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ABSTRACT
Web search queries can be ambiguous: is source of the nilemeant
to find information on the actual river or on a board game of that
name? We tackle this problem by deriving entity-based query in-
terpretations: given some query, the task is to derive all reasonable
ways of linking suitable parts of the query to semantically com-
patible entities in a background knowledge base. Our suggested
approach focuses on effectiveness but also on efficiency since web
search response times should not exceed some hundreds of mil-
liseconds. In our approach, we use query segmentation as a pre-
processing step that finds promising segment-based “interpretation
skeletons”. The individual segments from these skeletons are then
linked to entities from a knowledge base and the reasonable com-
binations are ranked in a final step. An experimental comparison
on a combined corpus of all existing query entity linking datasets
shows our approach to have a better interpretation accuracy at a
better run time than the previously most effective methods.
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• Information systems → Query intent.
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1 INTRODUCTION
We deal with the task of entity-based query interpretation: given a
keyword query, automatically identify the most reasonable inter-
pretation(s) based on the potentially mentioned (named) entities
from a knowledge base. Web search log studies have shown that
more than 70% of the queries contain entities [27] and that more
than 50% of the queries directly refer to an entity or a set of enti-
ties [46, 53]. For many such queries, identifying the actually meant
entities helps to resolve ambiguities and thus to show better search
results [4, 17, 47] but also to populate the entity cards / knowledge
box next to the search results with appropriate entries [32].
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In the field of natural language processing (NLP), entity recogni-
tion aims to identify spans of words that belong to some entity class
but linking them to a concrete entity is not required (e.g., recogniz-
ing “Kim” as a person suffices—mapping it to a concrete instance is
not necessary). And mostly run on well-formed text, many entity
recognition approaches make use of part-of-speech tags usually
obtained by deriving parse trees—a rather error prone process for
ungrammatical texts like keyword queries. Thus, instead of employ-
ing some NLP entity recognition approach, query understanding
methods from the IR field “directly” try to link (consecutive) query
terms to entities in some given background knowledge base [8].

For ambiguous queries like paris hilton (celebrity vs. a hotel
in Paris), linking query terms to entities helps to recognize the
different interpretations and thus to disambiguate or to potentially
diversify the knowledge box entries and search results. The “only”
problem is to come up with the celebrity, the hotel group, and the
city as mentioned entities and to figure out that from the more than
20 cities named Paris probably the capital of France is meant (none
of the other Parises has a Hilton hotel). At the same time, the whole
procedure needs to be very fast to not increase the web search
response time. For this reason, many entity linkers only target
the most prominent entities such that often only one single query
interpretation can be inferred (probably the celebrity in the paris

hilton example)—missing the chance of diversifying the results and
knowledge boxes in case of two or more reasonable interpretations.
Our new approach instead can return multiple interpretations.

To formalize the problem of entity-based query interpretation,
we distinguish between three types of entities that were not clearly
separated in previous query–entity studies: explicit, implicit, and
related entities. Explicitly mentioned entities appear in some “stan-
dard” surface form (e.g., paris) while implicitly mentioned entities
appear as a “description” (e.g., capital of france). Identifying the
most likely combinations of explicit (and possibly implicit) entities
in a query is the basis of query interpretation—implicit entities of-
ten even form (part of) an “answer”. In contrast, related entities are
not part of an interpretation but rather retrieved to further populate
the knowledge box (e.g., showing the Eiffel tower alongside Paris).

Many query–entity linkers follow a “dumb” brute-force approach:
checking for every combination of candidate entities whether they
form a meaningful query interpretation (often even including re-
lated entities that cannot be part of an interpretation). Instead,
we “inform” the combination phase by a query segmentation pre-
processing. Query segmentation is the task of finding consecutive
query terms that “belong together”: the query segments. Our ap-
proach runs a fast query segmenter to identify the most promising
segmentations and then uses them as “skeletons” for the combi-
nation phase that only has to link the few contained segments to
explicit and implicit entities. The best combinations of linked and
unlinked segments are then ranked as possible interpretations at a
better run time than that of brute-force entity linkers.
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Our contributions are threefold: (1) we are the first to use query
segmentation as an entity linking subroutine to develop a very fast
approach that is able to find more than one query interpretation
by combining sets of “compatible” entity mentions, (2) we carefully
merge, re-annotate, and extend the publicly available query–entity
corpora to create a new corpus of 2,800 queries with interpretations,
and (3) we conduct a large-scale comparison of existing entity
linking and query interpretation approaches on the new corpus.

The comparison shows our new approach to have a better inter-
pretation accuracy at a much better run time than the previously
most effective method (47ms per query instead of 282ms). Our new
corpus and our approach’s implementation are publicly available.1

2 RELATEDWORK
We review approaches and datasets for query entity linking or dis-
ambiguation, for query interpretation, and for query segmentation.

2.1 Entity Linking
Entity linking methods for queries (or short texts in general) can be
categorized as explicit, implicit, or related entity linking / retrieval.
Explicit entities appear in a “standard” surface form (e.g., paris),
implicit entities appear as a “description” (e.g., capital of france),
while related entities are not part of the query (e.g., the Eiffel tower).

Explicit Entity Linking. TAGME [23] as one of the first entity
linkers for short texts scores candidate entities by their commonness
as Wikipedia anchor texts and the likelihood to co-occur with other
candidates. Later variants improved the mention detection [19, 52]—
at the cost of a time-consuming retrieval phase. The fast FEL entity
linker of Blanco et al. [11] combines Wikipedia anchor texts with
log information about entities in clicked search results. Hashing
and compression techniques reduce the system’s memory footprint
of pre-computed commonness scores and word embeddings. Hasibi
et al. [30, 31, 33] developed Nordlys—its most effective entity linker
combines commonness with language models [50] to detect and
rank candidates; later extended to also identify entity types [26].

Implicit Entity Linking. Perera et al. [51] were the first to ex-
plicitly target the detection of implicit entities—for tweets. They
combine knowledge graphs and temporal context to identify ex-
plicit entities popular at the time of a tweet. Recently, Hosseini and
Bagheri [36] suggested a respective learning-to-rank approach.

Related Entity Retrieval. Nordlys [30, 31, 33] also offers an entity
retrieval routine that somewhat mixes explicit, implicit, and related
entities. Bi et al. [10] and Huang et al. [37] propose methods that
particularly target related entities for a query while Dietz [21] later
proposed an approach to rank entities related to a given entity.

Discussion. Most of the above approaches focus on precision:
they try to find the most likely entity per mention. But for query
interpretations (i.e., reasonable combinations of linked entities) also
other entities may be important. We thus treat entity linking as a
recall-oriented pre-processing. A subsequent combination phase
will then use query segmentation skeletons to achieve convincing
recall and precision scores for the actual query interpretations.

1https://webis.de/data/webis-qinc-22.html, https://github.com/webis-de/WSDM-22

These interpretations are the main focus of our approach; entity
linking is an important but “just” one of the subroutines.

2.2 Entity Disambiguation
Nowadays, entity linking and disambiguation are often used syn-
onymously [57] but originally, linking meant the recall-oriented
recognition of candidates for a mention, while disambiguation re-
ferred to the precision-oriented selection of the most suitable entity.

Cucerzan [20] tackled entity disambiguation by maximizing the
“global” similarity of the disambiguations of all mentions, while Rati-
nov et al. [54] used a previous “local” step to find the top entity per
mention. Hoffart et al. [35] suggest to find the densest knowledge
subgraph that contains all mention nodes and exactly one mention–
entity edge per mention. Their approach was improved by Nguyen
et al. [49] who first disambiguate low ambiguity mentions and
then use these to disambiguate the rest. With the rise of neural
approaches, Yamada et al. [73] suggested to combine word–entity
embeddings with graph-based approaches in a learning-to-rank
setup. Also the RadboudEL tool [64] uses embeddings to disam-
biguate mentions detected with Flair NER [2].

Discussion. Query interpretation is a disambiguation problem:
among the possible combinations of entity-linked mentions in a
query, the most suitable have to be chosen based on “disambiguat-
ing” the mentions with more than one entity link. For analyzing the
semantic coherence of a query interpretation, our own approach
adapts and combines ideas from the disambiguation literature.

2.3 Query Interpretation
Entity-based query interpretations help to populate the knowledge
box next to the search results and to retrieve better results than
with “simple” term matching—demonstrated by entity-informed
learning-to-rank [69–71] and language model-based retrieval [55].

Sawant and Chakrabarti [60] suggest to “interpret” queries over
structured knowledge bases from users who are not aware of the
underlying schema (e.g., the query parents paris hilton may not
work but two separate queries for her mother and father). This
setting is related to our notion of implicit entities but substantially
differs from our notion of the query interpretation task that first
was prominently featured in the short-text track of the ERD Chal-
lenge [15]: generating the possibly multiple combinations of non-
overlapping entity mentions that are “semantically compatible”.
Still, many approaches submitted to the challenge identify only one
interpretation per query—among them the top-2 systems [18, 19].

After the ERD Challenge, Hasibi et al. [30, 31, 33] added a so-
called greedy interpretation finding (GIF) method to their Nordlys
system to generate multiple interpretations. Still, in their experi-
ments, the GIF method also often did find only one interpretation.

2.4 Query–Entity Datasets
Three publicly available datasets of queries annotated with enti-
ties are used in the entity linking / query interpretation literature.
Balog and Neumayer [9] introduced the ES-DBpedia dataset with
485 queries that was later revised by Hasibi et al. [34] (DBpedia-
Entity v2, 467 queries). The newer version contains relevance judg-
ments for the entities (0: irrelevant, 1: relevant, 2: highly relevant)
but since crowdsourcing was used, some judgments are a bit “noisy”
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(e.g., Julia Lennon as the mother of John Lennon is highly relevant
for the query john lennon parents while the father Alfred Lennon
is only relevant without the fatherhood being controversial).

The ERD Challenge only released 91 queries for training while
the YSQLE dataset [72] as the largest publicly available query–
entity corpus has 2,635 queries with Wikipedia entities manually
labeled as “true” if part of some user intent and “false” otherwise.

Discussion. Already van Erp et al. [63] have noted that different
characteristics and annotation schemes make it difficult to com-
pare entity linking results for different datasets. Furthermore, the
DBpedia-Entity v2 and YSQLE datasets actually do not contain an-
notated query interpretations (only entity-level labels of “relevance”
in case of DBpedia-Entity v2 and only an indication whether an
entity is part of an interpretation but not which one if there were
more than one in case of YSQLE). To form one large and homo-
geneous dataset, we thus decided to combine and re-annotate all
three query–entity datasets with interpretations. We (re-)evaluate
the known entity linking and query interpretation approaches on
our new dataset to ensure comparability with previous results.

2.5 Query Segmentation
Interestingly, so far, query interpretation and entity linking ap-
proaches ignore the related task of query segmentation (identifying
consecutive query terms that “belong” together—but without link-
ing them to a knowledge base). For the first time, we suggest to
integrate segmentation and entity linking. In our approach, query
segmentation forms a pre-processing step to identify promising
“skeletons” that are then entity-linked to derive interpretations.

We use the fast approaches of Hagen et al. [28, 29] since they are
easy to implement and do not rely on large query logs like some
other methods [43, 47], and since they achieved a better segmenta-
tion accuracy than earlier unsupervised approaches [38, 41, 56] at a
good impact on retrieval effectiveness [28, 58]. We decided against
the approach of Wu et al. [68] that equips the methods of Hagen
et al. [28, 29] with a post-processing step since in pilot experiments
the run time requirements of our re-implementation were much
higher than the only 1–2ms per query of the simpler methods.

3 PROBLEM DEFINITION
We view a query 𝑞 as a sequence 𝑡1, 𝑡2, . . . , 𝑡𝑛 of terms. A segment 𝑠
of 𝑞 is a contiguous term subsequence (e.g., neil moon is not a
segment of the query neil armstrong moon) and a valid segmenta-
tion 𝑆 for 𝑞 consists of disjunct segments 𝑠 whose concatenation
is 𝑞. Query segmentation aims to find the “best” segmentation(s)
for a query in the sense of retrieval effectiveness (treating segments
as phrases to be matched in search results). But we are “only” in-
terested in the skeletons of segment boundaries to try to link the
segments to entities and to form entity-based query interpretations.

Named entities are uniquely identifiable real or fictional objects
often organized in taxonomies (we use 108 classes from the taxon-
omy of Sekine et al. [61]) and stored in knowledge bases (we use
Wikipedia but any other knowledge base is possible). A segment 𝑠 is
amention if it refers to an entity 𝑒 (e.g., the segment neil armstrong

is a mention of Neil_Armstrong, the astronaut). A surface form is a
mention that is commonly used as a reference for some entity.

We differentiate three types of entities in a query: explicit, im-
plicit, and related entities. Explicit entities are mentioned by their
actual name or a surface form (e.g., neil armstrong) but they may
overlap like in the query elton john wayne rooney with the explicit
entities Elton_John, John_Wayne, and Wayne_Rooney.

Implicit entities have mentions that “describe” them (e.g., the
query first man on the moon has the implicit entity Neil_Armstrong).
The span of an implicit entity is the shortest query segment that
accurately describes the entity without causing misunderstandings
(e.g., first man alone would be ambiguous). Implicit entities occur
when a “modifier” [39] is added to an entity or concept (e.g., first
man on the before the entity Moon (surface form of the astronomical
body orbiting Earth) leads to the implicit entity Neil_Armstrong). By
removing the term first, the query man on the moon then currently
has twelve astronauts as implicit entities—besides several books,
movies, and pieces of music as explicit entities. Note that even when
an implicit entity does not span the whole query, it could be the
answer (e.g., Neil_Armstrong answers who was the first man on

the moon even though only the last five terms are the span).
Special forms of implicit entities are Vossian antonomasias [25]

with explicit entities as modifiers (e.g., mozart of chess referring
to Magnus_Carlsen), and nestings of modifiers like birthplace of

first man on the moon that require to find the inner implicit entity
Neil_Armstrong to get to the outer implicit entity Wapakoneta,_Ohio

(span of the outer entity containing the span of the inner entity).
Related entities are not explicitly or implicitly mentioned in a

query but have a semantic relation to an explicit or implicit entity
(e.g., Buzz_Aldrin is a related entity for the query neil armstrong).
While explicit and implicit entities help to understand a query’s
intent and to populate the knowledge box next to the search results,
related entities are mainly useful for the knowledge box.

Combining query segmentation and query–entity linking, we
view an entity-based query interpretation as a valid query segmen-
tation in which mentions are linked to entities. To form a plausible
interpretation, the linked and the unlinked segments must be se-
mantically compatible. For example, in the query armstrong and its

surroundings, the segment armstrong clearly is not a mention of
Neil_Armstrong since the terms its surroundings clarify that some
of the many places named Armstrong is meant but not a person.

Two interpretations of a query (different segmentations or linked
entities) are equivalent iff they express the same information need.
For example, the query apollo 11 mission duration has two equiv-
alent interpretations that ask for the time span of about 8 days:
⟨Apollo_11 | mission duration⟩ and ⟨Apollo_11 | duration⟩ (the for-
mer links apollo 11 to Apollo_11 and has mission duration as a sec-
ond segment while the latter links apollo 11 mission to Apollo_11).
Still, the notion of “same information need” is rather fine-granular
(e.g., the query blue line schedule has the non-equivalent interpre-
tations ⟨Blue_Line_(Delhi_Metro) | schedule⟩ for Delhi-based users
and ⟨Blue_Line_(Montreal_Metro) | schedule⟩ for Montreal-based
users that on a coarse-grain level both ask for a metro schedule).

A bit tricky are queries that mention the same entity explicitly
and implicitly like the fact-checking question was neil armstrong

the first man on the moon. A plausible interpretation could be to
just map neil armstrong to Neil_Armstrong and leave the segment
first man on the moon “unlinked” but also linking both to the entity
can make sense to directly come up with the yes-answer.
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Entity-based query interpretations can help a search engine to
understand the user intent, to show entities in a knowledge box, or
to even potentially diversify the search results and knowledge box in
case of more than one non-equivalent interpretation. In its essence,
entity-based query interpretation is a query–entity linking task
that aims for finding plausible combinations of linked entities and
non-linked context segments. While in the query–entity literature
often only the precision / recall of the individually linked entities
is measured, the task of entity-based query interpretation is more
“strict” since all entity links have to be detected in order for an
interpretation to be correct. Note that, somewhat by definition,
query segmentation is a natural pre-processing step of entity-based
query interpretation. We demonstrate that this pre-processing leads
to efficiency gains over traditional entity linking approaches while
at the same time achieving better interpretation effectiveness (i.e.,
better combined linking / disambiguation effectiveness to identify
more of the semantically reasonable mention combinations).

4 QUERY INTERPRETATION APPROACH
Most query interpretation methods follow a two-step schema. (1) In
a candidate linking phase, they identify potential entities from a
background knowledge base for each of the 𝑂 (𝑛2) segments of an
𝑛-term query. In this process, often also many related entities are
found as potential links instead of just explicit and implicit entities.
(2) In a rather time-consuming combination and ranking phase, the
methods then try to identify meaningful combinations of the many
candidate links per segment and rank the combinations by scor-
ing how well the linked entities “fit together”. Interestingly, many
methods finally still output only one interpretation even though
many queries may have more than one reasonable interpretation
(cf. Section 5 for a respective analysis of our new corpus).

In our approach, we reduce the run time of the costly combina-
tion phase. To this end, we run a query segmentation pre-processing
phase parallel to the candidate linking phase. In pilot experiments,
we tried to first run segmentation and then only forward the seg-
ments from the most promising segmentations to the candidate
phase. But running segmentation and brute-force linking of all
𝑂 (𝑛2) segments in parallel was slightly faster than a sequential
processing. Thus, the most promising segmentations are not used
to reduce the candidate effort but as the “skeletons” to be filled in
the combination phase. This often vastly reduces the search space
of the combination phase and overall saves run time.

4.1 Query Segmentation Phase
In a first step, our entity-based query interpretation approach iden-
tifies promising segmentations. Query segmentation methods aim
to rank the possible 2𝑛 valid segmentations of an 𝑛-term query ac-
cording to retrieval effectiveness when the segments were treated
as phrases to be matched in search results. Segmentation is a query
understanding step—but without actually “asking” which of the
segments are entities and which are just (common) phrases. We use
segmentations to reduce the run time of the combination phase that
“only” will need to fill the most promising segmentation skeletons.

In pilot experiments, we re-implemented and evaluated the best
unsupervised query segmentation methods from the literature that
do not need query logs [28, 29, 68]. From these, the slightly more

Table 1: Segmentations of new york times square dancewith the
scores of Hagen et al. [29]. Lower ranked segmentations with
the same highest-weight segment in gray (our filter heuristic
removes them). The column “Ratio” indicates the ratio of the
scores of two consecutive non-gray segmentations.

Rank Segmentation 𝑆 score (𝑆) Ratio

1 new york times | square dance 496.6 million
2 new york times | square | dance 496.2 million
3 new york | times square | dance 333.4 million 0.671
4 new york | times | square dance 331.0 million
5 new york | times square dance 330.8 million
6 new york | times | square | dance 330.8 million
7 new | york times | square dance 35.6 million 0.107
.
.
.

.

.

.

.

.

.

13 new | york | times square dance 312
14 new | york | times | square | dance 0
15 new | york times square dance -1
16 new york times square dance -1

effective approach of Wu et al. [68] was slower than the simpler
approaches of Hagen et al. [28, 29] such that we decided to employ
the simpler approaches in our actual system (cf. Section 6.2 for
more details on the setup). The approaches of Hagen et al. [28,
29] rank the possible segmentations of a query by summing up
pre-computed segment weights stored in a hash table for quick
access. The difference between the approaches is the weight pre-
computation (some approaches just assign weights to phrases that
are strict noun phrases or titles of Wikipedia articles, etc.).

Table 1 shows how the approach of Hagen et al. [29] processes
the query new york times square dance. The score of a segmenta-
tion 𝑆 is the sum of the contained segments’ weights. In case that
𝑠 is not a title or re-direct of some Wikipedia article, the weight
of 𝑠 simply is its occurrence frequency in the Google n-gram cor-
pus [13] multiplied by the length of 𝑠 in words. In case that 𝑠 is a
title or re-direct of some Wikipedia article, the weight of 𝑠 is (1 +
occurrence frequency of the most frequent word-2-gram contained
in 𝑠) multiplied by the length of 𝑠 in words. For example, the 3-gram
new york times gets as its weight the occurrence frequency of new
york + 1 (i.e., 165.4 million + 1) multiplied by 3 for a total weight
of 496.2 million. The final score of 496.6 million for the segmenta-
tion new york times | square dance is the sum of this 496.2 million
weight for new york times and the 420,880 weight of square dance

(2 times the 210,440 frequency of square dance that actually also is
a Wikipedia article title but also its own most frequent sub-word-
2-gram). Single-term segments do not contribute to the score of
a segmentation in the approach of Hagen et al. [29] such that the
“non-segmentation” new | york | times | square | dance gets a score
of 0. Special cases are segmentations with segments that do not
have a frequency in the Google n-grams; such segmentations are
assigned a score of −1 to be ranked below the non-segmentation.

The top-ranked segmentation new york times | square dance is
not entity-linked but already hints at an interpretation of searching
articles in The_New_York_Times about the folk dance Square_Dance,
the Square_Dance_(ballet), or the Square_Dance_(film), while the
third-ranked segmentation new york | times square | dance hints at
a search for dance events on the Times_Square in New_York_City.
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Most of the 2𝑛 segmentations of an 𝑛-term query do not yield
plausible interpretations. On our manually annotated training set
(cf. Section 6.1), a pilot study showed that often only the highest-
scoring segmentation that includes some particular segment is used
as an interpretation skeleton and that lower-ranked segmentations
with huge score differences to higher-ranked segmentations are
hardly used as skeletons.We thus apply respective filter heuristics to
not forward all segmentations to the combination phase. A first filter
removes segmentations whose highest weighting segment is con-
tained in a higher-ranked segmentation. In the example of Table 1,
the potentially interesting segmentation new york | times | square

dance (find times of square dance events) is removed since new york

also is included in the third-ranked segmentation. A second filter
removes segmentations for which the score ratio to the lowest
kept higher-ranked segmentation falls below some threshold like
0.66 or 0.5 (threshold trained, cf. Section 6.2). In the example, the
seventh-ranked segmentation and all below are removed.

4.2 Candidate Linking Phase
In parallel to the query segmentation, the candidate linking tries to
find entities for all the𝑂 (𝑛2) potential segments. Ideally, the linking
would identify explicit and implicit entities. Practically, this depends
on the knowledge base and the potentially contained implicit men-
tions (e.g., the Wikipedia knowledge base that we use has a redirect
that actually maps first man on the moon to Neil_Armstrong). Going
beyond the explicit and implicit aliases of the used knowledge base
is beyond the scope of this paper. However, including a real implicit
entity linker (e.g., for Vossian antonomosias) is an interesting task
for future work. Our new corpus (cf. Section 5) could be a good
starting point, since we also have annotated the implicit entities.

Our entity linking module is based on titles of Wikipedia articles,
redirects, and disambiguation pages (in practice, of course, also any
other knowledge base can be used). The about 13 million distinct
key–value pairs (keys are potential query segments and values are
lists of entities that can be referred to by this segment) are stored
in a RocksDB table [22] for fast exact-match access and in a Lucene
index [6] to quickly find imperfect matches (in a pilot study, a depth
of 150 Lucene results was best). The exact and imperfect matches
for segmentations selected in the query segmentation phase are
passed to the combination phase. For the example from Table 1,
the segment new york times is linked, among others, to the entity
The_New_York_Times and square dance is linked to Square_Dance.

4.3 Combination and Ranking Phase
To derive entity-based query interpretations, our approach com-
putes commonness scores for mentions in the promising segmenta-
tions. Commonness (i.e., the likelihood of an entity–mention link)
is used in many linkers as a solid baseline [40]. We use the same
Wikipedia dump that forms our background knowledge base and
apply the commonness computation of Ferragina and Scaiella [23].

To “fill” a skeleton forwarded by the segmentation phase, we
order the potential entities for each segment by their commonness
score (discarding entities with a 0-commonness) and as a fall back
solution add the option of not linking a segment to any entity but to
keep it as a phrase (i.e., put in quotes in a web search). The potential
interpretations can then be derived by a Cartesian product of the

not-0-common entities and the unlinked respective segments. In
the above example, the top-segmentation new york times | square

dance has eight interpretation candidates (The_New_York_Times or
no link for the segment new york times, and the folk dance, the
ballet, the film, or nothing for the segment square dance).

In the interpretation ranking, we combine three weights from the
entity linking literature: (1) the above described commonness CMN,
(2) the likelihood of two entities to occur together (relatedness REL),
and (3) the likelihood of an entity to occur with the unlinked seg-
ments (context CXT). We compute the relatedness and context
weights using Wikipedia-based joint word–entity embeddings [67]
provided by Yamada et al. [73] (data from April 2018 but matching
our background Wikipedia knowledge base). We use the configura-
tion suggested by the authors since it also performed best in our
pilot experiments: average cosine similarity of an entity’s embed-
ding vector with the other entities in an interpretation (relatedness)
or with the unlinked segments in an interpretation (context).

An interpretation 𝐼 ’s score is the averaged weighted sum of the
commonness, relatedness, and context scores of the entities 𝑒 ∈ 𝐼 :

score(𝐼 ) = 1
|{𝑒 ∈ 𝐼 }| ·

∑︁
𝑒∈𝐼

(𝛼 · CMN(𝑒) + 𝛽 · REL(𝑒) + 𝛾 · CXT(𝑒)) ,

with [0,1]-valued parameters 𝛼, 𝛽, and 𝛾—often being the first
idea to combine different weights, a linear combination also worked
well in our pilot experiments. To optimize the parameters, we use
hill climbing and maximize the interpretations’ F1-score on our
training set (cf. Section 6.1). Interestingly, the configuration that
best fits the training data is 𝛼 = 𝛽 = 𝛾 = 1 such that commonness,
relatedness, and context are of equal importance. An interpretation
without linked entities has a 0-relatedness and will usually only be
chosen when no entities have been found in the linking phase.

5 QUERY INTERPRETATION CORPUS
We combine, re-annotate, and extend the existing query–entity
corpora to a coherent dataset for entity-based query interpretation:
our new Webis Query Interpretation Corpus 2022 (Webis-QInC-22).

5.1 Corpus Creation
The available query–entity linking datasets [9, 15, 33, 72] contain a
total of 3,193 queries (mostly without annotated interpretations).
After a normalization preprocessing (lowercasing, manual spell
correction, special character normalization, etc.), the combined set
consists of 2,598 unique queries to which we added 202 new queries
that we found as ambiguity examples in different sources (e.g., new
york times square dance from the query segmentation literature).

Entity and Interpretation Annotation. To ensure a consistent anno-
tation, a single main expert annotator (re-)annotated all the queries
in the new corpus from scratch following guidelines adapted and
extended from Hasibi et al. [30]: (1) an entity has to be an instance
of the 108 entity classes from the taxonomy of Sekine et al. [61],
(2) only explicit and implicit entities should be annotated (no related
entities), (3) the mention span of an entity is the shortest query
segment that accurately refers to the entity (long enough to avoid
misunderstandings), (4) entities with overlapping mention spans
are allowed in the sets of implicit and explicit entities but not as
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part of the same interpretation, (5) entities in an interpretation have
to be semantically and grammatically compatible with the other
entities / segments in the interpretation, and (6) implicit entities
are only part of an interpretation when they are not themselves the
answer to the query. As the knowledge base for the annotation, we
use the wholeWeb. Thus, mentions without aWikipedia article may
be linked to alternate resources (e.g., LinkedIn for “ordinary” people
or Yelp for local companies). Entities without an easily assignable
web resource have a comment added to the mention.

After an introduction to these guidelines, we performed a kappa
test on a 50 query sample with two other annotators. This test
indicated a high inter-annotator agreement for all annotation tasks
(kappa scores of 0.65–0.7; usually termed as “good” or “very good”
depending on the scheme). We used the few cases with disagree-
ments in a discussion with the annotators to further fine-tune their
understanding of the task. The main annotator then annotated all
the queries in our corpus without access to the queries’ previous
annotations. To ensure a high quality, all the annotations were
then reviewed by the two other annotators. Possible conflicts were
discussed and adjusted until an agreement was reached.

The annotation process did result in at least one explicit or im-
plicit entity being annotated for 2,234 queries. We then also checked
the 163 entities contained in the previous corpora that had non-zero
weights in their corpus but that were not selected by our annotators
even after discussions. We kept 141 of them as related entities even
though we did not (yet) annotate related entities for all queries in
our new corpus since this is not the scope of our paper. Our anno-
tator(s) also annotated relevance levels for the entities (1: might be
part of a query intent, and 2: very likely is part of a query intent).
Different to, for instance, the DBpedia-Entity v2 dataset that has
more than 27,374 entities annotated with 0-scores (not relevant) for
the 467 queries, we do not have 0-valued entities in our corpus but
only include entities that might be part of a query interpretation.

To form interpretations, our annotator(s) were instructed to
keep common phrases or concepts as segments and to indicate
equivalent interpretations. Additionally, the interpretations were
graded as “plausible” (1, few searchers might mean this interpre-
tation), “moderately likely” (2, more searchers might mean this
interpretation), or “very likely” (3, most searchers’ intent would
be this interpretation), and clarifying comments could be added
(e.g., explaining why a 1 was assigned, etc.). In our running exam-
ple, the interpretations ⟨The_New_York_Times | Square_Dance⟩ and
⟨New_York_City | Times_Square | dance⟩ both got a score of 2 since
among the good interpretations none is dominant.

Difficulty Assessment. During and after the annotation, our an-
notators also assigned values on a 5-point scale for the annotation
difficulty of a query based on the complexity / ambiguity of the
mentioned entities. Easy queries with low ambiguity, few or no
explicit entities, and no implicit entities get a value of 1 (e.g., the
query frank zappa only has the explicit entity Frank_Zappa). Slightly
more difficult queries with moderate ambiguity, potentially various
explicit entities, or easy implicit entities get a value of 2 (e.g., the
query frank zappa mother contains the explicit entity Frank_Zappa,
has the implicit entity Rose_Marie_Zappa, and possibly the implicit
entity The_Mothers_of_Invention, the band of Frank_Zappa). Diffi-
cult queries with high ambiguity or complex implicit entities get a

value of 3 (e.g., judges fisa court 2005 with several implicit judge
entities). Queries for which it is not clear what the user wanted get
a value of 4 (e.g., for the query windows xp 8, does the user ask for
an upgrade from Windows_XP to Windows_8 or is the term 8 just refer-
ring to something else?). Finally, queries with more than 20 entities
get a value of 5 (e.g., the query free online games has plenty of
implicit entities like League_of_Legends, Dota_2, etc.)—when there
were too many explicit or implicit entities, our annotators tried to
add a link to a Wikipedia disambiguation page or a Wikipedia list.
Overall, the average query difficulty is 1.77 in our dataset.

Query Classes. In a final annotation step, we broadly categorized
the queries into five classes. (1) Categorical queries refer to a group
of (often related) implicit entities (e.g., members of u2). (2)Conceptual
queries come in two flavors: queries not containing any entities and
requesting information about general concepts (e.g., noun phrases
like black powder ammunition) or queries asking for concepts re-
lated to an explicit entity (e.g., churchill downs horse racing track

schedule asking for a schedule (concept) of horse races taking place
at the Churchill_Downs_(racetrack)). (3) Question queries are for-
mulated as a question (e.g., how do sunspots affect us). (4) Rela-
tional queries are similar to conceptual queries with the difference
that the requested information for an explicit entity is an implicit
entity and not a concept (e.g., niagara falls origin lake where
Niagara_Falls is the explicit entity and Lake_Erie is the implicit en-
tity with the entire query as mention span; also all Vossian antono-
masias fall in this category). (5) Surface queries have a query string
that is an explicit entity mention (e.g., frank zappa).

Interoperability. A study by van Erp et al. [63] somewhat criti-
cized that different entity linking datasets often use just a single
knowledge base such that a re-mapping might be needed in case
of another preference. To ease using our dataset, we also include
DBpedia [7], Freebase [12], Wikidata [65], and YAGO3 [45] links.

5.2 Corpus Analysis
The queries in our Webis-QInC-22 on average have 3.62 terms
(from 1 to 14), contain 1.99 explicit entities (0 to 19), and have 2.22 in-
terpretations (1 to 40). Table 2 details the characteristics per query
length. Shorter queries of up to four terms are more ambiguous—
less context given—and thus have more interpretations than longer
queries while the average number of mentions increases with the
length of the query (more segments = more potential of mentions).
Some queries have no mentions at all (e.g., just concepts included)
but every query has at least one interpretation. Since our guidelines
stated to only have implicit entities in an interpretation when they
are not the answer, only 59 of the 6,222 interpretations contain an
implicit entity (e.g., ⟨Neil_Armstrong⟩ is not(!) an interpretation of
first man on the moon but of course annotated as an implicit entity).
As for entity-based query interpretation, the implicit entities thus
seem not to be too important. However, when it comes to actually
answering the query (e.g., retrieving entries for the knowledge box),
the implicit entities often play a major role. We thus already have
them in our corpus but in this paper focus on forming interpreta-
tions from the entities found as titles or re-directs of Wikipedia
articles. Identifying also all the implicit entities and populating the
knowledge box with them is an interesting task for future research.
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Table 2: Characteristics of our newWebis-QInC-22 dataset.

Query
Length

Count Mentions Explicit Entities Interpretations

Min Avg Max Min Avg Max Min Avg Max

1 206 0 0.86 1 0 2.47 19 1 2.79 19
2 610 0 1.08 3 0 2.16 19 1 2.60 40
3 775 0 1.17 4 0 2.07 18 1 2.40 40
4 540 0 1.34 4 0 2.00 19 1 2.13 30
5 290 0 1.51 5 0 1.65 9 1 1.60 16
6 154 0 1.56 4 0 1.74 11 1 1.81 16
7 96 0 1.76 5 0 1.56 7 1 1.47 16

8–14 129 0 1.83 5 0 1.38 7 1 1.30 8

1–14 2,800 0 1.27 5 0 1.99 19 1 2.22 40

6 EVALUATION
After selecting the segmentation method, tuning the segmentation
filtering threshold, and tuning the combination score parameters
on a fixed training set, we evaluate the individual steps of the entity-
based query interpretation process. Note that others might later
choose different tuning ideas but can use the same train–test split.

6.1 Webis-QInC-22 Train–Test Split
Wewant to ensure that highly similar queries (e.g., lake murray and
lake murray fishing) are not separated in a train–test split such
that no direct information on entities is leaked from training to test.
To this end, we use the YSQLE dataset’s session information and
manually combine other similar queries to “clusters” that should
not be split. Since the split should also respect the query category
and length distributions, we use a hill climbing optimization [66]
starting from a random cluster-respecting 80-20 split of the queries.
The “error” of a split is the sum of the absolute differences between
the train/test sets’ distributions and the distributions in the whole
corpus. As long as the error exceeds a given threshold, two random
clusters are exchanged between train and test set. Our derived split
has 2256 queries for training and 544 queries for testing.

6.2 Optimizing the Segmentation Phase
The segmentation phase ideally finds all skeletons of the ground-
truth interpretations at a good precision (of the derived skeletons
against the skeletons of the ground truth) since otherwise the com-
bination phase is slowed down trying to fill too many skeletons.
A segmentation is a complete match when it exactly matches the
skeleton of a ground-truth interpretation while a partial matchmay
sub-segment segments that are not mentions (e.g., the segmentation
new york times | square | dance is no match for the interpretation
⟨The_New_York_Times | Square_Dance⟩ (square dance is split) but a
partial match for ⟨The_New_York_Times | square dance⟩ that does not
link square dance to an entity). In other words, a partial match may
get the segmentation wrong for non-linked ground-truth segments.

From the potential 2𝑛 segmentations only those are passed to
the combination phase that do not have the same highest weight-
ing segment as a higher ranked segmentation and whose score
ratio compared to the previous passed-on segmentation does not
fall below a threshold (cf. Section 4.1). We optimize this thresh-
old for the approaches of Hagen et al. [28, 29] with respect to the
𝐹1 score of completely / partially matched passed-on skeletons (the
combination phase will only be able to fill these skeletons).

Table 3: Segmentation results of Hagen et al.’s approaches [28,
29] on our train set. CSA/PSA, CSB/PSB: complete/partial
skeleton matches on all or only the better interpretations
(better = assessment of 2 or 3). Time: avg. time per query.

Segmentation Recall Time
(ms)CSA CSB PSA PSB

No Segmentation 0.226 0.208 0.541 0.528 0.00
Naïve [29] 0.855 0.846 0.924 0.915 0.72
Wiki-based [29] 0.858 0.849 0.922 0.914 1.01
WT [28] 0.927 0.920 0.956 0.949 0.76
WT+SNP [28] 0.883 0.874 0.935 0.927 6.02

Table 3 shows the results with the best thresholds on the train-
ing set and what a no-segmentation would achieve (i.e., just one
segmentation with each query term its own segment). As our seg-
mentation strategy, we choose the WT approach (threshold of 0.66).
It achieves the highest partial and complete recall (it favors titles and
redirects of Wikipedia articles and thus matches our background
Wikipedia knowledge base) and is one of the fastest approaches
(e.g., the WT+SNP approach needs time for POS-tagging the query).

6.3 Entity Linking Comparison
We compare our simple brute-force entity linking approach to
existing linking and recognition tools. Since recognition approaches
are not required to link detected mentions to an actual entity [57],
we count every correctly recognized mention as a match for them.

In our evaluation, we derive micro and macro averages for pre-
cision, recall, and weighted recall of a method’s results, where
the combined “classes” for the macro-averaging are the individual
queries’ sets of entities. For a query 𝑞 with ground-truth entity
set 𝐸 (containing relevance levels rel(𝑒) for entities 𝑒), the micro
precision prec(𝑞), recall rec(𝑞) and weighted recall rec∗ (𝑞) of an
approach’s derived entity set 𝐸 ′ are defined as:

prec(𝑞) =


|𝐸∩𝐸′ |
|𝐸′ | , if |𝐸 ′ | > 0 ,
1 , if |𝐸 ′ | = 0, |𝐸 | = 0 ,
0 , if |𝐸 ′ | = 0, |𝐸 | > 0 ;

rec(𝑞) =


|𝐸∩𝐸′ |
|𝐸 | , if |𝐸 | > 0 ,
1 , if |𝐸 | = 0, |𝐸 ′ | = 0 ,
0 , if |𝐸 | = 0, |𝐸 ′ | > 0 ;

rec∗ (𝑞) =
∑
𝑒′∈𝐸′∩𝐸 rel(𝑒 ′)∑

𝑒∈𝐸 rel(𝑒) .

Table 4 shows the entity linking results of the publicly available
entity linking and recognition systems evaluated on the explicit en-
tities of our corpus. Since the later combination and ranking phase
of entity-based query interpretation can only use entities recalled
in the linking phase, a high recall—achieved by our brute-force
entity linker—is desirable to not miss any interesting entity. For
completeness, we also include the precision scores for all entity
linkers in Table 4 even though the actual query interpretation re-
sults in Table 5 clearly show that a recall-oriented entity linking
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Table 4: Entity linking results on our test set in form of mi-
cro/macro (Mic/Mac) precision (P) and (wghtd.) recall (R, R∗).

Ref. MicR MicR∗ MacR MacR∗ MicP MacP

Entity Linking Tools

Our approach – 0.838 0.859 0.668 0.670 0.035 0.126
Nordlys ER [33] 0.735 0.776 0.543 0.548 0.002 0.009
TagMe [23] 0.333 0.410 0.385 0.401 0.328 0.399
Babelfy [48] 0.320 0.398 0.383 0.398 0.293 0.289
Smaph [19] 0.314 0.390 0.399 0.413 0.431 0.463
Dandelion [62] 0.302 0.373 0.414 0.428 0.431 0.500
Nordlys EL [33] 0.293 0.359 0.579 0.593 0.780 0.731
Dexter [16] 0.267 0.332 0.359 0.372 0.481 0.462
FEL [11] 0.250 0.309 0.313 0.324 0.273 0.333
TextRazor [44] 0.216 0.265 0.372 0.380 0.511 0.445
Radboud EL [64] 0.213 0.263 0.498 0.507 0.789 0.627
Falcon [59] 0.204 0.251 0.226 0.234 0.397 0.368
Ambiverse [35] 0.011 0.013 0.259 0.259 0.750 0.263

Entity Recognition Tools

AWS Comprehend [1] 0.229 – 0.476 – 0.604 0.616
MITIE [42] 0.114 – 0.358 – 0.797 0.463
Flair NER [2] 0.129 – 0.374 – 0.787 0.487
LingPipe NER [3] 0.109 – 0.321 – 0.497 0.410
DeepPavlov [14] 0.048 – 0.269 – 0.478 0.305
Stanford NER [24] 0.011 – 0.257 – 0.563 0.261
OpenNLP [5] 0.000 – 0.246 – 0.000 0.246

No-Entity Baseline – 0.000 0.000 0.246 0.246 0.000 0.246

helps to find more of the interesting interpretations: supporting
our idea of a recall-oriented candidate linking phase.

6.4 Query Interpretation Comparison
Our actually addressed task is not entity linking but entity-based
query interpretation on which we also try to compare as many
systems as possible. For entity linkers that have no combination step,
we apply the GIF algorithm of Hasibi et al. [30] that needs linked
entities plus mention spans. Hence, entity recognition systems and
also Nordlys ER and Falcon (no mention spans) cannot be tested.

The GIF algorithm only combines entities but ignores the non-
linked terms of a query. For a fair comparison, we post process the
GIF output and add the potentially missing non-linked segments to
the interpretation. To not place tools at a disadvantage that also link
to concepts besides entities, we manually annotated concepts in
the test set and treat them as not-linked segments in the evaluation.
A computed interpretation counts as a complete match when the
segmentation and the contained entities correspond to an interpre-
tation in the ground truth while a partial match matches at least
the entities of a ground truth interpretation.

Besides effectiveness, we also measure the efficiency (includ-
ing GIF for methods without a combination phase) on a PC running
Ubuntu 20.10 on an AMD® Ryzen Threadripper 2920x@4.30GHz
with 128GB RAM (default OS settings for caches, etc.).

Table 5 shows the evaluation results on our test set for interpre-
tations that are at least “moderately likely”. Our approach achieves
the by far highest effectiveness and also is faster than all other
systems except FEL. With a partial match recall of 0.47, our ap-
proach identifies all entities for almost half of the interpretations
while the second best system Dexter (also running completely lo-
cally) needs six times more time for its lower 0.31 partial match
recall—a recall that our system even almost achieves for the harder

Table 5: Interpretation results on our test set for interpreta-
tions that are at least “moderately likely”. R, R∗, P: (weighted)
recall and precision. Time: average time per query.

Partial Matches Complete Matches Time
(ms)R R* P F1 R R* P F1

Our approach 0.472 0.479 0.506 0.451 0.295 0.301 0.336 0.283 47
Dexter 0.306 0.311 0.392 0.337 0.230 0.235 0.312 0.246 282
Nordlys EL 0.277 0.282 0.379 0.289 0.189 0.194 0.278 0.207 1,533
Radboud EL 0.223 0.224 0.289 0.236 0.144 0.145 0.199 0.155 200
Smaph 0.194 0.198 0.261 0.208 0.176 0.180 0.243 0.190 116,425
Dandelion 0.194 0.198 0.261 0.207 0.166 0.169 0.226 0.177 74
TagMe 0.176 0.181 0.228 0.187 0.165 0.169 0.216 0.175 99
Babelfy 0.147 0.149 0.193 0.156 0.112 0.117 0.160 0.124 49
TextRazor 0.140 0.140 0.186 0.149 0.098 0.099 0.131 0.105 367
FEL 0.133 0.136 0.173 0.141 0.133 0.136 0.173 0.141 22
Ambiverse 0.013 0.013 0.017 0.013 0.007 0.007 0.011 0.009 53

complete matches. The third-ranked Nordlys EL system is slower
than most other approaches even though we run it completely lo-
cally while the fifth-ranked Smaph system needs a lot of time for
HTTP requests to several external APIs.

7 CONCLUSIONS
Our new approach to entity-based query interpretation identifies
fitting combinations of important entities at a much higher accuracy
and much faster than the previously best systems. With its run
time of about 50ms per query (further efficiency tweaks may be
applicable), it can already very well serve as a query understanding
step in “production systems” to determine whether a query has just
one interpretation or whether the search results could be diversified.
At the same time, the detected entity combinations also help to
populate the knowledge box next to the search results.

The core idea of our approach is to combine, for the first time,
the query understanding steps of segmentation and entity linking.
A fast query segmentation in a pre-processing step helps to substan-
tially reduce the run time of the combination phase of the query
interpretation process. Besides the new approach, we also construct
our new Webis-QInC-22 dataset of queries annotated with interpre-
tations as well as explicit and implicit entities by combining and
extending the publicly available previous query-entity datasets. In
a large-scale comparison on the new corpus against the publicly
available query–entity linking and interpretation approaches, we
show our new approach to achieve a better interpretation accuracy
at a better run time than the previously best systems.2

An interesting direction for future work is the inclusion of an
actual implicit entity linker—an entity category more or less ig-
nored by the current query interpretation approaches that focus
on explicit entities. To this end, we plan to add more queries with
implicit entities to our corpus. Additionally, we will also enrich the
corpus with related entities for all the queries to form a reusable
large-scale dataset for many query–entity-related tasks.

Another interesting direction for future work is to analyze the
extent of how any keyword-based ambiguities are transferred or
would be resolved in more verbose voice search environments. The
verbosity might, for instance, help to avoid ambiguous segmenta-
tions and utterance pauses may help to segment voice queries.

2Our corpus, code, and results are publicly available to ensure reproducibility: https:
//webis.de/data/webis-qinc-22.html, https://github.com/webis-de/WSDM-22
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