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Abstract Over the past two decades, several algorithms have been developed to
segment a web page into semantically coherent units, a task with several applica-
tions in web content analysis. However, these algorithms have hardly been com-
pared empirically and it thus remains unclear which of them—or rather, which
of their underlying paradigms—performs best. To contribute to closing this gap,
we report on the reproduction and comparative evaluation of five segmentation
algorithms on a large, standardized benchmark dataset for web page segmenta-
tion: Three of the algorithms have been specifically developed for web pages and
have been selected to represent paradigmatically different approaches to the task,
whereas the other two approaches originate from the segmentation of photos and
print documents, respectively. For a fair comparison, we tuned each algorithm’s
parameters, if applicable, to the dataset. Altogether, the classic rule-based VIPS
algorithm achieved the highest performance, closely followed by the purely visual
approach of Cormier et al. For reproducibility, we provide our reimplementations
of the algorithms along with detailed instructions.

1 Introduction

When visiting a web page, a key step for human comprehension is to identify its se-
mantic units. Eye-tracking studies show that participants identify such units immedi-
ately upon perceiving a web page, then inspect them one at a time, often starting with
navigation elements [16]. To create a comprehensible web page, it is thus important for
its author to group its content into such comprehensible semantic units that are easy to
identify by its visitors. Though qualified web designers do so in a professional man-
ner, every web page author possesses an intuitive understanding of the basic principles
of Gestalt that apply here, as these principles form an integral part of human percep-
tion [8]. Naturally, these semantic units, then called web page segments, also form the
basis for various web content analysis tasks, like content extraction [2], template de-
tection [13], and design mining [11]. Consequently, several approaches for web page
segmentation have been developed over the past two decades [10].

The ongoing and rapid development of web technologies like Cascading Style
Sheets (CSS) and JavaScript (JS) has considerably increased the possibilities of web
design over the past years. The elements of a web page encoded in its HTML source
code can be more or less arbitrarily rearranged in its visual appearance in the browser,
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so that no correspondence between the linear order of elements in the source code and
its visual ordering can be presumed. Since the focus of web page authors are mostly
the human visitors and much less so web content analysis algorithms, there is hardly
any incentive to emphasize the semantic units in the web page’s HTML code. Web
page segmentation algorithms thus increasingly focus on the visual rendition of a to-
be-segmented web page; a recent algorithm completely disregards the HTML code [7].
But even the classic VIPS algorithm [3], which was introduced in 2003, uses the posi-
tions of elements in the rendered web page as features for its segmentation.

This reliance of algorithms on rendering the web page has limited the reproducibil-
ity of web page segmentation experiments, but the paper at hand demonstrates how to
overcome this problem through the use of web archiving technology. In essence, sev-
eral algorithms use JavaScript to segment the web page as it is rendered in a browser.
However, to reproduce this situation properly, the following elements have to be kept
constant: (1) the web page’s complete source code (HTML, CSS, JS, images, etc.);
(2) the browser, since different browsers and even different versions thereof render the
same page differently; and (3) the browser’s environment variables, like the date or
random numbers, which the web page might request from the browser. These are not
trivial requirements to meet, but modern web archiving technology can provide for a
stable reproduction of web pages as they were rendered in the past [9].

We develop and present a reproducible empirical comparison of five segmentation
algorithms, as well as an ensemble of them. The algorithms have been selected to rep-
resent and evaluate a variety of approaches and paradigms: two are rule-based, one is
based entirely on visual edges, one has been originally developed for print documents,
and one is a state-of-the-art approach in image segmentation of photos. For evaluation,
we employ our Webis-WebSeg-20 dataset, which contains both a manually created seg-
mentation ground-truth, and a web archive of 8490 web pages [10]. Moreover, we report
on and show the importance of parameter tuning for the different algorithms. Documen-
tation and provenance data of these experiments are available online.3

Among others, the results show that the classic VIPS algorithm still performs best
when tuned to the dataset, but also that purely visual approaches can reach a competi-
tive performance. Moreover, in adjusting the evaluation to the requirements of different
downstream tasks of web page segmentation, we find that purely visual approaches are
already the new state-of-the-art for downstream tasks that rely on pixel-based segments,
like design mining. One of these purely visual approaches, the MMDetection algorithm,
is able to reach this high performance despite being trained for a very different kind of
input document than web pages: photos. The ensemble of four of the algorithms under
consideration, however, does not outperform its base algorithms. Upon closer inspec-
tion, most of the ground-truth segments are identified by at least one of the algorithms.

After a brief literature review of web page segmentation experiments in Section 2,
we detail our evaluation setup in Section 3 and the employed algorithms—including
their parameter tuning—in Section 4. Section 5 discusses the empirical comparison of
the algorithms.

3Code + documentation: https://github.com/webis-de/ecir21-an-empirical-comparison-of-web-
page-segmentation-algorithms
Provenance data: https://doi.org/10.5281/zenodo.4146889

https://github.com/webis-de/ecir21-an-empirical-comparison-of-web-page-segmentation-algorithms
https://github.com/webis-de/ecir21-an-empirical-comparison-of-web-page-segmentation-algorithms
https://doi.org/10.5281/zenodo.4146889
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2 Related Work

A number of publications that propose a new web page segmentation algorithm com-
pare it with the classic VIPS algorithm [3] (e.g., [7, 14, 17]), which can thus be consid-
ered closest to a standard baseline. In the original publication, VIPS has been evaluated
with a three-scale human assessment on only 140 web pages: According to the asses-
sors, 61% of web pages were segmented “perfectly,” whereas just 3% “failed.” Such an
assessment is unfortunately hardly reproducible. Zeleny et al. [17] perform an empirical
comparison of their algorithms with VIPS on 800 semi-automatically annotated web
pages. Their performance measure, F, is closely related to FB3

∗ (nodes), employed in
this paper (Section 5), and indeed, a similar performance is measured for VIPS: 0.71 by
Zeleny et al., and 0.70 here. For their visual-edge-based algorithm, Cormier et al. [7]
compare its segmentations with that of VIPS on 47 web pages using an adapted Earth
Mover’s Distance as performance measure. They find, that, though there is some agree-
ment, their algorithm “tends to produce results significantly different from VIPS.” Our
evaluation in Section 5 also shows such a difference. Manabe and Tajima [14] com-
pare the performance of their HEPS algorithm with that of VIPS for the task of iden-
tifying web page blocks—i.e., textual segments with headings. In their comparison on
1219 web pages, they find that HEPS clearly outperforms VIPS for exactly identifying
such blocks: block precision is 0.59 (HEPS) vs. 0.22 (VIPS), and block recall is 0.56
vs. 0.07. This is in contrast to our results, which indicate a superior performance of
VIPS over HEPS, not only for a text-based evaluation. A possible explanation lies in
their different approach to ground-truth creation, which is tailored towards the men-
tioned header-based blocks.

However, no large-scale comparison of web page segmentation algorithms exists so
far. Kiesel et al. [10] attribute this situation to a lack of generic, standardized datasets, a
lack of a common view on how to measure algorithm performance, and a lack of repro-
ducible evaluation procedures. Reviewing the related work beyond the aforementioned
papers, evaluation datasets and performance measures have usually been created in an
ad-hoc manner, and with respect to just one of the various downstream tasks of web
page segmentation, which has led to several very focused datasets and many incom-
patible performance measures. The problem of reproducibility has, to the best of our
knowledge, scarcely been tackled in the relevant literature so far: Only Zeleny et al. [17]
attempt to reduce the influence of different browsers by using the same rendering en-
gine for all algorithms. Recently, web archiving technology has been considered for
web page segmentation, addressing its reproducibility problem for the first time [9].
This technology has been used to create the new Webis-WebSeg-20 dataset [10], which
is nearly an order of magnitude larger than previous ones, and which has been annotated
without specific downstream tasks involving web page segmentation in mind, based on
human perception only. Moreover, the use of this dataset as a new evaluation framework
is proposed, capturing the existing views on how to measure algorithm performance
within a unified evaluation measure that can be adapted to various downstream tasks.
This paper builds on this framework, and uses it for a first empirical comparison of
segmentation algorithms.
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3 Experiment Setup

For the empirical comparison of web page segmentation algorithms, this paper employs
the 8490 web pages of the Webis-WebSeg-20 dataset [10]. The web pages have been
sampled from a variety of sites, 4824 in total [9]. The dataset contains for each web
page a ground-truth segmentation, which is fused from the segmentations of five hu-
man annotators. Furthermore, the dataset contains a web archive file for each web page,
which allows to re-render the web page as if viewed at the time of the archiving. For al-
gorithms that need no complete re-rendering, the dataset also provides for each page the
DOM HTML, a screenshot, and the list of DOM nodes mapped to their coordinates on
the screenshot. The latter allows to convert between segment descriptions as screenshot
coordinates and as sets of DOM nodes. As the ground-truth uses a flat segmentation for
all web pages but some algorithms produce hierarchical segmentations, we flatten such
hierarchical segmentations for the evaluation.

Our evaluation discusses the achieved PB3 , RB3 , and FB3
∗ for each algorithm. The

have been introduced by Kiesel et al. [10]. They are straightforward adaptations of the
respective extended BCubed measures from clustering theory [1]. In a nutshell, PB3 is
based on the elements that are segmented together in both the ground-truth and algorith-
mically created segmentations (the “true positives” in the usual definition of precision)
divided by the number of all elements segmented together in the algorithmically cre-
ated segmentations (the “positives”).RB3 has the same numerator, but is divided by the
number of all elements segmented together in the ground-truth segmentation. As usual,
FB3 is the harmonic mean of both for one web page. We here report the values aver-
aged over all web pages, and FB3

∗ is then the harmonic mean of the averaged PB3 and
RB3 . As discussed by Kiesel et al., PB3 decreases if algorithmically created segments
extend beyond ground-truth segments, whereas RB3 decreases in the inverse case. Put
another way, PB3 ignores cases of over-segmentation—where the algorithmically cre-
ated segmentation is more fine-grained than the ground-truth segmentation—, whereas
RB3 ignores cases of under-segmentation. A segmentation of one segment that con-
tains the entire page would thus achieve an RB3 of the maximum value of 1, whereas a
segmentation that puts every element into an own segment would achieve a PB3 of 1.

In order to provide results that are applicable for various downstream tasks of web
page segmentation, we execute all experiments for each of the five types of atomic el-
ements defined by Kiesel et al. Different downstream tasks of web page segmentation
weigh certain errors differently. For example, although for most downstream tasks it
does not matter how background space is segmented, it is important for tasks that con-
sider the spacing between segments, like design mining. PB3 and RB3 can be adapted
to a downstream task by calculating them specifically for the type of elements of the
web page that is relevant for that task. To cover a wide variety of tasks, this paper uses
the five types suggested by Kiesel et al.: all pixels (pixels), all pixels at visual edges as
per an edge detection algorithm in both a coarse (edgesC) and fine settings (edgesF), all
visible DOM nodes (nodes), and all textual characters (chars).

We provide all code for the evaluation in the repository of this paper, and all gen-
erated segmentations as a new data resource (cf. Section 1). In very rare cases (at most
0.2% per algorithm), some algorithms failed (cf. Section 4): in these cases we used the
baseline segmentation—a single segment that covers the entire page—as fallback.
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4 Algorithms and Parameter Tuning

This section describes the segmentation algorithms that are compared in our experi-
ments, and reports on the results of a corresponding parameter tuning for the algo-
rithms. Table 1 gives an overview of the algorithms in the experiments, which are cho-
sen as representatives for different segmentation paradigms and tasks. For web page
segmentation, we evaluate the classic DOM-based VIPS (cf. Section 4.1), the specifi-
cally heading-based HEPS (cf. Section 4.2), and the purely visual algorithm of Cormier
et al. (cf. Section 4.3). Inspired by the impressive recent advances in image understand-
ing, we also evaluate the performance of one state-of-the-art algorithm of this field for
the task of web page segmentation: MMDetection (cf. Section 4.4). Furthermore, as the
tasks of web page segmentation is conceptually similar to the task of print document
segmentation, we also evaluate the performance of a state-of-the-art approach for that
task, the neural network of Meier et al. (cf. Section 4.5). Moreover, we report results
for a voting-based ensemble of the algorithms (cf. Section 4.6). To contextualize the
results, we include a naive baseline for comparison (cf. Section 4.7). We found that the
algorithms do fail for a few web pages, for example, due to a web page’s own JavaScript
code interfering with the JavaScript code of the segmentation algorithm. As described
in Section 3, we use the segmentation of the baseline in this case as a fallback.

Table 1. Overview of the five compared segmentation algorithms with respect to the kind of input
documents they were created for, the features they use, and the format of the output segmentation.

Name Ref. Document Features Output

VIPS [3] Web page Tree, style, location Rectangle tree
HEPS [14] Web page Tree, style Node set
Cormier et al. [6] Web page Screenshot Rectangle tree
MMDetection [4] Photo Screenshot Pixel masks
Meier et al. [15] Article page Screenshot, text-mask Mask

4.1 VIPS

The “VIsion-based Page Segmentation algorithm” [3] is the de-facto standard for web
page segmentation. Starting from one segment that covers the entire page, VIPS creates
a hierarchical tree of segments based on the DOM tree of a web page. The rectangu-
lar segments are split based on their so-called degree of coherence, which is computed
through heuristic rules based on the tag names, background colors, and sizes of DOM
nodes, as well as visual separators: segments are split if their so-called degree of co-
herence is less than the permitted degree of coherence (PDoC), which is the single
parameter of the algorithm. Previous implementations of VIPS rely on web rendering
frameworks that are no longer maintained and render modern pages incorrectly. We
thus ported one implementation4 to JavaScript so that every modern browser can run it.
4Our port of https://github.com/tpopela/vips_java is available in the code repository of this paper.

https://github.com/tpopela/vips_java
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For the experiments, we then used the reproduction mode of the Webis-Web-Archiver
to have a Chrome browser run VIPS on the web pages as they are re-rendered from the
web archives. Though Cai et al. [3] described the degree of coherence to range from 0
to 1, the implementation we ported and thus ours alike use an integer range from 1 to 11,
since the heuristic rules suggest the corresponding 11 thresholds. The VIPS algorithm
failed for 14 web pages (0.2%) due to rendering errors or due to interference of the web
page’s and VIPS’ JavaScript code.

In a 10-fold cross-validation, the optimal value for PDoC was consistently 6. Fig-
ure 1 shows the average number of segments and performance for all values from 1
to 11 over all web pages. As the top graph shows, the number of segments stays almost
the same for PDoC from 1 to 6, but increases considerably beyond that. The graphs are
very similar for all types of atomic elements, with the notable exception of PB3—and
thus also FB3

∗ —for pixels, which is considerable worse. We discuss this observation in
Section 5. Compared to the default value for PDoC of 8 for the original implementation,
FB3

∗ increases by up to 0.20, which highlights the importance of parameter tuning.

4.2 HEPS

The “HEading-based Page Segmentation algorithm” [14] uses heading detection to
identify segments. The authors define a heading as both visually prominent and describ-
ing the topic of a segment. HEPS does not solely rely on the HTML heading tags, as
the authors found that headings are frequently defined by other means, and that heading
tags are frequently used for other purposes. Instead, HEPS identifies headings and their
corresponding segments through heuristic rules based on their position in the DOM
tree, tag name, font size, and weight. The algorithm first identifies candidate headings
using text nodes and images, and after that their corresponding blocks. It then creates a
hierarchical segmentation based on the identified blocks. We use the original JavaScript
implementation by the authors of the algorithm5 in the same manner as our reimplemen-
tation of VIPS. For consistency with the other algorithms in this comparison, we merge
the extracted headings with their associated segments. The HEPS algorithm originally
failed for 211 web pages (2.5%) due to rendering errors or due to interference of the
web page’s and HEPS’ JavaScript code, but we were able to reduce this amount to just
5 web pages (0.06%) through slight changes in handling of arrays in the code.

4.3 Cormier et al.

Cormier et al. implement a purely visual algorithm to web page segmentation that uses
edge detection to find semantically significant edges, used to synthesize a coherent seg-
mentation [6]. The algorithm takes a screenshot of the web page as input, and therefore
does not require to re-render the page. It first calculates for each pixel the probability
of a “locally significant edge,” which is based on how different the horizontal or ver-
tical image gradients at the pixel are from those of the surrounding pixels. After that,
the algorithm composes horizontal and vertical line segments from these edge pixels,
up to a maximum length of tl. Note that the larger tl, the larger the “gap” that visual

5https://github.com/tmanabe/HEPS

https://github.com/tmanabe/HEPS


An Empirical Comparison of Web Page Segmentation Algorithms 7

1 2 3 4 5 6 7 8 9 10 11PDoC:

VIPS

256 512 256 512
45 45 90 90

Cormier et al.
   s     :

t  :

MMDetection

segmentsLegend:

se
gm

en
ts

1

4

16

64

256

pi
xe

ls

0.00

0.25

0.50

0.75

1.00

ed
ge

s

0.00

0.25

0.50

0.75

1.00

ed
ge

s

0.00

0.25

0.50

0.75

1.00

no
de

s

0.00

0.25

0.50

0.75

1.00

ch
ar

ac
te

rs

0.00

0.25

0.50

0.75

1.00

F
C

l
min

PB3 RB3FB3* / / / fitted

Figure 1. Number of segments (top plot), FB3
∗ , PB3 , and RB3 for different parameters for the

algorithms of VIPS, Cormier et al., and MMDetection. Filled symbols correspond to the values
after fitting the segmentation to DOM nodes. The vertical lines show the overall best-performing
parameter setting for each algorithm after fitting, as measured by FB3

∗ .
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edges can have to still be considered one line segment. The algorithm then starts with
the entire page as one segment, and recursively splits the segments into two by choos-
ing the vertical or horizontal line that is the most “semantically significant,” i.e., that
has the most and clearest edge pixels. The algorithm stops if there are no semantically
significant lines in a segment, or if a split would result in a segment with one side being
less than smin long. The authors thankfully provided us with their implementation for
our experiments. The algorithm is computationally expensive, and requires up to 1 hour
for the larger web pages of the dataset on a modern CPU, but could likely be sped up
considerably through the use of multi-threading and GPUs.

Due to the runtime requirements of the current implementation, we only tested four
parameter settings that the original authors suggested to us: each combination of tl ∈
256, 512 and smin ∈ 45, 90. The algorithm contains another parameter tp that is used as
a threshold for determining semantically significant line segments, but we always use
tp = 0.5 as suggested by the authors. Figure 1 shows the average number of segments
and performance over all web pages. For a fair comparison, we follow Kiesel et al.
and fit the visual segmentations to DOM nodes, which has for most cases just a minor
effect on the performance, though it does increase FB3

∗ for the best parameter setting
(tl = 512, smin = 45) for pixels by 0.06. This setting is used in our further experiments.

4.4 MMDetection

The Hybrid Task Cascade models [5] from the MMDetection toolbox [4] jointly seg-
ment real-world images (photos) and detect objects in them. At the time of our experi-
ments, this algorithm led the MSCOCO [12] detection task leaderboard6 and can thus be
considered state-of-the-art for photo segmentation. The neural network model7 features
an intricate cascading structure. In spot checks, we found that the algorithm detected
only segments within images that were included in the web pages. We found that this is
due to a separate filtering step that classifies segments as containing real-world objects,
so we disabled this step since its purpose does not exist in web page segmentation.
Otherwise, the algorithm is the same as the original and no re-training is performed
to investigate the similarities of photos and web pages. As segments can be arbitrarily
formed in our evaluation setup, we use the corresponding instance segmentation output
of the algorithm instead of the more coarse bounding boxes. Like for Cormier et al., we
fit the resulting pixel mask segmentation to DOM nodes, which results in performance
increases up to 0.12 in FB3

∗ . MMDetection found no segments for 103 web pages (1%),
which we treated like segmentations of one segment that contains the entire page.

4.5 Meier et al.

The convolutional neural network by Meier et al. [15] is state-of-the-art in segmenting
digitized newspaper pages. We reimplemented it in contact with the authors,8 but in-
6https://cocodataset.org/#detection-leaderboard
7We use the model with X-101-64x4d-FPN backbone and c3-c5 DCN as available and suggested
at https://github.com/open-mmlab/mmdetection/blob/master/configs/htc

8The authors reported an erratum in their publication to us, so we used the corrected kernel size
of 3× 3 instead of 5× 5 for layers conv6-1 and conv7-1.

https://cocodataset.org/#detection-leaderboard
https://github.com/open-mmlab/mmdetection/blob/master/configs/htc
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Figure 2. Ground truth and algorithmic segmentations of the top of the same web page.

stead of determining the position of text through optical character recognition (OCR)
we use the positions of text nodes from the corresponding list of nodes that accom-
panies the Webis-WebSeg-20. As the algorithm requires the input to be always of the
same size, we had to crop or extend the web page screenshots to a uniform height. As
a compromise between extremes, we selected a height that covers about 2/3 of pages,
namely 4096 pixels. We then scaled the pages to 256x768 pixels to match the input
width of the original approach. Since no pre-trained model is available, we use standard
10-fold cross-validation in the evaluation, and assure that all pages of a website are in
the same fold. The training stopped when the loss did not improve for ten consecutive
epochs, which led to a training of 20.8 epochs on average.
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As the algorithm processes cropped web pages, its results are not fully comparable
to those of the other algorithms. For this reason, we report the obtained measurements
with some reservations and do not include the segmentations in the ensemble described
below. The algorithm found no segments for 4 web pages (0.05%), which we treated
like segmentations of one segment that contains the entire page.

4.6 Min-vote@n

We also employ an ensemble of four of these algorithms, excluding the algorithm of
Meier et al. as explained above. The ensemble algorithm is identical to the algorithm
that was employed to fuse the human annotations to a single ground-truth for the Webis-
WebSeg-20 [10]—just treating the algorithms as annotators. To filter out noise, the al-
gorithm first removes all elements from consideration which less than n algorithms
placed into segments. After that, the algorithm performs standard classic hierarchical
agglomerative clustering, with the similarity of two elements being the ratio of algo-
rithms that placed the elements in the same segment. In line with Kiesel et al., we use
a similarity threshold of θs = n−0.5

k , where k = 4 is the number of algorithms. The
algorithm thus tends to put elements in one segment if at least n algorithms did so. We
report results for all plausible values for n, namely 1 to 4.

4.7 Baseline

To put the performance of the algorithms into perspective, we report results for the naive
approach of segmenting a web page into one single segment. This approach reaches
always the maximum recall of 1 at the cost of the lowest possible precision. Both VIPS
and the algorithm of Cormier et al. use this segmentation as their starting point.

5 Results of the Comparison

Table 2 shows the performance of each of the algorithms detailed in Section 4 on the
Webis-WebSeg-20 dataset (cf. Section 3). The reported values all reflect the results after
tuning the respective parameters of the algorithms.

The single algorithms, excluding baseline, Meier et al., and the ensemble, generate
between 15.3 and 36.1 segments on average. This difference can be explained by the
algorithms working at different levels of granularity. If successful, using more segments
should increase the PB3 . However, this is not necessarily the case: Though HEPS is
clearly working at a finer level of granularity than VIPS (cf. Table 2 and Figure 2), both
algorithms perform similar in terms of PB3 .

The highest FB3
∗ scores are reached for chars and the smallest for pixels. This differ-

ence is likely due to web page segmentation algorithms being developed for information
extraction purposes mainly, and thus mostly optimized for text. However, for applica-
tions like design mining, even the spacing between elements needs to be segmented
correctly. New algorithms will be required for such and similar downstream tasks.
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Table 2. Average number of segments per web page and evaluation results for each discussed al-
gorithm on the Webis-WebSeg-20 dataset (Baseline, VIPS, HEPS, Cormier et al., MMDetection,
Meier et al., and the Min-vote@n ensembles): average F1-score (FB3 ), precision (PB3 ), recall
(RB3 ), as well as the harmonic mean of the averaged precision and recall (FB3

∗ ) for each type of
atomic elements. The ground truth contains 9.1 segments on average. The highest score in each
row (excluding the baseline) is highlighted in bold. The results of Meier et al. are shown in gray
as its evaluation is not fully comparable.

Measure Baseline VIPS HEPS Corm. MMD. Meier MV@1 MV@2 MV@3 MV@4

Segments 1.0 16.1 36.1 15.3 23.0 4.6 6.5 18.7 36.5 69.5

pixels

FB3 0.24 0.38 0.33 0.36 0.42 0.32 0.30 0.39 0.30 0.28
FB3

∗ 0.28 0.47 0.44 0.53 0.54 0.50 0.35 0.50 0.45 0.42
PB3 0.16 0.36 0.36 0.39 0.51 0.48 0.22 0.38 0.60 0.68
RB3 1.00 0.67 0.56 0.80 0.57 0.52 0.96 0.72 0.36 0.30

edgesF

FB3 0.44 0.59 0.48 0.51 0.53 0.41 0.50 0.56 0.39 0.34
FB3

∗ 0.49 0.68 0.58 0.65 0.61 0.55 0.56 0.66 0.49 0.45
PB3 0.32 0.66 0.61 0.55 0.73 0.55 0.40 0.61 0.81 0.87
RB3 1.00 0.69 0.55 0.80 0.53 0.55 0.96 0.71 0.36 0.30

edgesC

FB3 0.45 0.61 0.49 0.53 0.54 0.42 0.51 0.57 0.39 0.35
FB3

∗ 0.49 0.68 0.59 0.66 0.62 0.56 0.56 0.67 0.50 0.46
PB3 0.32 0.67 0.62 0.56 0.74 0.55 0.40 0.63 0.82 0.88
RB3 1.00 0.70 0.56 0.80 0.53 0.57 0.96 0.72 0.36 0.31

nodes

FB3 0.42 0.63 0.43 0.52 0.52 0.44 0.49 0.54 0.34 0.31
FB3

∗ 0.46 0.70 0.54 0.65 0.61 0.56 0.55 0.65 0.44 0.42
PB3 0.30 0.69 0.63 0.53 0.74 0.52 0.38 0.64 0.85 0.88
RB3 1.00 0.71 0.46 0.82 0.51 0.61 0.96 0.65 0.29 0.27

chars

FB3 0.52 0.67 0.50 0.61 0.61 0.50 0.59 0.62 0.40 0.39
FB3

∗ 0.57 0.75 0.60 0.71 0.69 0.61 0.64 0.71 0.50 0.49
PB3 0.39 0.77 0.73 0.61 0.79 0.59 0.48 0.72 0.90 0.92
RB3 1.00 0.72 0.51 0.84 0.60 0.63 0.96 0.71 0.35 0.33

Conversely, the results differ only marginally between edgesF and edgesC, despite
the visually very different edge detection [10]. This result is very convenient for future
evaluations, as it indicates that (1) the parametrization of the edge detector does not
play a major role, and (2) it is sufficient to evaluate for one parametrization of the edge
detector. We recommend to employ edgesF in the future, as it produces fewer segments
that have no edges and which are thus not considered in the evaluation.

The best-performing algorithm from the literature for most types of atomic elements
is the VIPS algorithm, reaching a FB3

∗ of up to 0.75 and convincingly beating the base-
line in all cases. It thus comes closest to human annotators—and also relatively close in
terms of the average number of segments, which is 9.1 for the ground-truth. Moreover,
for a higher value of PDoC it can reach a very high PB3 of up to 0.94 for chars (cf.
Figure 1), which is close to human agreement (cf. [10]). Therefore, PDoC can indeed
be used to adjust the level of segmentation granularity. Nevertheless, PB3 is consider-
ably lower at the optimal value for PDoC, which suggests that VIPS can benefit from



12 Johannes Kiesel, Lars Meyer, Florian Kneist, Benno Stein, and Martin Potthast

an adaptation of PDoC to the (part of the) web page at hand. Though VIPS performs
similarly well for most types of atomic elements, its precision is rather low for pixels.
This difference is likely due to background pixels on the left and right of the actual con-
tent of the web pages: whereas VIPS includes such pixels in the segments, the human
annotators did not (cf. Figure 2 for one example).

However, both the algorithm by Cormier et al. and MMDetection reach a similar
performance to VIPS in terms of FB3

∗ , which demonstrates the viability of purely visual
approaches to web page segmentation. By comparison, the algorithm by Meier et al.
fails to compete with the other algorithms, even though it had a clear advantage over
the other algorithms by being trained on the data. Its poor performance might be due to
the required adjustment of the input screenshots.

The results for the min-vote ensembles show that even a basic voting scheme can
be employed to efficiently fuse the output of different algorithms. Remarkably, Min-
vote@2 reaches a FB3

∗ scores very similar to those of VIPS. Like PDoC for VIPS, the
parameter n here fulfills the role of selecting the desired level of granularity. This is
especially helpful as some algorithms, like HEPS, do not have such a parameter. The
ensemble therefore allows to incorporate the HEPS heuristic (and others without such
a parameter) and still to select a level of granularity.

A special ensemble is that of Min-vote@4, which puts elements in one segment if
and only if all four single algorithms did so. We want to highlight that PB3 is about 0.9
for all types of atomic elements except pixels, which indicates that most segments of
these types of elements are indeed separated from others by at least one of the algo-
rithms. However, pixels are an exception here, which shows a deficit that needs to be
addressed by future algorithms.

6 Conclusion

As we contrast and discuss the results of our evaluation for each type of atomic page
elements, it becomes clear that the classical VIPS algorithm is still the overall best op-
tion, unless the downstream task requires pixel-based segments. In that case, purely
visual page segmentation performs better, whereas otherwise it is a close second to
VIPS. MMDetection performed especially well for being designed and trained for pho-
tographic images. Interestingly, the state-of-the-art approaches for such images as well
as for newspaper page segmentation both employ deep learning, while the approaches
for web page segmentation rely mostly on hand-crafted heuristics and observations. We
believe that this difference mainly stems from the fact that no large-scale datasets for
web page segmentation have been available in the past. With this paper, we lay the foun-
dation for the development of new approaches that may improve over the long-standing,
yet heretofore unknown champion, VIPS.
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