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Abstract

Local area networks (LANs) form the basis for worldwide data communica-
tion, and, during the last years, performance and size of these networks has been
continuously increasing. Inevitably, the configuration of these networks became
an important and sophisticated job. This paper presents solutions for the cable
management problem, which is a central part of the network configuration pro-
cess. Among others we show the following: 1. The simplified cable management
problem (without bundling resctriction) is an instance of the minimum-cost-flow
problem. 2. The standard cable management problem (with bundling resctric-
tion) is NP-complete. From an applicational viewpoint, the central contribution
of this paper is the development of a heuristic algorithm that tackles the standard
cable management problem. Our approach produces sufficiently exact results in
the network configuration domain, and it is much more efficient than exact algo-
rithms that solve the weaker minimum-cost-flow problem.

1 Motivation

Local Area Networks (LANs) form the basis for worldwide data communication. During
the last years, the performance and the size of these networks has been continuously
increasing; networks with more than 1000 nodes are not rare anymore.

Networks are planned and configured by experts. The networks’ sizes, the large
number of available components, the different technologies as well as the structural
and technical restrictions increase the complexity and the time needed when planning
a new network. As a consequence, many network configurations are sub-optimum.
An undersized network, for example, leads to a number of technical faults during
operation. On the other hand, if a network is oversized, a customer can benefit from
its performance reserves; however, these reserves are overpaid in the very most cases

* Reworked and extended version of a paper originally published at the 11. Workshop Planen und
Konfigurieren (PUK 97).



2 CABLE MANAGEMENT 2

because of the rapidly decreasing hardware costs. Note that the turn-around time of
active components is about 5 years, that of passive components is about 15 years.!

Discussions with network experts revealed that there is a need to support the net-
work configuration process. Our long-term objective is the development of a tailored
configuration system. In this paper we focus on a central problem within the network
configuration process, the so-called cable management problem. A practical view to
this problem is given in the next section. Section 3 presents both exact and heuristic
approaches to solve the cable management problem. Section 4 elaborates on the com-
plexity of the cable management problem; in particular it is shown that along with the
bundling restriction the cable management problem becomes NP-complete. The last
section contains a run-time comparison between the heuristic and exact approaches
when solving the cable management problem for a relevant graph class.

2 Cable Management

From a network expert’s point of view, network configuration is divided into two inde-
pendent parts:

(i) Physical Network Planning. On the physical level one is faced with a routing
problem, which stems from the customer’s premises. Given is a CAD drawing
with designated places, the so-called sockets, where a certain number of cables
must be made available. The network expert has to connect the sockets with
wiring rooms by routing the demanded number of cables on cable channels. In
general, the goal is to find a wiring that minimizes the overall cable length.

(ii) Logical Network Planning. This planning level neglects geometrical details; start-
ing point is the readily routed graph created in the physical planning stage. The
points of this graph stand for sockets and active network components, the edges
represent data- and communication cables. The goal of this planning step is a
suitable selection and dimensioning of active components.

Item (7) outlines the cable management problem. Actually, cable management
takes place on three levels. On the bottommost level all sockets of a single floor are
connected with one ore more wiring rooms. A wiring room contains the active network
components such as bridges and hubs. On the second level these wiring rooms are
connected via a vertical point-to-point connection to so-called secondary (building)
wiring rooms; the secondary wiring rooms in turn are connected with a single primary
(campus) wiring room.

The network structure on level 1 and 2 always forms a tree, and thus the related
cable management task is rather simple. However, on the bottommost level often
a complex routing problem has to be solved: A large number of sockets has to be
connected such that technical constraints are considered and the overall routed cable is
of minimum length. An important technical constraint shall be pointed out here: the

L Active components require an electric power supply to work, passive components do not.
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bundling restriction. This restriction claims that all cables of a socket must be routed
together to a wiring room, i.e., as one single line.

In the following, we will shortly refer to the “cable management problem without
bundling restriction” with CM; the “cable management problem with bundling restric-
tion” is abbreviated with CMB. While CM can be solved in polynomial time, section 4
shows that CMB is NP-complete.

As mentioned above, physical network planning is subject to CAD drawings of the
buildings. Essential information such as the demanded sockets, the length and the
maximum capacity of cable channels, or even room names must be attached to these
drawings; superfluous information must be hidden. Figure 1 gives an example of such
a prepared drawing.
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Figure 1: Prepared CAD drawing of a floor with demanded sockets.

3 Solving the Cable Management Problem

This section provides a solution for the cable management problems CM and CMB. In
a first step we will develop a specification of CM which relies on the graph-theoretical
terms flow network or capacitated network. It becomes clear that solving CM, the
cable management problem without bundling restriction, requires to solve the well-
known minimum cost flow problem. Hence there exist several algorithms that are able
to tackle CM; the basic ideas of some of them will be sketched out here. Although
these exact algorithms are of a polynomial time complexity, their run-time behavior
still is unsatisfactory for our application.?

However, we have developed a heuristic approach to solve CMB, which will be
presented in section 3.3. This approach performs pretty well and produces sufficient
results with respect to the cable length optimality criterion.

2Pseudo-polynomial algorithms that solve the minimum cost flow run in O(nm2?CU), with
n,m,C,U denoting the number of points, the number of edges, the maximum cost value, and the
maximum capacity value. There exist also polynomial algorithms running in O(n*log(n)) .
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3.1 Mapping CM onto the Minimum Cost Flow Problem

Let us recall the cable management problem. Given are the following three types of
nodes: (i) sockets s ...s,, (it) wiring rooms t; .. .t,,, and (%) junctions vy ... v,.

These nodes are connected by cable channels; the nodes along with the cable chan-
nels form a cable channel graph (cf. figure 2). Speaking informally, the solution of CM
requires that each socket node s is connected to one wiring room node ¢ by routing one
or more cables via the cable channel graph. As mentioned in section 2, this routing
must happen carefully, considering both cable length restrictions and cable channel
capacities. Moreover, the following optimality criterion is stated: The totally routed
cable length shall be minimum.
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Figure 2: Cable channel graph

The considerations of this section rely on a few standard definitions of graph theory.
For the sake of completeness, the necessary definitions are listed in this place:

1. A graph G is a pair (V, E) where V # ) and F is a set of two-element sets. V
is called the set of points, E is called the set of (undirected) edges. A directed
graph is a graph whose set of edges, F, consists of ordered pairs, which are also
called arcs. Let (v;,v;) be an arc; then v; and v; are called the arc’s tail and head
respectively.

2. A flow network N is a tuple (G, ¢, s,t) comprising a graph G = (V| F), two points
s,t € V, and a mapping ¢ : E — R™. ¢(e) is called capacity of e, s and ¢ are
called source and sink respectively. A mapping f is called flow on N if f fulfills
the following conditions:

F1) Vee E: 0< f(e) <c(e)

F2) YoeViv#£st: S, fle)=>._,f(e). e and e~ denote the tail and
the head of e respectively.

Condition F1 claims the capacity restrictions not to be violated. Condition F2
defines the mass balance constraints for all points except the source and the sink.

Minimum Cost Flow Problem. Let (G,c,s,t) be a flow network. Moreover let « :
E — R be a cost function that defines the cost per unit flow on each edge e € F.
Objective of the minimum cost flow problem is to minimize Y ..z v(e)f(e) subject to
the conditions F1 and F2.
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Remarks. Note that in the minimum cost flow problem as defined here the lower
capacity bound is set to zero. Note further that it is assumed that the flow cost vary
linearly with the amount of flow.

Key idea when mapping CM on the minimum cost flow problem is the interpretation
of routed cables as a flow, which can be generated on the cable channel graph. Taking
this view, each socket node produces an outflow o, which defines the number of cables
required at the node, while the wiring room nodes solely have some inflow. For junction
nodes a “mass balance constraint” must be fulfilled, i.e., for each junction node the
outflow must equal the inflow. The creation of a flow network Ney = (Gewr, con, S, )
and a cost function y¢j, related to the cable channel graph happens within the following
steps.

L Ver i={s1...sn}t U{t1...tn} U{v1...v,} U{s,t}. Le., Veop is comprised of
the socket nodes, the wiring room nodes, the junction nodes, and an additional
source and sink respectively.

2. Ecp contains all edges of the cable channels; their capacity values correspond
to the original values of the channels. Note that these edges are not directed.
Moreover E¢), contains for each socket node s; an arc (s, s;) and for each wiring
room node t; an arc (¢;,t). The capacity values of the arcs (s,s;) is equal to
o(s;), the number of cables required at node s;; the capacity values of the arcs
(t;,t) are unlimited.

3. The length of a cable channel is interpreted as the cost function vy, by which a
unit of “cable flow” is charged when passed along that channel. With respect to
the additional arcs (s, s;) and (¢;,t), the value of oy is zero.

Based on the cable channel graph of figure 3, the subsequent figure shows how the
mapping comes to effect.
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Figure 3: Modified cable channel graph

Given are the flow network Neoyn = (Gew,cowm,s,t) and the cost function
vonm related to some cable channel graph. Then each flow f that minimizes
Yecrey Yom(e) f(e) solves CM and vice versa. This assertion follows direct from
the mapping.
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3.2 Algorithms that Solve the Minimum Cost Flow Problem

There exist several algorithms which solve the minimum cost flow problem. Due to the
complexity of the problem we cannot discuss these algorithms in detail here. However,
we will outline some basic principles on which most of the algorithms rely. This is
useful for both getting an idea of the complexity of the problem and assessing the
heuristic approach presented in section 3.3.

Many algorithms for solving the minimum cost flow problem combine ingredients
of algorithms for shortest path problems and algorithms for maximum flow problems.

e All Pairs Shortest Path Problem. Given are a graph G = (V, E) and a cost
(distance) function v : E — R™. The objective is to compute for each point in
V' the shortest paths to all other nodes in G.

The algorithm of Floyd-Warshall solves the all pairs shortest path problem and
has a runtime complexity of O(|]V|?).

e Maximum Flow Problem. Given is a flow network N = (G, ¢, s,t). The objective
is to determine a flow f that maximizes > ,-_, f(e) — > .+_; f(e).
The preflow-push algorithm and the algorithm of Malhotra, Kumar, & Maheshe-
wari determine a maximum flow f and have a runtime complexity of O(|V]?).

An algorithm that solves the minimum cost flow problem is the cycle-canceling
algorithm. The algorithm first establishes a feasible flow in the network by solving
the maximum flow problem. Then it uses shortest path computations to find cycles
with negative flow costs in the graph; it then augments flows along these cycles and
iteratively repeats the computations for detecting negative cycles and augmenting flows.
The correctness of the cycle-canceling algorithm is founded on the following theorem:

Theorem (Negative Cycle Optimality Condition). A feasible flow f is an optimal
solution of the minimum cost flow problem for a given network N and a cost function
~ if and only if f satisfies the negative cycle optimality condition: namely, the residual
network N contains no negative cost cycle. (N; can be directly derived from N in
O(|E]) steps; in first place N differs from N with respect to its capacity function cy.)

In the following a pseudo-code representation of the cycle-canceling algorithm is listed.

begin
establish a feasible flow f on N;
compute the residual network Ny from N and f;
while Ny contains a negative cycle do
begin
identify a negative cycle W = ((vy, v2), (v2,v3), ..., (Vn, v1));
5 := minfer((vi,v)) | (v3,v;) € W
augment ¢ units of flow in the cycle W;
compute the new residual network from Ny and §
end
end



3 SOLVING THE CABLE MANAGEMENT PROBLEM 7

Remarks. A feasible flow f in the network can be established by solving the maximum
flow problem for N. Negative cycles can be detected with a modified Floyd-Warshall
algorithm. Both steps have a runtime complexity of O(|V[?). Note that the generic
cycle-canceling algorithm is only a pseudo-polynomial-time algorithm since its number
of iterations depends on the functions ¢ and ~.

However, in our cable routing application the following assumptions can be stated:
(7) The maximum capacity c(e) of an edge e is bound by O(|V|) since the number of
socket nodes is bound by V' and each socket node produces at most max (o) = 4 units
of flow. (4i) The cost function 7, which represents the lengths of the cable channels,
will only take integral values less then 100.

Another well-known representative that solves the minimum cost flow problem is
the out-of-kilter algorithm. At every iteration, it solves a shortest path problem and
augments flow along the shortest paths. Unlike the cycle-canceling algorithm, the
out-of-kilter algorithm permits transient violations of the flow capacity.

Both the out-of-kilter algorithm and the cycle-canceling algorithm have been imple-
mented and tested within the system LANeCo. Because of their insufficient run-time
behavior we started to develop a heuristic approach to solve CM. A result is the subse-
quently presented algorithm, which establishes a good compromise between the quality
of the solution and the performance.

3.3 A Heuristic Approach to Solve CM

Our heuristic approach is based on the observation that if the cables are routed via
the shortest path from a socket to a wiring room, there exist only a few bottle-necks in
the graph in many realistic configurations. In this connection, a bottle-neck is an edge
whose capacity restriction is violated.

Stated another way, if one forgot about the capacity restrictions on the edges and just
used Dijkstra’s algorithm to send all flow from the {sy,...,s,} to t, one would end up
quite close to the optimal solution for CM.

Exactly this is the strategy pursued by our heuristic, which can be outlined by the
following three steps.

1. Computation of an initial flow on the uncapacitated network, using Dijkstra’s
shortest path algorithm.

2. Identification and removal of all bottle-necks from the graph.

3. Re-routing of the excess flow of all bottle-necks on the modified network, using
again Dijkstra’s algorithm.

In fact, the algorithm presented below tries not only to solve CM but the harder
problem CMB: Recall that all cables from a single socket should be routed on the same
path to the same wiring room, thus posing the bundle restriction constraint.?

30ne may also think about CM B as the problem of embedding a star graph into an arbitrary
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To precisely describe the algorithm, we enhance the graph definition by a function path.
path : {s1,...,s,} — P(F), where the edges in path(s;) denote a path from s; to t.

We make also use of a function guests, which is implicitly defined by path.
guests : E — P({s1,...,5,}); guests(e) = {s|s € {s1...8,}, e € path(s)}.

Procedure Heuristic (CMB)
bn: List of bottle-necks
pbn: List of possible bottle-necks
new.path: A path through the graph
terminate: Boolean
gl: List of sockets

1. for s; € {s1...s,} do
path(s;) := shortest path for s;

2. bn:={}
for e € E do
if f(e) > c¢(e) then
bn:=bnUe

for e € bn do
remove e from graph

3. while terminate = FALSE do
terminate :=TRUE
for e € bn do
pbn = {}
gl == guests(e)
until g/ =0 Vv (f(e) <c(e)) do
s := select _guest(gl)
gl =gl \ {s}
new.path := shortest path from s to t
if Ve € new.path: f(e')+ o(s) < c(e’) then
path(s) := new.path
terminate :==FALSE
else
pbn = pbn U {€'|¢’ € new.path N f(€') + a(s) > c(€')}

if f(e) > c(e) then
for ¢ € pbn do
remove ¢ from graph
terminate :=FALSE
else
bn :=bn\ {e}

graph. From this point of view the capacity restriction correlates to a congestion constraint while the
optimum criteria of CM B becomes a dilation criteria.
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Remarks. (i) The select guest function defines an order by which the guests are chosen
from a bottle-neck. It turned out to be a good heuristic to select the guests according
to the additional length, that a rerouting would cause. (iz) Note that within step 3
no new bottle-necks are created. (iii) Unlike classical Operations Research algorithms
the heuristics points out bottle-necks even if no solution can be found.

Theorem. The heuristic algorithm has a time-complexity of O(|E| * (|E| + nlogn)).

Proof Idea. One may notice that it is sufficient to compute a Dijkstra solution every
time an edge is removed from the graph. Therefore in the worst case we remove edges
individually from the graph. This results in |E| Dijkstra runs.

Note that the heuristic works for most realistic examples, but it cannot solve prob-
lems, where, in order to find a solution, two bottle-necks have to exchange guests.

4 On the Complexity of CMB

In this section a complexity result is presented. Clearly, CM is in P since it can be
solved with several polynomial-time algorithms (cf. section 3.2). On the other hand,
as the following theorem states, for the cable management problem with bundling
restriction this is not the case.

Theorem 4.1 (NP-Completeness of CMB). The cable management problem with
bundling restriction, CMB, is NP-complete.

Proof. It must be shown that (i) CMB is in NP, and that (i) a problem known to be
NP-complete can be polynomially reduced onto CMB.

CMB has been introduced as an optimization problem; note that it is sufficient to
proof theorem 4.1 for the decision problem variant of CMB, where also a maximum
length L is specified. Then the question is whether for a given flow network a routing
exists that is bound by L.

ad (7) Let IT be an instance of CMB. To show that CMB is in NP, guess a so-
lution respecting II. A solution consists of all paths from the sources s; to the sink
t. Check whether the lengths of all paths is less than the maximum length, i.e., if
Y oiom o(s;)|path(s;)| < L, and if this solution complies with the capacity and
the bundling restriction respectively. Obviously this can be verified within polynomial
time in the input length of II.

ad (#4) We reduce the Knapsack problem, KP, onto CMB. The Knapsack Problem
is defined as follows: Given are two constants B, W, and r objects oy, ..., o0,, each of
which coming with a weight w; and a benefit b;. The question is whether there exists
a subset S C {01,...,0,} such that >, cgb; > B and Y, cgw; < W.

First, we define a transformation f, f € P, that maps an instance of KP onto an
instance of CMB. Second, for this f it will be shown that II € KP < f(II) € CMB.

Transformation. f(II) consists of a flow network and a constant L. L is set tor-Bo—B,
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with Bo :=3,_, b

can be interpreted as sockets each of which having w; in-going cables. Furthermore,
the graph does also contain a vertex ¢, associated with the server, and two auxiliary
vertices o and (3. No other vertices are part of the graph.

The edges in the graph are constructed as follows. Each s; is connected with both «
and [ via edges whose capacities are unlimited. The costs (lengths) of these edges are
defined as v((s;, @) = %, and v((s;, 8)) = 22. Furthermore a and 3 are connected
with ¢, and we set c((a,t)) = W,c((3,1)) = 00, v((a, ) = 0, and ¥((3,t)) = 0. No
other edges are part of the graph. Figure 4 illustrates such a graph. f € P since this
graph can be constructed in O(|r]).

Y=Ages/8m
C—0

Y=(Ages=a,)/g,
C—0

Figure 4: Transforming KP onto CMB

Equivalence. 1t is useful to show first some characteristics of the above graph con-
struction. Any solution of an instance f(II) of CMB divides {s1, ..., s, } into two sets,
O, and Og. O, comprises all sockets routed via o, while Og comprises those sockets
routed via (3. In these terms the overall cable length of a solution is

Z ’wlBO—i— Z wi'Bo_bi:T'BO— Z bl

W; W;
5,€03 4 5;€0a 4 5,€0a

Notice that the capacity restriction can only be violated on the edge («,t).

To show that IT € KP < f(II) € CMB we will proof that O, is equivalent to the
solution S of the Knapsack Problem.

KP = CMB. Let II be an instance of KP with solution S. To solve f(II) we route all
s; with o; € S via « and all other sockets via 3. Now the following holds:

(i) r- Bo — ZSZEOQ b < L:=r-Bp— B, because ZOZES b; > B, and

(i) f(e,t) < W, because 3°  _ w; < W. Hence, f(II) € CMB.

CMB = KP. Now let f(II) be an instance of CMB, and let O, and Op define a solution
for this instance. Then S = {o0;|s; € O,} defines a solution for the instance II of KP:
(i) 32, cs wi < W, because of the capacity restriction on edge (a,t), and

(44) Zol_es b; > B, because r - Bo — > bj < L:=r-Bo— B. Hence, [T KP. o«

5;€0q



5 SOME TEST RESULTS 11

5 Some Test Results

Aside from processing graphs that are descended from real-world applications, we have
implemented a test bench to compare our different approaches. Within this test bench,
grid graphs are generated randomly, where parameters like number and contribution
of sockets as well as server rooms can be altered.

We generated two different sets of cases, one consisting of graphs with no or only
very few bottlenecks (®y) and one with networks, where about 1 percent of the edges
were bottlenecks (®1). These are quite realistic assumptions.

o(s;) has been set to 1 for all sockets s;, so that the Out-of-Kilter and the Cycle-
Cancelling algorithms are able to find the optimal solution for CMB. Our tests were
performed on a Pentium 166; the programs are written in Common Lisp.

The tests were of interest with respect to the following questions:

e What about the quality of the solutions?
For all solvable network in ®y; U ®; the heuristic approach found a solution. This
solution was never, concerning the overall length, more than 3 percent away from
the optimal solution.

e What about the runtime behaviour?
It is mainly interesting to examine the run-time behaviour for some inputs from
®,. The Out-of-Kilter algorithms proofed to be superior to the Cycle-Cancelling
algorithm but even the Out-of-Kilter is much too slow for our desired graph size
(1000-10000 vertices). The heuristic algorithm could handle this input size quite
well.

e When does the heuristic approach start to fail?
Related to CM (o (s;) = 1 Vi) the heuristic approach will fail, if more than 20
percent of the edges in the network are bottlenecks.

6 Conclusion

A central problem when configuring local area networks is the cable management prob-
lem. By defining a mapping of the cable management problem onto the minimum cost
flow problem we were able to employ existing graph algorithms to exactly solve the
cable management problem.

However, we made the experience that the runtime complexity of exact algorithms is
not acceptable when solving real-world cable management problems. As a consequence
we have developed alternative heuristic algorithms. Empirical tests with real cable
channel systems have shown that the heuristic approach efficiently computes optimum
or nearly optimum solutions in most cases.

Aside from the presented heuristic we have also developed a genetic and a simulated
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annealing algorithm. Both can handle II, quite well, but they are here no match for
the heuristic approach.

The goals in our future research concerning the cable management problem are

twofold: (i) improvement of the heuristic approach presented here, and (ii) develop-
ment of concepts that tackle synthesis jobs, like the modification of the cable channel

graph.
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