Proceedings of the TM CE 2004, April 13-17, 2004, Lausanne, Switzerland, Horvath & Xicbakis (eds.)
(©2004 Millpress, Rotterdam, ISBN 90 5966 018 8

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES

Sven Meyer zu Eissen
Department of Computer Science
Paderborn University
smze@upb.de

Benno Stein
Department of Computer Science
Paderborn University
stein@upb.de

ABSTRACT (DESS) in the first place (Yicesan et al., 2002).

Web-based simulation is an ambiguous term that isIn this paper we focus on non-distributed, single-user
used for various applications and with different mean- simulation tasks. I.e., at the client side, a user can
ings. Ernest Page identifies the following five re- formulate a model in a high-level modeling language
search and development areas: simulation as hypersuch as VHDL-AMS or Modelica (Elmqvist et al.,
media, simulation research methodology, Web-basedl999). In particular, model formulation and experi-
access to simulation programs, distributed modelingment definition shall enable the description of multi-
and simulation, and simulation of the WWW (Page, disciplinary systems and allow object-oriented model
1998). In this paper, the term Web-based simulationcomposition, non-causal modeling, mixed discrete-
relates to the first three areas. event/continuous-time relations, and the reuse of ex-

The paper is oraanized as follows. The first section isting model libraries. At the server side, which is
pap g ’ connected to the client via the Internet, there is a set

outlines the potential of Web-based services that can .)
; of tools for model syntax analysis, experiment exe-
be built upon a remote simulation engine. Our main

L . cution (i. e., model simulation under the desired user
contribution, however, relates to software engineer- : : .
o .) 2 ..~ constraints), textual and graphical result preparation,
ing: In Section 2 we compare different realization

concepts for a Web-based simulation service and dis-mOdel hosting, sharing, and distribution etc.

cuss the impacts with respect to the outlined applica-Note that a number of apparent as well as future sce-
tion scenarios. In Section 3 we then introduce a pro-narios become possible if the aforementioned tools
totype of a simulation Web service that realizes the are Operationaliz_ed in the form of Web-b.ase(_j ser'vices
analysis and execution of models defined in the well- (see also (Fishwick, 1997)). The following list gives

known Modelica modeling language. interesting examples.
e Web-based simulation and development tools for
KEYWORDS fast model building and quick and easy experi-
Web-based Simulation, Web Service, SOAP, mentation will be available at each Internet ac-
Modelica, non-distributed Simulation cess point and without cumbersome installation.
Of course, such a service may allow the easy in-
1. APPLICATION SCENARIOS AND tegration of a client’s model libraries.
RATIONALE OF WEB-BASED e Instead of porting or reimplementing approved
SIMULATION SERVICES simulation technology, the provision of an exist-
Web-based simulation is often associated with dis- N9 simulation environment in the form of Web-
tributed simulation and with multi-user simulation based services will directly address legacy as-
(Kilgore, 2002). Moreover, the simulation applica- pects such as cross-platform usability.

tions and examples that can be found in the respective 4 New license models for simulation software be-
conferences relate to discrete event system simulation come possible. This is useful for individuals

1011

and small companies where simulation capabil- and programmatically accessible over standard Inter-
ities are only rarely needed. net protocols (Sleeper, 2001). While this informal

)])]) definition is in accordance with the Web Services Ar-

e Particular high-level simulation services can be hitecture Team at IBM, other authors define Web

set up, which focus on a special domain or task gepices meticulously by the following equation (cf.
and which provide domain-specific engineering (Page, 1998: Kilgore, 2002)):

know-how for model optimization or for failure

effects and mode analysis (FEMA). “Web Service HTTP + XML + SOAP

(+ WDSL + UDDI + WSFL)”

° Simulation services can be realized that play theThough the quoted protocols and description lan-
role of third party analyses and referee evalua- 4 .aqes. which have partly been proposed and adopted
tions. by the W3C consortium and big software vendors,

e High-level simulation services open new possi- f(_)rm.a powerful qnd tailored frqmework for Wep ser-.
bilities for education and training. This relates ViCe implementation, Web services can be realized in
to the availability and distribution through the different ways, so long as they fit into the architec-
World Wide Web as well as to hypermedia con- tural framework. Among others, they have to play
cepts, since simulation capabilities can be inte- ©N€ or more of the fundamental roles, such as ser-
grated seamlessly in course material and com-Vice provider, service requester, or service broker.
bined with text, audio, and video. Moreover, they must come along with the follow-

ing properties: self-containedness, service descrip-
Observe that the mentioned scenarios share the samion, dynamical composition, platform independence,
service structure: A single user works in a well-de- and interoperability. (IBM Web Services Architecture
fined client-server environment. Nevertheless, a stan-1€am, 2000).
dardized simulation Web service can open a new qual-In the following we describe the components, the ar-
ity of document enrichment: Documents like CAD chitecture, and the deployment of several realization
drawings, system descriptions, research papers—tapproaches for a Web-based simulation service and
mention only a few—can be equipped with the un- outline problems to be solved.
derlying simulation models and be published via the
World Wide Web. The recipient of such an enriched 2.1. Classical Interfaces:
document can simulate the embedded models by the RPC, DCOM, RMI, CORBA

press of a but_ton, comparable to the F_’DF-documentRPQ DCOM, RMI and CORBA are technologies
standards which allow for the embedding of several . . ;
that enable a client to remotely invoke functions

kinds of multimedia data. on a server. If an RPC (DCOM, RMI, CORBA)
server is set up, an appropriate RPC (DCOM, RMI,

2. REALIZATION APPROACHES FOR CORBA) client has to be used that can interpret the
WEB-BASED SIMULATION binary request/response format. This restricts a po-
SERVICES: PROS AND CONS tential client to a specific platform, vendor, or pro-

A Web-based simulation service can be realized asgramming language: RPC is mainly implemented
a Web service—where the distinction between the in Unix, DCOM is Microsoft-specific, and RMI is
two terms “Web-based service” and “Web service” Java-specific. Moreover, RPC doesn't offer access
is more than a distinction without difference. The to object-oriented programs, and Microsoft discour-
former is a collective term for all kinds of services ages the use of DCOM and pushes the use of SOAP
that can be accessed via the Internet, while the lat-(Box, 2000). CORBA is available for many program-
ter describes in fact a distributed software architec- Ming languages and platforms but suffers from a no-
ture of service components which come along with ticeable programming overhead. Aside from its com-

salient properties (Cf (|BM Web Services Architec- plicated arChiteCture, CORBA implementations from
ture Team, 2000)). different vendors may not be fully compatible (Hoff-

man, 1999). As all of the aforementioned interface
types are pairwise incompatible and for the most part
platform or language-dependent, it is impossible for

Sleeper defines Web services as loosely coupled, re
usable software components that semantically encap
sulate discrete functionality and that are distributed

1012 Sven Meyer zu Eissen & Benno Stein

RPC
U Client DCOM
ser Application client

RPC

DCOM
server

Simulation
engine

| Scheduler

|
r "Start Application" ,
EEE——— |
W " H

< "User Interface” |

"Start Simulation"
— >

' 1
1 startSimulation(m) :)) 1
startSimulation(m)_ |

startSimulation(m)

Result | ke = = = = =22 :
"Diagram" | = — = — — Result | |[<< - - --—-="- :
W — = = == gram

Figurel UML sequence diagram for a Web-based simulation servigegugassical interfaces.

a designer to integrate several Web services that proparsing engine and message generator must be im-
vide several of these interfaces. Since Web servicesplemented. An example for a Web-based simulation
should be available for every interested user, the useservice that uses an applet as frontend and a propri-
of these techniques must be called into question. etary communication protocol is described in (DY-

A typical application flow for Web-based simulation NAST Development Team, 2003b).

is depicted in Figure 1. After the client application Advantages(a) The commands of a tailored protocol
has been started, the user can request actions, sagonstitute only a small overhead. (b) Data transfer
function calls in terms of a programming language. happens at maximum performance. (c) Web clients,
Instead of executing the functions locally, their pa- like Java applets, can implement the protocol and be
rameters are packed in a special format and trans+un in a Web browser.

ferred to the server. The server unpa_cks the parameDisadvantages(.a) Users who want to access the ser-
ters and calls the corresponding function. In our Case,ice without using the standard client must implement

a scheduler observes the load on one or more S|mula-the entire protocol. (b) Users who want to compose a

tlon_serv_er_s and deploys the executhn. Once th_e SIMservice out of several services of this kind will have
ulation finished, the results are again packed in the

to implement all of the protocols—a fact which ren-
RPC (DCOMZ RMI, CORBA) format and transferred ders a network of Web-based services hard to be set
back to the client. up. (c) Apart from standard search engines, there is
Advantages.(a) The underlying binary protocols for no service with which the simulation service might be
parameter and result transfer ship with the particular found.

implementations.

Disadvantages. (a) The mentioned interface types 2.3. HTTP/HTML

are pairwise incompatible, and it is unlikely that a Another way to access a Web-based simulation ser-
client application can integrate several services of thevice is to offer an HTML frontend. Figure 2 shows
mentioned types. (b) The client programmers choicethe application flow of an HTTP/HTML-based sim-
of the programming language, platform, and mid- ulation service. A user enters the URL of a service
dleware depend on the implementation of the server.and usually gets a frontend that contains a text box

(c) Clients cannot be run in a Web browser. where a model definition can be entered. Clicking
a submission button will transmit the model via the
2.2. Proprietary TCP/IP Protocol HTTP POST command to the Web server, which in

The invention of application-specific protocols based UM Passes the contents of the text box to a seript-
upon TCP/IP has a long tradition; typical examples N9 €ngine such as a CGl, Perl, PHP, or JSP. The
are Internet-services like FTP, Finger, or IMap. Each script starts the scheduler and passes the model with
of them is text-based and requires a specialized client? "€duest for simulation. After the simulation is fin-

that can interpret the protocol. The application flow is Sh€d, the script picks up the simulation results and
similar to Figure 1: Instead of using an RPC (DCOM, dynamically generates either an HTML page that con-

RMI, CORBA) communication protocol, a tailored tains raw simulation data or data including an HTML

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1013

http post simulatio

Scripting Simulation
User | Web Server | engine | Scheduler | endine

1 T T T T
r1 "Request URL" ! ! ! ! !
— > rhttp get URL \ | | !
Form | < — — = — HTML : : :

< - - ---=- T : : : ;
"Start Simulation”_)) | i : ;
" 4http post simulation | ' ' H

HTML, images
HTML < - = 22730

|http get images !
) images Ij
"Diagram" | [< — - — — ===

< - - - S L]

Figure2 UML sequence diagram for a Web-based simulation servigegusiT TP/HTML.

reference to server-generated diagrams. In the lat-providers to publish the missions along with the ad-
ter case, the browser loads the diagrams as imagesresses of their services in a directory of Web ser-
from the Web server and displays them. An example vices. The latter relates to WSDL (Web service defi-
for such an implementation is described in (Mann & nition language), a language with which Web service
Sewenko, 2003) and can be found at the URL given interfaces can be described in an XML representa-
in (DYNAST Development Team, 2003a). tion. Among others, WSDL covers the formulation
of complex data types, function names, and parame-
ters. Related to our simulation application, Listing 1
Disadvantagedga) The deployment of subtasks to the shows that part of the WSDL specification where the
client is not possible: the entire job must be processedcommex data type “VariableValues” and the input and

by the server. (b) The result is an HTML-document, output data types of the function “startSimulation” are
which lacks structural information and makes a sub- gefined.

sequent formatting difficult. (c) Such a service can
hardly be integrated into other applications. (d) In-

teractions require either large caching capabilities or .
d g g cap tion can be automatically generated. A SOAP server

computing power: If a user wants to zoom into a di- his definit q : ina SO
agram, a new image has to be generated and transtS€S this definition to parse and map incoming SOAP

ferred. This implies that the simulation data either requests to the interface functions. In turn, the gener-

has to be stored on the server or the simulation data
must be recomputed for each interaction. o ot Namespanen T St mataton”

"http://ww.then ndel ectric.com wsdl/Sinmulation/">
<wsdl : types>

Advantages(a) Users need only a standard browser.

Based on an interface definition in the form of Java
or C# code for example, a complete WSDL defini-

24 HTTP/SOAP <ngt ;s;h;a;mm:,va{ gztm"\‘ﬁgglsgiffi:c. conl package/ ai si m server/">
SOAP (W3C Consortium, 2003) is a simple XML- <xsd: compl exType name="Var abl eVal ves" >
based protocol to let applications exchange informa- <xsd: el ement name=" nunber Of Var abl es” type="xsd:int"/>
tion over HTTP. It combines the assets and overcomes " nunber Of Val uesPer Var i abl " type="xsd:int"/>
. <xsd: el ement name=

the drawbacks of the aforementioned approaches. | oValues™ type="xsd: ATrayOl Arrayf doubl e >

. . . </ Xsd:al |l >
SOAP is independent of platforms, programming lan- </ xsd: conpl exType>

guages, and vendors, and most implementations offer < usai: types>
automatic protocol generation for several program- <usdi: nessage name="start i mul ati onl n">
ming languages. Moreover, concepts for publishing < seai matsgaa™ 290" type='xsd: string’/>
Web services with regard to both semantic and SYN- usdi : nessage name="startsi mi ati oncut " >
<wsdl : part nane="Result" type="Vari abl eVal ues"/>

tax are inclusive. The former is implemented in the i messages
form of UDDI (universal description, discovery and . ,qui- detinitions>

integration of Web services) that enables Web service Listing 1: A part of the generated WSDL definition.

1014 Sven Meyer zu Eissen & Benno Stein

Browser/ SOAP Simulation
User _ ava applet Web Server server | | Scheduler | endine
\ =2va applet - = _q_l_
r1 "Request URL" ! !
— > requestURL() o
e e ____HM
requestApplet() o
<_______________Applet

"User Interface”

< - ------ o[soap
client !

"Start Simulation" i . '
startSlmuIaﬂon(mg I
SOAP request

: > startSimulation(m) ! . '

I startSimulation(m)

, Result Result I:I

! esult| < - —-—-—-—---

\ SOAPresponse | (< — — — — — — — !
Resut | < - -~~~ 7—-—=—==-—-——=-—~+—

. :
T, e = - = = =2 = H
< - - - Dagan|] ! : :

Figure3 UML sequence diagram for a Web-based simulation serviagegusDAP.

ated WSDL definition can be used by potential clients SOAP message, parses the content, reconstructs the
to automatically produce the client side communica- parameter data types, and calls the requested func-
tion protocol along with function stubs. This renders tion. The SOAP server wraps the results in a SOAP
calls of remote functions completely transparent for envelope similar to the request and sends it back to
clients. Major software developers like Microsoft, the SOAP client. The client reconstructs the delivered
IBM, Sun, and Apache support the SOAP technology. data types and passes them to the client application, in

Figure 3 shows a UML sequence diagram for the in- OUr case to the Java applet.

vocation of our simulation engine, where an applet is Advantages(a) Client-side as well as server-side pro-
used as frontend. Whenever a user requests the retocols can be generated automatically from an inter-
spective URL, the corresponding Web server deliversface definition. (b) The data contains a logical struc-
HTML code which embeds an applet. After its launch ture. (c) SOAP provides meta-information about data
the applet instantiates the generated SOAP client, dissstructures that are exchanged in the form of WSDL.
plays the user interface and waits for input. Once the This enables modern programming languages to re-
user hits the “start simulation” button, the SOAP mes- construct the data structures at runtime. (d) Meta-
sage shown in Listing 2 is generated by the SOAP data concerning the purpose of the simulation service
client and sent to the SOAP server. can be provided in a directory of Web services. (e) A
standardized network of Web services becomes pos-
sible. (f) Standard encryption via HTTP/SSL is pos-
sible (HTTPS). (g) Major software vendors support
SOAP within their platforms and programming lan-

_ _ guage APls. (h) SOAP is recommended by the W3C
POST /gl ue/sinmulation HTTP/ 1.1 . .
Host: 131.234.41. 48: 8004 and may get its own Mime type.

Connection: Keep-Alive

The message contains the name of the function to
be called and its parameters along with their types.
The SOAP server strips the HTML wrapper from the

SORPRGL on: St ar {51 mi at on” Disadvantages(a) Overhead when wrapping data in
ot ot Lpe M ¢ charset=UTE- 8 HTML/XML/SOAP envelopes. (b) SOAP client code
<?xni version='1.0' encoding= UTF-8' 7> for message parsing in applets is (still) too big.

<soap: Envel ope xni ns: xsi =
“http://ww:. w3. or g/ 2001/ XM_Schena- i nst ance’
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena’
xm ns: soap="http://schemas. xnl soap. or g/ soap/ envel ope/"’ 25 UnSOI\/ed PrOblemS
xm ns: soapenc="http://schemas. xn soap. or g/ soap/ encodi ng/’ >

<soap: Body soap: encodi ngStyl e= o The outlined realization alternatives address the com-
http://schemas. xnl soap. or g/ soap/ encodi ng/’ >
<startSimi ation> o munication problem, with the given advantages and
<arg0 xsi:type='xsd:string’ >circuit.no</arg0> .
L JIstartsi miation> drawbacks; nevertheless, there are desirable enhance-
soap: Body
</ soap: Envel ope> ments that are common to all of them. In a sce-
Listing 22 SOAP request for a call of the function nario where an application embeds a third party Web
“startSimulation” with the parameter “circuit.mo”. service, functions must be called in a given order,

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1015

nodel circuit
Resi st or R1(R=10);
Capacitor (C(C=0.01);
Resi st or R2(R=100) ;
| nduct or L(L=0.1);
Vsour cesAC AC,
G ound G

equati on
connect (AC.p, Rl.p);
connect (R1.n, C. p);
connect (C.n, AC n);
connect (Rl.p, R2.p);
connect (R2.n, L.p);

I connect (L.n, C.n);
L connect (AC.n, G p);
G

+
£
_/

0¢2=0V

I
1l
o)

T0=1

0T=Td
00T=¢d

T00

end circuit

Figure4 A simple electrical circuit, L_|st|ng_3: 'I_'he Modelica description of the circuit de-
picted in Figure 4.

i.e. a model must first be transmitted and then sim-

ulated. Let us assume that a remote service of-tion jobs may concentrate at a peak-time, within the
names. Then the question is whether this function efficient scheduling the duration of a simulation job
may be called directly, after transmitting the model, has to be estimated. Though rules of thumb can be

or whether the variable list shall be accessible only appjied for such estimations, a reliable duration esti-
when the model has been parsed for execution. Obymations is subject of current simulation research.

viously there are restrictions on the function call or-
Qer, which could explicitly be modeled in a ded_- 3 A PROTOTYPIC WEB SIMULATION
icated language that gets part of the Web service SERVICE FOR MODELICA

definition. Such a language could be used to de-

tect semantic flaws in a client application. Current The purpose of this section is twofold. The first two
approaches, such as WSFL (IBM), XLANG (Mi- subsections give a very brief introduction to the Mod-
crosoft), BPEL4WS (IBM/BEA/Microsoft), WSCI elica modeling language and thesNOs simulator;
(BEA/SAP/Sun), WSCL (Hewlett Packard) are not the remainder, Subsection 3.3 and 3.4, explains how
recommended yet by the W3C consortium and mustSOAP is used to deploy part of the functionality of
be considered being proprietary. the YANOS simulator as a Web service.

Another concern is encryption. SOAP offers a stan- .
dard way for channel exgryption: HTTP tunneling 3.1. On Modelicall

through the Secure Socket Layer (SSL). Although Modelica is a language for modeling physical sys-
approved channel encryption technology secures thgems. What makes Modelica so attractive for Web-
transmission, the decrypted model is available in abased simulation?—At least three points: It is an
plain form at the server side, as it must adhere to theopen specification, it is standardized, and it incor-
simulator's model representation. Due to the fact that porates state of the art modeling technology. The
models may comprise crucial business know-how, thefollowing text as well as the example rely on ar-

client must trust the service provider. An option that ticles and information material that can be found
cannot be implemented in a Web service protocol butat www. nodel i ca. org (Modelica Association,

in a Web service client is model obfuscation, which 2000a; Modelica Association, 2000Db).

could substitute inane identifiers for the meaningful

: Consider the electrical circuit in Figure 4. It consists
model constituents.

of a voltage source, a ground point, two resistors, a
From the viewpoint of a company that provides a capacitor, and an inductor. A Modelica description of
simulation service there is the need for an efficient this circuit is giving in Listing 3.

load balancing and scheduling mechanism: Simula-Te gescription both declares the components and, in-

1016 Sven Meyer zu Eissen & Benno Stein

troduced by the keywordquat i on, defines the de- [Modelicaparser |

vice topology. For example, the line U
Resi st or Rl(R:]-O) ; Model instantiation,
. . . Unification
declares the variablRl being of classResi st or
and sets the fiel® to the value of 10. The line @

Knowledge-based simulation control

connect (Rl.n, C p);

states that pim of resistorR1 is connected to pip Model synthesis DAE solver
of capacitorC. Note that by virtue of the connect con- =

Iso th ibili d P BEERECOMpISIon; Implicit Explicit
struct also the necessary compatibility and continuity Tearing meshods methods

conditions are implicitly defined, which, in electri- |

. Event control |
cal engineering, correspond to potential identity and

| Order/step size control |

:) ; Constraint processing
Kirchhoff’s current law respectively. | ! [bense output computation]
Modelica has a lot of features that are known from ';?,',,";ﬁgggggg:' [Newontteraton |
the modern, object-oriented programming languages. ‘
Moreover, it provides support for matrices, units, |Datastructures \ | Linear aigebra methods |
guantities, and even for the specification of process- Equations, constraints
ing hints for numerical algorithms. Algebraic expressions
Modeling with Modelica means modeling at the phys- || Variables, functions, bignums | Matrices |
ical component level, as opposed to the classical
block-oriented modeling. Block-oriented models fol- Symbol processing Numerics

low local relationships and can, in principle, be pro-)
cessed by local propagation. Therefore, this kind of ~F1gures Overview of the core modules in
modeling is also called “causal”, whereas the model- the YANOS simulation engine.

ing that is oriented at the device structure is called e Normalization, simplification, and substitution of
“non-causal’. From the modeling viewpoint, non- algebraic expressions.

causal modeling is by far superior to causal model-) o o

ing where the burden of the algorithmic formulation ~® Arbitrary precision with big integers.

of the underlying mat_hematical equations is shifted | Formulation of vectors and matrices.

to the user. Clearly, this means on the other hand that

the processing of non-causal models, such as Mod- o Formulation of algorithms within models.

elica models, is much more demanding since it must

afford this model formulation intelligence o Consistent initialization of higher index systems.

. . The YaNos simulation engine implements recent

3.2. The Modelica Simulator YANOS algorithms for the analysig of stif[f) systems (Dor-

YANOS is a simulation engine for the Modelica lan- mand, 1996; Hairer & Wanner, 1996) and realizes a
guage and is being developed by the Art Systemsknowledge-based interplay between the collection of
Software Ltd; see Figure 5 for an overview of its core model equations and the application of an integrator’s
modules. By now, XNOS supports a subset of the solution equations. This way it can resemble among
Modelica language specification—which currently is others the behavior of the famous DASSL algorithm
at release 2.0—and is continuously extended. In par-(Petzold, 1982), but also apply the inline integration
ticular, the following major concepts are supported concept to several integration procedures (Elmqgvist
() and not supportec] respectively: etal., 1995).

A strong point of MANOS is its tight integration of
computer algebra at simulation runtime, which pro-
vides a high level of flexibility for behavior analysis:
e Efficient symbolic manipulation of large alge- It enables ¥XNOs to apply a spectrum of algebraic

braic systems. methods in the course of a simulation, e.g., if a sys-
tem changes its mode or its structural setup.

e Solution of implicit, differential-algebraic equa-
tion systems.

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1017

The YANOS simulation engine is encapsulated in a
scheduler that provides different organizational fa- :
cilities: The syntactical analysis and instantiation of
Modelica models, the user management, the schedul-:

ing of different simulation tasks, or the upload and
publication of simulation models.

modules form the simulation server. There exist dif- |

ferent frontends (clients) for the simulation server.

Especially for Web deployment purposes we have de- :

veloped a client in the form of a Java applet that pro-
vides the following basic functionality:

e Selection, upload, and textual manipulation of
Modelica models.

e Graphical display of state trajectories.

e Definition of basic experimental constraints.

3.3. Soaping YANOS

The following points summarize the steps that are

necessary to add a SOAP interface t@N¥S using
the GLUE SOAP implementation (The Mind Electric,
2003).

1. Interface Design.Figure 6 outlines our plan for
function shipping. The client side consists of a
Web browser that runs the Java applet; the ap-
plet contains the code for handling user inter-
actions as well as the (automatically generated)
code for parsing the SOAP responses. We de-
cided to transfer raw simulation data (the trajecto-
ries of the variables) to the client and let the client
do all presentation-related tasks like the drawing
of diagrams with respect to interesting variables.
Consequently, the interface can be kept narrow:
It contains functions to load Modelica models, to
specify simulation parameters, to start the simu-
lation, and to fetch simulated values.

The server side consists of a Web server, which
delivers the applet to the client and which has
a SOAP server integrated besides the standard

Together, these

i Client side Server side |
Web Browser ,
Web Server '
Java applet :
SOAP

Diagram | |SOAP Sr?;i’?]t(legg '
output Client (ISP, CGI) !
HTML repository '
Script repository Scheduler :

YANOS

simulation
engine

Figure6 Overview of the aNOS Web architecture.

3. Client Code GenerationThe generated WSDL
definition can be used as input for a client code
generator. GLUE offers the wsdl2java-tool that
generates SOAP clients along with Java method
stubs. We used the stubs as a basis for the Java
applet and realized functions for displaying dia-
grams etc. according to Point 1.

4. Publication. If the Web service is published via
UDDI there are two alternative invocation sce-
narios: (a) A user can download our applet client
and use it as frontend. (b) A user can generate
method stubs from the published WSDL defini-
tion and integrate the simulation service in own

applications.

scripting engines. We built a Java wrapper that 3.4. The YANOS Web Interface

calls the native XNoOs functions and added func-
tionality to schedule simulations, and to buffer
simulation data. The buffer concept enables a
user to specify the data packet size within a SOAP

which the client display is updated.

. WSDL GenerationGiven the Java wrapper inter-

Figure 7 shows a screenshot of our applet. On the
left-hand side, models can be chosen for instantiation;
according schematic views are displayed and can be

response and hence to define the frequency byZxamlned. Once a model is instantiated, its variables

re sorted according to their type (state, parameter, or

other) and shown in a tree. Each variable can be se-
lected to be plotted, and start values can be provided

face, the WSDL definition can be generated using for the state quantities (middle). When the simula-

the GLUE java2wsdl-converter (see Listing 1).

1018

tion is started, all settings are submitted to the SOAP

Sven Meyer zu Eissen & Benno Stein

2} YANOS Web-based Simulation - Microsoft Internet Explorer.

Dakei Bearbeiten Ansicht Fawvoriten Extras 7 b
.) A ‘D) o 3 : s =Y 7 =
|i] |£] (nl | Suchen piy Favariten @ Medien Q‘* g B 7|
Adresse -ﬁ hitkp: ffpe-kb-sim 1 :3080/indes:. bl P a inckeain o | Lk

Edit Simulation Options

Classes | cireuitt |
T R
0 g;m;arlles [~ variables Plot
i © [state
[circuitt : ; B O IO B
n v b DCyIlnderH1.A.p : B CheckvalveRilotCofitroledH1.AD
Circuit2 [CylinderH1 5 §§ | B CheckvalvePilotEortraledH1 By
[GyfinderH v | I B CheckvalvePilafControledH1.dp
: 5 I I I L CheckValvePRildtCaontraledH1 sp
[cylinderHz 5 ; AEmmnn i i i i i 7
1 |2 | ! ! ! CylinderH2.5 : I

[cylinderHz v

[y civolurmez Ap
[oivalurnes Ap
D ResistanceH1 Ap

5], || name CheckValveRilotControle
4 Value

| 32,187

— |57

20137

| Tvme Other \/:'::f \————
|| start ' i !
3 || Modinication | S IERSaENREEEE L SimNABERRNREAREE
| piotvale v B == e '
' i : f H e
PiT HE[- A T O T T T DT T
(|] DlE 01 02 03 04 05 OB 07 08 03

| Start || Stap || Pause |

s LU

Figure7 Screenshot of the YANOS Web Interface.

backend. The curves in the plot window (right) are embedded and that can be simulated interactively
updated whenever the backend sends computed variever the World Wide Web with a mouse click. Note

able values or when a user changes the selection ofhat for these purposes also a temporary ticket should
variables to be displayed. Several models can be sim-be generated, which grants a transient license to sim-
ulated in parallel: When a user decides to analyze an-ulate a model during a fixed period. Although there

other model, a new tab is opened. This enables one tare several challenges to be mastered, we are opti-
compare models and variable curves, and to analyzanistic that such a service can become standard in the

the impact of parameter and model variations. medium-term future.
CONCLUSIONS AND FUTURE REFERENCES
RESEARCH Box, D. (2000).A Young Person’s Guide to The Simple

Web services for simulation provide platform inde- ~ Object Access Protocol: SOAP Increases
pendence, automatic licensing, version control, and 'Nteroperability Across Platforms and Languages.
deployment facilities. SOAP is a simple protocol http: //medn. m crosof t. com nsdnmag/

. . . . X i ssues/ 0300/ soap/toc. asp.
that enables a simulation Web service to interact with
other applications. In particular, based on WSDL, Dormand, J. (1996). Numerical Methods for Differential
SOAP generates communication protocols automat- Equations. New York, London, Tokyo: CRC Press.
ically and can provide meta mformatlo_n of the_ syntax DYNAST Development Team (2003a). DYNAST
and semantics of_the_ S|mulgt|on service, WhICh then ~ ~giection of Solved Examples.
can be published in directories of Web services. http://icosym cvut . cz/ dyn/ exanpl es.

Currently we experiment with the_ development of a DYNAST Development Team (2003b). DYNCAD.
document format wherein Modelica models can be ¢ ./ /i cosym cvut . cz/ dyncad/ appl et .

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1019

Elmqvist, H., Mattsson, S., & Otter, M. (1999).
Modelica—A Language for Physical System Modeling,
Visualization, and Interaction. In Proceedings of the
IEEE Symposium on Computer-Aided Control System
Design, CACSD’99 Hawaii: pp. 630-639.

Elmqvist, H., Otter, M., & Cellier, F. (1995). Inline
Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential-Algebraic Equation
Systems. In Proceedings of the European Simulation
Multiconference, ESM’95 Prague, Czech Republic: pp.
XXiii—XXXIV.

Fishwick, P. (1997). Web-based Simulation. In
Proceedings of the 29th Winter Simulation Conference
(WSC'97): ACM Press pp. 100-102.

Hairer, E. & Wanner, G. (1996). Solving Ordinary
Differential Equations Il. Stiff and
Differential-Algebraic Problems. Berlin Heidelberg
New York: Springer, second edition edition.

Hoffman, R. (1999). Sneaking Up On CORBA: The Race
for the Ideal Distributed Object Model.
http://ww. net wor kconput i ng. com 1009/
1009f 2. ht m .

IBM Web Services Architecture Team (2000t p:
/I ww 106. i bm coni devel oper wor ks/
webservices/library/w ovr/.

Kilgore, R. (2002). Simulation Web Services with .NET
Technologies. In E. Yicesan, C.-H. Chen, J. Snowdon,
& J. Charnes (Eds.), Proceedings of the 34th Winter
Simulation Conference (WSC’02): ACM Press pp.
841-846.

Mann, H. & Sewéenko, M. (2003). Simulation and Virtual
Lab Experiments across the Internet. In Proceedings of
the International Conference on Engineering Education
Valencia, Spain.

Modelica Association (2000a). ModeliGa—A Unified
Object-Oriented Language for Physical Systems
Modeling: Tutorial. Modelica Association, Linkdping,
Sweden.

Modelica Association (2000b). The Modelica
Specification, version 2.0. Modelica Association,
Link6ping, Sweden.

Page, E. (19980t t p: / / www. mi tre. or g/ news/
t he_edge/ august 98/ wbs. ht i .

Petzold, L. (1982). A Description of DASSL: A
Differential / Algebraic System Solver. In Proceedings
of 10th IMACS World Congress on System Simulation
and Scientific Computation Montreal.

Sleeper, B. (20010t t p: / / www. st enci | gr oup.
conl i deas_scope_200106wsdefi ned. ht mi .

1020

The Mind Electric (2003). The GLUE SOAP

Implementationht t p: / / www.
t hem ndel ectric. com gl ue/i ndex. htm .

W3C Consortium (2003). SOAP Version 1.2 W3C

Recommendation.
http://ww. w3. org/ TR/ soapl2- part1/.

Ylicesan, E., C.-H. Chen, Snowdon, J., & Charnes, J.,

Eds. (2002). Proceedings of the 34th Winter
Simulation Conference (WSC’'02). ACM Press.

Sven Meyer zu Eissen & Benno Stein

