
Proceedings of the TMCE 2004, April 13–17, 2004, Lausanne, Switzerland, Horváth & Xirouchakis (eds.)
c©2004 Millpress, Rotterdam, ISBN 90 5966 018 8

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES

Sven Meyer zu Eissen
Department of Computer Science

Paderborn University
smze@upb.de

Benno Stein
Department of Computer Science

Paderborn University
stein@upb.de

ABSTRACT
Web-based simulation is an ambiguous term that is
used for various applications and with different mean-
ings. Ernest Page identifies the following five re-
search and development areas: simulation as hyper-
media, simulation research methodology, Web-based
access to simulation programs, distributed modeling
and simulation, and simulation of the WWW (Page,
1998). In this paper, the term Web-based simulation
relates to the first three areas.

The paper is organized as follows. The first section
outlines the potential of Web-based services that can
be built upon a remote simulation engine. Our main
contribution, however, relates to software engineer-
ing: In Section 2 we compare different realization
concepts for a Web-based simulation service and dis-
cuss the impacts with respect to the outlined applica-
tion scenarios. In Section 3 we then introduce a pro-
totype of a simulation Web service that realizes the
analysis and execution of models defined in the well-
known Modelica modeling language.

KEYWORDS

Web-based Simulation, Web Service, SOAP,
Modelica, non-distributed Simulation

1. APPLICATION SCENARIOS AND
RATIONALE OF WEB-BASED
SIMULATION SERVICES

Web-based simulation is often associated with dis-
tributed simulation and with multi-user simulation
(Kilgore, 2002). Moreover, the simulation applica-
tions and examples that can be found in the respective
conferences relate to discrete event system simulation

(DESS) in the first place (Yücesan et al., 2002).

In this paper we focus on non-distributed, single-user
simulation tasks. I. e., at the client side, a user can
formulate a model in a high-level modeling language
such as VHDL-AMS or Modelica (Elmqvist et al.,
1999). In particular, model formulation and experi-
ment definition shall enable the description of multi-
disciplinary systems and allow object-oriented model
composition, non-causal modeling, mixed discrete-
event/continuous-time relations, and the reuse of ex-
isting model libraries. At the server side, which is
connected to the client via the Internet, there is a set
of tools for model syntax analysis, experiment exe-
cution (i. e., model simulation under the desired user
constraints), textual and graphical result preparation,
model hosting, sharing, and distribution etc.

Note that a number of apparent as well as future sce-
narios become possible if the aforementioned tools
are operationalized in the form of Web-based services
(see also (Fishwick, 1997)). The following list gives
interesting examples.

• Web-based simulation and development tools for
fast model building and quick and easy experi-
mentation will be available at each Internet ac-
cess point and without cumbersome installation.
Of course, such a service may allow the easy in-
tegration of a client’s model libraries.

• Instead of porting or reimplementing approved
simulation technology, the provision of an exist-
ing simulation environment in the form of Web-
based services will directly address legacy as-
pects such as cross-platform usability.

• New license models for simulation software be-
come possible. This is useful for individuals

1011



and small companies where simulation capabil-
ities are only rarely needed.

• Particular high-level simulation services can be
set up, which focus on a special domain or task
and which provide domain-specific engineering
know-how for model optimization or for failure
effects and mode analysis (FEMA).

• Simulation services can be realized that play the
role of third party analyses and referee evalua-
tions.

• High-level simulation services open new possi-
bilities for education and training. This relates
to the availability and distribution through the
World Wide Web as well as to hypermedia con-
cepts, since simulation capabilities can be inte-
grated seamlessly in course material and com-
bined with text, audio, and video.

Observe that the mentioned scenarios share the same
service structure: A single user works in a well-de-
fined client-server environment. Nevertheless, a stan-
dardized simulation Web service can open a new qual-
ity of document enrichment: Documents like CAD
drawings, system descriptions, research papers—to
mention only a few—can be equipped with the un-
derlying simulation models and be published via the
World Wide Web. The recipient of such an enriched
document can simulate the embedded models by the
press of a button, comparable to the PDF-document
standards which allow for the embedding of several
kinds of multimedia data.

2. REALIZATION APPROACHES FOR
WEB-BASED SIMULATION
SERVICES: PROS AND CONS

A Web-based simulation service can be realized as
a Web service—where the distinction between the
two terms “Web-based service” and “Web service”
is more than a distinction without difference. The
former is a collective term for all kinds of services
that can be accessed via the Internet, while the lat-
ter describes in fact a distributed software architec-
ture of service components which come along with
salient properties (cf. (IBM Web Services Architec-
ture Team, 2000)).

Sleeper defines Web services as loosely coupled, re-
usable software components that semantically encap-
sulate discrete functionality and that are distributed

and programmatically accessible over standard Inter-
net protocols (Sleeper, 2001). While this informal
definition is in accordance with the Web Services Ar-
chitecture Team at IBM, other authors define Web
services meticulously by the following equation (cf.
(Page, 1998; Kilgore, 2002)):

“Web Service =HTTP + XML + SOAP
(+ WDSL + UDDI + WSFL)”

Though the quoted protocols and description lan-
guages, which have partly been proposed and adopted
by the W3C consortium and big software vendors,
form a powerful and tailored framework for Web ser-
vice implementation, Web services can be realized in
different ways, so long as they fit into the architec-
tural framework. Among others, they have to play
one or more of the fundamental roles, such as ser-
vice provider, service requester, or service broker.
Moreover, they must come along with the follow-
ing properties: self-containedness, service descrip-
tion, dynamical composition, platform independence,
and interoperability. (IBM Web Services Architecture
Team, 2000).

In the following we describe the components, the ar-
chitecture, and the deployment of several realization
approaches for a Web-based simulation service and
outline problems to be solved.

2.1. Classical Interfaces:
RPC, DCOM, RMI, CORBA

RPC, DCOM, RMI and CORBA are technologies
that enable a client to remotely invoke functions
on a server. If an RPC (DCOM, RMI, CORBA)
server is set up, an appropriate RPC (DCOM, RMI,
CORBA) client has to be used that can interpret the
binary request/response format. This restricts a po-
tential client to a specific platform, vendor, or pro-
gramming language: RPC is mainly implemented
in Unix, DCOM is Microsoft-specific, and RMI is
Java-specific. Moreover, RPC doesn’t offer access
to object-oriented programs, and Microsoft discour-
ages the use of DCOM and pushes the use of SOAP
(Box, 2000). CORBA is available for many program-
ming languages and platforms but suffers from a no-
ticeable programming overhead. Aside from its com-
plicated architecture, CORBA implementations from
different vendors may not be fully compatible (Hoff-
man, 1999). As all of the aforementioned interface
types are pairwise incompatible and for the most part
platform or language-dependent, it is impossible for

1012 Sven Meyer zu Eissen & Benno Stein



RMI
CORBA

RPC

RMI
CORBA

RPC

"Start Application"

"User Interface"

User

"Start Simulation"

"Diagram"

startSimulation(m)

Result

startSimulation(m)
startSimulation(m)

Result
Result

Client

Application Scheduler

DCOM

server

DCOM

client

startSimulation(m)

Result

Simulation

engine


Figure 1 UML sequence diagram for a Web-based simulation service using classical interfaces.

a designer to integrate several Web services that pro-
vide several of these interfaces. Since Web services
should be available for every interested user, the use
of these techniques must be called into question.

A typical application flow for Web-based simulation
is depicted in Figure 1. After the client application
has been started, the user can request actions, say,
function calls in terms of a programming language.
Instead of executing the functions locally, their pa-
rameters are packed in a special format and trans-
ferred to the server. The server unpacks the parame-
ters and calls the corresponding function. In our case,
a scheduler observes the load on one or more simula-
tion servers and deploys the execution. Once the sim-
ulation finished, the results are again packed in the
RPC (DCOM, RMI, CORBA) format and transferred
back to the client.

Advantages.(a) The underlying binary protocols for
parameter and result transfer ship with the particular
implementations.

Disadvantages. (a) The mentioned interface types
are pairwise incompatible, and it is unlikely that a
client application can integrate several services of the
mentioned types. (b) The client programmers choice
of the programming language, platform, and mid-
dleware depend on the implementation of the server.
(c) Clients cannot be run in a Web browser.

2.2. Proprietary TCP/IP Protocol

The invention of application-specific protocols based
upon TCP/IP has a long tradition; typical examples
are Internet-services like FTP, Finger, or IMap. Each
of them is text-based and requires a specialized client
that can interpret the protocol. The application flow is
similar to Figure 1: Instead of using an RPC (DCOM,
RMI, CORBA) communication protocol, a tailored

parsing engine and message generator must be im-
plemented. An example for a Web-based simulation
service that uses an applet as frontend and a propri-
etary communication protocol is described in (DY-
NAST Development Team, 2003b).

Advantages.(a) The commands of a tailored protocol
constitute only a small overhead. (b) Data transfer
happens at maximum performance. (c) Web clients,
like Java applets, can implement the protocol and be
run in a Web browser.

Disadvantages.(a) Users who want to access the ser-
vice without using the standard client must implement
the entire protocol. (b) Users who want to compose a
service out of several services of this kind will have
to implement all of the protocols—a fact which ren-
ders a network of Web-based services hard to be set
up. (c) Apart from standard search engines, there is
no service with which the simulation service might be
found.

2.3. HTTP/HTML
Another way to access a Web-based simulation ser-
vice is to offer an HTML frontend. Figure 2 shows
the application flow of an HTTP/HTML-based sim-
ulation service. A user enters the URL of a service
and usually gets a frontend that contains a text box
where a model definition can be entered. Clicking
a submission button will transmit the model via the
HTTP POST command to the Web server, which in
turn passes the contents of the text box to a script-
ing engine such as a CGI, Perl, PHP, or JSP. The
script starts the scheduler and passes the model with
a request for simulation. After the simulation is fin-
ished, the script picks up the simulation results and
dynamically generates either an HTML page that con-
tains raw simulation data or data including an HTML

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1013



Simulation

engine

"Request URL"




"Form"

User

"Start Simulation"

"Diagram"

HTML

http get URL

http post simulation

startSimulation(m)
startSimulation(m)

Result
Result

SchedulerBrowser Web Server Scripting

engine

http post simulation

HTML, images

images

http get images

HTML

Figure 2 UML sequence diagram for a Web-based simulation service using HTTP/HTML.

reference to server-generated diagrams. In the lat-
ter case, the browser loads the diagrams as images
from the Web server and displays them. An example
for such an implementation is described in (Mann &
S̆ev̆cenko, 2003) and can be found at the URL given
in (DYNAST Development Team, 2003a).

Advantages.(a) Users need only a standard browser.

Disadvantages.(a) The deployment of subtasks to the
client is not possible: the entire job must be processed
by the server. (b) The result is an HTML-document,
which lacks structural information and makes a sub-
sequent formatting difficult. (c) Such a service can
hardly be integrated into other applications. (d) In-
teractions require either large caching capabilities or
computing power: If a user wants to zoom into a di-
agram, a new image has to be generated and trans-
ferred. This implies that the simulation data either
has to be stored on the server or the simulation data
must be recomputed for each interaction.

2.4. HTTP/SOAP

SOAP (W3C Consortium, 2003) is a simple XML-
based protocol to let applications exchange informa-
tion over HTTP. It combines the assets and overcomes
the drawbacks of the aforementioned approaches.
SOAP is independent of platforms, programming lan-
guages, and vendors, and most implementations offer
automatic protocol generation for several program-
ming languages. Moreover, concepts for publishing
Web services with regard to both semantic and syn-
tax are inclusive. The former is implemented in the
form of UDDI (universal description, discovery and
integration of Web services) that enables Web service

providers to publish the missions along with the ad-
dresses of their services in a directory of Web ser-
vices. The latter relates to WSDL (Web service defi-
nition language), a language with which Web service
interfaces can be described in an XML representa-
tion. Among others, WSDL covers the formulation
of complex data types, function names, and parame-
ters. Related to our simulation application, Listing 1
shows that part of the WSDL specification where the
complex data type “VariableValues” and the input and
output data types of the function “startSimulation” are
defined.

Based on an interface definition in the form of Java
or C# code for example, a complete WSDL defini-
tion can be automatically generated. A SOAP server
uses this definition to parse and map incoming SOAP
requests to the interface functions. In turn, the gener-

<wsdl:definitions name="Simulation"
targetNamespace=

"http://www.themindelectric.com/wsdl/Simulation/">
<wsdl:types>

<xsd:schema targetNamespace=
"http://www.themindelectric.com/package/aisim.server/">

<xsd:complexType name="VariableValues">
<xsd:all>
<xsd:element name="numberOfVariables" type="xsd:int"/>
<xsd:element name=

"numberOfValuesPerVariable" type="xsd:int"/>
<xsd:element name=

"values" type="xsd:ArrayOfArrayOfdouble"/>
</xsd:all>

</xsd:complexType>
...

</wsdl:types>

<wsdl:message name="startSimulationIn">
<wsdl:part name="arg0" type="xsd:string"/>

</wsdl:message>

<wsdl:message name="startSimulationOut">
<wsdl:part name="Result" type="VariableValues"/>

</wsdl:message>
...

</wsdl:definitions>

Listing 1: A part of the generated WSDL definition.

1014 Sven Meyer zu Eissen & Benno Stein



Simulation

engine


"Request URL"




"User Interface"

User Browser/

Java applet Web Server

SOAP

client

SOAP

server

"Start Simulation"

"Diagram"

HTML

requestURL()

Applet

requestApplet()

SOAP request
startSimulation(m)

SOAP response
Result

startSimulation(m)
startSimulation(m)

Result
Result

Scheduler

Figure 3 UML sequence diagram for a Web-based simulation service using SOAP.

ated WSDL definition can be used by potential clients
to automatically produce the client side communica-
tion protocol along with function stubs. This renders
calls of remote functions completely transparent for
clients. Major software developers like Microsoft,
IBM, Sun, and Apache support the SOAP technology.

Figure 3 shows a UML sequence diagram for the in-
vocation of our simulation engine, where an applet is
used as frontend. Whenever a user requests the re-
spective URL, the corresponding Web server delivers
HTML code which embeds an applet. After its launch
the applet instantiates the generated SOAP client, dis-
plays the user interface and waits for input. Once the
user hits the “start simulation” button, the SOAP mes-
sage shown in Listing 2 is generated by the SOAP
client and sent to the SOAP server.

The message contains the name of the function to
be called and its parameters along with their types.
The SOAP server strips the HTML wrapper from the

POST /glue/simulation HTTP/1.1
Host: 131.234.41.48:8004
Connection: Keep-Alive
User-Agent: TME-GLUE/4.1.2
SOAPAction: "startSimulation"
Content-Type: text/xml; charset=UTF-8
Content-Length: 482

<?xml version=’1.0’ encoding=’UTF-8’?>
<soap:Envelope xmlns:xsi=

’http://www.w3.org/2001/XMLSchema-instance’
xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:soap=’http://schemas.xmlsoap.org/soap/envelope/’
xmlns:soapenc=’http://schemas.xmlsoap.org/soap/encoding/’>
<soap:Body soap:encodingStyle=

’http://schemas.xmlsoap.org/soap/encoding/’>
<startSimulation>

<arg0 xsi:type=’xsd:string’>circuit.mo</arg0>
</startSimulation>

</soap:Body>
</soap:Envelope>

Listing 2: SOAP request for a call of the function
“startSimulation” with the parameter “circuit.mo”.

SOAP message, parses the content, reconstructs the
parameter data types, and calls the requested func-
tion. The SOAP server wraps the results in a SOAP
envelope similar to the request and sends it back to
the SOAP client. The client reconstructs the delivered
data types and passes them to the client application, in
our case to the Java applet.

Advantages.(a) Client-side as well as server-side pro-
tocols can be generated automatically from an inter-
face definition. (b) The data contains a logical struc-
ture. (c) SOAP provides meta-information about data
structures that are exchanged in the form of WSDL.
This enables modern programming languages to re-
construct the data structures at runtime. (d) Meta-
data concerning the purpose of the simulation service
can be provided in a directory of Web services. (e) A
standardized network of Web services becomes pos-
sible. (f) Standard encryption via HTTP/SSL is pos-
sible (HTTPS). (g) Major software vendors support
SOAP within their platforms and programming lan-
guage APIs. (h) SOAP is recommended by the W3C
and may get its own Mime type.

Disadvantages.(a) Overhead when wrapping data in
HTML/XML/SOAP envelopes. (b) SOAP client code
for message parsing in applets is (still) too big.

2.5. Unsolved Problems
The outlined realization alternatives address the com-
munication problem, with the given advantages and
drawbacks; nevertheless, there are desirable enhance-
ments that are common to all of them. In a sce-
nario where an application embeds a third party Web
service, functions must be called in a given order,

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1015



A
C

=
220


R
2=

100

L=

0.1


C
=

0.01


G


R
1=

10


Figure 4 A simple electrical circuit.

i. e. a model must first be transmitted and then sim-
ulated. Let us assume that a remote service of-
fers a function that returns a list of all variable
names. Then the question is whether this function
may be called directly, after transmitting the model,
or whether the variable list shall be accessible only
when the model has been parsed for execution. Ob-
viously there are restrictions on the function call or-
der, which could explicitly be modeled in a ded-
icated language that gets part of the Web service
definition. Such a language could be used to de-
tect semantic flaws in a client application. Current
approaches, such as WSFL (IBM), XLANG (Mi-
crosoft), BPEL4WS (IBM/BEA/Microsoft), WSCI
(BEA/SAP/Sun), WSCL (Hewlett Packard) are not
recommended yet by the W3C consortium and must
be considered being proprietary.

Another concern is encryption. SOAP offers a stan-
dard way for channel encryption: HTTP tunneling
through the Secure Socket Layer (SSL). Although
approved channel encryption technology secures the
transmission, the decrypted model is available in a
plain form at the server side, as it must adhere to the
simulator’s model representation. Due to the fact that
models may comprise crucial business know-how, the
client must trust the service provider. An option that
cannot be implemented in a Web service protocol but
in a Web service client is model obfuscation, which
could substitute inane identifiers for the meaningful
model constituents.

From the viewpoint of a company that provides a
simulation service there is the need for an efficient
load balancing and scheduling mechanism: Simula-

model circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourcesAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p);
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p);

end circuit

Listing 3: The Modelica description of the circuit de-
picted in Figure 4.

tion jobs may concentrate at a peak-time, within the
core working hours of a country. Observe that for an
efficient scheduling the duration of a simulation job
has to be estimated. Though rules of thumb can be
applied for such estimations, a reliable duration esti-
mations is subject of current simulation research.

3. A PROTOTYPIC WEB SIMULATION
SERVICE FOR MODELICA

The purpose of this section is twofold. The first two
subsections give a very brief introduction to the Mod-
elica modeling language and the YANOS simulator;
the remainder, Subsection 3.3 and 3.4, explains how
SOAP is used to deploy part of the functionality of
the YANOS simulator as a Web service.

3.1. On Modelica

Modelica is a language for modeling physical sys-
tems. What makes Modelica so attractive for Web-
based simulation?—At least three points: It is an
open specification, it is standardized, and it incor-
porates state of the art modeling technology. The
following text as well as the example rely on ar-
ticles and information material that can be found
at www.modelica.org (Modelica Association,
2000a; Modelica Association, 2000b).

Consider the electrical circuit in Figure 4. It consists
of a voltage source, a ground point, two resistors, a
capacitor, and an inductor. A Modelica description of
this circuit is giving in Listing 3.

The description both declares the components and, in-

1016 Sven Meyer zu Eissen & Benno Stein



troduced by the keywordequation, defines the de-
vice topology. For example, the line

Resistor R1(R=10);

declares the variableR1 being of classResistor
and sets the fieldR to the value of 10. The line

connect (R1.n, C.p);

states that pinn of resistorR1 is connected to pinp
of capacitorC. Note that by virtue of the connect con-
struct also the necessary compatibility and continuity
conditions are implicitly defined, which, in electri-
cal engineering, correspond to potential identity and
Kirchhoff’s current law respectively.

Modelica has a lot of features that are known from
the modern, object-oriented programming languages.
Moreover, it provides support for matrices, units,
quantities, and even for the specification of process-
ing hints for numerical algorithms.

Modeling with Modelica means modeling at the phys-
ical component level, as opposed to the classical
block-oriented modeling. Block-oriented models fol-
low local relationships and can, in principle, be pro-
cessed by local propagation. Therefore, this kind of
modeling is also called “causal”, whereas the model-
ing that is oriented at the device structure is called
“non-causal”. From the modeling viewpoint, non-
causal modeling is by far superior to causal model-
ing where the burden of the algorithmic formulation
of the underlying mathematical equations is shifted
to the user. Clearly, this means on the other hand that
the processing of non-causal models, such as Mod-
elica models, is much more demanding since it must
afford this model formulation intelligence.

3.2. The Modelica Simulator YANOS

YANOS is a simulation engine for the Modelica lan-
guage and is being developed by the Art Systems
Software Ltd; see Figure 5 for an overview of its core
modules. By now, YANOS supports a subset of the
Modelica language specification—which currently is
at release 2.0—and is continuously extended. In par-
ticular, the following major concepts are supported
(•) and not supported (◦) respectively:

• Solution of implicit, differential-algebraic equa-
tion systems.

• Efficient symbolic manipulation of large alge-
braic systems.

Knowledge-based simulation control

Variables, functions, bignums

Algebraic expressions

Model synthesis

Implicit

methods

Symbol processing Numerics

DAE solver

Newton Iteration

Event control
Order/step size control

Dense output computation

Explicit

methods

Matrices

Normalization,

Simplification

Constraint processing

Equations, constraints

Linear algebra methods

BLT-Decompisition,

Tearing

Data structures

Model instantiation,

Unification

Modelica parser

Figure 5 Overview of the core modules in
the YANOS simulation engine.

• Normalization, simplification, and substitution of
algebraic expressions.

• Arbitrary precision with big integers.

◦ Formulation of vectors and matrices.

◦ Formulation of algorithms within models.

◦ Consistent initialization of higher index systems.

The YANOS simulation engine implements recent
algorithms for the analysis of stiff systems (Dor-
mand, 1996; Hairer & Wanner, 1996) and realizes a
knowledge-based interplay between the collection of
model equations and the application of an integrator’s
solution equations. This way it can resemble among
others the behavior of the famous DASSL algorithm
(Petzold, 1982), but also apply the inline integration
concept to several integration procedures (Elmqvist
et al., 1995).

A strong point of YANOS is its tight integration of
computer algebra at simulation runtime, which pro-
vides a high level of flexibility for behavior analysis:
It enables YANOS to apply a spectrum of algebraic
methods in the course of a simulation, e. g., if a sys-
tem changes its mode or its structural setup.

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1017



The YANOS simulation engine is encapsulated in a
scheduler that provides different organizational fa-
cilities: The syntactical analysis and instantiation of
Modelica models, the user management, the schedul-
ing of different simulation tasks, or the upload and
publication of simulation models. Together, these
modules form the simulation server. There exist dif-
ferent frontends (clients) for the simulation server.
Especially for Web deployment purposes we have de-
veloped a client in the form of a Java applet that pro-
vides the following basic functionality:

• Selection, upload, and textual manipulation of
Modelica models.

• Graphical display of state trajectories.

• Definition of basic experimental constraints.

3.3. Soaping YANOS

The following points summarize the steps that are
necessary to add a SOAP interface to YANOS using
the GLUE SOAP implementation (The Mind Electric,
2003).

1. Interface Design.Figure 6 outlines our plan for
function shipping. The client side consists of a
Web browser that runs the Java applet; the ap-
plet contains the code for handling user inter-
actions as well as the (automatically generated)
code for parsing the SOAP responses. We de-
cided to transfer raw simulation data (the trajecto-
ries of the variables) to the client and let the client
do all presentation-related tasks like the drawing
of diagrams with respect to interesting variables.
Consequently, the interface can be kept narrow:
It contains functions to load Modelica models, to
specify simulation parameters, to start the simu-
lation, and to fetch simulated values.

The server side consists of a Web server, which
delivers the applet to the client and which has
a SOAP server integrated besides the standard
scripting engines. We built a Java wrapper that
calls the native YANOS functions and added func-
tionality to schedule simulations, and to buffer
simulation data. The buffer concept enables a
user to specify the data packet size within a SOAP
response and hence to define the frequency by
which the client display is updated.

2. WSDL Generation.Given the Java wrapper inter-
face, the WSDL definition can be generated using
the GLUE java2wsdl-converter (see Listing 1).

Server sideClient side

SOAP

Client

Java applet

User interface

Web Browser

Diagram

output

SOAP

Server

Web Server

Scripting

engines

(JSP, CGI)

HTML repository

Web services

Scheduler

YANOS

simulation

engine

Script repository

Figure 6 Overview of the YANOS Web architecture.

3. Client Code Generation.The generated WSDL
definition can be used as input for a client code
generator. GLUE offers the wsdl2java-tool that
generates SOAP clients along with Java method
stubs. We used the stubs as a basis for the Java
applet and realized functions for displaying dia-
grams etc. according to Point 1.

4. Publication. If the Web service is published via
UDDI there are two alternative invocation sce-
narios: (a) A user can download our applet client
and use it as frontend. (b) A user can generate
method stubs from the published WSDL defini-
tion and integrate the simulation service in own
applications.

3.4. The YANOS Web Interface

Figure 7 shows a screenshot of our applet. On the
left-hand side, models can be chosen for instantiation;
according schematic views are displayed and can be
examined. Once a model is instantiated, its variables
are sorted according to their type (state, parameter, or
other) and shown in a tree. Each variable can be se-
lected to be plotted, and start values can be provided
for the state quantities (middle). When the simula-
tion is started, all settings are submitted to the SOAP

1018 Sven Meyer zu Eissen & Benno Stein



Figure 7 Screenshot of the YANOS Web Interface.

backend. The curves in the plot window (right) are
updated whenever the backend sends computed vari-
able values or when a user changes the selection of
variables to be displayed. Several models can be sim-
ulated in parallel: When a user decides to analyze an-
other model, a new tab is opened. This enables one to
compare models and variable curves, and to analyze
the impact of parameter and model variations.

CONCLUSIONS AND FUTURE
RESEARCH

Web services for simulation provide platform inde-
pendence, automatic licensing, version control, and
deployment facilities. SOAP is a simple protocol
that enables a simulation Web service to interact with
other applications. In particular, based on WSDL,
SOAP generates communication protocols automat-
ically and can provide meta information of the syntax
and semantics of the simulation service, which then
can be published in directories of Web services.

Currently we experiment with the development of a
document format wherein Modelica models can be

embedded and that can be simulated interactively
over the World Wide Web with a mouse click. Note
that for these purposes also a temporary ticket should
be generated, which grants a transient license to sim-
ulate a model during a fixed period. Although there
are several challenges to be mastered, we are opti-
mistic that such a service can become standard in the
medium-term future.

REFERENCES
Box, D. (2000).A Young Person’s Guide to The Simple

Object Access Protocol: SOAP Increases
Interoperability Across Platforms and Languages.
http://msdn.microsoft.com/msdnmag/
issues/0300/soap/toc.asp.

Dormand, J. (1996). Numerical Methods for Differential
Equations. New York, London, Tokyo: CRC Press.

DYNAST Development Team (2003a). DYNAST
Collection of Solved Examples.
http://icosym.cvut.cz/dyn/examples.

DYNAST Development Team (2003b). DYNCAD.
http://icosym.cvut.cz/dyncad/applet.

WEB-BASED SIMULATION:
APPLICATION SCENARIOS AND REALIZATION ALTERNATIVES 1019



Elmqvist, H., Mattsson, S., & Otter, M. (1999).
Modelica—A Language for Physical System Modeling,
Visualization, and Interaction. In Proceedings of the
IEEE Symposium on Computer-Aided Control System
Design, CACSD’99 Hawaii: pp. 630–639.

Elmqvist, H., Otter, M., & Cellier, F. (1995). Inline
Integration: A New Mixed Symbolic/Numeric
Approach for Solving Differential-Algebraic Equation
Systems. In Proceedings of the European Simulation
Multiconference, ESM’95 Prague, Czech Republic: pp.
xxiii–xxxiv.

Fishwick, P. (1997). Web-based Simulation. In
Proceedings of the 29th Winter Simulation Conference
(WSC’97): ACM Press pp. 100–102.

Hairer, E. & Wanner, G. (1996). Solving Ordinary
Differential Equations II. Stiff and
Differential-Algebraic Problems. Berlin Heidelberg
New York: Springer, second edition edition.

Hoffman, R. (1999). Sneaking Up On CORBA: The Race
for the Ideal Distributed Object Model.
http://www.networkcomputing.com/1009/
1009f2.html.

IBM Web Services Architecture Team (2000).http:
//www-106.ibm.com/developerworks/
webservices/library/w-ovr/.

Kilgore, R. (2002). Simulation Web Services with .NET
Technologies. In E. Yücesan, C.-H. Chen, J. Snowdon,
& J. Charnes (Eds.), Proceedings of the 34th Winter
Simulation Conference (WSC’02): ACM Press pp.
841–846.

Mann, H. & S̆ev̆cenko, M. (2003). Simulation and Virtual
Lab Experiments across the Internet. In Proceedings of
the International Conference on Engineering Education
Valencia, Spain.

Modelica Association (2000a). Modelica—A Unified
Object-Oriented Language for Physical Systems
Modeling: Tutorial. Modelica Association, Linköping,
Sweden.

Modelica Association (2000b). The Modelica
Specification, version 2.0. Modelica Association,
Linköping, Sweden.

Page, E. (1998).http://www.mitre.org/news/
the_edge/august_98/wbs.html.

Petzold, L. (1982). A Description of DASSL: A
Differential / Algebraic System Solver. In Proceedings
of 10th IMACS World Congress on System Simulation
and Scientific Computation Montreal.

Sleeper, B. (2001).http://www.stencilgroup.
com/ideas_scope_200106wsdefined.html.

The Mind Electric (2003). The GLUE SOAP
Implementation.http://www.
themindelectric.com/glue/index.html.

W3C Consortium (2003). SOAP Version 1.2 W3C
Recommendation.
http://www.w3.org/TR/soap12-part1/.

Yücesan, E., C.-H. Chen, Snowdon, J., & Charnes, J.,
Eds. (2002). Proceedings of the 34th Winter
Simulation Conference (WSC’02). ACM Press.

1020 Sven Meyer zu Eissen & Benno Stein


