �

GIT_UNCOMMITTED_CHANGES True if some changes are not yet committed. ✓ ✓ ✓ �

GIT_UNPUSHED_CHANGES True if some changes are not yet pushed. ✓ ✓ ✓ �

GIT_UNCHECKED_FILES True if there are files that are not ignored (by a .gitignore file) and also not checked into the repository. ✓ ✓ ✓ �

GIT_ARCHIVE_DIR Creates a zip archive containing all files inside the repository that are not ignored by the gitignore. ✓ ✓ ✓ �

3
Py

th
on

PYTHON_VERSION Python version (e.g. 3.12.0) used to run the tracked program. ✓ ✓ ✓ �

PYTHON_EXECUTABLE Python executable used to run the program. ✓ ✓ ✓ �

PYTHON_MODULES Python modules visible in the current environment. ✓ ✓ ✓ �

PYTHON_INSTALLED_PACKAGES Python packages installed in the current environment. ✓ ✓ ✓ �

7 more Python executable, arguments, script path, script contents, interactive, notebook path, notebook contents. ✓ ✓ ✓ �

Ú
Ja
va

JAVA_VERSION Java Runtime Environment version (e.g., 21.0.6) used to run the tracked program. ✓ ✓ ✓ �

JAVA_HOME Java installation directory. ✓ ✓ ✓ �

JAVA_CLASS_PATH Java class path, i.e., where to search for classes and packages. ✓ ✓ ✓ �

17 more Java system properties available from System.getProperties(). ✓ ✓ ✓ �

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/System.html#getProperties()

SIGIR ’25, July 13–18, 2025, Padua, Italy Tim Hagen et al.

TIRA/TIREx other experiment platforms

ir_metadata
researchers

TIREx tracker API API API

metadata

lsb-release

sysctl

versionhelpers

OS

usage

/proc/

sysctl proc

Process Status

power consumption

PCM RAPL

libIOReport

SMI RAPL

CPU RAM

usage + power

NVML

SMI

GPU

version control

libgit2

Git

metadata + code

sys

setuptools

Python

metadata + code

JVM properties

JVM

Figure 1: Overview of the interfaces and components of the TIREx tracker APIs (from top to bottom): integrations with
experiment platforms (e.g., TIRA/TIREx), format (i.e., ir_metadata), tracking logic (C/Python/JVM), sources, and tracked entities.

GPUs). We expose a common interface that is agnostic to the under-
lying system, so we do not impose restrictions on the researcher’s
choice of hardware or software environment. Internally, the metrics
and metadata are tracked by data providers that each specialize
in a set of measures (e.g., OS information, CPU, GPU, RAM, or
energy). Providers share a common interface to easily support ad-
ditional metrics or platforms in the future. Table 1 lists the metrics
and metadata available in the TIREx tracker, grouped by the their
“target” (OS, CPU, Git, . . .). Overall, the TIREx tracker collects up
to 69 measures (depending on the language binding), which we cat-
egorize into (1) constants that remain unchanged during execution
(e.g., hardware specifications, OS details, and repository metadata),
(2) cumulative measures that aggregate or cumulate a value over
the tracked time span (e.g., time elapsed or energy consumed), and
(3) time series measures that continuously track a metric (e.g., CPU
and RAM usage) over time.

Operating System Metadata. To capture general system informa-
tion, we fetch the operating system (OS) name, version, and kernel
details (the latter is mostly relevant on Linux). On Linux, we get the
information from /etc/lsb-release for Linux Standard Base (LSB)-
compliant distributions and fall back to /etc/os-release for broader
compatibility with non-compliant systems like Fedora. On macOS,
we use sysctl to obtain the OS version and kernel details. And, for
Windows, we query the system provided versionhelpers.h.8

Git Versioning Metadata. Git9 is a popular version control system
commonly used in (research) software development. By providing
metadata about the Git repository an experiment is run from, the
TIREx tracker supports the reproducibility and transparency of
the research, e.g., it may be useful to know the last commit hash
or whether the repository contains untracked, uncommitted, or
unpushed files. Such metadata allows for verification of the source
code used at execution time to ensure experiment integrity. We
8Note that Windows does not distinguish versions 10 and up: learn.microsoft.com/
windows-hardware/drivers/ddi/wdm/ns-wdm-_osversioninfoexw
9https://git-scm.com/

track all Git-related metadata using the statically linked libgit210
library. This keeps TIREx tracker in a single self-contained binary,
so we do not rely on any external Git installation and guarantee
consistent access to version control metadata across environments.

CPU Usage and Energy Consumption. To track CPU-related met-
rics, we leverage a combination of hardware-specific tools and
system-dependent APIs to ensure broad compatibility and to avoid
relying on manual user configurations. To determine the CPU’s ca-
pabilities, PyTorch’s cross-platform cpuinfo11 library is used if avail-
able. For unsupported measures, we fall back to platform-specific
calls, e.g., sysctl on macOS. Runtime efficiency metrics on Linux
are extracted from the /proc/ directory,12 that, for instance, con-
tains the CPU utilization over time. For energy measurements, tools
on macOS typically rely on the powermetrics command line tool.
But since that tool requires root privileges, we instead directly use
the libIOReport library that is internally used by powermetrics, en-
abling energy data collection without elevated permissions. On
Windows and Linux, energy measurement tools usually use the
Running Average Power Limit (RAPL) interface and Intel Power-
Gadget [1, 10, 17]. Both require manual setup, and Power-Gadget
is no longer officially supported. We additionally and alternatively
use Intel PCM, the successor to Power-Gadget, which is compiled
directly into our binary, eliminating the need for external depen-
dencies or reliance on deprecated software on Intel-based systems.
For AMD, we are working on integrating the AMD SMI library13,
which provides, among others, energy information for CPU, GPU,
and RAM on supported AMD setups.

RAM Usage and Energy Consumption. Our RAM usage metrics
are tracked using platform-specific APIs, similar to the CPU moni-
toring. On Linux, memory usage is again retrieved from the /proc/

file system, that provides system-wide and process-specific memory
10https://libgit2.org/
11https://github.com/pytorch/cpuinfo
12https://linux.die.net/man/5/proc
13https://rocm.docs.amd.com/projects/amdsmi/en/latest/

https://learn.microsoft.com/windows-hardware/drivers/ddi/wdm/ns-wdm-_osversioninfoexw#remarks
https://learn.microsoft.com/windows-hardware/drivers/ddi/wdm/ns-wdm-_osversioninfoexw#remarks
https://git-scm.com/
https://libgit2.org/
https://github.com/pytorch/cpuinfo
https://linux.die.net/man/5/proc
https://rocm.docs.amd.com/projects/amdsmi/en/latest/

TIREx Tracker: The Information Retrieval Experiment Tracker SIGIR ’25, July 13–18, 2025, Padua, Italy

statistics. On Windows, we utilize the Process Status API14 and the
System Info API15 to query process-specific and global memory us-
age respectively. Finally, for macOS, we use the builtin libproc16 for
process information and sysconf for global RAM usage. For RAM
energy consumption metrics, we rely on RAPL and Intel PCM on
both Linux and Windows, leveraging the same infrastructure used
for CPU energy tracking. RAM energy measurement on macOS is
unsupported due to the lack of appropriate system interfaces.

GPU Usage and Energy Consumption. For GPU usage, we cur-
rently support NVIDIA GPUs on Linux and Windows through the
NVIDIA Management Library (NVML),17 which is part of the GPU
driver. NVML provides insights into GPU utilization, VRAM usage,
and energy consumption, and therefore, constitutes the primary
data source for our measure implementation. On macOS, dedicated
VRAM monitoring is not applicable due to the shared memory ar-
chitecture of Apple GPUs. While GPU energy consumption can
be queried on macOS via libIOReport, we do not currently plan to
support GPU metrics on macOS. Monitoring AMD GPUs remains a
challenge, and resource tracking tools similar to the TIREx tracker
usually lack support for AMD GPUs [17]. To bridge this gap, we
are currently integrating the AMD SMI library to track the energy
consumption of AMD GPUs.

Process-Specific Energy Consumption Tracking. Typically, hard-
ware APIs merely report the overall energy consumption of whole
system components (e.g., entire CPUs, GPUs, or RAM) but do not
narrow down energy usage per process. As a means to estimate
process-specific energy consumption, one can assume a strong cor-
relation of resource utilization with the resource’s power draw. For
example, if a process utilizes half of the CPU cores of a system, it
seems fair to also attribute half of the CPU’s energy consumption to
that individual process. While this estimation relies on a typically
not entirely true assumption (e.g., using a larger proportion of the
CPU might be more efficient than using two smaller slices), it al-
lows for meaningful per-process energy insights without requiring
the process to be run in isolation and allows the TIREx tracker to
track both overall CPU/GPU/RAM energy consumption and the
consumption of the tracked process itself.

Python Environment Metadata. When used to track a Python
program, we determine the Python version, executable, command
line arguments, and visible modules using Python’s built-in sys

module.18 A list of installed dependencies and their exact versions
are queried via the setuptools package,19 allowing for a compre-
hensive, pinned dependency list agnostic to the way dependencies
are defined.20 Additionally, we check if the Python program is run
as an interactive (Jupyter) notebook. The entry point Python script
and (if available) the Jupyter notebook are also recorded.
14https://learn.microsoft.com/en-us/windows/win32/api/_psapi/
15https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/
16https://developer.apple.com/documentation/kernel/sys#3571036
17https://developer.nvidia.com/management-library-nvml
18https://docs.python.org/3/library/sys.html
19https://github.com/pypa/setuptools
20Even though some researchers choose to pin versions in a requirements.txt file,
Python imposes no restrictions on the dependency management tool, so we cannot
rely just on parsing the requirements.txt file.

(a) In C (using the tirex_tracker.h header file):

#include <tirex_tracker.h>
int main() {

// Configure measures to track.
tirexMeasureConf conf[] = {

{TIREX_TIME_ELAPSED_WALL_CLOCK_MS , TIREX_AGG_NO},
tirexNullMeasureConf // sentinel value

};
tirexTrackingHandle* handle;
tirexStartTracking(conf , 100, &handle);
// Do something ...
tirexResult* result;
tirexStopTracking(handle , &result);
// Analyze the results.
tirexResultFree(result);

}

(b) In Python (using the tirex-tracker PyPI package):

from tira.tracker import tracking
with tracking () as results:

Do something ...
print(results)

(c) In Java (using the io.tira:tirex-tracker Maven package):

import io.tira.tracker .*;
void main() {

var result = Tracker.track (() -> {
// Do something ...

});
System.out.println(result);

}

(d) In Kotlin (using the io.tira:tirex-tracker Maven package):

import io.tira.tracker .*;
fun main() {

val result = track {
// Do something ...

}
println(result)

}

Listing 1: Using TIREx tracker in C, Python, and Java/Kotlin.

Java Environment Metadata. For programs running on the Java
virtual machine (JVM), we collect additional Java environment
metadata using Java’s built-in system properties,21 providing in-
formation about the Java runtime environment (JRE), vendor (e.g.,
Oracle), virtual machine (JVM), and class path (i.e., the paths to
search when importing classes or packages), properties essential to
define the behavior in which compiled Java byte code is executed.

3.2 A Native, Low-level, and Cross-Platform
Experiment Tracking Library

Most of the measures outlined above (Section 3.1; see Table 1) are
implemented in the TIREx tracker’s native library, a lightweight,
low-level and cross-platform C API consisting of a single header file
with fewer than 150 lines of code22 and compact binaries (smaller
than 4MB). The library’s C API is designed to be both simple and
21https://docs.oracle.com/en/java/javase/23/docs/api/system-properties.html
22Comments were not counted.

https://learn.microsoft.com/en-us/windows/win32/api/_psapi/
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/
https://developer.apple.com/documentation/kernel/sys#3571036
https://developer.nvidia.com/management-library-nvml
https://docs.python.org/3/library/sys.html
https://github.com/pypa/setuptools
https://docs.oracle.com/en/java/javase/23/docs/api/system-properties.html

SIGIR ’25, July 13–18, 2025, Padua, Italy Tim Hagen et al.

flexible. Users can request any of the supported measures using the
identifiers fromTable 1 and, with that list of requestedmeasures, call
the tirexStartTracking function to start a tracking thread (see List-
ing 1). For polled time series measures, users can specify a polling
interval to balance overhead and accuracy. Moreover, batched aggre-
gations (i.e., min, max, mean, or no aggregation) can be configured
to reduce the amount of data stored in the time series (e.g., for
polling RAM usage every 100ms to not miss spikes but consid-
ering only the 1 s-maximum overall). To stop the tracking, users
call the tirexStopTracking function, which returns a tirexResult

data structure containing the requested metrics and metadata (see
Listing 1). After analyzing the results, users can free the memory
allocated by the TIREx tracker’s library by calling tirexFreeResult.
Optionally, users can also enable fine-grained logging by setting a
log callback function using tirexSetLogCallback.

The TIREx tracker’s C library is designed to fail fast and safely
when a certain measure is not available on a system in such situ-
ations. We expose the API as a pure C header file to avoid name
mangling issues common in C++ headers, facilitating an easy inte-
gration with various higher-level programming languages, e.g., the
Python and Java-specific wrappers in Sections 3.3. To reduce poten-
tial incompatibilities due to missing shared libraries, we compile
most dependencies statically into the binary and only rely on system
libraries that are part of drivers (e.g., NVML). Additional user-side
configuration is only required for energy tracking in rare situations,
e.g., for tracking AMD CPUs with RAPL. Our library intentionally
only exposes the most basic functionality (as opposed to, e.g., some
profiling libraries like omniperf23) to avoid dependencies, make the
library lightweight, and keep the API simple and easy to use.

3.3 Simplified Retrieval Experiment Tracking
in Python, Java and Kotlin

The most popular information retrieval frameworks are written in
Java (e.g., Lucene, Anserini, and Terrier [15, 20]) or Python (e.g.,
Pyserini and PyTerrier [12, 13]). To integrate the TIREx tracker
into these frameworks and to open up hardware metrics and meta-
data tracking for Python and Java users, we implement additional
language-specific, high-level wrappers on top of the C library:
(1) the tirex-tracker package for Python and (2) for JVM-based
languages like Java or Kotlin the io.tira:tirex-tracker package.

Python Wrapper. The TIREx tracker’s Python wrapper uses the
foreign function callingmodule ctypes24, which is built into Python,
to expose the native C library through a type-safe, tested, and light-
weight API. The Python library provides the start_tracking and
stop_tracking Python functions that work analogous to the native
tirexStartTracking and tirexStopTracking functions which inter-
nally parse the results into a Python dictionary and free the native
memory. For easier use, we also provide the same functionality as
a context manager (shown in Listing 1), and as a function decora-
tor. By using either the context manager or the function decorator,
users can easily avoid memory leaks due to dangling references to
unstopped tracking threads or results. The bundled Python wheels
are just 3MB in size and can be installed from PyPI.25

23https://rocm.github.io/rocprofiler-compute/introduction.html
24https://docs.python.org/3/library/ctypes.html
25https://pypi.org/project/tirex-tracker

(a) Upload via the bash command line:

tira -cli upload \
--directory '<directory -with -run >' \
--dataset '<ir-datasets -id>'

(b) Upload in Python experiments:

from tira.third_party_integrations import \
persist_and_normalize_run

from tira.tirex.tracker import tracking
from pyterrier import get_dataset

dataset = get_dataset("irds:<ir-datasets -id>")
with tracking () as tracking_results:

run = ...# Retrieve results for the dataset 's topics

persist_and_normalize_run(
run ,
system_name="<system -name >",
upload_to_tira=dataset ,
tracking_results=tracking_results ,

)

Listing 2: Uploading a run and its ir_metadata-compatible
metrics/metadata to TIRA/TIREx via bash and Python.

Java/Kotlin Wrapper. Similarly, the TIREx tracker’s Java pack-
age wraps the native C library for JVM-based applications, us-
ing Java Native Access (JNA)26. Again, the static startTracking

and stopTracking Java methods analogous to the native library’s
tirexStartTracking/tirexStopTracking functions handle the result
parsing into a Java hash map and are complemented with conve-
nience methods for tracking lambdas (for Java) or inline blocks
(for Kotlin) of code (see the track method shown in Listing 1). The
compiled Java JAR is also just 3MB big and can be installed with
Maven or Gradle from the GitHub Package Registry.27

3.4 Standardized Metadata Export by Extending
the ir_metadata Specification

The TIREx tracker API tracks metrics and metadata that are even
relevant to many fields in computer science beyond reproducibility
in information retrieval. Its generic API allows for flexibly reading
this data in a structured way. Since, for information retrieval exper-
iments, Breuer et al. [3] have already standardized the ir_metadata

format to capture the most relevant IR-specific metadata, we extend
the TIREx tracker to automate the export of the collected metrics
by adding a tirexResultExportIrMetadata function which exports
the tracking results to an ir_metadata-compatible file.

With the TIREx tracker’s plethora of measures (see Table 1), a
lot of metadata does not directly “fit” into the current ir_metadata
specification (version 0.1), which, for example, does not have a
field for storing most of the non-constant hardware resource usage
metrics (e.g., the time series of RAM used by the tracked process).
Hence, we extend the existing ir_metadata schema and propose
version 0.2-beta to accommodate all measures from Table 1.28
26https://java-native-access.github.io/jna/5.16.0/javadoc
27https://github.com/tira-io/tirex-tracker/packages/
28Our proposed specification of the ir_metadata version 0.2-beta is available online:
https://github.com/tira-io/tirex-tracker#ir_metadata-extension

https://rocm.github.io/rocprofiler-compute/introduction.html
https://docs.python.org/3/library/ctypes.html
https://pypi.org/project/tirex-tracker
https://java-native-access.github.io/jna/5.16.0/javadoc
https://github.com/tira-io/tirex-tracker/packages/
https://github.com/tira-io/tirex-tracker#ir_metadata-extension

TIREx Tracker: The Information Retrieval Experiment Tracker SIGIR ’25, July 13–18, 2025, Padua, Italy

Easy Retrieval Experiment Tracking with the TIREx Tracker. Our
language wrappers (Section 3.3) extend the natively exported meta-
data by additional language-specific metadata (e.g., the Python
version or the Java class path; see Table 1) by adding these fields to
the ir_metadata file. Thus, the TIREx tracker’s language bindings
make it easy to track hardware metrics and metadata in retrieval
experiments, regardless of the retrieval framework. Users would,
for example, in Python use the tracking context manager to wrap
the retriever (Listing 2). After running and evaluating their retrieval
system, the user can export the ir_metadata-compatible run meta-
data, hardware metrics, and optional system metadata (e.g., the run
name or description) using the export_ir_metadata function, and
place it next to the run file (usually a TREC run file).

We further envision retrieval-framework-specific integrations
of the TIREx tracker with popular retrieval experimentation frame-
works like Pyserini and PyTerrier [12, 13], to also include the compu-
tation graph of the retrieval pipeline (e.g., the PyTerrier transformer
modules the pipeline consists of) in the metadata.

4 Case Study: Run Submissions with
ir_metadata to TIRA/TIREx

As the TIREx tracker allows to automatically track and export the
metadata and resource metrics of information retrieval experiments
into standardized files, a potential use case is to incorporate auto-
mated metadata collection into run submission platforms used for
shared tasks such as TREC, CLEF, or NTCIR with only very minor
modifications of the submission platform itself. For instance, the
ir_metadata specification can be incorporated into the uploaded
run files themselves (which does not require modifications of the
upload form) or can be uploaded as additional small ir_metadata
file (usually only a few kilobytes; does require a modification of
the upload form). Because the workload (i.e., metadata collection
and standardized export) is handled by the TIREx tracker APIs
which are operated by the participant, the experiment platforms
themselves do not require significant additional maintenance ef-
fort and instead can contribute improvements and/or modifications
to fit specialized needs to the TIREx tracker, to benefit all other
experiment platforms as well. To exemplify one such platform inte-
gration, we integrate the TIREx tracker into (anonymous) run file
submission on the TIRA/TIREx platform [8, 9].

In TIRA/TIREx, we use the TIREx tracker to monitor and render
tracked system metrics and metadata for runs that are persisted
and uploaded to the TIRA/TIREx. We envision that, ideally, every
time when an experimenter writes a run file to disk, it is uploaded
in the background to TIRA so that a rich data source of runs to-
gether with ir_metadata emerges that can be used by the whole IR
community. Therefore, we modify the persist_and_normalize_run

method available in TIRA (alternative methods to persist run files
to disk could be modified accordingly). This method calls the TIREx
tracker’s export_ir_metadata function to generate the ir_metadata

file and then uploads the run file and the ir_metadata file to TIRA.
We further add validators for ir_metadata to allow organizers to
ensure that runs are only accepted when the ir_metadata is valid
and includes all fields required by organizers. We also incorporate
anonymous, unauthenticated run submissions into TIRA so that
the collection of runs with ir_metadata does not require addtional

Figure 2: Rendered CPU consumption with ir_metadata in
TIRA (analogous for GPU/RAM usage).

Figure 3: Claiming a submission with ir_metadata in TIRA.

effort from experimenters (though TIRA.io still only accepts valid
uploads). For anonymous submissions, an identifier is displayed to
users with which they can claim ownership of the submission on
the TIRA website. Listing 2 shows an (anonymous) run submission
with ir_metadata-compatible metadata using the command line and
an experiment in Python that persists the run and metadata via the
persist_and_normalize_runmethod, uploads it to TIRA, and finally

SIGIR ’25, July 13–18, 2025, Padua, Italy Tim Hagen et al.

displays the identifier. The returned identifier is used in Figure 3 to
claim ownership for the submitted run. TIRA can also render the
ir_metadata including the experiment’s resource consumption (see
Figure 2). This aims to encourage the development of evaluation
methodologies that combine efficiency with effectiveness.

This workflow adds only very little complexity for experimenters
but still captures an extensive set of system metrics and run meta-
data (like hardware specifics and the code from the Git repository),
that can later be used to reproduce “interesting” submissions to a
shared task as Docker images for follow-up experiments.

5 Conclusion and Limitations
We introduced the TIREx tracker, a lightweight and easily inte-
grable tool to automatically track extensive hardware metrics and
metadata in information retrieval experiments. By exporting that
metadata as ir_metadata files, the various hardware, versioning,
and software metrics and metadata aid reproducibility of retrieval
experiments and facilitate efficiency reporting (e.g., runtime and
energy consumption) while imposing only minimal additional work
on researchers. We demonstrate the versatility of TIREx tracker by
integrating it into the TIRA/TIREx shared task platform, showing
its applicability to real-world experiment tracking and evaluation.

To maximize compatibility across different systems, we expose
the tracking API to C, Python, and Java and test compatibility
through an extensive continuous integration and delivery suite that
compiles, tests, and publishes all binaries and packages. With the
main challenge of supporting a wide range of hardware vendors
and software environments in mind, our approach is extensible
but still ensures broad usability by researchers. Moving forward,
we will continue to maintain and improve the tracker as part of
the TIRA project and the TIREx platform, both of which we have
actively supported since 2019 and 2023, respectively.

As the default efficiency tracker for the TIRA/TIREx platform, we
anticipate further improvements to stability and reliability across
diverse systems. Additionally, we plan to expand support by inte-
grating the tracker into widely used frameworks such as PyTerrier/
Terrier, Pyserini/Anserini, and PISA, using the TIREx tracker’s re-
specitve language wrappers. We further plan to extend support to
AMD GPUs. With these ongoing efforts, the TIREx tracker provides
a reliable component to improve reproducibility and transparency,
and to easily track efficiency in information retrieval experiments.

References
[1] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. 2020. Car-

bontracker: Tracking and Predicting the Carbon Footprint of Training Deep
Learning Models. https://doi.org/10.48550/arXiv.2007.03051 arXiv:2007.03051

[2] Timo Breuer, Nicola Ferro, Maria Maistro, and Philipp Schaer. 2021. repro_eval: A
Python Interface to Reproducibility Measures of System-Oriented IR Experiments.
In Proceedings of ECIR 2021 (LNCS, Vol. 12657), Djoerd Hiemstra, Marie-Francine
Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and Fabrizio Sebastiani
(Eds.). Springer, Berlin, 481–486. https://doi.org/10.1007/978-3-030-72240-1_51

[3] Timo Breuer, Jüri Keller, and Philipp Schaer. 2022. ir_metadata: An Extensible
Metadata Schema for IR Experiments. In Proceedings of SIGIR 2022, Enrique
Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and
Gabriella Kazai (Eds.). ACM, New York, 3078–3089. https://doi.org/10.1145/
3477495.3531738

[4] Sebastian Bruch, Maik Fröbe, Tim Hagen, Franco Maria Nardini, and Martin
Potthast. 2025. ReNeuIR at SIGIR 2025: The Fourth Workshop on Reaching
Efficiency in Neural Information Retrieval. To appear. In Proceedings of SIGIR
2025. ACM, New York, 4 pages.

[5] Ryan Clancy, Nicola Ferro, Claudia Hauff, Jimmy Lin, Tetsuya Sakai, and
Ze Zhong Wu. 2019. Overview of the 2019 Open-Source IR Replicability Chal-
lenge (OSIRRC 2019). In Proceedings of OSIRRC@SIGIR 2019 (CEUR Workshop
Proceedings, Vol. 2409), Ryan Clancy, Nicola Ferro, Claudia Hauff, Jimmy Lin,
Tetsuya Sakai, and Ze Zhong Wu (Eds.). CEUR-WS.org, Aachen, 1–7. https:
//ceur-ws.org/Vol-2409/invited01.pdf

[6] Nicola Ferro, Norbert Fuhr, Kalervo Järvelin, Noriko Kando, Matthias Lippold, and
Justin Zobel. 2016. Increasing Reproducibility in IR: Findings from the Dagstuhl
Seminar on “Reproducibility of Data-Oriented Experiments in e-Science”. SIGIR
Forum 50, 1 (2016), 68–82. https://doi.org/10.1145/2964797.2964808

[7] Nicola Ferro and Diane Kelly. 2018. SIGIR Initiative to Implement ACM Artifact
Review and Badging. SIGIR Forum 52, 1 (2018), 4–10. https://doi.org/10.1145/
3274784.3274786

[8] Maik Fröbe, Jan Heinrich Reimer, Sean MacAvaney, Niklas Deckers, Simon Reich,
Janek Bevendorff, Benno Stein, Matthias Hagen, and Martin Potthast. 2023. The
Information Retrieval Experiment Platform. In Proceedings of SIGIR 2023, Hsin-
Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang, Makoto P. Kato, Josiane
Mothe, and Barbara Poblete (Eds.). ACM, New York, 2826–2836. https://doi.org/
10.1145/3539618.3591888

[9] Maik Fröbe, Matti Wiegmann, Nikolay Kolyada, Bastian Grahm, Theresa Elstner,
Frank Loebe, Matthias Hagen, Benno Stein, and Martin Potthast. 2023. Continu-
ous Integration for Reproducible Shared Tasks with TIRA.io. In Proceedings of
ECIR 2023 (LNCS, Vol. 13982), Jaap Kamps, Lorraine Goeuriot, Fabio Crestani,
Maria Maistro, Hideo Joho, Brian Davis, Cathal Gurrin, Udo Kruschwitz, and
Annalina Caputo (Eds.). Springer, Berlin, 236–241. https://doi.org/10.1007/978-
3-031-28241-6_20

[10] Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and
Joelle Pineau. 2020. Towards the Systematic Reporting of the Energy and Carbon
Footprints of Machine Learning. https://doi.org/10.48550/arXiv.2002.05651
arXiv:2002.05651

[11] Jeremy Leipzig, Daniel Nüst, Charles Tapley Hoyt, Karthik Ram, and Jane Green-
berg. 2021. The Role of Metadata in Reproducible Computational Research.
Patterns 2, 9 (2021), 100322. https://doi.org/10.1016/j.patter.2021.100322

[12] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Frassetto Nogueira. 2021. Pyserini: A Python Toolkit for Repro-
ducible Information Retrieval Research with Sparse and Dense Representations.
In Proceedings of SIGIR 2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo
Castells, Rosie Jones, and Tetsuya Sakai (Eds.). ACM, New York, 2356–2362.
https://doi.org/10.1145/3404835.3463238

[13] Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis. 2021.
PyTerrier: Declarative Experimentation in Python from BM25 to Dense Re-
trieval. In Proceedings of CIKM 2021, Gianluca Demartini, Guido Zuccon, J. Shane
Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, New York, 4526–4533.
https://doi.org/10.1145/3459637.3482013

[14] Margaret Mitchell, SimoneWu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,
Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.
Model Cards for Model Reporting. In Proceedings of FAT* 2019, Danah Boyd and
Jamie H. Morgenstern (Eds.). ACM, New York, 220–229. https://doi.org/10.1145/
3287560.3287596

[15] Iadh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, and
Douglas Johnson. 2005. Terrier Information Retrieval Platform. In Proceedings of
ECIR 2005 (LNCS, Vol. 3408), David E. Losada and Juan M. Fernández-Luna (Eds.).
Springer, Berlin, 517–519. https://doi.org/10.1007/978-3-540-31865-1_37

[16] Martin Potthast, Tim Gollub, Matti Wiegmann, and Benno Stein. 2019. TIRA Inte-
grated Research Architecture. In Information Retrieval Evaluation in a Changing
World – Lessons Learned from 20 Years of CLEF, Nicola Ferro and Carol Peters (Eds.).
The IR Series, Vol. 41. Springer, Berlin, 123–160. https://doi.org/10.1007/978-3-
030-22948-1_5

[17] Shivadharshan S, Akilesh P, Rajrupa Chattaraj, and Sridhar Chimalakonda. 2024.
CPPJoules: An Energy Measurement Tool for C++. https://doi.org/10.48550/
arXiv.2412.13555 arXiv:2412.13555

[18] Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. 2022. Reduce, Reuse,
Recycle: Green Information Retrieval Research. In Proceedings of SIGIR 2022,
Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper,
and Gabriella Kazai (Eds.). ACM, New York, 2825–2837. https://doi.org/10.1145/
3477495.3531766

[19] Ellen M. Voorhees, Shahzad Rajput, and Ian Soboroff. 2016. Promoting Repeata-
bility Through Open Runs. In Proceedings of the Seventh International Workshop
on Evaluating Information Access, EVIA 2016, a Satellite Workshop of the NTCIR-12
Conference, National Center of Sciences, Tokyo, Japan, June 7, 2016, Emine Yilmaz
and Charles L. A. Clarke (Eds.). National Institute of Informatics (NII).

[20] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the Use of Lucene
for Information Retrieval Research. In Proceedings of SIGIR 2017, Noriko Kando,
Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.).
ACM, New York, 1253–1256. https://doi.org/10.1145/3077136.3080721

[21] Guido Zuccon, Harrisen Scells, and Shengyao Zhuang. 2023. Beyond CO2
Emissions: The Overlooked Impact of Water Consumption of Information Re-
trieval Models. In Proceedings of ICTIR 2023, Masaharu Yoshioka, Julia Kise-
leva, and Mohammad Aliannejadi (Eds.). ACM, New York, 283–289. https:
//doi.org/10.1145/3578337.3605121

https://doi.org/10.48550/arXiv.2007.03051
https://arxiv.org/abs/2007.03051
https://doi.org/10.1007/978-3-030-72240-1_51
https://doi.org/10.1145/3477495.3531738
https://doi.org/10.1145/3477495.3531738
https://ceur-ws.org/Vol-2409/invited01.pdf
https://ceur-ws.org/Vol-2409/invited01.pdf
https://doi.org/10.1145/2964797.2964808
https://doi.org/10.1145/3274784.3274786
https://doi.org/10.1145/3274784.3274786
https://doi.org/10.1145/3539618.3591888
https://doi.org/10.1145/3539618.3591888
https://doi.org/10.1007/978-3-031-28241-6_20
https://doi.org/10.1007/978-3-031-28241-6_20
https://doi.org/10.48550/arXiv.2002.05651
https://arxiv.org/abs/2002.05651
https://doi.org/10.1016/j.patter.2021.100322
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1145/3459637.3482013
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1007/978-3-540-31865-1_37
https://doi.org/10.1007/978-3-030-22948-1_5
https://doi.org/10.1007/978-3-030-22948-1_5
https://doi.org/10.48550/arXiv.2412.13555
https://doi.org/10.48550/arXiv.2412.13555
https://arxiv.org/abs/2412.13555
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3578337.3605121
https://doi.org/10.1145/3578337.3605121

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Measuring System Metrics and Metadata
	3.2 A Native, Low-level, and Cross-Platform Experiment Tracking Library
	3.3 Simplified Retrieval Experiment Tracking in Python, Java and Kotlin
	3.4 Standardized Metadata Export by Extending the ir_metadata Specification

	4 Case Study: Run Submissions with ir_metadata to TIRA/TIREx
	5 Conclusion and Limitations
	References

