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Abstract
A tailored model of a system is the prerequisite for various
analysis tasks, such as anomaly detection, fault identification,
or quality assurance. This paper deals with the algorithmic
learning of a system’s behavior model given a sample of ob-
servations. In particular, we consider real-world production
plants where the learned model must capture timing behav-
ior, dependencies between system variables, as well as mode
switches—in short: hybrid system’s characteristics. Usually,
such model formation tasks are solved by human engineers,
entailing the well-known bunch of problems including knowl-
edge acquisition, development cost, or lack of experience.
Our contributions to the outlined field are as follows. (1) We
present a taxonomy of learning problems related to model for-
mation tasks. As a result, an important open learning problem
for the domain of production system is identified: The learn-
ing of hybrid timed automata. (2) For this class of models, the
learning algorithm HyBUTLA is presented. This algorithm
is the first of its kind to solve the underlying model forma-
tion problem at scalable precision. (3) We present two case
studies that illustrate the usability of this approach in realis-
tic settings. (4) We give a proof for the learning and runtime
properties of HyBUTLA.

Keywords: Model Formation, Simulation, Machine Learn-
ing, Technical Systems

Introduction
The manual creation of models by human experts is the
main bottleneck during the development of algorithms for
model-based anomaly detection or model-based diagnosis.
The learning of task-specific models, more precisely, the
automation of model formation by machine learning, is a
promising approach to overcome this modeling bottleneck.
However, while the learning of simple model types can be
considered as being state-of-the-art, model learning is still
a challenge for many relevant system classes. This is es-
pecially true for behavior models of those technical systems
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where intricate aspects such as timing, mode changes, or hy-
brid signals are to be captured.

In this paper, we first identify hybrid timed automata as
a crucial class of models for technical systems such as pro-
duction plants. For this identification, a new taxonomy of
models (and corresponding learning algorithms) is defined
in this section. Because the learning of such models is an
open research issue, the paper then presents a new suitable
learning algorithm: HyBUTLA. This algorithm is studied
empirically using two case studies and a theoretical analy-
sis.

The learning of behavior models is a complex problem
and touches several research fields: machine learning, sys-
tems engineering, systems analysis and simulation. To orga-
nize the different problems and their complexities we have
developed a classification scheme, organized in the Tables 1
and 2 below. The scheme is oriented at two widely-used
model classification principles (dimensions) in engineering
and systems theory (Wymore 1976; Zeigler, Praehofer, and
Kim 2000; Stein 2001): (1) the different forms of a model’s
state space (the x-axis in the tables), and (2) the model’s
structural variability of time as expressed by its number of
modes (the y-axis in the tables). In addition, we will ex-
plicitly distinguish models whose behavior is governed by
stochastic elements.

Our scheme is intended to be complete, in order to be use-
ful as a landscape of the entire spectrum of problems that one
may encounter in practice. In this regard Table 1 organizes
the model formation problems, i.e., the systems engineering
view, while Table 2 organizes the respective machine learn-
ing perspective. With respect to the state space dimension
(x-axis) the following five model types are distinguished:

Memoryless Models. Memoryless models cannot undergo a
state change; their output depend in a definite way on their
input. Models of this type are also called stationary models.
Dynamic Models (with finite state number). The system be-
havior is comprised of a sequence of signal values where
time is modeled explicitly. Each new model state is com-
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Table 1: A classification of models oriented at the dimensions model dynamics and model function.
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Multi-
mode

Single-
mode

∅

Discrete models

Example: hierarchi-
cal automaton

Hybrid models

Example:
hydraulic circuit

Discrete models with
random states

Example:
production system

Hybrid models with
random states

Example:
process industry

Function models

Example: resistor

Discrete models

Example:
temporal automaton

Differential-algebraic
models

Example:
oscilator circuit

Discrete models with
random states

Example:
robot with defects

Differential-algebraic
models with random
states
Example:
defect transitor

finite states infinite states finite states infinite states

Memoryless models Dynamic models Dynamic stochastic models

Complexity of model dynamics (low ↔ high)

puted based on the state’s predecessors. Examples include
temporal automata and temporal logic.
Dynamic Models (with infinite state number). Given a con-
stant input signal and some internal arbitrary state, the be-
havior over time is created by iteratively computing all sig-
nal values along with their derivatives. I.e., the time charac-
teristic is computed implicitly by a numerical solver.
Dynamic Stochastic Models (with finite state number). Dy-
namic stochastic models show a non-deterministic behavior.
This may be caused by random effects such as errors or by
asynchronous parts of the systems that run independently
and show therefore a stochastic timing behavior.
Dynamic Stochastic Models (with infinite state number).
These models are similar to the class of “dynamic stochas-
tic models with finite state number” but comprise an infinite
number of states.

With respect to the structural variability (y-axis) the fol-
lowing differentiation is made:

1. Single-Mode Models. These models show a behavior that
can be defined by a function from C0 or C1, i.e., a con-

tinuous function or a differentiable function whose deriva-
tive is continuous.

2. Multi-Mode Models. These models are designed to cap-
ture a variety of functionalities. For each such functional-
ity a so-called mode is provided. Basically, every system
that can fundamentally change its behavior, such as a ve-
hicle that changes its gear or a valve in a chemical reactor
that is opened, shows multi-mode behavior (Buede 2009).

Apart from the above classification our contributions are
centered around the box shown gray in Table 2, the learn-
ing hybrid, timed automata. A new algorithm HyBUTLA
is explained, which is the first learning algorithm for hybrid
timed automata. HyBUTLA is here studied by means of two
use cases and by a theoretical analysis.

The remainder of the paper is organized as follows. Ori-
ented at the increasing complexity of the learning problem
we first overview related work. We then present the case
studies, and finally report on our theoretical findings.

Table 2: On the learnability of model behavior, considering the model types in Table 1.

C
om

pl
ex

ity
of

m
od

el
fu

nc
tio

n

Multi-
mode

Single-
mode

∅

Rule learning

Examples: (Verwer,
de Weerdt, and
Witteveen 2010)

Hybrid Timed
Automata
Learning

Learnable? Learnable?

Function
approximation
Example:
Regression

Rule learning

Examples: (Verwer,
de Weerdt, and
Witteveen 2010)

Learning of DAEs

Example: (Schmidt
and Lipson 2009)

Learnable? Learnable?

finite states infinite states finite states infinite states

Memoryless models Dynamic models Dynamic stochastic models

Complexity of model dynamics (low ↔ high)
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Related Work
Single-mode, memoryless models can be learned using
function approximation approaches: for this, a function tem-
plate is given a-priori and is then parameterized by minimiz-
ing the prediction error of the function. Generally speaking
such approaches are well studied (Markou and Singh 2003a;
2003b). Single-mode, dynamic models are harder to learn
because the states have to be identified. For a finite num-
ber of states, this can be done by learning (temporal) rules
(Witten and Frank 2005) or by learning of (timed) automata:

For the learning of automata several algorithms exist,
e.g. MDI (Thollard, Dupont, and de la Higuera 2000)
and ALERGIA (Carrasco and Oncina 1999) for the learn-
ing from positive samples. Learning timed automata is a
rather new field of research, e.g. in (Maier et al. 2011;
Verwer, de Weerdt, and Witteveen 2010).

For single-mode dynamic models with an infinite number
of states, the problem is even harder: Only a few projects
try to identify such equation systems (Schmidt and Lipson
2009). As a work-around, often only parameters of an a-
priori model are identified by means of optimization algo-
rithms (Isermann 2004).

No established learning algorithms exist for multi-mode
timed models, so the algorithmic gap opens exactly for those
models suitable for technical systems. This paper tries to
close this gap.

In general, no learning algorithms exist for stochastic dy-
namic models. E.g. it is not possible to identify asyn-
chronous system parts based on observations of the overall
system.

Model Learning Algorithm
In this section, the new algorithm HyBUTLA for the learn-
ing of hybrid timed automata is given. As outlined before,
such learning algorithms are currently a focus point of ma-
chine learning—especially for technical systems. Later on,
two use cases for this algorithm are described.

Figure 1 shows an example of a hybrid timed automaton.

state "run"

state "stop"

event a / t<20ms / p=0.2

function set Θ

function set Θ'

Figure 1: Example of a hybrid automaton.

A transition between two states run and stop is triggered
by an event a—this often corresponds to a mode change of
the system. The transition is only taken if a timing constraint
t < 20ms holds. Additionally, a probability p = 0.2 for tak-
ing the transition is given. Within a state, continuous signals
may change according a function θ.

In the following, a hybrid timed automaton is defined:

Definition 1. (Hybrid Timed Automaton) A hybrid timed
automaton is a tuple A = (S, s0, F,Σ, T,∆, Num, c,Θ),
where

• S is a finite set of states, s0 ∈ S is the initial state, and
F ⊆ S is a set of final states,
• Σ is the alphabet comprising all relevant events.
• T ⊆ S×Σ×S gives the set of transitions. E.g. for a tran-

sition 〈s, a, s′〉, s, s′ ∈ S are the source and destination
states and a ∈ Σ is the trigger event.

• A set of transition timing constraints ∆ with δ : T →
I, δ ∈ ∆, where I is the set of time intervals.
• A function Num : T → N counts the number of obser-

vations that used the transition.
• A single clock c is used to record the time evolution. At

each transition, the clock is reset. This allows only for the
modeling of relative time steps.

• A set of functions Θ with elements θs : Rn → Rm,∀s ∈
S, n,m ∈ N. I.e. θs is the function computing signal
value changes within a single state s.

Please note that the function Num can be used to com-
pute transition probabilities p for a transition 〈v, a, w〉 ∈ T :
p(v, a, w) = Num(v,a,w)∑

(v,b,w′)∈T,b∈Σ,w′∈S Num(v,b,w′) .

The manual creation of such a hybrid timed automaton
is often not possible, e.g. because experts are not available.
Therefore in (Vodenčarević et al. 2011; Maier et al. 2011),
first ideas for corresponding model learning algorithms were
given. The algorithm is defined formally in algorithm 1 and
also sketched in figure 2.

. . . . . . . .

. . . . . . . .

. .

Controller

Network

Controller

Production plant
Synchronized

signals

. . . . . . . .

. . . . . . . .

. . . . . . . .
Events Σ

Synchronized
signals + events

Step 0:
network

measurements

Step 1:
event

generation Step 2:
PTA

construction

Step 3:
state merging

Model
(hybrid timed
automaton)

PTA
(prefix acceptor tree)

Figure 2: General concept for learning hybrid timed au-
tomata, numbers refer to the step of the algorithm 1.

The algorithm works as follows: First in step (0), all rel-
evant signals are measured during a system’s normal oper-
ation and stored in a database. This measurement approach
for distributed plants is described in (Pethig and Niggemann
2012).

In step (1), events are generated. An event is generated
whenever a discrete variable changes its value—this often
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corresponds to an actuator or sensor signal in a technical sys-
tem such as switching a valve or the toggling of a photoelec-
tric barrier. These signals are used later on to trigger transi-
tions between states, i.e. these events define mode switches.
Furthermore, more events may be generated whenever a
continuous signal crosses a, manually defined, threshold.

Often, some events (e.g. turning on an actuator) appear
several times in the set of observations. In this case it must
be checked whether these events are generated by the same
process; this is done based on the events’ timing. As de-
scribed in definition 1, an event’s timing is defined as the
time span since the last event occurrence. So for each
available event a, the Probability Density Function (PDF)—
probability over time—is computed. If the PDF is the sum
of several Gaussian distributions, separate events are created
for each Gaussian distribution.

E.g. in figure 3, the signal a controlling the robot is used
for two different processes with two different timings (i.e.
PDFs): Containers are sorted according to their size, each
size results in a different timing of the robot movements.

Small
containers

Robot
start

Large
containers

event a

event a

time

pr
ob

ab
ili

ty

time

pr
ob

ab
ili

ty

Figure 3: An event which is used in different process con-
texts is treated as two different events.

In step (2), a prefix tree acceptor (PTA) is built. Such a
PTA is a hybrid timed automaton in the form of a tree. In a
PTA, each sequence of observations results in one path from
the tree’s root to a leaf; common prefixes of sequences are
therefore stored only once.

The continuous behavior (i.e. the output process vari-
ables) within each state s ∈ S is modeled in step (2.1) by
learning the functions θs ∈ Θ from definition 1. To this aim,
machine learning methods such as linear regression or neu-
ral networks are applied using the portion of recorded sen-
sor measurements associated with the corresponding state:
Whenever possible, a linear regression is used. If the linear
regression leads to a too high approximation error, a neural
network with the following structure has been used: feed-
forward network, 1 hidden layer, 25 neurons, tan-sigmoid
transfer function, output layer with linear transfer function,
Levenberg-Marquardt back-propagation.

Now in step (3), the compatible states are merged until a
smaller automata is reached, which can still predict the sys-
tem behavior: First, in step (3.1), the compatibility between

two states is checked in the bottom-up order. The bottom-up
order of the nodes is defined here by the lexicographic order
of the shortest sequence of events leading to the node.

If the states are found to be compatible, they are merged in
step (3.1.1). The compatibility criterion consists of several
similarity tests for the two nodes and is also applied recur-
sively to the nodes’ subtrees. This compatibility criterion
will be described later. When two states are merged, their
portions of observed data are combined and new functions θ
are learned. Because after the merging step the resulting au-
tomaton may be non-deterministic, the subtrees of the new
merged state are made deterministic in step (3.1.2) by merg-
ing their nodes recursively (see also (Carrasco and Oncina
1999) for details).

Whenever two nodes are merged, the transition probabil-
ities (here defined by the function Num from definition 1)
must be recalculated. In general, also the functions θs ∈ Θ
from definition 1 must be relearned. But for performance
reasons, this is only done once after the final automation has
been identified.

Because of this recursive determinization step, the or-
der in which the nodes are merged is crucial for the algo-
rithm’s runtime performance. The new bottom-up merging
order used here means a significant speed-up of the algo-
rithm compared to previous algorithms (Thollard, Dupont,
and de la Higuera 2000; Carrasco and Oncina 1999; Ver-
wer 2010). Figure 4 shows an example: On the left hand
side, two nodes will be merged. Before the merging step,
both subtrees must be checked for compatibility, this takes
O(n + n′) steps. After the merging step, the merged sub-
tree comprises n+n′ nodes and has to be determinized, this
again takes O(n + n′) steps. After this merging step, fur-
ther merging steps are done within the subtree, and again,
further recursive compatibility checks and recursive deter-
minization steps are required.

merge merge

top-down
order

bottom-up
order

n n'
m

Figure 4: The advantage of a bottom-up merging order.

The example on the right hand side shows the result of
a bottom-up order merging: Since the subtree has already
been merged in previous merging steps, the subtrees share
a large parts of their nodes and the compatibility can there-
fore be checked efficiently. Furthermore, no recursive deter-
minization of the subtree is necessary because its has been
deterministic before. This is a rather optimist example, but
it captures the gist of the bottom-up strategy. A formal anal-
ysis can be found later in this paper.

A very important issue is the compatibility criterion
for merging two states: Algorithm 2 gives a comparison
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Algorithm HyBUTLA (Σ, O):
Given:
(1) Events Σ
(2) Observations O = {O0, . . . ,On−1} where Oi ∈ (Σ×R)∗,

Oi is one sequence of timed events (e.g. a system cycle)
Result: Hybrid Automaton A
(1) Compute events Σ based on O.
(2) Build prefix tree PTA = (S, s0, F,Σ, T,∆, Num, c,Θ)

based on O. Let S′ be all non-leaf nodes in S.
(2.1) ∀s ∈ S learn θs ∈ Θ using continuous data from O.

PTA is a hybrid automaton according to definition 1.
(3) for all v, w ∈ S′ in a bottom-up order do
(3.1) if compatible(v, w) then
(3.1.1) A = merge(v, w)
(3.1.2) determinize(A) od
(4) return A

Algorithm 1: Hybrid automata identification algorithm Hy-
BUTLA.

function for testing the similarity of two states—following
ALERGIA (Carrasco and Oncina 1999). The main idea is to
check whether the probabilities for for stopping in the state
(step 5 of algorithm 2) or for taking a specific transition (step
6.1 of algorithm 2) are rather similar for both states. This
similarity is checked using the function fractions-different.
This function evaluates the Hoeffding Bound, which com-
pares whether two fractions f0

g0
and f1

g1
are significantly dif-

ferent:

fractions-different(g0, f0, g1, f1) :=

∣∣∣∣f0g0 − f1
g1

∣∣∣∣ >√
1

2
log

(
2

α

)(
1
√
go

+
1
√
g1

)
, f0, g0, f1, g1 ∈ N (1)

where 1−α, α ∈ R, α > 0 is the probability of the decision.
If this inequality is true, the probabilities are different, i.e.
states are different and will not be merged.

If the two nodes are found to be compatible, the compat-
ibility of the respective subtrees must be checked too. This
is done by applying the algorithm 2 recursively to all nodes
in the subtrees (step 6.2 of algorithm 2).

Learning of Hybrid Automata for Energy Anomaly
Detection
The automatic detection of suboptimal energy consumptions
in production plants is a key challenge for the European in-
dustry in the next years (Group 2006; VDI/VDE 2009). Cur-
rently, operators are mainly concerned about a plant’s cor-
rect functioning; energy aspects are still regarded as of sec-
ondary importance. And even if energy aspects are seen as
a problem, operators mainly replace single hardware com-
ponent. Details about these approaches can be found e.g. in
(EWOTeK ; EnHiPro ).

Algorithm compatible (v,w):
Given: v, w ∈ S
Result: decision yes or no
(1) f(v, a) :=

∑
e=(v,a,∗)∈T Num(e), v ∈ S, a ∈ Σ where

∗ is an arbitrary element
(2) fin(w) :=

∑
e=(∗,∗,w)∈T Num(e), w ∈ S

(3) fout(v) :=
∑

e=(v,∗,∗)∈T Num(e), v ∈ S
(4) fend(v) := fin(v)− fout(v), v ∈ S
(5) if fractions-different(fin(v), fend(v), fin(w), fend(w))
(5.1) return false
(6) for all a ∈ Σ do
(6.1) if fractions-different(fin(v), f(v, a), fin(w), f(w, a))
(6.1.1) return false
(6.2) if not compatible(v′, v′′) ∀ (v, a, v′), (w, a, v′′) ∈ T
(6.2.1) return false od
(7) return true

Algorithm 2: The algorithm for defining the compatibility
of two nodes in the prefix tree.

Controller

Network

Controller

Production plant Model
(hybrid automaton)

Energy
measurements

Energy
predictionsComparison

Anomalies

Figure 5: Detecting energy anomalies using hybrid au-
tomata.

Suboptimal energy situations can be detected by means of
model-based anomaly detection as depicted in figure 5:

A model is used to simulate the normal energy consump-
tion of a plant. For this, the simulation model, here a hybrid
automaton, needs all inputs of the plant, e.g. product infor-
mation, plant configuration, plant status, etc. If the actual
energy measurements vary significantly from the simula-
tion results, the energy consumption is classified as anoma-
lous. Such an anomaly detection algorithm is given in (Vo-
denčarević et al. 2011).

Here we present results obtained using the Lemgo Model
Factory (LMF), i.e. an exemplary production plant for bulk
goods. The learned model of this production plant com-
prised 19 states (around 63% smaller than the original PTA).
The (continuous) output variable is the machine’s active
power measured in a range of 0−3.250kW . HyBUTLA uses
measurements of 12 production cycles comprising 6 discrete
and 6 continuous signals for the learning.

There were 30% of anomalous samples in the test cycle.
The targeted anomalies in the continuous part of the system
were signal zero value, signal drop by 10%, and signal jump

1087



by 10%. Performance metrics included the sensitivity, the
specificity, and the overall accuracy (Fawcett 2006). The
experiment was repeated 100 times, and its summarized re-
sults are given in table 3. All anomalies in the discrete part
of the system were successfully detected.

Table 3: Performance metrics for the real data.

Signal faults
Performance Zero value Drop by 10% Jump by 10%

Sensitivity (%) 100 97.20 97.29
Specificity (%) 100 91.66 97.72
Accuracy (%) 100 93.35 97.59

In order to demonstrate the scalability of the HyBUTLA
algorithm, artificial data was generated. The dataset is 5
times larger compared to the real plant (31 continuous and
30 discrete signals). The learned model had a small size, 72
states compared to 170 states in the PTA. Again 30% of the
samples were anomalous and the experiment was repeated
100 times. Table 4 shows the performance metric. These
results demonstrate the applicability of learned models for
anomaly detection in larger systems.

Table 4: Performance metrics for the artificial data.

Signal faults
Performance Zero value Drop by 10% Jump by 10%

Sensitivity (%) 100 82.83 83.11
Specificity (%) 100 97.58 96.32
Accuracy (%) 100 93.15 92.35

Learning of Timed Automata
Learning the timing behavior of discrete manufacturing
plants is currently an important challenge, e.g. in (Preuße
and Hanisch 2009). Such timing models can be used to an-
alyze a plant’s timing behavior and are the basis for tasks
such as system optimization or anomaly detection.

During the anomaly detection phase, the running plant’s
timing behavior is compared to the simulation results as out-
lined in figure 5. A timing anomaly is signaled whenever
a measured timing is outside the timing interval δ (defini-
tion 1) in the learned hybrid timed automaton. Here, the
interval is defined as [µ−k ·σ, µ+k ·σ], k ∈ R+ where µ is
the mean value of the corresponding original observations’
timings and σ is the standard deviation.

In a first experiment, the Lemgo Model Factory is used
again. A frequently occurring error for example is the wear
of a conveyer belt which leads to a decrease in the sys-
tem’s throughput. 12 production cycles are used to learn
a normal behavior model. The PTA comprises 6221 states.
HyBUTLA reduces this to 13 states—this corresponds to a
compression rate of 99.79%.

To verify the model learning algorithm with a high
amount of data, in a second experiment, data is generated
artificially using the Reber grammar (see (Reber 1967) for

details) and additionally extended with timing information.
1000 samples are generated to learn the model, then 2000
test samples are created where 1000 comprise timing errors.
From the initial 5377 states in the PTA, a model with 6 states
is learned.

Table 5 shows the error rates for the anomaly detection
applied to both data sets using different factors k.

Table 5: Experimental results using real and artificial data.

k =1 k =2 k =3 k =4

error rate (%) - LMF 2 5.3 12.8 30
error rate (%) - Reber grammar 0 1.3 7.5 21

Both real and artificial timing errors could be identified
with a high accuracy.

Properties of the Algorithm
In this section, the following properties of the algorithm
HyBUTLA are given: (i) the algorithm runs in polynomial
time, (ii) the algorithm learns the correct automaton given a
sufficient number of samples, i.e. they identify in the limit
(compare also (Gold 1978)), and (iii) the presented bottom-
up strategy has a better runtime behavior in the average than
the previous top-down approaches.

Polynomial Runtime Behavior
Theorem 1. The algorithm HyBUTLA (algorithm 1) runs in
O(n30) where n0 denotes the number of nodes in the original
prefix tree.
Proof: Step (1) of the algorithm runs in O(n0) since the
number of events is less than the number of observations.
Step (2) also uses every observation once, i.e. it runs in
O(n0). The algorithm HyBUTLA from algorithm 1 com-
pares in step (3) a maximum of n20 nodes. In each merging
step for nodes v, w, their both subtrees have to be accessed
by the algorithm compatible and determinized. �

Identification in the Limit
If the number of observations (including negative examples)
is constant, Gold proved in (Gold 1978) that the identifi-
cation of a Deterministic Finite Automaton (DFA) of the
given size k ∈ N is NP-complete, i.e. no efficient algo-
rithms exist—under the assumption that P 6= NP . How-
ever, Oncina and Garcia showed in (Oncina and Garcia
1992) that an efficient algorithm exists when the number of
observations is not constant but can grow during an algo-
rithm’s runtime,—this is called identification in the limit. In
this context, an algorithm is efficient when it has a runtime
polynomial in the number of observations and the number
of observations is polynomial in the size of the optimal au-
tomaton.
Definition 2. (Identification in the limit) Let O be a set of
observations for which an automatonA should be identified.
An automaton learning algorithm identifies A in the limit
if A is found based on observation O, |O| > n for some
n ∈ N.
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It has been proven that stochastic DFAs (Carrasco and
Oncina 1999; Thollard, Dupont, and de la Higuera 2000)
and also stochastic deterministic timed automata with one
clock (Verwer 2010) are identifiable in the limit in polyno-
mial time. Such stochastic automata use only positive obser-
vations.

For hybrid automata, the papers (Henzinger et al. 1998;
Alur and Dill 1994) give decidability preconditions: (i)
decoupled output variables, (ii) initialization after flow
changes, (iii) one clock. These conditions are fulfilled here:
(i) output variables are decoupled, (ii) Θ functions implicitly
reinitialize variables, (iii) only one clock is used.

For the HyBUTLA algorithm, it can be said that as long as
the Θ functions are approximated sufficiently well by some
regression method in polynomial time, and as long as a sin-
gle clock is used, HyBUTLA identifies the hybrid system
behavior model in the limit in polynomial time. The poly-
nomial runtime behavior has been proven above, so only the
identification in the limit has to be shown:
Theorem 2. Let n0 be the number of nodes in the prefix tree
and a the number of nodes in the correct hybrid timed au-
tomaton A = (S, s0, F,Σ, T,∆, Num, c,Θ), i.e. a = |S|.
Then A is identifiable in the limit.
Proof: The analysis follows (Carrasco and Oncina 1994).
Generally speaking, two errors might occur when learning
with the HyBUTLA algorithm:

Type I: Two equivalent nodes are not merged.
Type II: Two non-equivalent nodes are merged.

Type I errors can only occur when for two equivalent
nodes or their transitions the term

∣∣∣ f0

g0
− f1

g1

∣∣∣ has been larger
than the error margin

εα =

√
1

2
log

(
2

α

)(
1
√
g0

+
1
√
g1

)
(2)

(see algorithm 2 and equation (1)). The probability of
such an error is α since the null hypothesis for the Hoeffding
bounding test is the incompatibility. (n0 − a)(|Σ|+ 1) such
tests are performed—one for each node merging and one for
each corresponding transition. By choosing α as a sufficient
small number, the probability of type I errors can be kept
small.

Concerning the approximation speed, for a given εα, the
error probability α decreases with O( 1

2n ) where ñ denotes
the number of observations per states of the optimal automa-
ton n0

a . To see this, equation 2 has to be solved for α and g0
and g1 have to be set to n0

a .
Presuming that type I errors can be neglected, type II er-

rors result in an automaton that is a subset of the correct au-
tomaton. So one of a(a−1)2 compatibility checks have failed
where each such check comprises (|Σ| + 1) tests of the Ho-
effding bounding. Presuming again that g0 and g1 from the
Hoeffding test (equation (1)) grow linearly with the number
of observations, the term

a(a− 1)

2
· (|Σ|+ 1) ·

√
1

2
log

(
2

α

)(
1
√
go

+
1
√
g1

)

converges to zero for growing sample sizes. I.e. both errors
disappear and the algorithm identifies therefore the correct
automaton in the limit. In analogy to the approximation
speed analysis from above, again the convergence speed to
zero of the error probability is O( 1

2n0/a5 ). �

Analysis of the Bottom-Up Strategy
Previous algorithms for learning (timed) automata such as
(Thollard, Dupont, and de la Higuera 2000; Carrasco and
Oncina 1999; Verwer 2010) work in a top-down order.
Again, the order of the node is defined by the lexicographic
order of the shortest sequence of events leading to a node
in the PTA. The algorithm HyBUTLA works in a bottom-up
order (see also figure 4). Because each compatibility check
for nodes v, w comprises a recursive checking of both sub-
trees of v and w, HyBUTLA has the advantage of handling
smaller subtrees near to the root of the original prefix tree.

In the worst case—no merging of nodes—this different
order makes no difference for the runtime behavior. But in
most cases, a significant runtime improvement can be seen
whereat the degree of improvement depends on the structure
of the prefix tree and on the structure of the final automaton.

Here we give a theoretical runtime comparison for an im-
portant class of problems: the plant learning problem. When
observing plants, we usually have sequences of, more or
less, similar lengths—corresponding to a plant cycle. I.e. the
prefix tree resembles a complete tree. And the final automa-
ton usually resembles a sequence of states—corresponding
to the states of the plant cycle.
Definition 3. (Plant Learning Problem) In the plant learn-
ing problem, the prefix tree acceptor is a complete tree of a
fixed node out-degree of k ∈ N. The optimal merged au-
tomaton is a single sequence of states.

Theorem 3. For plant learning problems, previous (top-
down) algorithms run in O(n20 log n0) whereas HyBUTLA
runs in O(n0) where n0 denotes the number of nodes in the
original prefix tree.
Proof: The O(n20 log n0) results from the sum of subtree
sizes for all compatibility checks:

∑n0−1
i=0

∑i−1
j=0(log(n0 −

i) + log(n0− j)) where the numbers correspond to the lexi-
cographic node order. HyBUTLA merges two nodes in each
compatibility check, so the subtrees have always the height
1. This results in a linear run time behavior. �

Empirical measurements (see figure 6) show a rather
O(n20) runtime behavior. Here, the Reber grammar was used
again to compare the runtime. Both algorithms run in n20
in average. However, the bottom-up algorithm works faster
than the top-down approach by a factor of ≈ 3.

Summary and Future Work
The automatic learning of models helps to solve the key
problem of model-based development of technical systems:
The modeling bottleneck—caused by high modeling efforts
and the lack of domain experts. In this paper, HyBUTLA,
the first algorithm for the learning of hybrid timed automata
is presented. A new taxonomy of models and learning al-
gorithms is used to outline the importance of this class of
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Figure 6: Runtime behavior of the algorithms based on bot-
tom up and top down strategy.

models for the analysis of production plants. HyBUTLA is
then analyzed empirically and theoretically. As future work,
a better identification algorithm for hybrid states will be de-
veloped, fixed time intervals will be replaced by PDFs, and
the algorithms will be applied to further plants.
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