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Abstract Authorship identification remains a highly topical research problem
in computational text analysis with many relevant applications in contemporary
society and industry. For this edition of PAN, we focused on authorship verifica-
tion, where the task is to assess whether a pair of documents has been authored
by the same individual. Like in previous editions, we continued to work with
(English-language) fanfiction, written by non-professional authors. As a novelty,
we substantially increased the size of the provided dataset to enable more data-
hungry approaches. In total, thirteen systems (from ten participating teams) have
been submitted, which are substantially more diverse than the submissions from
previous years. We provide a detailed comparison of these approaches and two
generic baselines. Our findings suggest that the increased scale of the training
data boosts the state of the art in the field, but we also confirm the conventional
issue that the field struggles with an overreliance on topic-related information.

1 Introduction

From the very beginning, authorship analysis tasks have played a key role within the
PAN series. A variety of shared tasks have been developed over the past decade, comple-
mented by the much-needed development of benchmark corpora for problems such as
authorship attribution, authorship clustering, and authorship verification – both within
and across genres, and within and across languages. Rather than adding new task vari-
ants (or repeating existing ones), we decided this year to renew our mission and broaden
our perspective, by organizing an annual series of tasks of a gradually increasing diffi-
culty and realism, organized within a three-year strategy (2020-2023). In this endeav-
our, we also aim to integrate as many of the lessons learned from recent editions as
possible. Amongst others, we aim to devote explicit care to some of the larger chal-
lenges that remain open in the field, such as author-topic orthogonality, cross-genre
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issues and problems involving texts of unequal lengths. Additionally, based on the cor-
pus construction efforts of Bischoff et al. [6], we can provide evaluation data of a more
substantial size than in previous years, so as to keep the field up to speed with broader
developments in NLP, and especially the emergence of data-hungry methods from rep-
resentation learning. This endeavour puts demanding constraints on the practical orga-
nization of the annual task, but it is our hope that this renewed strategy will be beneficial
to participants and the whole field in general.

The task in year one, which is this year, was deliberately formulated as a closed
setting: The test set only contains a subset of authors and topics that were also present
in the training set. While presented as an authorship verification task, it could therefore
also be seen as an authorship attribution task. The task in year two will move beyond
this and is designed in a much more demanding open setting. While the training set
in year two will be identical to the one from this year, the test set will no longer con-
tain any authors or topics that were also present in the training set. This setup entails
a highly challenging task in (pure) authorship verification. The task in year three (cur-
rently termed as “surprise task”) is intended to put the participants in the role of judges
at court, where the highest possible reliability and dependability will be required. These
requirements will be reflected in the evaluation measures. More details on this task will
be released in due time.

2 Authorship verification

The automated authentication of textual documents is an important issue in computer
science, with multiple, real-world applications across various domains. Trustworthy,
transparent benchmark initiatives are therefore key in reliably establishing the state of
the art in the field, stimulating replication, and monitoring progress [27]. Automatically
assessing a document’s authorship on the basis of its linguistic and stylistic features is
a crucial aspect of this problem [30, 17, 22], which can be modeled in various ways.
Over the years, PAN has contributed to the field of authorship identification through
organizing an array of shared tasks that were recently surveyed [3]. Some of the core
tasks included:

– AUTHORSHIP ATTRIBUTION: given a document and a set of candidate authors,
determine which of them wrote the document (2011-2012, 2016-2020);

– AUTHORSHIP VERIFICATION: given a pair of documents, determine whether they
are written by the same author (2013-2015);

– AUTHORSHIP OBFUSCATION: given a document and a set of documents from the
same author, paraphrase the former so that its author cannot be identified anymore
(2016-2018);

– OBFUSCATION EVALUATION: devise and implement performance measures that
quantify safeness, soundness, and/or sensibleness of an obfuscation software
(2016-2018).

As previously announced [3], we have revisited the task of authorship verification
this year, which can be formalized as the task of approximating the target function
φ : (Dk, du) → {T, F}, where Dk is a set of k documents of known authorship



by the same author and du is a document of unknown or questioned authorship. If
φ(Dk, du) = T , then the author of Dk is also the author of du and if φ(Dk, du) = F ,
then the author of Dk is not the same with the author of du. In the case of cross-
domain verification, Dk and du stem from a different text variety or treat a consid-
erably different content (e.g. topics or themes, genres, registers, etc.). For the present
task, we considered the simplest (and most challenging) formulation of the verifica-
tion task, i.e., we only considered cases where k = 1, rendering Dk a singleton; thus,
only pairs of documents are examined. Given a training set of such problems, i.e., text
pairs, the verification systems of the participating teams had to be trained and calibrated
to analyze the authorship of the unseen text pairs (from the test set). We shall distin-
guish between same-author text pairs (SA: φ(Dk, du) = T ) and different-author (DA:
φ(Dk, du) = F ) text pairs.

A novelty this year is that, contrary to recent editions, we sought to substantially
increase the size of the evaluation dataset. This goal was inspired by the observation
that previous competitions attracted relatively few approaches that exploited recent ad-
vances from representation learning on the basis of neural networks (such as sentence-
level embeddings). By supplying large evaluation data, we hoped to broaden up the
array of submitted approaches (which seems to have been successful). As every year,
we asked participants to deploy the verifiers on TIRA for reproducibility sake and for
blind evaluation on an unseen test set [28]. They were expected to produce a score in
the form of a bounded scalar between 0 and 1, indicating the probability of the test item
being a same-author (SA) pair (rather than a binary choice). The critical threshold for
expressing a positive answer was 0.5 (see Section 4).

3 Datasets

In this edition, we have continued working with ‘fanfiction’ [20, 18], i.e., fictional texts
produced by non-professional authors in the tradition of a specific cultural domain (or
‘fandom’), such as a famous author or a specific influential work [14]. We operationalize
cross-domain verification as cross-fandom verification, where a fandom can be roughly
interpreted as a mixture of topic and literary genre. Fanfiction is abundantly available on
the internet, as the fastest growing form of online writing [10], and clearly fits our aims
to scale up the datasets in the coming years. This year, two training datasets of different
magnitudes (“small” and “large”) are provided with text pairs crawled from fanfiction.
net, a sharing platform for fanfiction that comes with rich, user-contributed metadata.
For the construction of these datasets, we built on the fanfiction.net corpus compiled
by Bischoff et al. [6] as a basis. Participants were allowed to submit systems calibrated
on either dataset (or both). This way, we hoped to be able to establish the added value
of increasing training resources in authorship verification. Only English-language texts
were included to push the size of the data to the maximum: a multilingual counterpart
of this dataset, including resource-scarcer languages, remains a desideratum.

All texts are normalized with regards to punctuation and white space to avoid tex-
tual artifacts [4] and have a length of approximately 21,000 characters. To construct the
dataset, we bucketed the texts by author and fandom (topic) to ensure a good mix of
the two and, despite the very uneven popularity of fandoms and activity of authors, pre-



vent gross overrepresentation of individual fandoms and authors. For the large dataset,
148,000 same-author (SA) and 128,000 different-authors (DA) pairs were drawn from
the fanfiction.net crawl. The SA pairs encompass 41,000 authors of which at least four
and not more than 400 have written in the same fandom (median: 29). In total, 1,600
fandoms were selected and each single author has written in at least two, but not more
than six fandoms (median: 2).

The pairs were assembled by building all possible
(
n
2

)
pairings of author texts (n be-

ing the actual number of texts from this author) without allowing two pairs with the
same author and fandom. If the source texts were longer than 21,000 characters, dif-
ferent random portions were used in each pair. The DA pairs were built from texts of
250,000 authors of which at least two and not more than 800 (twice the number, since
each pair consists of two authors now) have written in the same fandom (median: 51).
The number of fandoms is the same and largely overlaps with the SA pairs. Each author
has written texts in at least one and not more than three fandoms (median: 1).

The small training set is a subset of the large training set with 28,000 SA and 25,000
DA pairs from the same 1,600 fandoms, but with a reduced author number of 6,400 (4–
68 per fandom, median: 7) and 48,500 (2–63 per fandom, median: 38), respectively.

The test dataset contains 10,000 SA and 6,900 DA pairs from 400 fandoms and
3,500 and 12,000 authors, respectively, which are guaranteed to exist in the training
sets, either in a different author-fandom relation or in the same author-fandom relation,
but always with a previously unseen text. This creates a closed-set authorship identifica-
tion scenario, which will be broken in the next year with unseen fandoms and authors.
The number of authors per fandom ranges from 2–400 in the SA pairs (median: 14)
and 4–800 in the DA pairs (median: 20). The number of fandoms per author are 2–6
(median: 2) and 1–6 (median: 1).

4 Evaluation Framework

Performance Measures Because of the considerable size of the datasets, we opted
for a combination of four performance measures that each focus on different aspects.
For each problem (i.e., individual text pair) in the test set, the participating systems
submitted a scalar in the [0,1] range, indicating the probability of this being a same-
author (SA) pair. For difficult cases, the systems could submit a score of exactly 0.5,
which was equivalent to a non-response [25]. The following measures were used to
score the submissions:

– AUC: the conventional area-under-the-curve score, in a reference implementa-
tion [26],

– c@1: a variant of the conventional F1 measure, which rewards systems that leave
difficult problems unanswered [25],

– F1: the well-known performance measure (not taking into account non-answers),
in a reference implementation [26],

– F0.5u: a newly proposed measure that puts more emphasis on deciding same-author
cases correctly [5].

The overall score (used to produce the final ranking) is the mean of the scores of all the
evaluation measures.



Baselines We applied two baseline systems (calibrated on the small training set only):

1. The first method calculates the cosine similarities between TFIDF-normalized,
character tetragram representations of the texts in a pair. The resulting scores are
shifted using a grid search on the calibration data (“naive” baseline). This is a so-
called first-order verifier [19].

2. Secondly, we applied a text compression method that, given a pair of texts (t1
and t2), calculates the cross-entropy of t2 using the prediction by partial match-
ing model [12] of t1 and vice-versa. The mean and absolute difference of the two
cross-entropies are used by a logistic regression model to estimate a score in [0, 1]
(called “compression” baseline below).

5 Survey of Submissions

The authorship verification task received 13 submissions from 10 participating teams.
Below we present a brief overview of the submitted approaches:1

Boenninghoff et al. [7] (boenninghoff20) proposed an approach that combines neu-
ral feature extraction with statistical modeling: a deep metric learning framework with
a Siamese network topology was used to measure the similarity between two docu-
ments; the produced features were fed into a probabilistic linear discriminant analysis
layer that served as a pairwise discriminator to perform Bayes factor scoring in the
learned metric space. To take into account topic influences, the authors applied several
preprocessing steps, which included (1) replacing all rare tokens/character types by a
placeholder, (2) a sliding window to perform tokenization without sentence boundary
detection, (3) adding a contextual prefix (fandom label), and (4) dissembling all prede-
fined document pairs and re-sampling new SA and DA pairs in each epoch to increase
the heterogeneity of the training data.

Weerasinghe and Greenstadt [32] (weerasinghe20) extracted stylometric features
(including function word frequency, vocabulary richness, character and part-of-speech
(POS) tag n-grams, POS tag chunks, and noun/verb phrases) and used the absolute
difference between the feature vectors as input to a logistic regression model (small
dataset) and a neural network-based model with one hidden layer (large dataset). The
applied preprocessing steps consist of tokenization, POS tagging, and generating parse
trees; the model optimization was done based on the AUC measure.

Halvani et al. [13] (halvani20) used a list of around 1,000 topic-agnostic words
and phrases grouped into certain feature categories (e.g., n-grams, sentence starters and
endings). Based on such categories, all possible ensembles of feature categories and
corresponding thresholds (which were calculated based on the equal error rate of the
computed distances for each feature category) were evaluated and the optimal ensemble
was selected. The classification was done using the Manhattan metric.

1All but two of the submissions (Niven and Kao (niven20) and Faber and van der Ree (faber20))
are described in the participants’ notebook papers. Three of the teams (boenninghoff20, araujo20
and weerasinghe20) submitted two systems, calibrated on the small and the large training
datasets, respectively; team ordonez20 only used the large dataset; all others used the small
one (or even smaller portions of it, as indicated in private correspondence with the organizers).



Kipnis [21] (kipnis20) addressed the task using an unsupervised approach, which
takes word-by-word p-values calculated based on a binomial allocation model of words
between the two documents, and combines them into a single score using the higher
criticism statistic [9]. The produced score was converted into a similarity score by eval-
uating the empirical distribution of the higher criticism associated with document pairs.

Araujo-Pino et al. [1] (araujo20) used a Siamese neural network approach [8] that
receives as input the character n-gram representation (with n varying from 1 to 3) of the
document pairs to be compared. The authors experimented with different hyperparame-
ters and trained the model both on the large and the small dataset, using the AUC score
as a reference for fine-tuning. The model trained on the small dataset outperformed the
model trained on the large one only by a small margin of 0.015 AUC.

Ga̧gała [11] (gagala20) used a data compression method based on the prediction
by partial matching model [12], and compression-based cosine as similarity measure
between text samples [29]. The method was extended with a context-free grammar
character pre-processing: replacing the most frequent character n-grams (n = 2) by
a special symbol to reduce the length of the texts and to simplify the distribution of
the characters. The authors calibrated their method on a subset of the small dataset,
reporting that additional data did not improve the performance of the method.

Ordoñez et al. [24] (ordonez20) used a long-sequence transformer, a recent Long-
former model [2], to process the long fanfiction documents with additional layers to
learn both text and fandom-specific features. The fandom information (provided as
metadata) was incorporated by the use of a multi-task loss function that optimizes for
both authorship verification and topic correspondence classification losses. The authors
additionally compared the performance of the approach with a character-based convolu-
tional neural network ((CN)2) with self-attention layers, reporting that the Longformer
system outperformed (CN)2, and both their baselines by a wide margin, achieving a
very high overall score of 0.963 on a held-out subset of the large training corpus. On
the official test set, however, only a lower overall score of 0.685 was achieved.

Ikae [16] (ikae20) based their approach on text similarity: two documents were
considered as an SA pair if the Labbé similarity value [23] between them exceeded a
threshold of 0.5. The 500 most frequent words and punctuation marks were used for a
document representation according to their relative frequency.

Overall, while the majority of the participants addressed the task as a binary classifica-
tion problem, they did so with a large variety approaches using both deep learning and
machine learning techniques, as well as unsupervised text similarity-based methods.
This variability in the submitted methods can be attributed to the increased size of the
dataset developed for the current edition.

6 Evaluation Results

The evaluation results can be found in Table 1, where we distinguish between multiple
submissions for the same team using a suffix (‘-small’ or ‘-large’). A pairwise signifi-
cance analysis of the F1-scores according to the approximate randomization test [31] is
shown in Table 2.



Table 1. Evaluation results for the shared task on authorship verification at PAN 2020 in terms of
area under the curve (AUC) of the receiver operating characteristic (ROC), c@1, F0.5u, F1, and
an overall score (which determines the order). “Large” (“small”) indicates that the large (small)
training dataset was used.

Submission AUC c@1 F0.5u F1 Overall

boenninghoff20-large 0.969 0.928 0.907 0.936 0.935
weerasinghe20-large 0.953 0.880 0.882 0.891 0.902
boenninghoff20-small 0.940 0.889 0.853 0.906 0.897
weerasinghe20-small 0.939 0.833 0.817 0.860 0.862
halvani20-small 0.878 0.796 0.819 0.807 0.825
kipnis20-small 0.866 0.801 0.815 0.809 0.823
araujo20-small 0.874 0.770 0.762 0.811 0.804
niven20-small 0.795 0.786 0.842 0.778 0.800
gagala20-small 0.786 0.786 0.809 0.800 0.796
araujo20-large 0.859 0.751 0.745 0.800 0.789

baseline (naive) 0.780 0.723 0.716 0.767 0.747
baseline (compression) 0.778 0.719 0.703 0.770 0.742

ordonez20-large 0.696 0.640 0.655 0.748 0.685
ikae20-small 0.840 0.544 0.704 0.598 0.672
faber20-small 0.293 0.331 0.314 0.262 0.300

Table 2. Significance of pairwise differences in F1 between submissions. Notation: ‘=’ (not sig-
nificantly different: p > 0.5), ‘*’ (significantly different: p < 0.05), ‘**’ (very significantly
different: p < 0.01), ‘***’ (highly significantly different: p < 0.001).
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boenninghoff20-large *** *** *** *** *** *** *** *** *** *** *** *** *** ***
weerasinghe20-large *** *** *** *** *** *** *** *** *** *** *** *** ***

boenninghoff20-small *** *** *** *** *** *** *** *** *** *** *** ***
weerasinghe20-small *** *** *** *** *** *** *** *** *** *** ***

halvani20-small = = *** = = *** *** *** *** ***
kipnis20-small ** *** = = *** *** *** *** ***
araujo20-small *** ** *** *** *** *** *** ***
niven20-small *** *** *** *** *** *** ***

gagala20-small = *** *** *** *** ***
araujo20-large *** *** *** *** ***

baseline (naive) = = *** ***
baseline (compression) = *** ***

ordonez20-large *** ***
ikae20-small ***



A number of worthwhile observations can be made. First of all, the top-performing
method (boenninghoff20-large) reaches an impressive overall score of 0.935 that sig-
nificantly outperforms the runner-up, weerasinghe20, which already has a very high
overall score of 0.902. The difference between both approaches might correspond to
their respective treatment of non-answers, since the difference in performance is the
most pronounced for the c@1 and the F1 measures (the latter explicitly ignored the
non-answers, which seems to have given boenninghoff20 a competitive edge). Inter-
estingly, both Boenninghoff et al.’s and Weerasinghe and Greenstadt’s systems were
calibrated on the large dataset and outperform their counterpart trained on the small
dataset. While in itself this seems a clear indication that verification systems can ben-
efit from large training datasets, surprisingly enough, this is not in line with the result
for araujo20 (where the ‘small’ system outperformed the ‘large’ one). Most systems,
except three (ordonez20, ikae20 and faber20), outperformed the naive and compression
baselines (which furthermore did not produce significantly different results from one
another). Interestingly, the cohort following the top-2 performing systems in the final
ranking (halvani20-small, kipnis20-small, araujo20-small) achieved overall scores in
a highly similar ballpark (in the 0.80s), but often produced only mildly significantly
different predictions.

7 Discussion

In this section, we provide a more in-depth analysis of the submitted approaches and
their evaluation results. First, we take a look into the distribution of the submitted ver-
ification scores, including that of a meta classifier. We go on to inspect the effect of
non-responses, and finally, study how the topic similarity between the text in a test pair
might have affected the results.

Distributions In Figure 1 (left), we plot the precision-recall curves for all “small”
submissions, including that of a meta classifier that predicts the mean score over all
submissions (dotted line). The figure highlights the relatively large head start of boen-
inghoff20 and weerasinghe20 regarding AUC in comparison to the runner-up cohort.
The latter achieves a higher precision, where the former capitalizes on a solid recall.

In Figure 1 (right), the distribution of the scores submitted by the teams are visu-
alized by kernel-density estimates for the individual “small” submissions, as well as
the overall distribution (dotted line). The latter clearly shows the effect of so-called
“number heaping,” with modes at predictable thresholds (0, 0.25, 0.5, 0.75 and 1). Fur-
thermore, the modes clearly suggest that the most successful systems have tended to-
wards self-confident scores, close to 0 and 1. Systems with modes in more hesitant
areas (e.g., 0.25-0.50) seem to have under-performed in this respect. This might es-
pecially have impacted the AUC scores, because this measure favors bold predictions,
provided they are correct.
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Figure 2. The c@1 score per “small” submission as a function of the number of non-answers.

Non-answers As mentioned above, participants were allowed to leave difficult prob-
lems unanswered by giving them a score of exactly 0.5. Such non-responses explicitly
affected the c@1 score and were excluded in calculating the F1 score. In Figure 2,
we show the correlation between the absolute number of non-answers submitted and
the c@1 score. The results show that only three teams made active use of this option:
In particular, Boenninghoff et al. and Kipnis submitted a considerable number of non-
answers (1,082 and 839, respectively), without compromising their overall score. An in-
teresting follow-up question is then, whether Boenninghoff et al.’s top rank is solely due
to this non-response strategy. The results in Table 3 suggest otherwise: Here, we recom-
puted the evaluation measures, excluding those pairs for which boenninghoff20-large
submitted a non-response. The previous ranking is corroborated (and even reinforced),
assuring us that the difference in performance is not solely due to non-responses.



Table 3. Evaluation results for two top-performing systems, excluding the pairs for which boen-
ninghoff20-large submitted a non-response.

Submission w/o non-responses AUC c@1 F1 F0.5u Overall

boenninghoff20-large 0.974 0.930 0.936 0.934 0.943
weerasinghe20-large 0.957 0.886 0.897 0.888 0.907

Figure 3. Word cloud visualizations of 9 cherry-picked dimensions from the NMF model (60
terms per topic).

The influence of topic We have trained a reference topic model on the small training
dataset, in order to be able to trace the influence of topic on the submitted verifiers.
Our approach was as follows: The entire corpus was tokenized and POS-tagged using
Spacy’s standard model for English [15], retaining only nouns, adjectives and verbs.
Next, a TF-IDF-normalized bag-of-words representation of the corpus was constructed,
considering the 5,000 tokens with the highest cumulative corpus frequency, ignoring
words that appeared in more than half of the documents or words with an absolute
document frequency of less than 100. Next, we fitted a non-negative matrix factorization
(NMF) model of 150 dimensions on this data (during 50 iterations). All modeling was
done in scikit-learn [26]. Figure 3 shows word clouds for a cherry-picked subset from
the (generally clearly interpretable) topics that were obtained from the model.2 Finally,
this pipeline was applied to the text pairs in the test set and we recorded the cosine
similarity between the L1-normalized topic representations for each text. This scalar
was used as a proxy for the topic resemblance between two texts.

In Figure 4, the average verification score of the submitted “small” systems for each
pair in the test set is plotted as a function of the topic similarity observed for that pair.
The fit of a linear model to this data suggests that there is a considerable correlation
(β = 0.28, R2 = 0.16) between the topic similarity and the likelihood that a system

2Based on Andreas Mueller’s word_cloud package: https://github.com/amueller/word_cloud.
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categorizes the pair as an SA instance. This is not necessarily a bad thing, since, overall,
SA pairs show a greater topic similarity than the DA pairs, as shown in the violin plot
in Figure 5. Intuitively, this shows that authors tend to write about the same topics.

However, if we split out the data over correct and incorrect cases, the picture
changes: In cases where the meta-classifier proposed a correct solution, the numbers
are largely unaltered (β = 0.28, R2 = 0.17); for the incorrect decisions, however, the
explanatory value of the linear model plummets (β = 0.19, R2 = 0.03). This suggests
that for the incorrect cases, the models were generally susceptible to a misleading in-
fluence of topic similarity. This hypothesis is supported by the boxplots in Figure 5.
Interestingly, DA pairs which were correctly solved have a lower topical similarity than
those that were incorrectly solved (for the SA cases, the relationship is inversed). A nu-
anced, yet plausible picture emerges from these results: Systems can (and even should)
partially rely on topical information when performing large-scale authorship verifica-
tion, but they should not exaggerate this reliance, as it can be misleading.



8 Perspective

This year’s track on authorship identification at PAN focused on authorship verification.
The 2020 edition fits an ambitious, renewed three-year strategy that aims to increase the
available benchmark resources in both scope and realism. The initiative continues to
attract a healthy number of high-quality submissions (this year, we received 13 submis-
sions by 10 teams). The evaluation measures used here attest to the interesting diversity
of the submitted systems, including, for the first time, a number of data-hungry ap-
proaches based on deep learning, that, surprisingly enough, remained relatively absent
from this community for quite some years. The top-performing methods could boast an
impressive performance—we recorded an overall score of 0.935 for the highest-ranking
submission by Boenninghoff et al. [7]—, showing that the field might be closing in on
a solution for authorship verification in a closed setup. Our analyses, however, also
suggested that the dependence on topical information is still problematic, and that it
is one of the main causes driving misclassifications. This observation considerably ups
the stakes for next year’s edition, that will present a much more challenging task, in-
volving an open setup, with a test set of unseen authors, as well as unseen domains.
In this regard, the recent advances in adversarial training for authorship attribution [6]
may prove to be a promising direction for future research in verification as well.
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