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Abstract— An in-depth analysis of traffic data provides valuable in-
sights into network traffic structures. This paper presents both methods
for such an in-depth analysis and their implementation within the sys-
tem STRUCTUREMINER. Moreover, it is shown in which way the analysis
performed by STRUCTUREMINER can be used to tackle several admin-
istrative network tasks.
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I. I NTRODUCTION

This paper is devoted to the traffic analysis in computer
networks. Existing tools and approaches to network traffic
analysis apply a desriptive statistical approach: Traffic data
is measured at various places, and the amount and the distri-
bution of the data is presented in the one or other type of bar
charts.1

Compared to the information that could be extracted from
the available data (e. g. packet traces using the RF 1761 snoop
format), this analysis is rather superficial. In fact, applying
an in-depth analysis, significant structures can be identified
within the traffic data. Moreover, these structures can be vi-
sualized and used for several high-level analysis, such as
• the recognition of cooperating users,
• the animation of traffic flows,
• the analysis of network topologies, or even
• intrusion detection.

Such an in-depth analysis can be realized by the combina-
tion of clustering methods, concepts from case-based reason-
ing (CBR), and graph drawing algorithms. Fig. 1 shows the
steps involved.

The physical network is abstracted towards its traffic graph
G, defined below. In a second step clustering is used as a
powerful preprocessing for recognition and visualization:G
is analyzed in order to detect, isolate, or emphasize particular
structures. In a third step these structures as well as the nodes
within these structures are arranged. At this point may draw
up knowledge-based methods that interpret the clustering and
layout results, e. g. with respect to an automatic network re-
configuration or automatic intrusion detection.

The system STRUCTUREMINER has been developed to
support structure identification in technical systems. Sec-
tion II gives an introduction to the system and its underlying

1The tools CINEMA (Hirschmann), TRENDREPORTER(NetScout Sys-
tems), NETWORKAUDIT (Kaspia Systems), OPTIVITY (Bay Networks),
OBSERVER(Network Instruments), or SURVEYER (Shomiti) are represen-
tatives of this approach. A non-commercial system has been developed by
[8], [7].
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Fig. 1. Processing steps within a high-level analysis of traffic data. The
shaded area indicates the steps automated by the STRUCTUREMINER

system.

methods related to network and traffic analysis. Section III
then presents three high-level analysis tasks and shows how
they can be tackled by our approach. The remainder of this
section provides related definitions.

Fig. 2 shows on the left a network from its physical setup
(see also Fig. 12). The nodes in this network form a setV ,
the physical lines (cables) form a set of edges. The closure
of this graph with respect to accessibleness yields the graph
(V, E); it contains an edge between each two nodes that are
physically connected (see Fig. 2, right-hand side).

Given such a completely connected graph(V, E) of a
physical network, the related traffic matrix can be interpreted
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Fig. 2. A small network from its physical setup (left-hand side) and the
related traffic matrix, shown as (weighted) graph (on the right).
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Fig. 3. Using STRUCTUREMINER for Visualizing Network Traffic.

as a set of edge weights. In particular, the traffic matrix de-
fines a mappingω : E → R+, it assigns each edgee ∈ E a
number that specifies the amount of traffic between the nodes
that are adjacent toe. This weighted graph,G = (V, E, ω)
is called traffic graph and forms the base for subsequent clus-
tering and drawing steps.

Definition 1 (Clustering) A clusteringC = {C | C ⊆ V }
of a graphG = (V, E, ω) is a division ofV into sets for
which the following conditions hold:

⋃
Ci∈C Ci = V, and

∀Ci, Cj ∈ C : Ci∩Cj �=i = ∅. The induced subgraphsG(Ci)
are called clusters.EC ⊆ E consists of the edges between
the clusters.

Our clustering and graph drawing methods are of a generic
type and can be applied to all graphs of the formG =
(V, E, ω). The clustering process assigns each nodev ∈ V
a cluster number; the recognition process assigns two clus-
ters a similarity value; the drawing process assigns each node
v ∈ V a point in the Euclidean plane.

Two design goals are pursued during graph drawing:
1. The error of a misclassification is to be minimized. Let
ε(i, j) ≥ 0 denote the misclassification penalty for a node
v that has mistakenly been assigned to clusterCj instead to
clusterCi, whereasε(i, i) = 0. Then

∑
Cj∈C

∑
v∈Cj

ε(i, j)
shall be minimum.
2. The nodes in the clusters as well as the clusters itself are
to be drawn clearly.

II. T HE SYSTEM STRUCTUREMINER

The software system STRUCTUREMINER employs the vi-
sualization strategy described in Section I. Traffic graphs or
traffic traces (snoop format, RFC 1761) can be imported, the
graph is clustered, the clusters are classified and the graph is
finally layouted.

Fig. 4. Kohonen Clustering: Step 1 (left-hand side) and step 2 (right-hand
side).

Fig. 3 shows the surface of STRUCTUREMINER: The
structure of the graph is presented in the tree view on the left-
hand side of the screenshot, while the graph itself is rendered
in the graph view on the right-hand side.

A. Clustering

Clustering is one of the oldest areas in Machine Learning,
early work dates back from 1894 (see [18]). Three typical
approaches have been implemented in STRUCTUREMINER
and can be applied to the traffic graph.
1. MinCut Clustering.This method subdivides a graphG =
(V, E, ω) recursively at its minimum cut.2 Since this method
would always result in|V | clusters, each containing exactly
one node, it also has to be defined when a cluster should
not be subdivided anymore: STRUCTUREMINER only subdi-
vides a cluster when the division would result in an improve-
ment of the so-calledλ-value of the clustering (see [20], [6]).
2. K-Means or Kohonen Clustering.This method defines a
clustering of a graphG = (V, E, ω) implicitly by centroid
nodes: Each node belongs to its closest centroid node. Ini-
tially m, m < |V | centroid nodes are chosen randomly from
|V | (see Fig. 4). Iteratively each centroid node moves into
the center of its cluster (Fig. 4, left-hand side). The algo-
rithm stops, when the positions of all centroid nodes have
stabilized. Details can be found in [1], [12], [16].
3. MajorClust. This method has been especially developed
for STRUCTUREMINER by Stein and Niggemann (see [20],
[17]). Initially, the algorithm assigns each node of a graph
its own cluster. Within the following agglomerative re-
clustering steps, a node adopts the same cluster as the ma-
jority of its neighbors belong to. If there exist several such
clusters, one of them is chosen randomly. If re-clustering
comes to an end, the algorithm terminates.

2The minimum cut of a graph is the smallest set of edges, whose removal
would divide the graph into two not connected components (see also [9]),
details can be found in [21], [15].

Fig. 5. A definite majority clustering situation (left) and an undecided
majority clustering situation (right).
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Fig. 6. The Tree View of STRUCTUREMINER.

The left-hand side of Fig. 5 shows the definite case; most of
the neighbors of the central node belong to the left cluster,
and the central node becomes a member of that cluster. In
the situation depicted on the right-hand side, the central node
has the choice between the left and the right cluster.

After the clustering, the detected graph structure is shown
in the tree view (see Fig. 6). On the top level the connected
components of the graph can be seen, below each connected
component the individual clusters are arranged. If subclus-
ters exist3, they can be found below their parent cluster. The
nodes form the leafs of the structure tree.

B. Recognition

The administrator should be able to label clusters, typical
labels are e.g. “Project X” or “AI Lab”. When a new cluster is
identified, it should automatically be given the same label as
the most similar cluster encountered before, i.e. the clusters
are classified using a case-based approach (see [13], [14]).

In order to find a similar cluster, a so-called similarity
measure is used. Here the similarity measure is a function
sim : P(V ) × P(V ) → R, which measures the similar-
ity between two clusters. When a new cluster is found, it is
compared to all previously labeled clusters using the similar-
ity function. The label of the previous cluster with the highest
similarity (i.e. the highest value of the similarity function) is
used for the new cluster.

For network administration purposes the following simi-
larity measure makes sense:

Definition 2 (Cluster Similarity) Let C1 and C2 be two
clusters of the graphG = (V, E, ω), i.e. C1, C2 ⊆ V (C1

andC2 need not be disjunctive). Then the similarity function
sim between two clusters is defined as:

sim(C1, C2) = |C1 ∩ C2|
C. Graph Drawing

STRUCTUREMINER uses graph drawing methods to place
clusters and to position nodes within clusters. For this, two
common graph layout methods have been implemented and
can be applied by the user to the clustered traffic graph.

3All three clustering methods are able to detect further subclusters within
cluster.

Fig. 7. A randomly drawn real-world traffic graph (top) and its clustering
(bottom).

1. Spring-Embedder.The spring embedder method (see [4],
[11], [5]) relys on information about the optimal distances
between connected vertices. As long as the distance between
two connected vertices exceeds this length, the vertices at-
tract each other. Otherwise the force becomes repelling. By
iteratively applying these forces, an equilibrium, i. e. a layout,
is reached.
2. Hierarchical-Graph-Drawer. An hierarchical graph
drawer (see [10]) subdivides the vertices into vertical layers.
Edge crossings are minimized in a second step by ordering
the vertices within the layers.

STRUCTUREMINER does not only draw the graphs, but it
also combines the clustering information with the drawing
methods. This leads to a graph layout, which emphasises
the graph’s inherent structure and which supports the human
understanding of complex traffic graphs.

This method is now illustrated using an example: The
graph at the top of Fig. 7 depicts a random layout of a small
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Students

Civil
Engineering

Fig. 8. Example at step 3 (top) and example at step 4 (bottom).
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Fig. 9. Example at step 5 (left-hand side) and example at step 6 (right-hand
side).

traffic graph. The user decides to cluster this graph using
MAJORCLUST. The result can be seen at the bottom of Fig. 7.
Three clusters could be classified using a list of already
known clusters, Fig. 8 (top) shows the result. In the next step,
STRUCTUREMINER layouts the clusters (see Fig. 8, bottom),
each cluster is represented by a bounding box. In this exam-
ple a spring embedder algorithm has been used to position the
bounding-boxes. This abstract view onto the graph is called
the structure mode of STRUCTUREMINER. Cluster labels are
only shown in this visualization mode. STRUCTUREMINER
now draws the nodes within each cluster (Fig. 9, left-hand
side). The right-hand side of Fig. 9 shows the final result.

The reader may note that node positions within the clusters
must also take the general cluster layout into consideration:
A node in cluster A, that is also connected to another node
in cluster B, should be placed as close as possible to cluster
B. STRUCTUREMINER extends existing layout methods to
allow for this.
Further features of STRUCTUREMINER are:
• For each cluster it is possible to choose the drawing method
individually, i.e. the cluster “students” could be visualized
using a spring-embedder and the cluster “AI-Lab” could use
an hierarchical-layout method. The new drawing method can
be applied recursively to the subclusters, too.
• By using a slider control, edges with weights below a given
threshold can be blinded out. This allows for the concentra-
tion on important edges.
• In a separate file, the user can associate name templates
with colors, i.e. node names matching the regular expres-
sion “128.234.*.*” (e.g. 128.234.28.34) may be associated
with the color red. Nodes are visualized using the appropri-
ate color.
• Zooming of the graph.
• All results are cached for later use.
• Several graphs can be visualized at the same time.
• Graphs can be printed and exported (e.g. into the wmf-
format).
• Nodes and edges can be added, deleted, and moved, i.e.
STRUCTUREMINER works also as a network editor.

Fig. 10. Traffic Animation: Initial clustering with edges (left-hand side) and
without edges (right-hand side).

III. SPECIAL NETWORK APPLICATIONS

Besides the visualization of network traffic, STRUC-
TUREMINER has been extended and applied to three closely
related problems: The visualization of temporal change
of network traffic (Section III-A), the analysis of network
topologies (Section III-B), and the detection of intrusions
(Section III-C). The traffic used has been recorded at the
universities of Paderborn and Bonn.

A. Traffic Animation

The administrator is highly interested in understanding the
change of traffic during a day, a week or a year. Since the
amount of network traffic makes a quantitative presentation
impossible, a qualitative visualization of traffic change has
to be found. For this the visualization technique described
above can be extended as follows:

Fig. 11. Traffic Animation: Step 2 (left-hand side) and step 3 (right-hand
side).

The network traffic is now defined by a set of traffic
graphs, which share the same nodes:{G1, . . . , Gp} with
Gi = (V, Ei, ωi), 1 ≤ i ≤ p, whereωi : Ei → R, is the
function defining the edge weights. Each graph represents
the traffic of a period of time (e.g. the graphG1 may repre-
sent the traffic from 8am thru 9am,G2 is the traffic from 9am
thru 10am etc.).

The graphG1 is clustered and visualized using STRUC-
TUREMINER. The edges are normally not shown. Colors
are used to highlight clusters. The main idea is now to leave
this first layout unchanged during the presentation of the next
graphsGi, i > 1, but to modify the cluster membership of the
nodes, i.e. their color, only. This enables the user to recog-
nize changes between the initial clustering (represented by
the node layout) and the actual clustering (represented by the
node colors).

An example can be seen in Fig. 10 (left-hand side), the
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Fig. 12. Structured Cabling.

colors used in STRUCTUREMINER are here replaced by bor-
derlines. The figure on the right-hand side shows the same
graph layout, but without edges. Now the next graphG 2 is
clustered. This new clustering is applied to the old layout, i.e.
all nodes keep their positions, but they may belong to differ-
ent clusters. A new cluster membership results in a different
node color. This process continues for the graphsG i, i > 2.
Fig. 11 depicts two typical cluster changes.

B. Analysis of Network Topologies

Choosing a network topology is a main problem for a net-
work administrator, he/she must find a solution which takes
the cabling and the traffic into consideration. Usually every
computer is connected to a so-called tertiary distributor by a
single cable4. The tertiary distributors are connected to sec-
ondary distributors, which are connected to a single primary
distributor. Therefore the cabling forms a tree (see Fig. 12).
This view onto the network is called the physical topology of
the network.

The administrator is now faced with the problem of sub-
dividing the set of computers connected to a tertiary distrib-
utor into several groups. Computers in the same group are
connected directly using a hub or a switch. Because of tech-
nical restrictions the maximum number of computers con-
nected to a single switch or hub is restricted. Since com-
munication within a group is faster than the communication
between groups, the administrator wants computers that com-
municate with each other quite frequently to be in the same
group. Once a good grouping has been found, changes of the
user behaviour or new technologies can influence its quality.

STRUCTUREMINER can now help the administrator to ver-
ify the quality of an existing grouping. For this, the graph
representing the physical topology of the network is visual-
ized using STRUCTUREMINER. The clusters are provided by
the user, they correspond to the existing groups.

Now the traffic graph of the same network, i.e. the graph,
whose edges represent the network traffic, not physical con-
nections, is clustered. This new clustering is added to the
visualization by using node colors, i.e. the previous layout
of the network is not changed. One clustering is now repre-
sented by the layout of the nodes (the physical topology) and
another clustering (the traffic structure) is superimposed us-

4This type of cabling has been standardized in EN 50173 and ISO/IEC
DIS 11801.

Fig. 13. The Groups of the physical Topology (left-hand side) and a
superimposed second Clustering (right-hand side).

ing node colors. By comparing those two clusterings, the ad-
ministrator can see whether the existing grouping still makes
sense.

Fig. 13 (left-hand side) shows an example. The groups
can be easily recognized by the distributions of the nodes,
edges are not shown. Fig. 13 (right-hand side) shows the
superimposed clustering of the traffic graph (the colors are
replaced by borderlines), obviously the clusterings differ only
slightly.

C. Intrusion Detection

The security of computers and computer networks is in-
creasingly important. E-commerce, online-banking, and sen-
sitive documents in enterprise networks need adequate pro-
tection. A major threat arises from attack tools which can be
downloaded easily from public web servers (see for exam-
ple [3]) and which can even be used by untrained attackers
("script-kiddies"). In-depth-knowledge of the attacked sys-
tems is no longer necessary. These attacks, dangerous as they
are, have a certain lack of sophistication in common, i.e. their
way of attacking is predictable. This allows for the use of
software tools, which can detect typical attack patterns.

Today, besides traditional concepts of network security
like firewalls and cryptographic protocols, intrusion detec-
tion systems (IDS) are used in networks. The goal of IDS
usage is the early detection of security violations in order to
prevent or (at least) to reduce damage. A graph-based system
for the detection of intrusions in computer networks has been
described in [19].

D. Denning presents in [2] a model for intrusion detec-
tion and states “... exploitation of a system’s vulnerabilities
involves abnormal use of the system; therefore, security vi-
olations could be detected from abnormal patterns of system
usage.”. The visualization technique presented before and
specially the clustering method of MAJORCLUSTis the base
for the new anomaly detection system described here.

Clustering leads to a simplified and stable structure graph,
representing the general traffic structure in the surveyed net-
work. The left-hand side of Fig. 14 shows an example of
a typical communication structure found in a surveyed net-
work. The star-like topology of the clusters is caused by the
structure of client/server applications and the fact that a lot of
data is exchanged inside working groups but much less data
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a

Fig. 14. A typical Communication Structure(left-hand side) and a scanning
attack by node “a” (right-hand side).

is exchanged between different groups.
Most kind of network attacks cause modifications of this

traffic structure. Fig. 14 (right-hand side) presents a visual-
ization of an attack. The origin of the attack is node “a”,
which is systematically scanning other computers in the sur-
veyed network. The amount of additional traffic is not large
enough to modify the clustering, but statistical values have
changed. The attack causes a larger inter-cluster traffic.

In Fig. 15, we present a different scenario: Node “a” is now
being attacked by a flooding or denial-of-service attack. The
large amount of packets sent leads to a different clustering
result. In addition, a lot of new nodes can be seen, represent-
ing the different spoofed source addresses of the attacking
packets.

A visualization of these structures helps the network ad-
ministrator to detect the sources of anomalies. It enables
him to detect changes of the traffic structure on a relatively
abstract level, while normally intrusions are covered by the
enormous amount of network packets.

IV. SUMMARY

In this work a general strategy for a structure-emphazising
visualization of network traffic is introduced. The automatic
abstraction, recognition, and drawing of traffic graphs allows
the administrator to understand even complex traffic situa-

s1 sn

a

Fig. 15. Victim “a” being attacked by packets with spoofed source
addressess1 . . . sn.

tions and to recognize typical traffic patterns. In addition, an
implementation of this strategy is described. Finally, three
application are presented, which use the visualized traffic
graphs to solve non-trivial problems of network administra-
tion.
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