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Abstract: In text-based information retrieval, which is the predominant retrieval task at present,
several document models have been proposed, such as boolean, probabilistic, or (extended) vec-
tor models [Baeza-Yates and Ribeiro-Neto 1999]. Interestingly, the suffix tree document model
is usually not discussed in the literature on the subject though it comes along with a property that
sets it apart from the other models: It encodes information about word order. The suffix tree docu-
ment model owes much of its popularity from the Vivísimo search engine, which operationalizes
on-the-fly categorization of Internet search results.

While the classical document models can be considered as vectors of words, the suffix tree doc-
ument model as well as the related similarity measures are graph-based. Both types of document
models provide an efficient means to compute document similarities, and, according to various
publications, both types of document models work well in practice. However, there is no com-
parison between both paradigms that explains the concepts of one in terms of the other, or that
contrasts their advantages and disadvantages with respect to certain retrieval tasks. In this paper
we start to tackle this gap by shading light on the following questions: (1) How does similarity
computation work in the suffix tree document model? (2) Based on the insights of Question 1, is
it possible to combine concepts of both document model types within classification or categoriza-
tion tasks? (3) Which of the document model types is more powerful with respect to unsupervised
document classification?
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1 Document Models

A retrieval task defines a relation between a user, a query, and a set of documents to
be searched. The operationalization of a retrieval task is based on a conceptualiza-
tion of these determinants and must provide, among others, a document model and a
query-specific similarity concept—while capturing the user’s information need as well
as considering efficiency issues.

A document model is a concept that describes how a meaningful set of features,
d, is computed from a document’s (preprocessed) words. “Meaningful” means that a
function ϕ can be stated that maps from the feature sets d1 and d2 of two documents
d1, d2 into the interval [0; 1] and that has the following property: If ϕ(d1,d2) is close to
one then the documents d1 and d2 are similar; likewise, a value close to zero indicates
a high dissimilarity.



1.1 Vector-Based Document Models

According to [Stein and Meyer zu Eißen 2004a], vector-based document models can be
classified with respect to four dimensions:

1. A term concept, which defines the granularity of the text units that are used as
features: words, n-grams, noun phrases, clauses, etc.

2. A term weighting scheme, which defines how a measure of importance for an indi-
vidual term is computed.

3. Linguistic statistics like syntactic group analysis or part-of-speech analysis.

4. Simple text statistics and presentation-related statistics.

The first two of these dimensions form the basis of models used for topic-centered
similarity assessment tasks like text categorization, the others play a major role in con-
nection with text genre analysis or text synthesis [Burrows 1987; Finn and Kushmerick
2003; Roussinov et al. 2001; Meyer zu Eißen and Stein 2004].

Let n be the number of documents in a corpus, and let m be the total number of
different words after preprocessing, also called the dictionary or bag of words. In its
simplest form a model of a document d is a vector of length m whose ith entry indicates
whether or not the ith word of the dictionary occurs in d. I. e., documents are considered
as vectors in the m-dimensional space of all dictionary entries, and hence this model is
called vector space model. It can be extended by introducing weights instead of Boolean
values. A widely accepted variant combines the (normalized) term frequency, tf , with
the inverse document frequency, idf . In particular, tf (i, j) denotes the frequency of
term i in document j, and idf (i) may be defined as log( n

df(i) ), where df(i) is the number
of documents that contain the term i. The hypothesis behind the idf -weighting scheme
is that terms which occur only in few documents are of highly discriminative power.

1.2 The Suffix Tree Document Model

Observe that vector-based document models encode no information about the order by
which the words occur in a document [see 1]. A more sophisticated document model
that preserves the complete word order information is the suffix tree document model;
it defines the similarity between two documents in terms of string overlaps in their
common suffix tree.

The ith suffix of a document d = w1 . . . wm is the substring of d that starts with
word wi. A suffix tree of d is a labeled tree that contains each suffix of d along a
path whose edges are labeled with the respective words. The construction of a suffix
tree is straightforward: The ith suffix of d is inserted by checking whether some edge
emanating from the root node is labeled with w i. If so, this edge is traversed and it is
checked whether some edge of the successor node is labeled with w i+1, and so on. If,

[1] Some kind of “weak” order information can be introduced by using phrases or just every
sequence of n consecutive words, so-called n-grams, instead of single words.
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Figure 1: Illustration of the two document model types. The left-hand side shows two
documents under the vector-based paradigm; the underlying dictionary contains the
words “boy”, “chess”, and “bridge”. As similarity function ϕ the cosine similarity is
shown, which corresponds to the cosine of the angle between d1 and d2. The right-
hand side shows a suffix tree for the documents “boy plays chess” and “boy plays
bridge too”. Here, the similarity function ϕ must quantify the portion of the overlap,
which corresponds to the green (thick) edges in the graph.

in some depth k, a node n without a matching edge is reached, a new node is created
and linked to node n with an edge labeled with w i+k .

Remarks. Document models and similarity functions ϕ determine each other: Vector-
based document models are amenable to the cosine similarity in first place. The suf-
fix tree document model requires a measure that assesses the similarity between two
graphs. Figure 1 illustrates both paradigms.

2 A Closer Look to the Suffix Tree Document Model

In this section we introduce a generic similarity measure for the suffix tree document
model. Moreover, we argue that the well-known similarity concepts of the classical
document models have their counterpart in the suffix tree document model. Our generic
view enables us to seamlessly understand the famous suffix tree clustering algorithm
of Zamir and Etzioni as a heuristic to efficiently evaluate the graph-based similarity
measure for large document collections.

2.1 A Graph-Based Similarity Measure

As pointed out above, a document model in the form of a suffix tree preserves full word
order information. This section introduces a measure that quantifies the similarity of
two documents under the suffix tree document model.

Let d+, d− designate two documents that are inserted into an initially empty suffix
tree T . Each edge e in T gets either labeled “+”, “-”, or “+-”, depending on whether or
not e has been traversed while inserting a suffix from d+ or d−. Moreover, let E denote
the edges in T , and let E+ and E− denote those edges in E whose label contain a “+”
and a “-” respectively. Then the suffix tree similarity ϕST is defined as

ϕST =
|E+ ∩ E−|
|E+ ∪ E−|



Obviously, ϕST fulfills the following properties of a similarity measure:

1. Normalization. From 0 ≤ |E+ ∩E−| ≤ |E+ ∪E−| follows that |E+∩E−|
|E+∪E−| ∈ [0, 1].

2. Reflexivity. If d+ = d− holds, then E+ = E−, and consequently |E+ ∩ E−| =
|E+ ∪ E−| and ϕST = 1.

3. Symmetry. The symmetry property follows directly from the fact that the insertion
order does not affect edge labeling.

ϕST is the Jaccard coefficient of these edge sets, E+ and E−. Other possibilities
to measure the match between the two sets include the Dice coefficient, the cosine
coefficient, or the overlap coefficient [Rijsbergen 1979]. Observe that ϕ ST quantifies
the frequencies of suffixes in a Boolean sense, since it is not recorded how often an
edge is traversed while inserting suffixes of d+ and d−. Put another way, ϕST captures
“word order matches” rather than term frequencies.

There are two ways to incorporate term frequencies in ϕST . One possibility is to
combine ϕST with a traditional vector space model similarity measure by means of a
weighted sum, say, ϕHYB = λ · ϕST + (1 − λ) · ϕcos, with λ ∈ [0, 1]. Alternatively,
frequency information for each edge can be recorded during the construction of T . The
latter approach has the advantage that frequency information for word sequences that
are longer than one (suffix frequencies) can be considered for similarity computation.

We construct the suffix tree as described above; all suffixes of d+ and d− are in-
serted into an initially empty tree T . During insertion the functions n+(e) and n−(e)
are computed, which define for each edge e how often it is traversed. Then the similarity
value ϕSTF that incorporates suffix frequencies is given as

ϕSTF =
1
|E|

∑

e∈E

min{n+(e), n−(e)}
max{n+(e), n−(e)}

The properties of normalization, reflexivity, and symmetry also hold for ϕ STF . Note
that n+(e) and n−(e) capture the term frequencies of d+ and d− for all edges e that are
incident with T ’s root.

Research on vector space models has shown that term weighting schemes for doc-
ument collections that rely on both term frequency and inverse document frequency
outperform schemes that are based on only one of these concepts [Sparck-Jones 1972].
Note that under the suffix tree document model the inverse document frequency can
also be measured for a document collection D = {d1, . . . , dn}: We construct a suffix
tree T for all suffixes of the di ∈ D and associate an initially empty set S with each
edge e ∈ T . If a suffix of di creates or traverses e, we set S (e) := S (e) ∪ {i}. Since
|S (e)| captures the document frequency of the suffix that is represented by the path that
starts at the root and ends with e, the inverse document frequency can be measured by
IDF (e) = log(n/|S (e)|), leading to

ϕSTFIDF =
1
|E|

∑

e∈E

min{n+(e), n−(e)}
max{n+(e), n−(e)} · IDF (e)



2.2 STC: A Fusion Heuristic for the Suffix Tree Document Model

Given a similarity measure like the cosine similarity for the vector space model or one
of the suffix tree similarity measures introduced above, the construction of a similarity
graph is in O(n2) for a document collection D of size n. However, [Zamir and Etzioni
1998] introduced the suffix tree clustering algorithm (STC), which runs in O(n) without
computing O(n2) similarity values. In detail, STC is made up of three steps.

Step 1. A suffix tree for all suffixes of each document in D = {d1, . . . , dn} is con-
structed, and each suffix is associated with the set of documents wherein it is contained.
In other words, using the notation given above, for each edge e (each of which repre-
sents a certain suffix) the set S (e) is computed. The sets S(e) with |S(e)| ≥ 2 are called
“base clusters” and identify the documents di with i ∈ S(e).

Step 2. Each base cluster is assigned a score f , which is a function of |S (e)| and the
length of the suffix that is represented by e. In [Zamir and Etzioni 1998] the authors
propose f as the product of |S (e)| and the length of the suffix that is represented by e.

Step 3. The k base clusters S1, . . . ,Sk that score best under f are selected. A similarity
graph in which the base clusters form the node set is generated, and an edge between
two nodes Si and Sj is added if the Jaccard coefficient of Si and Sj is larger than

0.5, say, when |Si∩Sj |
|Si∪Sj | > 0.5. The connected components of this graph form the final

clusters.

2.3 Analysis of the STC Heuristic

STC has proven to work well on document snippets that are returned by search engines
[Zamir and Etzioni 1998], but its properties have not been analyzed yet. As pointed out
above STC is a heuristic which is highly efficient, but which also has some drawbacks.
The following observations will provide a rationale for some of STC’s characteristics.

Non-Exclusiveness. Documents may be associated with several base clusters. Conse-
quently, the documents may appear in more than one of the found categories.

Incompleteness. A clustering that is generated by STC does not necessarily contain all
documents of the original collection. An incomplete categorization happens for docu-
ment collections which comprise documents that share only few short word sequences
with the remaining documents. The reason for this behavior is that the emerging base
clusters will not score high.

DF-based. A base cluster scores higher if the document frequency of its associated
suffix increases. This can lead to big clusters, because it is likely that high-scoring base
clusters that contain terms with a high document frequency share more than half of their
associated documents with other base clusters and consequently are merged in Step 3
of the STC algorithm.

Drifting. Suppose that four base clusters, S1, S2, S3, S4, are given, where S1 = {1, 2,

3}, S2 = {2, 3, 4}, S3 = {3, 4, 5}, and S4 = {4, 5, 6}. Then all documents d1, . . . , d6

are merged into a single cluster because the Jaccard coefficient of S i and Si+1 is larger



than 0.5. In particular, this single cluster comprises the documents that are associated
with S1 and S4, which might be completely dissimilar.

Absoluteness. STC considers two documents as similar and assigns them to the same
base cluster if they share a rather long suffix or several short suffixes. Regardless of
whether their base cluster is merged with other base clusters in Step 3, their base cluster
is part of the final clustering. Note that no information about document lengths or suffix
mismatches of the rest of those documents is computed, resulting in poor quality clus-
ters. This point is relatively unimportant for short documents—a fact that explains the
good performance of STC on document snippets like those returned by search engines.

Topic Generating. Each base cluster is associated with a suffix, which can serve as a
label for this cluster. This method solves two basic problems in topic identification for
document clusters [Stein and Meyer zu Eißen 2004b]: word order preservation and topic
length determination.

3 Quantitative Analysis

The purpose of our experiments is twofold. Firstly, we want to gain evidence on STC’s
character as a heuristic, say, to measure how good the STC algorithm performs on pop-
ular document collections compared to clustering algorithms that rely on the new suffix
tree similarity measures or the traditional vector space similarity measures. Secondly,
we want to answer the question to which extent word order preservation improves clus-
tering performance. For this purpose we evaluated STC and the clustering algorithms
MajorClust [Stein and Niggemann 1999] and Group Average Link using the discussed
similarity measures on several categories drawn from RCV1 [Rose et al. 2002].

3.1 Document Sets

RCV1 is a document collection that was published by the Reuters Corporation for re-
search purposes. It contains about 800,000 documents each of which consisting of a few
hundred up to several thousands words. The documents have been manually enriched
by meta information like category (also called topic), geographic region, or industry
sector. RCV1 comprises 103 different categories, arranged within a hierarchy of four
top level categories. Each of the top level categories defines the root of a tree of sub-
categories, where every child node fine grains the information given by its parent. A
document d can be assigned to several categories c1, ..., cp, and all ancestor categories
of a category ci are assigned to d as well.

Two documents, d1, d2, are identified with the same category c if they share both the
same top level category ct and the same most specific category cs. The test document
data sets are constructed in such a way that there is no document d1 whose most specific
category cs is an ancestor of the most specific category of some other document d 2. The
number of categories in our test data varies from three to six. For each category between
50 and 300 documents were drawn randomly from the entire category. The data sets



have different sizes and class numbers, and we investigated uniformly as well as non-
uniformly distributed category sizes. Table 1 gives an overview of the constructed data
sets. The document preprocessing involves parsing, stop word removal according to
standard stop word lists, and the application of Porter’s stemming algorithm [Porter
1980].

DS1 DS2 DS3 DS4 DS5 DS6

# categories 3 4 3 5 4 6
# documents 300 400 500 600 700 800
uniformly distributed no yes no yes yes no

Table 1: Overview of the constructed document sets.

3.2 Results

We employed STC and the graph-based clustering algorithms MajorClust and Group
Average Link to cluster the constructed document sets. For MajorClust and Group Aver-
age Link the underlying document models were varied by computing the edge weights
according to the cosine similarity measure using the TFIDF term weighting scheme,
and the new suffix-tree-based similarity measures. For the hybrid measure, we used
ϕHYB = λ · ϕST + (1 − λ) · ϕcos and found that λ = 0.2 (λ = 0.5) works well
for MajorClust (Group Average Link). Table 2 and 3 show the achieved F -Measure
values [Rijsbergen 1979] for MajorClust and Group Average Link respectively. Note
that performance improvements of up to 40% for the new hybrid similarity measure in
comparison with the cosine simililarity measure can be observed. The outlined disad-
vantages of STC are reflected in STC’s F -Measure values.

DS1 DS2 DS3 DS4 DS5 DS6 average

STC 0.55 0.40 0.61 0.33 0.40 0.34 0.44
ϕcos 0.80 0.60 0.62 0.67 0.66 0.49 0.64
ϕST 0.55 0.46 0.61 0.38 0.45 0.55 0.50
ϕSTF 0.82 0.70 0.70 0.68 0.76 0.55 0.70
ϕSTFIDF 0.60 0.60 0.71 0.64 0.78 0.62 0.65
ϕHYB 0.84 0.83 0.72 0.74 0.93 0.64 0.78

Improvement in % 5% 38% 16% 10% 40% 31% 22%

Table 2: The table shows the achieved F -Measure values for STC (first row), for Major-
Clust with the traditional similarity measure ϕcos on TFIDF vectors (second row), and
for MajorClust with the new suffix-tree-based similarity measures (remaining rows).
The improvement refers to ϕHYB with respect to ϕcos.

4 Conclusion

Both the classical vector space model and the suffix tree model play an important
role in text-based information retrieval. Interestingly, these models are used in an iso-
lated way: There is neither a comparison between their advantages and disadvantages
nor an attempt to combine their different properties. This paper introduces three basic



DS1 DS2 DS3 DS4 DS5 DS6 average

STC 0.55 0.40 0.61 0.33 0.40 0.34 0.44
ϕcos 0.82 0.63 0.69 0.55 0.78 0.51 0.64
ϕST 0.55 0.40 0.61 0.33 0.40 0.55 0.47
ϕSTF 0.83 0.64 0.71 0.57 0.85 0.63 0.71
ϕSTFIDF 0.84 0.72 0.71 0.64 0.80 0.60 0.72
ϕHYB 0.84 0.74 0.74 0.66 0.92 0.70 0.77

Improvement in % 2% 18% 7% 20% 18% 37% 17%

Table 3: The table shows the achieved F -Measure values for STC (first row), for Group
Average Link with the traditional similarity measure ϕcos on TFIDF vectors (second
row), and for Group Average Link with the new suffix-tree-based similarity measures
(remaining rows). The improvement refers to ϕHYB with respect to ϕcos.

questions—and provides answers to better understand the relation between both mod-
els: It is shown how a suffix tree can be used as document model, and several similarity
measures that operate on this representation are proposed. Our experiments clearly in-
dicate that word order preservation in the document model is important for document
categorization tasks. The combination of a vector-space-based similarity measure with
a suffix-tree-based similarity measure can lead to a significant improvement of cluster-
ing performance, regardless of the chosen clustering algorithm. Moreover, we identified
properties of the STC algorithm that explain why this approach can not keep up with
any other of the investigated clustering settings on the RCV1.
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