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ABSTRACT
Crowdsourced knowledge bases like Wikidata suffer from low-
quality edits and vandalism, employing machine learning-based
approaches to detect both kinds of damage. We reveal that state-
of-the-art detection approaches discriminate anonymous and new
users: benign edits from these users receive much higher vandalism
scores than benign edits from older ones, causing newcomers to
abandon the project prematurely. We address this problem for the
first time by analyzing and measuring the sources of bias, and by
developing a new vandalism detection model that avoids them. Our
model FAIR-S reduces the bias ratio of the state-of-the-art vandalism
detector WDVD from 310.7 to only 11.9 while maintaining high
predictive performance at 0.963 ROCAUC and 0.316 PRAUC.
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1 INTRODUCTION
Knowledge bases play an important role in modern information
systems. For instance, web search engines use them to enrich search
results, conversational agents to answer factual questions, and fake
news detectors for fact checking. Collecting knowledge at scale
still heavily relies on crowdsourcing: Google acquired the open
Freebase project to bootstrap its proprietary “Knowledge Graph”
until Freebase was shut down and succeeded by Wikidata, the free
knowledge base of Wikimedia. Other prominent open knowledge
bases like Yago and DBpedia also depend on crowdsourcing by ex-
tracting knowledge from Wikipedia. As crowdsourcing knowledge
has a long history, so does the fight against damage caused by van-
dals and other users, which may propagate to information systems
using the knowledge base, potentially reaching a wide audience.

From its humble beginnings with manual review and rule-based
detection bots, damage control atWikipedia has grown into an intri-
cate sociotechnical system, where man and machine work together
to review edits and to maintain the integrity of its articles. While
Wikipedia’s damage control system grew alongside the encyclope-
dia for more than a decade, Wikidata gained momentum at a much
faster pace: Transferring Wikipedia’s system to Wikidata without
a second thought (see Figure 1 for an illustration), adapting its pro-
cedures and the machine learning technologies employed [27, 49],
has given rise to discrimination.
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Figure 1: Wikidata’s damage control system along potential
sources of bias, which may accumulate in a vicious cycle.

In this paper, we reveal for the first time that state-of-the-art van-
dalism detectors employed at Wikidata are heavily biased against
certain groups of contributors. For example, benign edits of new
users receive vandalism scores over 300 times higher than benign
edits of older user accounts. Such a widespread discrimination of
certain user groups (especially that of anonymous editors) under-
mines the founding principles on which Wikimedia’s projects are
built:1 maintaining a neutral point of view, the ability of anyone
to edit articles, and the creation of a welcoming environment. The
discrimination of anonymous users by registered users has long
been recognized and the problem has been tackled through contin-
uous community outreach.2 But when discrimination gets encoded
into automatic decision-making at Wikimedia, this aggravates the
problem. For example, it has been previously found that new con-
tributors whose edits are automatically reverted are much more
likely to withdraw from the project [21, 22, 50].

Besides raising awareness, we carefully analyze different sources
of bias in Wikidata’s damage control system. Based on these in-
sights, we develop two new machine learning models and demon-
strate that bias can be significantly reduced compared to the state-
of-the-art. Our model FAIR-E uses graph embeddings to check
the content’s correctness without relying on biased user features.
Our model FAIR-S systematically selects the best-performing hand-
engineered features under the constraint that no user features are
used. Furthermore, we experiment with different transformations
of the state-of-the-art vandalism detector WDVD: post-processing
scores, reweighting training samples, and combining approaches via
ensembles. We evaluate our approaches on a subset of the standard-
ized, large-scale Wikidata Vandalism Detection Corpus 2016 [27],
comparing our results to others from the literature.

In what follows, after discussing related work in Section 2, we
analyze in Section 3 the sources of bias for Wikidata’s damage
control system. Section 4 introduces our new detection models
designed to mitigate biases. Sections 5 and 6 detail the evaluation
data and our comparative evaluation, respectively, and Section 7
discusses limitations and practical implications.
1https://meta.wikimedia.org/wiki/Founding_principles
2https://en.wikipedia.org/wiki/Wikipedia:IPs_are_human_too
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2 RELATEDWORK
Despite the long-standing insight that machine learning is prone
to incur bias, the body of work addressing this problem is surpris-
ingly small. Only recently Baeza-Yates [2] compiled an overview of
biases found on the web that may induce discrimination, including
an analysis of Wikipedia’s editor elite and its gender gap. Romei
and Ruggieri [48], Zliobaite [67], and Pedreschi et al. [45] collect
measures to quantify bias in machine learning models which we em-
ploy in our analysis. Otherwise, only a handful of papers explicitly
attempt to mitigate biases in machine learning applications: Zhao
et al. [65] and Bolukbasi et al. [5] tackle gender bias, Wang et al.
[57], Wilkie and Azzopardi [59] and Yang and Stoyanovich [61]
tackle biases in information retrieval systems, Torralba and Efros
[53] investigate bias in image classification, and Dixon et al. [13]
propose methods to measure and mitigate bias in text classification.
Algorithmic attempts at bias mitigation include naive Bayes [7],
SVMs [62], decision trees [30], and random forests [47]. The trade-
off between accuracy and fairness is explored by Berk et al. [4],
Kleinberg et al. [33], Corbett-Davies et al. [10], and Chouldechova
[8], while performance measures for imbalanced datasets such as
PRAUC and ROCAUC are not considered. Berk et al. [4], Hardt et al.
[23], and Dwork et al. [16] discuss different notions of fairness in-
cluding equality of opportunity and statistical parity. More closely
related to our work, Halfaker et al. [21, 22] and Schneider et al. [50]
find that newcomer retention at Wikimedia projects is severely
affected by overzealous reversion of their edits. Passing part of the
blame to automatic vandalism detectors, no remedies are proposed.

Vandalism at Wikipedia is defined as “editing deliberately in-
tended to obstruct or defeat the project’s purpose.”3 Though this
definition excludes damage caused unintentionally, the task of a van-
dalism detector, human or other, is to identify both kinds of damage
so they can be dealt with according to severity. The literature and
practitioners often speak of vandalism detection while actually op-
erationalizing damage detection in general [31]; current vandalism
detectors are quite incapable of discerning user intent, which often
even challenges human reviewers. Vandalism detection was first
proposed forWikipedia, employing text mining and user reputation
features to detect damaging edits to articles [46]. More than a dozen
approaches have been proposed since (e.g., [1, 29, 54, 56]), giving
rise to a rich set of features, many of which have been transferred
into the models currently at work. By comparison, vandalism detec-
tion models for Wikidata are still in their infancy [25, 27, 43, 49, 52],
as evidenced by the facts that their feature sets are almost entirely
the same as those employed for Wikipedia, and that hardly any
feature quantifies Wikidata’s actual content, i.e., the knowledge
encoded as subject-predicate-object triples. Our approach omits the
biased user reputation features and introduces novel graph embed-
dings, drawing from, and advancing related work on fact checking
and link prediction.

Fact checking pertains to checking the correctness of a fact
and can be divided into approaches using internal and external
knowledge. Regarding the former, Ciampaglia et al. [9] compute
the shortest path between a fact’s subject and its object, considering
different weighted (transitive) predicates. Shi and Weninger [51]
determine paths between subject and object that help to distinguish
3https://en.wikipedia.org/wiki/Wikipedia:Vandalism

correct from incorrect predicates between them, employing a one-
hot encoding and logistic regression. We experimented with path
features, too, but found a simpler graph embedding to be superior
for debiasing. Nishioka and Scherp [43] analyze the evolution of
knowledge graphs to verify changes, employing basic features like
the age of entities and predicates and the in- and out-degree of
entities. Approaches using external knowledge include that of Wu
et al. [60], who check the correctness of facts from news articles
by generating SQL queries to find contradictory information in a
relational database. Lehmann et al. [37] check the correctness of
a given subject-predicate-object triple via web search, taking into
account the trustworthiness of websites found.

Link prediction is the task of predicting missing predicates be-
tween pairs of subjects and objects. Nickel et al. [41] survey corre-
sponding approaches and distinguish explicit and latent features.
The former category includes path rankings used to complete exist-
ing knowledge bases [36, 40, 51] and validation knowledge extracted
from web sources [14, 15, 28]. Gardner and Mitchell [20] simpli-
fied and sped up path ranking. We experimented with their best
features, but found a simpler graph embedding to be superior for
debiasing. Other approaches do not try to complete a knowledge
base but classify the local completeness of entities within [11, 18].
Link prediction approaches with latent features are based on ma-
trix factorization [42], neural embeddings [14], and translational
embeddings [6, 38, 55, 58]. Special kinds of link prediction include
type prediction of the type of an entity [19, 39, 44] and predicting
obligatory attributes of entities of a given type [35].

Altogether, fact checking and link prediction are complementary
in that the former’s goal is to identify incorrect knowledge, whereas
the latter’s goal is to introduce correct knowledge that is missing.
Both are often evaluated on artificial data, whereas we apply them
to vandalism detection at scale on real-world data from Wikidata.
Moreover, both tasks typically assume a static knowledge base,
while vandalism detection presumes a constant stream of edits. We
adapt the methods borrowed from both tasks accordingly.

3 BIAS ANALYSIS
Wiktionary defines ‘discrimination’ as “treatment of an individual
or group to their disadvantage” and ‘bias’ as “inclination towards
something; predisposition, partiality, prejudice [. . . ].” If a given
system acts discriminatorily, we call it biased, and we ask which
of its components cause its bias and how it can be controlled to
render its behavior non-discriminatory. In this section, we carry
out the first bias analysis of Wikidata’s damage control system.

Several potential sources of bias can be identified (see Figure 1):
model bias refers to the vandalism detection model used, and may
result from its selection of features and its learning algorithm. The
user interface of monitoring tools may introduce interaction bias by
directing reviewer attention to high-scoring edits first, enclosing
them in a “filter bubble” and reinforcing inherent reviewer bias, i.e.,
the prejudices that humans sometimes hold. Analyzing the review-
ers’ decisions, models are adjusted directly, by creating rules and
features, or indirectly, by using their decisions as labeled training
data, causing training bias and data bias. Furthermore, biased re-
viewer decisions may lead to self-selection bias among Wikidata’s
volunteers, ousting non-conformists.

https://en.wikipedia.org/wiki/Wikipedia:Vandalism


The discriminatory nature ofWikipedia’s damage control system
has been previously shown [21, 22, 50]: the rise of (semi-)automatic
reviewing tools caused more newcomer contributions to be con-
sidered damaging, severely affecting retention. Although policies
have been adjusted to prevent such discrimination, the vandalism
detection models have not been redesigned. Our analysis shows
that, at least forWikidata, this is insufficient. In what follows, we go
beyond previous analyses by shedding light on the main sources of
bias, the detection models and the human reviewers, and by taking
into account anonymous users, the antecedents of newcomers.

3.1 Measuring Bias
Every edit of an item at Wikidata results in a new revision i of
that item, and the task of a vandalism detector c is to compute a
vandalism score for each new revision as soon as it arrives, so that
c (i ) ≈ Pr (i = vandalism | xi ), where xi is i’s feature vector. The
scores are then used for two modes of operation. In fully automatic
mode, the revisions exceeding a score threshold are automatically
reverted without any human intervention. In semi-automatic mode,
revisions are ranked by vandalism score and manually reviewed.

To measure the bias of a detector producing continuous scores,
roughly following Kleinberg et al. [33] and Zemel et al. [63], we
compare the average scores of benign edits by two disjoint user
groups. The more the difference deviates from 0 or the ratio deviates
from 1, the more biased the classifier is. By convention, we call one
group “protected” (i.e., to be protected from discrimination). Let I
denote the set of all revisions, then given the ground truthwhether a
revision i is vandalism or benign, we get the following contingency
table, where A, ...,H denote the corresponding subsets of I , from
which we derive the difference (Diff.) and the Ratio between the
protected group and the remainder as bias measures:

Truth
⋃

benign vand.

Protected yes A B C
no D E F⋃

G H I

Diff. =
1
|A|

∑
i ∈A

c (i ) −
1
|D |

∑
i ∈D

c (i )

Ratio =
1
|A|

∑
i ∈A

c (i ) /
1
|D |

∑
i ∈D

c (i )

Table 1a shows examples, comparing the vandalism score of the
Wikidata Vandalism Detector (WDVD) for the creation of a given
subject-predicate-object triple by a registered user with that of
creating the same triple anonymously. Regarding the first example,
at a score difference of 0.0907, an anonymous user receives a score
that is 900.2 times higher than that of a registered user.

To measure the bias of semi-automatic detection, which pro-
duces binary scores, we utilize the odds ratio, which is invariant to
changes in class distribution in the dataset. Let p1 =

∑
i ∈A c (i )/|A|

be the proportion of benign revisions from protected users that are
considered vandalism and let p2 =

∑
i ∈D c (i )/|D | be the proportion

of benign revisions from other users that are considered vandalism:

Odds ratio =
p1/(1 − p1)
p2/(1 − p2)

.

Further measures have been proposed, including the closely
related risk difference and risk ratio [7, 48, 67], but also measures
based on individuals instead of groups [16], the latter demanding
that similar edits receive similar scores. For lack of a task-specific
similarity measure, we resort to the aforementioned measures.

3.2 Biases of Vandalism Models
There are two kinds of vandalism detectors forWikidata: (1) the rule-
based Wikidata Abuse Filter (FILTER) [27], which tags revisions as
per user-defined rules,1 and (2) machine learning-based detectors.
The latter include the state-of-the-art approach WDVD [27] and
variants thereof developed during the WSDM Cup 2017 [24], the
“Objective Revision Evaluation Service” (ORES) [49] deployed at
Wikimedia, and our new approach FAIR proposed in this paper.2
The WDVD approach outperformed all other approaches in the
recent WSDM Cup 2017 in terms of PRAUC [25]. Table 1b shows
their distribution of features across feature categories. Apparently,
all previous approaches rely on contextual, and especially user-
related features, such as account age and whether an edit was made
by a registered or an anonymous user. Moreover, hardly any content
features capture Wikidata’s statements, but only textual portions
of an item. This already hints at a high potential for bias.

Analyzing the vandalism scores of all approaches applied on
the Wikidata Vandalism Corpus 2016 [25] reveals that all except
FAIR exhibit significant biases. Table 1c exemplifies the average
vandalism scores obtained for anonymous and registered users from
which we compute the bias measures found in Table 1d (top row
pair). Similarly, the bias against newcomers and country of origin is
computed (remainder of the table). Being anonymous or a newbie
raises one’s average vandalism score of benign edits by a factor
of up to 311 under WDVD, and by a factor of 40-133 under ORES
and FILTER. With FAIR, we reduce the bias ratio to 11.9. There is
comparably small bias against country of origin, and even a bias
in favor of Japanese users, which can be explained by their low
vandalism prevalence [31]. These values must be taken with a grain
of salt, since geolocation is available only for anonymous users,
who are a priori discriminated because of this fact. In what follows,
we hence focus on mitigating the bias against anonymous users.

Upon close inspection, the many user-related features employed
by WDVD, ORES, and FILTER turned out to be the causes for their
biases. For example, the feature isRegisteredUser, that is em-
ployed by both WDVD and ORES, is a simple feature with high
predictive performance. But it causes benign edits by anonymous
users to have much higher scores than benign edits by registered
users: 9.00% of edits by anonymous users constitute vandalism
and only 0.03% of edits by registered users (in the training and
validation set of WDVC-2016-Links). The feature is not able to dis-
criminate benign and vandalizing edits based on the actual content
of an edit, thus assigning roughly 300 times higher scores to all
edits by anonymous users. Similarly, ORES includes the age of a
user (userAge), and WDVD includes the numbers of revisions and
items edited by a user (userFrequency, cumUserUniqueItems), as
well as geolocation of IP addresses (e.g., userCountry, userCity).
Regarding FILTER’s rules, Table 1e lists the top-most rules fired
which exploit user information: “new user changing sth.”; “new user
removing sth.”; and “possible vandalism.” Compared to the top ones
not doing so, these rules act highly biased against anonymous users.
Edits to which these rules apply receive an average vandalism score
of 28.8%, which is a high number given the large class imbalance; the
majority of wrong decisions affect anonymous users (69.1%), again
1We convert tags to continuous scores by computing the empirical vandalism proba-
bility of all past revisions with a given tag.
2For brevity, we report only on the best variant, FAIR-S, in this bias analysis.



Table 1: Bias analyis: (a) Examples for model bias. (b) Overview of features by model. (c) Average vandalism scores for anony-
mous and registered users.4 (d) Biasmeasurements against protected users as score difference (top rows) and score ratio (bottom
rows). (e) Rules of theWikidata Abuse Filter (FILTER) and their biases.5 (f) Biases byWikidata reviewers. Among 1,100 benign
edits, 145 were incorrectly reverted by human reviewers with disproportionately many affecting anonymous editors.
(a)
Revision User Score Diff. Ratio

⟨Guido Westerwelle, place of death, Cologne⟩
313453592 Anonymous 0.0908 0.0907 900.2313455460 Registered 0.0001

⟨Alejandro Cuello, occupation, actor⟩
325717121 Anonymous 0.2912 0.2763 19.6318143388 Registered 0.0149
(b)
Feature WDVD ORES FILTER FAIR-S

Content 27 5 0 4
Character 11 0 0 0
Word 9 3 0 0
Sentence 4 1 0 0
Statement 3 1 0 4

Context 20 8 1 10
User 10½ 2 ½ 0
Item 2 2 0 6
Revision 7½ 4 ½ 4

(c)
Users WDVD ORES FILTER FAIR-S

Anonymous 0.1215 0.1144 0.0978 0.0337
Registered 0.0004 0.0009 0.0014 0.0028

(d)

Protected WDVD ORES FILTER FAIR-S

Benign edits by all users

Anonymous 0.121 0.114 0.096 0.031
310.7 133.1 69.2 11.9

Newcomer 0.138 0.109 0.109 0.037
(1h since 1st edit) 172.7 72.4 63.7 13.5

Newcomer 0.101 0.085 0.085 0.026
(1d since 1st edit) 170.9 68.3 58.2 10.2

Newcomer 0.060 0.053 0.053 0.015
(7d since 1st edit) 118.8 48.5 40.7 6.1

Benign edits by anonymous users

Origin USA 0.053 0.091 0.053 0.021
1.5 1.9 1.6 1.6

Origin Mexico 0.243 0.132 0.109 0.059
3.1 2.2 2.1 2.8

Origin Spain 0.167 0.097 0.085 0.049
2.5 1.9 1.9 2.5

Origin Japan -0.080 -0.053 -0.001 -0.028
0.3 0.5 1.0 0.2

(e)

FILTER Rules Performance Bias
(all edits) (benign edits)

Total Vand. Prob. Total Anon. Prob.

w/ user information 21,225 6,113 28.8% 15,112 10,445 69.1%
New user changing sth. 14,452 4,313 29.8% 10,139 6,525 64.4%
New user removing sth. 5,609 1,031 18.4% 4,578 3,560 77.8%
Possible vandalism 1,164 769 66.1% 395 360 91.1%

w/o user information 12,612 849 6.7% 11,763 739 6.3%
Self-referencing 4,030 141 3.5% 3,889 236 6.1%
Removal of gender 3,408 83 2.4% 3,325 95 2.9%
Unexpected gender 3,381 612 18.1% 2,769 292 10.5%
Miscellaneous 1,793 13 0.7% 1,780 116 6.5%

No Rules 6,970,017 15,688 0.2% 6,954,329 140,580 2.0%

(f)

Users Manually reviewed benign edits (n=1,103)

Observed behavior Expected behavior

Reverted Non-reverted Reverted Non-reverted
(incorrect) (correct) (incorrect) (correct)

Anonymous 103 23 16.6 109.4
Registered 42 935 128.4 848.6

a large number compared to the small percentage of overall edits by
anonymous users. FILTER rules can only be created by Wikidata’s
(at the time of writing) about 60 administrators,3 who are the most
active users and who carry out lots of other maintenance tasks, too.

For the new approach FAIR-S, we omit all user features, thus
significantly reducing its bias. The remaining bias can be explained
by unsuspicious features that are (slightly) correlated with the omit-
ted feature isRegisteredUser. This effect is referred to as indirect
discrimination [45] or redlining [7]. In general, it is undesirable
to make all groups have exactly the same average scores as small
differences might be justified by hidden confounding variables and
it would be an overreaction often called affirmative action [48, 66].

3.3 Biases of Wikidata Reviewers
Another potential source of bias might be the human reviewers
engaged in Wikidata’s semi-automatic damage control system. If a
reviewer encounters a poor edit, it is reverted, and otherwise typi-
cally nothing happens. To investigate the degree to which revert
decisions may be biased, we used a manually annotated dataset,
compiled as part of the Wikidata Vandalism Corpus 2015 (WDVC-
2015) [26]. It consists of two random samples of 1,000 edits each
that were rollback reverted by Wikidata reviewers and that were
not reverted, respectively. These edits were carefully annotated
with respect to whether they constitute vandalism, but unlike Wiki-
data’s reviewers, the annotator was given no knowledge about the
registration status (anonymous or registered) of the editor.
3https://www.wikidata.org/wiki/Special:ListGroupRights
4Tables c, and d were computed on the test set of the vandalism corpus WDVC-2016-
Links. Vandalism scores of the models FAIR-S, WDVD, ORES, FILTER were obtained
as described in Sections 4 and 6 and calibrated to approximate vandalism probabilities.
5Computed on the whole WDVC-2016-Links dataset.

Among the 2,000 edits, 1,103 are benign edits, 145 of which were
incorrectly reverted. Table 1f breaks down the observed behavior of
Wikidata reviewers as a contingency table of registration status over
revert decision correctness. Reverting a benign edit is an incorrect
decision, whereas not reverting it is correct. From the marginals
of this matrix (not shown), we obtain the expected behavior under
the assumption of independence. We find that revert decisions by
Wikidata reviewers are heavily biased against anonymous editors,
since they are disproportionately often affected by incorrectly re-
verted edits: 103 edits by anonymous users are incorrectly reverted
although we would expect only 16.6 edits considering the rela-
tively small number of 126 edits by anonymous editors. Fisher’s
test shows that the bias against anonymous users is statistically
highly significant (p < 0.0001). Figure 2 shows how the reviewer
bias developed over time. Choosing time intervals so that an ap-
proximately equal amount of the 1,103 benign edits fell into each
interval, the odds ratio severely increased over time, suggesting
that bias against anonymous users among reviewers kept growing.

Only Wikidata’s administrators and a few other powerful users
with the so-called rollback rights can perform rollback reverts.
Even when accounting for human fallibility, it appears that, on this
sample of edits, anonymous editors were discriminated. We do not
suspect any malicious intent of Wikidata reviewers. Rather, the fact
that many true vandalism edits originate from anonymous editors
may have led them to ingest some form of prejudice whenever
an anonymous edit looks odd while skipping edits by registered
editors without closer inspection. However, even if more vandalism
originates from anonymous editors than from registered ones, this
is not a sufficient justification to treat benign anonymous editors
unfairly. After all, a revert decision should be based on content
alone, and not on who the content comes from.

https://www.wikidata.org/wiki/Special:ListGroupRights
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Figure 2: Reviewer bias against anonymous users as odds ra-
tio over time, averaged over equisized edit bins.

4 FAIR—UNBIASED VANDALISM DETECTION
Our bias analysis indicates that the main source of bias in state-of-
the-art vandalism detectors are user-related features. That, together
with the lack of features to characterize the actual content of Wiki-
data, creates a situation where bias and discrimination thrives. This
section introduces FAIR, a new vandalism detector for Wikidata.
We tackle the problem (1) by devising new content features based
on explicit graph embeddings that protect Wikidata’s primary as-
set, its subject-predicate-object triples between entities (FAIR-E),
and, (2) by careful feature selection from the existing vandalism
detectors with an eye on bias (FAIR-S).

4.1 FAIR-E: Graph Embeddings for Wikidata
Unlike for Wikipedia, where the full power of text mining can be
unleashed to detect vandalism in its articles, the content of knowl-
edge bases is much more difficult to be represented, which may
explain the lack of corresponding features in Wikidata’s vandalism
detectors. We propose a novel graph embedding FAIR-E that results
in a particularly low bias. To the best of our knowledge, this kind
of graph embedding has not been used before, neither for Wikidata
vandalism detection, nor elsewhere.

Editing Wikidata means editing subject-predicate-object triples.
The user interface of Wikidata enforces that every edit affects ex-
actly one triple,6 so that representing an edit boils down to rep-
resenting the edited triple. We encode the subject, predicate, and
object of a triple in predicate space and capture all pairwise in-
teractions between them (see Figure 3 for an illustration). For the
subject, we encode all outgoing predicates as a binary vector S . The
predicate is directly encoded as one-hot encoding P . For the object,
we encode all incoming predicates as a binary vector O . The whole
triple is then encoded as concatenations of pairwise combinations:
S × P + P ×O , where the +-operator denotes the concatenation of
vectors and × the outer product, i.e., all combinations of elements.
Let n be the number of predicates, then a triple vector has 2n2 di-
mensions. In Wikidata, there are about n = 6, 000 predicates. To
avoid overfitting, we restrict the set of predicates: We compute all
predicates that were present in the item graph at the end of the
training set and we set all other predicates in our embedding vec-
tors to zero, thus effectively removing predicates to attributes such
as strings and numbers and removing predicates that have been
deleted earlier. Moreover, we restrict the representation to n := 100
predicates for S , P , and O , respectively. Using a suitable training
6Wikidata’s API allows for editingmultiple triples at once, which is rather the exception.
In that case, we use the main triple fromWikidata’s automatically generated comment.

Subject S Predicate P Object O

... ...

... ...S×P P×O

S×P+P×O

1 1 0 0 01 0 01

0 1 00 0 1 0 0 0 0 0 00 0 1 0 0 0

0 1 00 0 1 0 0 0 0 0 00 0 1 0 0 0

Figure 3: Example of an embedding of a subject-predicate-
object triple in n := 3-dimensional predicate space (top), the
outer products S×P and P×O (middle), and the final 2n2 = 18-
dimensional embedding (bottom).

dataset, we compute the top 100 predicates according to frequency
for S , P , and O independently, and then proceed to computing the
combined representation, yielding a 20,000-dimensional vector. As
machine learning algorithm, we employ logistic regression.

To give an example how the embedding works: Suppose we want
to represent the newly created triple ⟨Alejandro Cuello (Q15924626),
occupation (P106), actor (Q33999)⟩. The subject is a person with
predicates “date of birth” (P569), “sex or gender” (P21), and “coun-
try of citizenship” (P27), the triple predicate is “occupation” (P106),
and the object has incoming predicates “occupation” (P106), “field
of work” (P101), and “position held” (P39). Our model learns that
the triple predicate “occupation” goes well with the incoming ob-
ject predicates “occupation”, “field of work” and “position held.”
In contrast, the triple ⟨Steve Jobs (Q19837), instance of (P31), ani-
mal (Q729)⟩ is highly unusual. Adding another “instance of” (P31)
relationship to a subject with subject predicates “country of citizen-
ship” (P27) and “sex or gender” (P21) often points to vandalism; as
does adding an “instance of” relationship to an object with incoming
object predicate “parent taxon” (P171).

Variants. We experimented with multiple variants of our ap-
proach, including different values for n, different interactions be-
tween subject, predicate, and object (see Section 6), and predicates
to attributes. We experimented with taking the outgoing predicates
of the object instead of the incoming predicates, too. However, the
above encoding outperformed all other variants on the validation
set in terms of predictive performance. Varying the strength of L2
regularization had little effect on predictive performance but had a
large effect on bias, so we disabled regularization to minimize bias
(setting scikit-learn’s parameter C = 10000). We also experimented
with the path ranking algorithm [14, 20], but the resulting model
did not outperform the above model.

Limitations. If a subject-predicate-object triple uses a predicate
not among the ones selected, its embedding is the zero vector, which
was the case for about 15% of triples in our dataset. Our logistic
regression classifier assigns the same, small vandalism probability
to all these cases (determined by the intercept of logistic regression).
For triples updated in a revision, we only consider the new version
of the triple. Our embedding does not distinguish additions and
removals of triples and we leave it for future work to incorporate
such a distinction in a way that improves performance. As the set
and distribution of predicates changes over time, retraining the
classifier may be required from time to time.



4.2 FAIR-S: Selecting Unbiased Features
As an alternative approach to debiasing vandalism detectors, we
systematically evaluated candidate feature subsets for subject-
predicate-object triples from the union of all features developed for
previous detectors and call our model FAIR-S: We used the features
of WDVD [27], the features of ORES [25, 49], and a few new fea-
tures, including the ones from FAIR-E, while intentionally omitting
user-related features and features not targeting subject-predicate-
object triples between entities. Features were added to the set until
predictive performance on our validation set did not improve any-
more. Table 2 shows the resulting feature set, which constitutes
a local optimum in the space of possible feature subsets, since re-
moving any of the features or adding further features from our
candidate set decreases performance in terms of ROCAUC. Seven
features from Heindorf et al. [27], three features from Sarabadani
et al. [49], and four new features were selected. We use a random
forest with 32 trees and a maximal depth of 16 for our experiments.7
In a pilot study, we experimented with other algorithms including
logistic regression, neural networks, and gradient boosted decision
trees, carefully tuning their hyperparameters, yet, corroborating
previous findings, random forests outperformed them all in this
setting [27, 49]. Below, the features are described in more detail.

Subject. We characterize a subject by how many different users
have edited it (subjectLogCumUniqueUsers), howmany edits have
been performed on it (subjectLogFrequency), how many labels
and aliases it has (subjectNumberOfLabels, subjectNumberOf-
Aliases), the number of words in its English label (subjectLabel-
WordLength), and how often the predicate has been edited for this
subject (subjectPredicateCumFrequency). These features signal
how popular a subject is (subjectLogCumUniqueUsers), how large
a subject is (subjectNumberOfLabels), and how complex a subject
is (subjectLabelWordLength). The number of words serves as a
proxy for the complexity of an item. Items with one-word labels
might be about organizations or places, items with two words are
typically persons, and items with many words are complex topics.
Other forms of encoding from our candidate features did not yield
any improvement. In general, we found that subject features are
prone to overfitting, since there are about 2.5 million different
subjects and most subjects have never been vandalized.

Predicate.We represent each predicate by the number of times it
appears in the training set (predicateFrequency). Other forms of
encoding from our candidate feature set did not yield improvements.

Object. In contrast to subject features, object features are less
prone to overfitting since objects are reused many times. We cap-
ture the popularity of an object by the number of revisions it ap-
pears in (objectFrequency) and the number of times an object has
been edited in combination with a given predicate (objectPredi-
cateCumFrequency). Moreover, one of the features of FAIR-E was
included: We compute the set of all incoming predicates of an object
in the knowledge graph and take this set as a feature (objectPredi-
cateEmbedFrequency), the idea being that the incoming predicates
of an object capture in what context and for what purposes it should
be used. To avoid overfitting, we restrict this set to the top 100 most
frequent predicates on the training set.
7We use a fixed seed for feature selection. Due to some low-performing and redundant
features, the feature set is not stable for different seeds. But even slightly different
feature sets yield similar predictive performance and bias values.

Table 2: Features of our vandalism detector FAIR-S and their
performance scores and biases on our test dataset, computed
with a random forest with 32 trees and maximal depth 16.

Feature Group Performance Bias
Feature Reference ROCAUC PRAUC Diff Ratio

Subject — 0.907 0.071 0.01199 4.05
subjectLogCumUniqueUsers [27] 0.901 0.052 0.01005 3.51
subjectLogFrequency [27] 0.880 0.042 0.00795 2.95
subjectNumberOfLabels [49] 0.859 0.031 0.00321 1.76
subjectNumberOfAliases [49] 0.761 0.026 0.00198 1.47
subjectLabelWordLength — 0.721 0.008 0.00165 1.38
subjectPredicateCumFrequency — 0.687 0.008 0.00096 1.22

Predicate — 0.729 0.011 0.00196 1.46
predicateFrequency [27] 0.729 0.011 0.00196 1.46

Object — 0.729 0.026 0.00234 1.55
objectPredicateEmbedFrequency — 0.682 0.013 0.00188 1.44
objectFrequency [27] 0.650 0.010 0.00107 1.25
objectPredicateCumFrequency — 0.613 0.007 0.00014 1.03

Edit Features — 0.889 0.062 0.00926 3.32
editProportionOfTriplesAdded [49] 0.866 0.022 0.00418 2.00
editSubactionFrequency [27] 0.851 0.020 0.00381 1.91
editPrevActionFrequency [27] 0.629 0.024 0.00297 1.70
editActionFrequency [27] 0.575 0.005 0.00052 1.12

Edit.We characterize the change of an edit with four features:
the edit operation, such as create, update, or remove (editAction-
Frequency, editSubactionFrequency), the previous action per-
formed on the same item (editPrevActionFrequency), and the
size of the edit operation relative to the current size of the item
(editProportionOfTriplesAdded).

Variants. Both for the subject and the object, we experimented
with using their super types according to Wikidata’s instance of
hierarchy as a feature. Neither of these features improved predictive
performance nor bias. For the object, similar information is already
captured with our predicate embedding (e.g., in objectPredicate-
EmbedFrequency). Also, a bag-of-words model of the subject’s and
the object’s textual labels and descriptions did not help.

5 EVALUATION DATA
This section describes the Wikidata datasets used in our evaluation,
how they have been pre-processed, split into training, validation,
and test sets, as well as their characteristics. Moreover, we investi-
gate the proportion of model bias due to data bias.

5.1 Wikidata Revision History and Graph
We derive our dataset from the Wikidata Vandalism Corpus 2016
(WDVC-2016) [25]. This dataset ranges from October 2012 to
June 2016 and contains all human edits along with labels whether
the edit is considered vandalism. The labels were automatically
obtained by analyzing the use of the rollback tool of Wikidata,
which is explicitly meant to revert vandalism [26, 27]. A manual
analysis revealed that 86% of reverted revisions are indeed vandal-
ism and only about 1% of the non-reverted revisions. We derive a
subset of this dataset, called WDVC-2016-Links, that contains all
edits pertaining to the knowledge graph, i.e., the actual content of



Table 3: Evaluation data: (a) Derivation of the new dataset WDVC-2016-Links fromWDVC-2016. (b) Datasets for training, val-
idation, and test in terms of vandalism triples, total triples, subjects, predicates, and objects. (c) The vandalism corpus WDVC-
2016-Links broken down by domain. (d) Estimation of the true bias without noisy labels. We perform stratified sampling on
the test dataset andmanually annotate the samples to estimate the true bias. (e)Wikidata vandalism corpusWDVC-2016-Links
over time by domain for all edits, and, (f) for vandalism edits only.
(a)
Filtering steps Edits Prop.
WDVC-2016 82,679,918 100 %
w/o semi-automatic editing tools 35,462,023 43 %
w/o labels, descriptions, aliases 26,959,949 33 %
w/o sitelinks 17,371,199 21 %
w/o qualifiers, references 15,883,276 19 %
w/o attributes 11,631,335 14 %
w/o item creation, merges, misc 7,002,290 8 %
WDVC-2016-Links 7,002,290 8 %
(b)
Dataset Vand. Edits Subjects Pred. Objects
Training 16,608 5,890,968 2,187,993 747 790,960
Validation 2,604 550,798 201,102 610 131,666
Test 2,429 560,524 212,902 603 131,479

(c)

Domain Performance Bias
(all edits) (benign edits)

Total Vand. Prob. Total Anon. Prob.

Generic 1,863,273 5,755 0.31% 1,857,518 36,174 1.95%
Person 1,905,257 10,539 0.55% 1,894,718 46,671 2.46%
Organization 67,890 312 0.46% 67,578 2,601 3.85%
Events 96,115 68 0.07% 96,047 639 0.67%
Works 618,464 1,598 0.26% 616,866 32,252 5.23%
Terms 680,904 437 0.06% 680,467 2,279 0.33%
Place 951,589 1,628 0.17% 949,961 16,857 1.77%
Others 818,798 1,304 0.16% 817,494 13,841 1.69%

(d)

Corpus Gold WDVD True Bias

User Truth n Truth n Weight ∅ Score wt. sum

Anon.
vand. 2,061 benign 19 1.98% 0.279443 0.005526

vand. 231 n/a n/a n/a

benign 10,270 benign 189 98.02% 0.079500 0.077928
vand. 61 n/a n/a n/a

Reg.
vand. 368 benign 29 0.01% 0.032105 0.000003

vand. 221 n/a n/a n/a

benign 547,825 benign 239 99.99% 0.000579 0.000579
vand. 11 n/a n/a n/a

Sum 560,524 1,000 Diff. 0.083
Ratio 143.4
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the knowledge base. Table 3a details the successive filtering steps
we applied. We omit edit operations by semi-automatic editing
tools like Wikidata Game because they perform little vandalism
and we believe tailored quality checks should rather be directly
built into them. Moreover, we remove edits affecting labels, descrip-
tions, aliases, sitelinks, qualifiers, references, attributes, and special
operations for item creation and item merging, yielding a dataset
consisting of edits affecting links between entities.

While the Wikidata vandalism corpus contains the data in incre-
mental form, i.e., edit by edit, for our novel content-based features,
we need to represent the data as a graph. For these features, we base
our computation on the static Wikidata graph from February 29,
2016, i.e., the graph capturing the data ahead of the time interval
covered by the validation set.8

5.2 Datasets for Training, Validation, and Test
Following previous work, we split the dataset by time to enable
classification of edits as soon as they arrive without exploiting infor-
mation “from the future.” Table 3b shows the data splits along key
statistics on triples. Overall, the dataset contains 21,641 vandalism
cases among 7 million edits; a class imbalance of 0.3%. Our training
set ranges from April 18, 2013, to February 29, 2016, consisting of
6 million edits. For efficiency, we derive triples from Wikidata’s
automatically generated edit comments, which were not available
before April 2013. The two-month periods for validation and test-
ing range from March to April and May to June, respectively, each
comprising more than 550,000 edits. The large number of subjects
renders subject feature prone to overfitting.
8https://archive.org/download/wikidata-json-20160229

5.3 Corpus Analysis
Table 3c breaks down the vandalism corpus by domain. We catego-
rize edits by domain according to Wikidata’s classification system.9
In both absolute and relative terms, the most vandalism edits occur
on persons such as Barack Obama, Christiano Ronaldo, and Justin
Bieber, potentially causing high vandalism scores for all edits in
this category. At the same time, among all categories, persons have
the highest number of benign edits by anonymous users which still
should receive low vandalism scores. This illustrates the inherent
difficulty to achieve high predictive performance and low bias at
the same time. An unbiased vandalism model must discriminate
vandalism from non-vandalism without discriminating certain edi-
tor groups. Biases are still relatively small in this case, compared to
the abuse filter in Table 1e.

The plots (e) and (f) in Table 3 overview our corpus both in terms
of time and domains. The number of edits per month increases,
as does the number of vandalism cases. The drop of manual ed-
its around March 2014 can be explained by emerging automatic
tools that automate routine data import and maintenance tasks,
thus temporarily reducing manual edit operations. The increas-
ing vandalism around January 2015 coincides with the redesign of
Wikidata’s user interface, driving vandals from the header area of
labels, descriptions, and aliases to the body area containing links
and statements. The person domain grows fastest, both in terms of
benign and vandalism edits. Overall, the distribution of vandalism
across domains remains relatively stable over time, with the excep-
tion of two outliers: an increase of vandalism affecting the works
domain in January 2013 and March 2016.
9https://www.wikidata.org/w/index.php?title=Wikidata:List_of_properties&oldid=552806031

https://archive.org/download/wikidata-json-20160229
https://www.wikidata.org/w/index.php?title=Wikidata:List_of_properties&oldid=552806031


5.4 Estimating Model Bias Without Data Bias
To investigate the effect of the noisy automatic vandalism labels
on bias, we carry out a manual analysis: Drawing a stratified sam-
ple of 1,000 edits with respect to registration status (anonymous
vs. registered) and automatic ground truth (vandalism vs. benign),
we obtain gold labels by manual review of 250 edits per stratum,
enabling an estimation of the true bias. The reviewer was kept un-
aware to which stratum a given edit belonged. Table 3d summarizes
our findings and shows the average vandalism scores of WDVD
for the data subsets we found to be truly benign and that form the
basis for the bias computation. The WDVD scores were obtained
by calibrating its original scores with isotonic regression on the
large-scale corpus ground truth. As a result, WDVD’s estimated
bias without noisy labels is a score difference of 0.083 and a score
ratio of 143.4. This is about half the bias measured on the auto-
matically annotated corpus (0.121 and 310.7, respectively), which
still necessitates countermeasures to reduce it. We leave creating
a larger unbiased dataset that allows for training, calibrating, and
evaluating (unbiased) vandalism detectors to future work.

6 EVALUATION AND BIAS OPTIMIZATION
We carried out a series of experiments to minimize the bias of our
models while maintaining a competitive predictive performance.
Table 4a gives an overview of the results we obtained for FAIR-
E and FAIR-S, the state-of-the-art baselines WDVD, ORES, and
FILTER, and variants thereof obtained by post-processing scores,
reweighting training samples, and combining models in an ensem-
ble. FAIR-E exhibits low bias at reasonable predictive performance;
FAIR-S achieves higher predictive performance at a higher bias.

The literature has investigated trade-offs between different no-
tions of fairness and predictive performance [4, 8, 10, 33], indicating
that the two optimization goals cannot be satisfied at the same time,
dependent on the notion of fairness and performance measure.
Nevertheless, a sustainable model must strike a balance between
fairness and predictive performance to ensure the long-term suc-
cess of an online community. The state-of-the-art in vandalism
detection has not yet reached its full potential in this respect.

In what follows, we briefly recap the baseline models and the pre-
diction performance measures, and then detail the aforementioned
experiments. To ensure reproducibility, the code base underlying
our research is published alongside this paper.10 While feature ex-
traction is carried out in Java, our experiments are implemented
in Python using scikit-learn, version 0.19.1. To calibrate classifier
scores before computing bias, we use isotonic regression.

6.1 Baselines and Performance Measures
For the final evaluation on the test set, all baselines were trained on
both the training and the validation set of WDVC-2016-Links, i.e.,
on about 6 million revisions ranging from April 2013 to April 2016.
Unless otherwise indicated, the same hyperparameters and ma-
chine learning algorithms as reported in Heindorf et al. [25] were
used: WDVD employs multiple instance learning on top of bagging
and random forests. It uses 16 random forests, each build on 1/16
of the training dataset with the forests consisting of 8 trees, each
having a maximal depth of 32 with two features per split using the
10http://www.heindorf.me/wdvd

default Gini split criterion. ORES uses a random forest with 80 de-
cision trees considering ‘log2’ feature per split using the ‘entropy’
criterion. FILTER uses a random forest with scikit-learn’s default
hyperparameters, i.e., 10 decision trees without a maximal depth.

We employ performance measures for both predictive perfor-
mance and bias performance, the latter using the bias measures
introduced in Section 3. Predictive performance is measured in
terms of area under curve of the receiver operating characteristics
(ROCAUC) and area under the precision-recall curve (PRAUC). Both
curves capture predictive performance across different operating
points, where each point on one of the curves has a correspond-
ing point on the other [12]. However, corresponding points are
weighted differently when computing the area under the curves:
ROCAUC emphasizes operating points at high recall ranges and
PRAUC emphasizes points at high precision ranges. Hence, ROCAUC
is best suited to analyze semi-automatic vandalism detectors, where
revisions are ranked and manually checked by reviewers, whereas,
PRAUC is best suited to analyze fully automatic detection systems,
where vandalism is reverted without human intervention.

6.2 Debiasing via Feature Engineering
We obtain our debiased models FAIR-E and FAIR-S via feature en-
gineering. For FAIR-E, we employ graph embeddings capturing the
content of an edit in contrast to meta data such as user reputation,
thus obtaining a bias ratio of only 5.6 on the test set compared to
over 300 of the state-of-the-art approach WDVD. We experimented
with different variants of what feature interactions to consider and
Table 4b overviews our results on the validation set. In general,
we observe that, with increasing model complexity, both predic-
tive performance and bias increase. Given the relatively low bias,
we opt to optimize predictive performance and choose the model
S×P +P ×O as FAIR-E, taking into account all pairwise interactions
between subject and predicate as well as predicate and object.

Based on feature selection and explicitly omitting user fea-
tures, FAIR-S achieves a bias ratio of only 11.9 at 0.316 PRAUC
and 0.963 ROCAUC. Plot (c) in Table 4 shows the trade-offs between
bias and predictive performance obtainable by adding or by remov-
ing single features from the set of candidate features and outlines
the Pareto front on the validation set. For example, removing the
feature objectPredicateCumFrequency from FAIR-S yields the
left-most point with both lower predictive performance and lower
bias. We choose the best predictive model without user features as
FAIR-S. Compared to WDVD, which consists of 47 features, FAIR-S
consists of only 14 features, thus simplifying the model, reducing
its runtime, and rendering its decisions much more explainable.

6.3 Debiasing via Post-Processing Scores
As an alternative to feature engineering, we can obtain compara-
ble results in terms of bias and predictive performance by post-
processing the scores of WDVD. We scale uncalibrated scores c (i )
from sample i of the protected class, while leaving those from the
unprotected class unchanged, thus obtaining c∗ (i ):

c∗ (i ) =



c (i )p , revision i from anon. user
c (i ), revision i from reg. user

c

c∗

p = 2 p = 4

http://www.heindorf.me/wdvd


Table 4: Evaluation results: (a) Performance and bias of approaches on the test set of the vandalism corpusWDVC-2016-Links.
(b) Optimization of FAIR-E on the validation set by testing all pairwise feature interactions between subject (S), predicate (P ),
and object (O) in predicate space. (c) Optimization of FAIR-S on the validation set. The plot shows ROCAUC over bias of FAIR-S
(purple) after adding (green) or removing (orange) a feature. The dotted line shows non-dominated points on the Pareto front.
(d) Error analysis with respect to bias on our golden dataset.
(a)
Debiasing Experiment Performance Bias
Model PRAUC ROCAUC Diff Ratio

Feature engineering
FAIR-E 0.177 0.865 0.016 5.6
FAIR-S 0.316 0.963 0.031 11.9

Post-processing scores
WDVD with p=3.88 0.230 0.966 0.015 5.3
WDVD with p=3.22 0.340 0.976 0.030 11.8

Weighting training samples
WDVD with α = 8.1 0.160 0.963 0.015 5.3
WDVD with α = 4.3 0.314 0.973 0.030 11.5

Combining models
FAIR-E + WDVD 0.229 0.974 0.033 11.7
FAIR-E + ORES 0.238 0.967 0.033 11.8
FAIR-E + FILTER 0.224 0.953 0.033 11.8

Baselines
WDVD 0.547 0.990 0.121 310.7
ORES 0.434 0.965 0.114 133.1
FILTER 0.302 0.924 0.096 69.2

(b)

Features Performance Bias

PRAUC ROCAUC Diff Ratio

S × P + P ×OS × P + P ×OS × P + P ×O 0.112 0.848 0.0081 2.90
S × P + S ×O 0.095 0.741 0.0071 2.65
S ×O + P ×O 0.068 0.721 0.0057 2.28
S × P ×O 0.073 0.675 0.0064 2.45
S × P 0.025 0.718 0.0021 1.45
S ×O 0.028 0.629 0.0023 1.50
P ×O 0.047 0.733 0.0031 1.69
S + P +O 0.068 0.739 0.0042 1.94
S + P 0.038 0.690 0.0036 1.78
S +O 0.034 0.719 0.0024 1.52
P +O 0.068 0.739 0.0042 1.94
S 0.020 0.643 0.0012 1.26
P 0.008 0.659 0.0008 1.17
O 0.011 0.663 0.0004 1.09
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(d)
Users Manually reviewed edits (n=1,000)

Gold Truth: Vandalism (n=524) Benign (n=476)

FAIR-S: Vandalism Benign Vandalism Benign
(correct) (incorrect) (incorrect) (correct)

Anonymous 250 42 73 135
Registered 173 59 28 240

After scaling, we apply isotonic regression to calibrate the scores
to represent probabilities, i.e., c∗ (i ) ≈ Pr (i = vandalism | xi ), in
order to prevent bias being lower just due to a smaller interval of
scores. By experimentally varying the parameter p > 1, we obtain
classifiers that have approximately the same bias as our models
FAIR-E and FAIR-S, allowing for performance comparisons. As
Table 4a shows, we can achieve approximately the same predictive
performance as with feature engineering. The advantage of post-
processing scores is that the model does not have to be retrained.
However, the model’s decisions are also much more difficult to
understand. It is less clear what effect single features have, thus
hindering an intuitive explanation to Wikidata editors whose edits
have been reverted. Apart from the polynomial scaling function
introduced above, we experimented with other families of functions,
including linear, fractional, and exponential functions. Polynomial
scaling outperformed all other variants in terms of PRAUC.

6.4 Debiasing via Weighting Training Samples
As another option to reduce biases, we experimented with reweight-
ing training samples. We start by assigning each of the four groups
of protected/unprotected, benign/vandalism revisions the same
weight. Then we increase the weight of benign edits by protected
users such that it becomes prohibitively expensive for the algo-
rithm to make mistakes on this set of revisions. Symmetrically,
we increase the weight of vandalism edits by unprotected users.
Thus, using the notation from Section 3, the weight of each training
sample i is obtained by:

w (i ) =




α · 1
|A | , revision i ∈ A

1 · 1
|B | , revision i ∈ B

1 · 1
|D | , revision i ∈ D

α · 1
|E | , revision i ∈ E

Truth
⋃

benign vand.

Protected yes A B C
no D E F⋃

G H I

By varying the constant α > 1, we obtain classifiers with varying
trade-offs between bias and predictive performance. For the weight-
ing experiment in Table 4a, we reduce the maximal tree depth of
WDVD from 32 to 16 to increase the number of training samples
per leaf, giving the weighting a larger effect. We experimentally
determine α to achieve approximately the same bias as our models
FAIR-E and FAIR-S, allowing for performance comparisons. How-
ever, predictive performance is lower than that obtained by feature
engineering or post-processing scores. We believe the reason is that
reweighting leads to overfitting on certain subsets of the data and
the effect on bias is rather indirect by reducing the misclassification
rate on these subsets, instead of tackling bias directly. Hence, we
suggest to rather use feature engineering or post-processing scores.
Besides, we also tried to employ separate constants α1 and α2 per
group, but no better bias and predictive performance was achieved,
so we resorted to the basic weighting scheme.

6.5 Debiasing via Combining Models
In yet another debiasing attempt, we train ensembles of models
with high predictive performance and low-bias models to derive a
model with characteristics in between. Aweighted average between
the scores of the two models is computed. Table 4a shows the
results: While it is possible to use ensembles to reconcile predictive
performance with bias, this method appears to be inferior to feature
engineering and post-processing scores.

6.6 Debiasing Error Analysis
Table 4d shows the results of an error analysis for FAIR-S. The con-
tinuous scores of FAIR-S were converted to binary decisions, so that
predicted vandalism prevalence equals the vandalism prevalence
in the golden set from Table 3d. The table shows, that 73 benign
edits by anonymous users were classified as vandalism. Manually
investigating these edits, we find that most of the edited triples are



updates (53), rather than removals (11) or creations (9). In most
cases, the subject is a human. Predicates frequently affected are
“occupation” (P106, 10 cases), “instance of” (P31, 8), “country of citi-
zenship” (P27, 6), and “sex or gender” (P21, 6). It might be beneficial
to develop vandalism detectors tailored to update operations, e.g.,
by comparing the old and new object of a triple. Also specific fea-
tures targeting problematic predicates might help. Beyond intrinsic
plausibility checks, also double-checks in external databases or web
search engines seem promising.

7 DISCUSSION
Biases in machine learning are still widely neglected by researchers
and practitioners in machine learning and data science, who pri-
marily focus on optimizing predictive performance, disregarding
fairness constraints that are essential for the long-term success of
online communities. Approaches that discriminate against sex, race,
religion, or that are otherwise biased against minorities—or even
against majorities11—jeopardize an online community’s long-term
goal of promoting a feeling of fairness, security, and belonging. We
hope that our endeavor helps towards increasing awareness.

Our bias definition emphasizes fair treatment of benign edits,
which is also known as equality of opportunity [23], and which
we believe is well-aligned to the goal of newcomer retention. Fair
treatment of both benign and vandalism edits would correspond
to the stricter fairness notion equalized odds [23], making it poten-
tially more challenging to find a good balance between predictive
performance and fairness. Another fairness notion that is some-
times mentioned by the media, lawmakers, and the literature is
statistical parity [16, 17], requiring that the same proportions of
anonymous and registered edits are classified as vandalism. This
neglects that the two populations might have different vandalism
prevalences, and Dwork et al. [16] argue that it is an inadequate
notion of fairness. First results [4, 8, 10, 33] suggest that there is a
trade-off between fairness and predictive performance for many
notions of fairness, requiring difficult trade-offs when the set of
features is fixed. We believe decisions about an edit should focus
on the edit’s “content”, instead of the reputation of the user who
submitted it. But even without features prone to incur bias, there
can still be bias against certain groups, since seemingly harmless
features might correlate with biased features. For example, in Ta-
ble 2, features related to edit operations and subjects introduce (a
small) bias against anonymous edits. However, forcing two groups
to have exactly the same score distribution might introduce reverse
discrimination, also known as affirmative action [3, 48, 66], since
there might be hidden confounding variables justifying certain dif-
ferences. In the future, causal modeling [32, 34, 64] might help to
decide what causal relations to consider.

Wikidata makes for an interesting case study to analyze and
mitigate biases as it has one of the largest online communities and
provides opportunities to pay particular attention to the content
rather than the user reputation. We believe some lessons learned in
11Anonymous edits are a clear minority in our dataset since only about 2.4% of edits are
by anonymous editors. However, anonymous editors might possibly be in the majority,
since the number of distinct IP addresses from anonymous editors is about 2.5 times
higher than the number of distinct user accounts from registered editors (our data
does not reveal how often the same anonymous editor uses a different IP address).

this project can be transferred to other projects, too. It is common
practice to identifymalicious edits via meta data such as geolocation
of IP addresses, age of user account, or browser information such as
user language.While those features are simple to obtain, they do not
directly judge the quality of an edit and harmwell-intentioned users.
Our graph embeddings serve as an example of how features purely
judging the content of an edit help to reduce unintentional biases.
Perhaps surprisingly, we can obtain comparable performance-bias
trade-offs by artificially scaling scores after a biased model has been
trained. On the one hand, this approach might serve as an easy
route to debias existing models. On the other hand, we feel that
it is rather a “black-box approach” and might be less suitable for
understanding predictions and explaining them to editors.

Finally, we would like to point out some limitations and direc-
tions for future research. Our model FAIR-E was specifically de-
signed for edits affecting links between entities and extending it
to attributes, labels, descriptions, and aliases might be challenging,
with the exception of our model FAIR-S. Here, such an extension is
rather straightforward as it selects features from WDVD which is
capable of classifying all edits in Wikidata. Our analysis is based on
a dataset derived from the rollback actions of Wikidata reviewers
and we observed some reviewer bias in this dataset. We leave it to
future work to create a large-scale, unbiased dataset. For example,
the Wikimedia Foundation might decide to hide user information
from Wikidata reviewers, forcing them to purely consider the con-
tent of an edit. However, this might make the review process more
expensive as reviewers cannot skip or quickly skim large amounts
of edits by registered users anymore. Besides fair vandalism detec-
tors, further means to increase newcomer retention might include
vandalism detectors explaining their decisions, improved user in-
terfaces, onboarding programs for newcomers, increased social
interactions, and gamification—all accompanied by data-driven pro-
cesses such as A/B testing or reinforcement learning.

8 CONCLUSION AND OUTLOOK
Machine learning models ingest biases through training data and
features—sometimes even aggravating them—fueling a vicious cycle
of reinforcing biases in a larger system. In this work, we developed a
vandalism detector for Wikidata’s damage control system that does
not contribute significant bias of its own. Compared to the state-of-
the-art, it considerably reduces bias against edits by anonymous
and newly registered editors. We achieve this result by omitting
user-related features and by developing features that purely encode
the content of an edit, rather than any meta information. In the
future, we plan to investigate biases at further online platforms
and to develop a general framework for bias mitigation, e.g., by
employing evolutionary algorithms to explore the Pareto front of
non-dominated models in bias-performance space.
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