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Abstract

To ease the difficulty of argument stance clas-
sification, the task of same side stance classi-
fication (S3C) has been proposed. In contrast
to actual stance classification, which requires
a substantial amount of domain knowledge to
identify whether an argument is in favor or
against a certain issue, it is argued that, for
S3C, only argument similarity within stances
needs to be learned to successfully solve the
task. We evaluate several transformer-based
approaches on the dataset of the recent S3C
shared task, followed by an in-depth evalua-
tion and error analysis of our model and the
task’s hypothesis. We show that, although we
achieve state-of-the-art results, our model fails
to generalize both within as well as across
topics and domains when adjusting the sam-
pling strategy of the training and test set to
a more adversarial scenario. Our evaluation
shows that current state-of-the-art approaches
cannot determine same side stance by consid-
ering only domain-independent linguistic sim-
ilarity features, but appear to require domain
knowledge and semantic inference, too.

1 Introduction

Same side stance classification (S3C) is the task
to predict, for a given pair of arguments, whether
both argue for the same stance (Stein et al., 2021).
It abstracts from conventional stance classification,
which, for an individual argument, predicts whether
it argues for or against a corresponding issue. The
hypothesis underlying S3C is that it can “probably
be solved independently of a topic or a domain, so
to speak, in a topic-agnostic fashion”.1 Successful
S3C can, for instance, help to quickly identify co-
herent posts in social media debates, or to quantify
groups of posts with opposing stances. To advance
S3C as a task in the argument mining community,
this paper makes three main contributions: (1) De-
velopment of new transformer-based approaches
1More details on the task at https://sameside.webis.de

which improve upon the state of the art. (2) Re-
newed assessment of the original S3C shared task
dataset, and compilation of new training and test
sets that enable a more realistic evaluation scenario.
(3) Compilation of an additional, hand-crafted test
set consisting of adversarial cases, such as nega-
tions and references to contrary positions within
single arguments, to investigate the hypothesis un-
derlying S3C in particular. Our results indicate that
current state-of-the-art models are not able to solve
such cases. We conclude with recommendations
how datasets and evaluation scenarios for the S3C
task could be further developed.2

2 Related Work

Stance Classification S3C has been introduced
as a shared task by Stein et al. (2021). Prior work
on stance classification, such as that of Somasun-
daran and Wiebe (2010), Gottipati et al. (2013),
and Sridhar et al. (2015), focuses more on detect-
ing the stance towards a certain topic and only
marginally the direct comparison between two ar-
guments. Sridhar et al. (2014) describe a collective
stance classification approach using both linguis-
tic and structural features to predict the stance of
many posts in an online debate forum. It uses a
weighted graph to model author and post relations
and predicts the stance with a set of logic rules.
Rosenthal and McKeown (2015) use the conver-
sational structure of online discussion forums to
detect agreement and disagreement, and Walker
et al. (2012) exploit the dialogic structure in on-
line debates to outperform content-based models.
As opinionated language in social media typically
expresses a stance towards a topic, it allows us
to infer the connection between stance classifi-
cation and target-dependent sentiment classifica-
tion, as demonstrated by Wang and Cardie (2014)
and Ebrahimi et al. (2016). Stance classification
in tweets was also a target of the SemEval-2016
2Code and data: https://github.com/webis-de/EMNLP-21
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Task 6 (Mohammad et al., 2016), where most teams
used n-gram features or word embeddings. Fur-
ther, it gained recognition in argument mining,
as demonstrated by Sobhani et al. (2015). Xu
et al. (2019) introduce reason comparing networks
(RCN) that identify agreement and disagreement
between utterances towards a topic. They leverage
reason information to cope with non-dialogic ut-
terances. Since the S3C task authors hypothesize
that textual similarity between arguments may be
sufficient, the task bears structural similarity to-
wards semantic textual similarity, which has often
been a topic of shared tasks (Agirre et al., 2013; Xu
et al., 2015; Cer et al., 2017), and for which many
datasets can be found (Dolan and Brockett, 2005;
Ganitkevitch et al., 2013).

S3C Shared Task The S3C dataset (Stein et al.,
2021) is derived from the args.me corpus (Ajjour
et al., 2019) and comprises pairs of arguments from
several thousand debates about one of two topics,
namely abortion and gay marriage. The arguments
have been retrieved from online debate portals. Ar-
gument pairs were sampled from single arguments
that occurred within the same debate context. Bi-
nary labels for pairs were inferred according to
whether or not the two arguments take the same
stance. Two tasks have been defined based on this
data: within, where training and test sets contain
pairs from both topics, and cross, where the train-
ing set is composed of arguments from the abortion
topic, and the test set only contains gay marriage-
related argument pairs. Table 1 (Exp. 1) shows the
statistics of our resampled dataset. Single unique
arguments are re-occurring in different pairings,
and, for the within task, the training and the test set
significantly overlap, albeit the pairings differ. In
the official S3C shared task, the winner models by
Ollinger et al. (2021) and Körner et al. (2021) used
a BERT-based sequence pair classification. They
find that longer sequences yield better results, and
that truncation of arguments longer than BERT’s
maximum sequence length has a negative impact.

3 Experimental Setup

Following the results of the shared task, transfor-
mer-based language models, such as BERT, cur-
rently are the most successful approach to S3C.
Based on this previous work, we experiment with
more recent transformers, carrying out the follow-
ing three experiments.

Task Training set Test set

Cases Unique Cases Overlap

Experiment 1

within 57,512 13,459 6,391 97.4 %
– abortion 36,746 9,100 4,094 97.1 %
– gay mar. 20,766 4,359 2,297 98.0 %
cross 61,048 9,328 18,724 0.0 %

Experiment 2

random 84,783 13,497 9,421 99,9 %
disjoint-within 85,947 12,189 8,257 2,2 %
disjoint-cross 60,362 9,156 33,842 0,0 %
single 82,813 11,193 11,391 0,4 %

Table 1: S3C task dataset statistics: argument pairs
(cases), unique arguments within pairs, and the share
of test set pairs where both arguments are also part of
the training set but in different combinations (overlap).

Experiment 1: Optimization We reproduce the
shared task in its original form as well as the
best-performing approach at the S3C shared task
of Ollinger et al. (2021). It serves as a baseline
for comparison and represents the state of the art.
The approach is based on BERT with pre-trained
weights for the English language. Argument pairs
are fed as a sequence pair into the model, and the
pooled output of the last layer is used for binary
classification. This architecture is fine-tuned with
binary cross-entropy loss for three epochs, and
a learning rate of 5e−5. In addition, we exper-
iment with newer transformer-based pre-trained
networks: RoBERTa (Liu et al., 2019), which im-
proved BERT by using larger and cleaner datasets
for pre-training; XLNet (Yang et al., 2019), which
employs autoregressive pre-training; DistilBERT
(Sanh et al., 2019), which utilizes knowledge distil-
lation during pre-training; and ALBERT (Lan et al.,
2020), which, among other things, uses embedding
matrix compression and sentence order prediction
as a pre-training task.

Experiment 2: Bias Control We are not only
interested in determining how well current trans-
former models are able to solve the S3C task, but
particularly in the task’s setup. During our first
experiments, we noticed certain properties in the
official dataset which may lead to unrealistically
optimistic results. The S3C dataset is derived from
arguments scraped from public debate pages and
categorized as either pro or con stance for a certain
issue. Pairs for S3C were sampled from combina-
tions of all possible pairs from the n unique argu-
ments within a single debate, and then randomly
split into separate training and test sets. While



Claim: The gay marriage ban goes against human rights. Same side?

Negation: Banning gay marriage is not a violation of the human rights. false
Paraphrase: Basic rights, including the right to marry, apply to homosexual couples, too. true
Paraphrase-Negation: Denying gays the right to marry does not violate their human rights. false
Argument: Denying gays the right to adopt children violates their human rights. true
Argument-Negation: Denying gays the right to adopt children does not violate their human rights. false
Citation: Some say banning gay marriage goes against their human rights. And it sure is. true
Citation-Negation: Some say banning gay marriage goes against their human rights. But it is not. false

Table 2: An example claim along hand-crafted variations.

for the within task, this procedure ensures non-
overlapping of pairs, there is a severe overlap of in-
dividual arguments between training and test. Also,
single debates from which pairs are sampled vary
greatly in size. To test the influence of these two
observations regarding overfitting effects, we first
create an extended set containing all n(n − 1)/2
possible argument pairs per debate, and then sam-
ple three new dataset splits of roughly comparable
size, but with varying degrees of overlap of single
arguments (cf. Table 1). The random split repli-
cates the sampling strategy of the original S3C task.
The two disjoint splits ensure that (almost) no sin-
gle argument seen during training is reoccurring in
a test set pair. This is achieved by splitting either
across distinct debates (within), or across topics
(cross).3 The last split creates a test set which en-
sures that only one single argument from each pair
is also contained in the training set.

Experiment 3: Adversarial Examples In the
third experiment, we manually create an artificial
test set (Hakimi et al., 2021) to reveal the ability
of our best model to solve different types of “ad-
versarial” cases for same stance prediction more
systematically. We select 25 distinct arguments
from the “gay marriage” topic that are short and
express their stance clearly. For each selected argu-
ment, we construct new arguments of four distinct
types to obtain two pairs, one with same stance, and
one with opposing stance. The first type, Negation,
is a simple negation of the argument. Paraphrase
alters important words from the argument to syn-
onymous expressions with the same stance. The
third type, Argument, uses an argument from the
same topic and stance, but semantically completely
different regarding the first one. Citation repeats or
summarizes the first argument and then expresses
agreement or rejection (a case frequently occurring
in the dataset). The last three types are also formu-
3Overlaps slightly higher than 0.0% as reported in Table 1
originate from the fact that there are a handful of identical
arguments contained in different debate contexts.

lated in a negated version to create additional test
instances for the opposite stance. This results in a
test set of 175 cases (see Table 2).

4 Evaluation

We report accuracy (A) and macro-F1 scores (F1)
as experiment results.

Experiment 1: For the within task, we randomly
split the official within training dataset into 90% for
training and 10% for testing. For the cross task, we
select all within pairs of the official training dataset
assigned to the abortion topic as training data, and
all gay marriage pairs for testing. For both tasks,
another 10% of the sampled training sets are used
as validation set during our experiments. This strat-
egy creates an evaluation scenario equivalent to
the official S3C shared task, but with slightly less
training data. Table 3 shows the performance of
different transformers for the first experiment. Sur-
prisingly, some newer models, such as RoBERTa
and XLNet, which commonly improve results upon
the standard BERT model, do not perform better
for S3C. Only the ALBERT base v2 model slightly
outperforms the baseline of the previous state of the
art. While our own within test set can be predicted
significantly more accurate than the original S3C
test set, the cross test set, in contrast, performs sig-
nificantly worse. To further investigate this result,
we gain insights from two more experiments.

Experiment 2: Results for the second experi-
ment in Table 4 are obtained with the best model
from the previous experiment (ALBERT base v2).
For the random split, we sample pairs from the
entire set of all possible pairs per debate, 90 %
for training and 10 % for testing. For the disjoint-
within set of non-overlapping single arguments be-
tween training and test set, we utilize the informa-
tion about debate origin from each argument pair.
We split the dataset along distinct debate IDs, so
that we obtain (roughly) 90% for training and 10%
for test. The disjoint-cross sets are split across the



Task: Cross Within

Model Acc. F1 Acc. F1

BERT base 63.6 66.0 86.8 87.2
RoBERTa base 60.5 55.2 82.3 80.3
DistilBERT base 59.1 56.0 82.3 80.5
XLNet base 61.0 60.7 84.2 84.2
ALBERT base v2 66.2 68.9 88.4 89.1

Ollinger et al. (2021) 73.0 72.0 77.0 74.3
ALBERT base v2 74.2 73.7 73.8 72.0

Table 3: Test set performance for various fine-tuned
transformer models with a sequence length of 512 to-
kens (3 runs) on our recompiled test set on top. Below,
the state of the art by Ollinger et al. in comparison to
our best model evaluated on the shared task test set. We
use their approach as our baseline.

S3C Scenario Accuracy F1

Majority baseline 53.4 34.8

random 86.6 (± 0.73) 86.6 (± 0.74)
disjoint
– within 61.7 (± 1.64) 61.4 (± 1.46)
– cross (A→ G) 62.4 62.3
– cross (G→ A) 61.2 61.0
single 67.0 64.5

Table 4: Performance of different S3C scenarios. The
second disjoint-cross scenario reverses the topics abor-
tion (A) and gay marriage (G) for training and testing.

debate topics to either train on the abortion topic
and test on gay marriage argument pairs, or vice
versa. Since the two topics are not included equally
often in the S3C data, this split results in slightly
different training and test sizes. For the single split,
the first argument per debate is used in combination
with all other arguments from that same debate as
test set, leaving all possible combinations of pairs
from the subsequent arguments as training data.
Since the first two splitting strategies involve a ran-
dom selection, we repeat the selection process five
times and report average results. All tested scenar-
ios surpass the majority baseline approving that the
model actually learns to recognize (dis-)agreement
of arguments. In accordance with the results from
Experiment 1, S3C works accurately (86.6% F1)
for the randomly composed test set. However, for
the two disjoint datasets with no overlap of indi-
vidual arguments, the performance drops severely
(ca. 62% F1). The performance for within does
not even surpass the cross performance which is
trained on a completely different topic. And in the
single scenario, where one argument of a test pair
has been seen during training, the performance is
with 65% F1 rather low.
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Figure 1: Confusion matrices from predictions on the
manually crafted test set for all instances, and selected
subsets according to types of complex cases.

Experiment 3: A close inspection of misclassi-
fied pairs from the previous experiment of the dis-
joint test set reveals typical cases which require
certain logical inference capabilities to obtain a
correct same side stance prediction. Based on this,
we manually crafted the test set for the third exper-
iment. For adversarial cases, even our best model
only achieves 43.4% accuracy (41.7% F1-score).
The confusion matrices in Figure 1 show that the
model is able to capture shallow semantic similar-
ity between arguments (paraphrase) successfully.
In contrast, it is not capable to predict the seman-
tically more challenging types (argument and ci-
tation). Negation, leading to opposing stance, is
completely overlooked.

5 Discussion

The experiments show that S3C performance dras-
tically decreases for unseen arguments (Experi-
ment 2), and for difficult, adversarial cases (Exper-
iment 3), which undermines our confidence in the
results from Experiment 1. Considering argument
pairs composed of previously unseen individual ar-
guments as a common scenario for S3C, the high
performance on the official shared task dataset ap-
pears too optimistic. How can these differences
between the original and our new scenarios be ex-
plained? Let us recall: Pairs of the original S3C
dataset originated from single debates. It must be
noted that debate size, i.e., the number of argu-
ment pairs sampled from a single debate, follows a
power-law distribution (e.g., the Experiment 1 train-
ing set contains 17,187 pairs from combinations
of 251 arguments from the largest debate alone).
Fine-tuning of a transformer model now causes
that re-occurring arguments of the same stance pre-
sented in different combinations get attracted to



each other in the embedding space. Arguments
of opposing stance from one debate, in contrast,
get repulsed. If enough combinations of argument
pairs of one debate are presented to the network,
embeddings of the pro and the con stance eventu-
ally form clearly separable clusters. This results in
a task-specific overfitting on certain debates. Each
of the n unique arguments from one debate occur
up to n− 1 times in the training pairs. The model’s
performance thus correlates with the size of a de-
bate when test pairs are sampled from the same
debates as the training pairs. In fact, slicing the
results from Experiment 1 across different debate
sizes reveals that test pairs originating from the five
largest debates are predicted with nearly 100% ac-
curacy. For smaller debates, the accuracy drops to
the level of non-overlapping dataset splits.

6 Conclusion

We carry out experiments to investigate the same
side stance classification task. Our results show
that recent transformer models improve over the
state of the art in the recent S3C shared task. With
73.7% F1-score, the best performance is achieved
by the ALBERTv2 model. We find, however, that
the shared task’s experimental setup suffers from
overfitting, yielding overly optimistic results. A
manually crafted test set of adversarial cases shows
that all models fail on adversarial cases involving
negation and citation of opposing arguments.

From these results, three conclusions can be
drawn for the improvement of the same side stance
classification task: (1) For a more realistic evalua-
tion scenario, training and test set pairs should be
sampled from distinct sets of arguments.4 (2) When
the training set involves re-occurring arguments in
different pairings, machine learning models should
pay particular attention to measures against over-
fitting. For instance, a validation set should not be
randomly sampled from the training set. (3) The
hypothesis underlying the S3C task was that it can
be solved in a topic-agnostic fashion. However,
even our best model struggles to accurately predict
the cross-topic scenario, or complex cases involv-
ing different arguments expressing the same stance.
This finding suggests that the basic S3C hypothesis
is not entirely true. For such cases, topic-specific
knowledge and a deeper semantic representation of
individual arguments than those encoded by current
transformer models would be needed.
4For future research, we compile our recompiled same side
task datasets: https://webis.de/data.html#webis-sameside-21
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A Appendices

A.1 Experimental Setup
All experiments were performed on a single
GeForce RTX 2080 Ti with 11 GB RAM. The time
per epoch of fine-tuning depends largely on the
batch size, which in turn depends on the sequence
length and model architecture, and averages at
about 30 – 90 minutes for the models and datasets
we tested. We kept most hyperparameters at their
default values, and focused on different settings
for maximum (input) sequence length, batch size /
gradient accumulation steps, and epochs of fine-
tuning. Another important factor for prediction
performance and fine-tuning duration is the train-
ing data composition and amount which already
factors in the time mentioned above.

A.2 Tables
Statistics Table 5 shows statistics about the num-
ber of argument pairs and unique arguments which
shows that argument pairs have to reuse single ar-
guments multiple times. Details about tokenization
and sentence segmentations can be seen in Table 6.

Task Topic N Same Side unique

within abortion 40,840 20,834 9,192
within gay marriage 23,063 13,277 4,391

cross abortion 61,048 31,195 9,361

Table 5: Training dataset characteristics

Task Type Min Max Mean 75%tile

within tokens 3 2,964 235.7 234
within sentences 1 151 9.8 –

cross tokens 3 2,964 246.7 269
cross sentences 1 151 10.2 –

Table 6: Argument statistics for single arguments

Detailed Results Table 8 reveals more experi-
ment details for Table 3. The ALBERTv2 model
performed best over all evaluation metrics com-
pared to the other architectures. We were surprised
by the bad performance of RoBERTa and XLNet.
At this time, we can only speculate that it either
requires better hyper-parameter tuning or simply
the amount of training data was not enough for
the length of training. In prior experiments, we
observed that RoBERTa embeddings, even for dis-
similar documents, are always really close together
and cosine distances are smaller compared to other
models. This may be due to RoBERTa’s embedding

Model Cross Within

Acc. F1 Acc. F1

– sequence length: 128
bert-base-uncased 60.33 57.35 77.59 74.23
albert-base-v2 59.25 58.65 80.79 80.38

– sequence length: 256
bert-base-uncased 60.72 58.27 85.45 86.02
bert-base-cased 63.23 65.16 86.47 87.01
roberta-base 60.31 54.59 76.19 71.85
distilbert-base-cased 59.08 56.91 67.91 63.74
distilroberta-base 59.07 54.80 75.95 73.15
xlnet-base-cased 61.62 63.63 82.35 80.30
albert-base-v1 63.93 66.51 83.76 84.09
albert-base-v2 64.55 67.29 84.81 85.57
electra-small-discriminator 59.88 55.94 65.48 63.92
electra-base-discriminator 59.71 60.81 82.29 81.52
sent.-transf.-stsb-dist. 59.93 58.80 74.32 70.85
queezebert-uncased 61.86 59.96 82.96 82.28

– sequence length: 512
bert-base-uncased 64.77 65.94 86.26 86.28
bert-base-cased 63.54 65.64 87.31 87.62
roberta-base 61.55 55.38 82.21 79.99
distilbert-base-cased 58.77 54.87 82.35 80.44
distilroberta-base 60.10 55.69 82.23 80.51
xlnet-base-cased 59.84 57.91 85.32 86.62
albert-base-v2 66.19 68.95 88.81 89.30
electra-small-discriminator 59.61 60.61 76.81 73.41
electra-base-discriminator 59.45 60.68 82.04 80.42
sent.-transf.-stsb-dist. 51.47 46.44 81.16 79.26
queezebert-uncased 64.25 66.32 84.46 83.98

Table 7: Performance (% Accuracy, F1) on our recom-
piled test set for various transformer model architec-
tures. Fine-tuning for 3 epochs and gradient accumu-
lation over 64 samples. Batch sizes (4, 8, or 16) and
sequence lengths to fully utilize GPU RAM (10 GB).

space and we suspect that models overfit faster. As
can be seen in Tables 7 and 9. We included results
for different sequence lengths and architectures;
ALBERT and BERT were consistently outperform-
ing the other architectures. The full listing of mod-
els trained with various sequence lengths can be
found in Table 7. Results are reported on our recom-
piled test set, not the currently unpublished S3C
task gold labels. The sequence length of 256 was
used for experimentation and 512 for final results.
We observed that the performance differences be-
tween models are relatively similar and transfer
between different sequence lengths. We observed
a drop of 20% accuracy (F1) for the cross task be-
tween validation and test sets. There was almost no
drop for the within subtask. The cross performance
drop can be explained by the completely unknown
topic samples while for within the topic is known,
just the test samples are unknown, so vocabulary
usage may be known. This also means that mod-
els trained on a spread of different topics are more
generic and robust against unknown samples.



Model Cross Within

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

ALBERT base v2 66.02 ±0.34 66.39 ±0.34 68.91 ±0.57 66.19 ±0.43 88.41 ±0.29 88.37 ±0.36 89.11 ±0.22 88.42 ±0.30
BERT base 63.61 ±0.14 63.91 ±0.15 66.03 ±0.56 63.56 ±0.11 86.80 ±0.47 86.92 ±0.49 87.23 ±0.30 86.80 ±0.43
DistilBERT 62.40 ±0.14 61.59 ±0.11 56.00 ±1.13 59.12 ±0.35 85.35 ±0.13 83.23 ±0.04 80.47 ±0.03 82.33 ±0.02
RoBERTa base 65.98 ±2.10 63.77 ±1.34 55.15 ±0.23 60.51 ±1.03 85.74 ±0.26 83.26 ±0.13 80.25 ±0.42 82.30 ±0.19
XLNet base 62.63 ±0.23 62.51 ±0.57 60.71 ±2.80 61.02 ±1.18 85.24 ±0.30 84.38 ±0.67 84.18 ±2.44 84.15 ±1.17

Table 8: Performance (%) on our recompiled test set for various transformer models. For each model, the cased
version is fine-tuned for 3 epochs with batch sizes between 8-16 and a sequence length of 512 tokens. We averaged
results over 3 runs.

Model Cross Within

P R F1 A P R F1 A

-sequence length: 128
albert-base-v2 66.13 19.09 29.63 54.66 62.96 26.98 37.78 55.56
bert-base-uncased 66.47 18.33 28.73 54.54 66.67 9.52 16.67 52.38

- sequence length: 256
albert-base-v1 73.24 38.24 50.25 62.14 75.00 54.76 63.30 68.25
albert-base-v2 70.94 66.12 68.44 69.52 70.31 71.43 70.87 70.63
albert-large-v2 – – – – 50.00 100.00 66.67 50.00
bert-base-cased 72.93 57.03 64.01 67.93 78.43 63.49 70.18 73.02
bert-base-uncased 41.51 3.63 6.68 49.26 70.71 55.56 62.22 66.27
bert-base-uncased 67.11 23.45 34.75 55.98 74.11 65.87 69.75 71.43
distilbert-base-cased 66.61 12.05 20.41 53.01 33.33 1.59 3.03 49.21
distilroberta-base 71.30 10.50 18.31 53.14 61.54 6.35 11.51 51.19
google-electra-base-discriminator 67.43 20.38 31.30 55.27 57.45 21.43 31.21 52.78
google-electra-small-discriminator 68.52 8.55 15.21 52.31 40.00 3.17 5.88 49.21
roberta-base 80.08 7.03 12.93 52.64 100.00 2.38 4.65 51.19
sentence-transformers-quora-distilbert-base – – – – 66.67 1.59 3.10 50.40
sentence-transformers-stsb-distilbert-base 66.72 12.98 21.73 53.25 61.54 12.70 21.05 52.38
squeezebert-squeezebert-uncased 75.77 18.69 29.99 56.36 75.51 29.37 42.29 59.92
xlnet-base-cased 67.83 42.21 52.04 61.10 70.00 5.56 10.29 51.59

- sequence length: 512
albert-base-v2 75.03 72.42 73.70 74.16 77.27 67.46 72.03 73.81
bert-base-cased 73.79 60.70 66.61 69.57 79.76 53.17 63.81 69.84
bert-base-uncased 72.79 65.65 69.04 70.56 83.95 53.97 65.70 71.83
distilbert-base-cased 70.92 10.47 18.24 53.09 55.56 3.97 7.41 50.40
distilroberta-base 78.14 9.45 16.85 53.40 69.23 7.14 12.95 51.98
google-electra-base-discriminator 63.93 18.49 28.69 54.03 65.22 11.90 20.13 52.78
google-electra-small-discriminator 53.62 26.88 35.81 51.82 73.33 8.73 15.60 52.78
roberta-base 79.58 9.91 17.62 53.68 0.00 0.00 0.00 49.60
sentence-transformers-stsb-distilbert-base 51.44 31.84 39.33 50.89 51.79 23.02 31.87 50.79
squeezebert-squeezebert-uncased 67.77 55.35 60.93 64.51 78.00 30.95 44.32 61.11
xlnet-base-cased 69.25 32.13 43.90 58.93 66.94 65.87 66.40 66.67

Ollinger et al. (2021) 72.00 72.00 73.00 – 85.00 66.00 77.00 –

Table 9: Shared task gold label test set performance (% Precision, Recall, F1, and Accuracy) for various trans-
former model architectures. Finetuning for 3 epochs and gradient accumulation over 64 samples.

Official Test Set We were able to use the yet-to-
be-published S3C task test set to evaluate our mod-
els. The test data used by Ollinger et al. (2021) was
not available anymore, so we could only compare
results based on similar experimental setups. Eval-
uating the same fine-tuned models on the shared
task (hidden) test labels reveals more distinct dif-
ferences in their performance. A full listing of the
same metrics used in the shared task leaderboard
can be seen in Table 9. We also included the of-

ficial leaderboard results of the best-performing
model by Ollinger et al. (2021). Similar to Ta-
ble 7 the ALBERT-base-v2 models perform best
with BERT-base models following. Other architec-
tures like the Distil* variants, Electra, etc. show
drastically worse results. The most probable cause
for this compared to the results from our test data
split (10% of the training data) might be overfitting
while fine-tuning the models.


