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ABSTRACT
The Archive Query Log (AQL) is a previously unused, compre-
hensive query log collected at the Internet Archive over the last
25 years. Its first version includes 356 million queries, 166 million
search result pages, and 1.7 billion search results across 550 search
providers. Although many query logs have been studied in the liter-
ature, the search providers that own them generally do not publish
their logs to protect user privacy and vital business data. Of the
few query logs publicly available, none combines size, scope, and
diversity. The AQL is the first to do so, enabling research on new
retrieval models and (diachronic) search engine analyses. Provided
in a privacy-preserving manner, it promotes open research as well
as more transparency and accountability in the search industry.
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• Information systems→ Query log analysis.
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1 INTRODUCTION
Search engine query logs are a rich resource for many information
retrieval applications [4], such as user behavior and user experience
analysis, or query suggestions and query reformulations. When
a query log also includes users’ clicks and dwell time on search
results, this is a valuable source of implicit relevance feedback
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Table 1: The Archive Query Log 2022 (AQL-22) at a glance.

Search provider URLs Queries Queries SERPs Results
(known domains) (total) (total) (unique) (estimate) (estimate)

Google 89.4M 72.7M 20.0M 34.0M 270.9M
YouTube 41.8M 41.4M 11.3M 19.3M 411.8M
Baidu 78.5M 69.6M 2.9M 32.5M 130.7M
QQ 0.5M 0.5M 0.1M 0.2M 2.6M
Facebook 3.1M 0.2M 0.0M 0.1M 0.8M
Yahoo! 8.8M 2.8M 1.2M 1.3M 11.2M
Amazon 66.8M 0.8M 0.3M 0.4M 9.5M
Wikipedia 68.5M 1.7M 0.6M 0.8M 8.5M
JD.com 4.4M 3.9M 0.4M 1.8M 19.4M
360 1.5M 1.1M 0.1M 0.5M 4.2M

... 540 others 646.6M 161.8M 27.7M 75.4M 839.5M∑
550 1,010.0M 356.5M 64.5M 166.4M 1,709.0M

about their information needs. Modern search engines use this
feedback to train retrieval models for re-ranking [94, 118]. However,
query logs are also highly sensitive data that affect a number of
stakeholders [11, 73]: First and foremost are user privacy concerns.
Over time, if a user frequently uses a search engine, their query log
can be enough to personally identify them and reveal a lot about
their state of mind and health. To some extent, this also applies
to persons or organizations mentioned or implied in queries or
search results. Not least, relevance feedback from a query log is an
important asset for search providers, commercial or otherwise.

All of the above are good reasons for not publishing query logs.
Another, yet questionable, reason for major search providers is that
governments and civil societies around the world, as well as affected
users and third parties, expect more transparency and accountabil-
ity from them due to their market dominance. Access to their query
logs would enable independent investigations on a large scale into
the accuracy and fairness of their search results [11], as well as help
to promote competition [12] and law enforcement [35]. Not least,
relevance feedback from a query log would be an important asset
for public information retrieval research.

We have uncovered and acquired an extensive query log that
has accumulated at the Internet Archive over the last 25 years. We
call this new resource Archive Query Log (AQL). Table 1 gives
an overview of the first version of 2022 and the top ten search
providers as per fused snapshots of Alexa website traffic rankings.
Shown are the respective numbers of archived URLs, the queries
extracted from them, and archived search result pages (SERPs)
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Table 2: Overview of large-scale query logs used in previous work. Private logs are grouped by source. Each source is referenced
by the paper using the largest sample. Number of usages is given under No. Timespan indicates crawled duration; year indicates
date of last included query. Fields with ‘–’ are either not available or not specified. Languages are estimated. The ★marks logs
still available for download; marks industry; academic; mixed affiliations.

Source (name) Clickable link: Queries Queries (uniq.) Sessions Users Clicks Results Task Lang. Span Year Aff. Ref. No

Pr
iv
at
e
(sa

m
pl
e)

AltaVista 575,244,993 153,645,050 – 285,000,000 – – Web en 1m 1998 [103] 3
Dreamer 2,184,256 228,566 – – – – Web zh 3m 1998 [26] 1
Excite 51,473 18,098 – 18,113 – – Web en – 1998 [63] 3
Infoseek 19,933,187 – – – – – Web zh 1m 1998 [46] 1
GAIS 475,564 114,182 – – – – Web zh 2w 1999 [26] 1
Lycos 500,000 243,595 – – 500,000 361,906 Web en 1d 2000 [17] 1
Yahoo! 2,369,282 – – – 21,421 – Web en,zh 4m 2000 [59] 9
OpenFind 2,493,211 – – – – – Web en 1y 2000 [26] 1
Encarta 2,772,615 – 2,772,615 – – – Web en 1m 2002 [110] 1
Utah State Gov. 792,103 575,389 458,962 161,042 323,285 – Web en 5m 2003 [24] 1
Timway 1,255,633 – – – – – Web zh 3m 2004 [81] 1
MetaSpy 580,000 – – – – – Web en 5d 2005 [6] 1
arXiv 44,399 – – 13,304 48,976 – Edu en 3m 2006 [100] 1
TodoCL 192,924 – 348,035 – 360,641 360,641 Web en 9m 2006 [48] 1
kunstmuseum.nl 7,531 1,183 – – – – Lib. nl 2y 2007 [9] 1
Microsoft AdCenter 27,922,224 27,922,224 – – 7,820,000 – Ads en 2m 2007 [74] 2
Europeana 3,024,162 1,382,069 – – – – Lib. en 6m 2011 [22] 1
GNU IFT 2,099 – – – – 4,754 Img. en 1y 2011 [86] 1
INDURE 14,503 2,923 85,215 6,434 – – Edu en 3m 2011 [49] 1
Bing Videos 1,218,936 445,859 174,955 174,955 – – Vid. en 1w 2011 [72] 1
Baidu 362,994,092 10,413,491 87,744,130 – – 13,126,252 Web zh – 2012 [116] 4
CADAL Library 45,892 – 81,759 – – 164,822 Lib. en – 2012 [113] 1
Taobao 1,410,960 – – 4,285 – – Prod. zh 1m 2013 [117] 2
Startpagina 10,000,000 – – – – – Web nl 1m 2014 [55] 1
parsijoo.ir 27,000,000 – – – – – Web fa 2y 2017 [85] 1
CiteSeerX 78,124,884 14,759,852 – – – – Edu en 4y 2021 [101] 1

... 15 query logs from undisclosed sources, all private, 5 , 2 , 8 [14, 15, 18, 20, 54, 58–60, 66, 67, 79, 80, 99, 107, 112] –

Pu
bl
ic

(e
xh

au
st
iv
e)

PubMed 2,996,301 – – 627,455 – – Med. en 1d 2005 [57] 3
AOL (AOL Query Log ’06) 36,389,567 10,154,742 – 657,426 19,442,629 19,442,629 Web en 3m 2006 [96] 14
MSN (MS RFP’06) 14,921,285 – 14,921,285 – – – Web en 1m 2006 17
Belga News Agency 1,402,990 – – – 5,697,287 498,039 Img. en 1y 2008 [87] 2
bildungsserver.de (DBMS) 98,512 31,347 65,513 – 68,604 – Edu. de – 2009 [84] 4
Gov2 Crawl (LETOR 4.0) 2,500 – – – – – Web en – 2009 [98] 2
Sogou 18,393,652 4,580,463 – 8,168,051 – 14,075,717 Web zh 1m 2009 [115] 4
Tumba! 458,623 – – – – – Web en – 2009 [83] 1
European Library (TEL) 162,642 – 75,100 – – – Lib. en 1y 2010 [83] 4
Yandex 10,139,547 – – 956,536 – 49,029,185 Web ru – 2011 2
Bing (MS Image Ret. Ch.) 11,701,890 – – – – – Img. en – 2013 1
Bing (ORCAS) ★ 18,823,602 – – – 18,823,602 18,823,602 Web en – 2020 [38] 3
AOL (AOLIA) ★ 11,337,160 – – – – 1,525,524 Web en – 2022 [82] 1
StackOverflow ★ 9,046,179 – 16,164,506 – – – Q&A en – 2022 2
Archive Query Log (AQL) ★ 356,450,494 64,544,345 – – – 1,709,027,339 Multi Multi 25y 2022

and results linked to them. The SERPs of many queries have been
archived multiple times, enabling diachronic analysis. At the time of
writing, we collect this data for a total of 550 search providers. The
Archive Query Log 2022 includes 356 million queries (65 million
unique), 166 million search result pages, and 1.7 billion search
results—an unprecedented scale for a public query log. Based on a
comprehensive review of public and private query logs used in the
literature (Section 2), we detail our acquisition method (Section 3),
initial analyses (Section 4), and discuss our plan to share the data
with the information retrieval community in a privacy-preserving
manner, as well as limitations and ethical considerations (Section 5).

2 BACKGROUND AND RELATEDWORK
We take an in-depth look at the use of query logs and search result
pages in information retrieval research as well as a brief one at
search transparency and accountability and at the Internet Archive.

2.1 Query Logs
Table 2 compiles an overview of 14 public and 31 private query logs
from a focused literature review. Using the DBLP1 title search, we
screened all publications that mention “query log”, “click log”, or
“clickthrough” in their title—a high-precision heuristic to ensure
logs play a role, at the expense of recall. From the 642 publications
found, the 492 related to information retrieval (e.g., not databases)
were downloaded. We then searched for occurrences of the pattern
“ <number> <qualifier> ‘queries’ ” in them with regular expressions,
assuming that virtually all researchers using query logs also specify
how large they are.2 This facilitated the manual extraction of pas-
sages and tables from 120 random randomly selected publications
for the table. Some were manually added to cover public logs.
1https://dblp.org/
2Examples: “1 million queries”, “386,879 queries”, “386 879 queries”, or “386k queries”.
A qualifier is a sequence of up to 20 characters excluding end of sentence punctuation.

https://web.archive.org/web/20130609163138/http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection/U500k_README.txt
https://web.archive.org/web/20070203002037/http://research.microsoft.com/ur/us/fundingopps/RFPs/Search_2006_RFP.aspx
https://web.archive.org/web/20090625005923/http://retrieve.shef.ac.uk/~imageclef/
https://web.archive.org/web/20110904134728/http://www.uni-hildesheim.de/logclef/Daten/DBS_file_descrption.pdf
https://web.archive.org/web/20230220183106/https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/letor-4-0/
https://web.archive.org/web/20190923175811/http://www.sogou.com/labs/resource/q.php
https://web.archive.org/web/20110627163614/http://www.uni-hildesheim.de/logclef/Daten/LogCLEF2009_file_description.pdf
https://web.archive.org/web/20121108060407/http://switchdetect.yandex.ru/en/datasets
https://web.archive.org/web/20131124064042/http://web-ngram.research.microsoft.com/GrandChallenge/Datasets.aspx
https://microsoft.github.io/msmarco/ORCAS.html
https://github.com/terrierteam/aolia-tools
https://archive.org/details/stackexchange
https://www.tira.io/task/archive-query-log
https://dblp.org/
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Despite the fact that query logs are rarely published, researchers
in academia have sought alternative means of access, usually by
collaborating with search providers of many kinds. Weighted by
the number of publications per log, research with very large query
logs was conducted in industry and at major search providers (the
AOL log being the exception). The AOL log [96] and its recent
extension AOLIA [82] are the largest query logs ever made publicly
available. The AltaVista log and the Baidu log are the two largest
private logs. Our Archive Query Log is on par with the latter two.
The ratio of unique queries to all queries averages 0.24. With 0.18
our log is slightly lower due to its multilingual nature. In addition to
queries, organic search engine query logs may include information
about users, clicks, sessions, and results, while our log only includes
queries and results (SERPs and the result documents themselves).

Given the main tasks for which query logs are used, the AQL can
be used to study many—though not all—of them at a scale not easily
attainable for academic researchers: Query understanding involves
analyzing user information behavior. Subtasks include determining
the user’s search intent [61] and examining user populations [63],
particularly with respect to geographic [105] and temporal [64]
dimensions. In addition, much research has focused exclusively on
how people search for health information, from both consumer [95]
and expert perspectives [102]. Query suggestion involves exploiting
query logs to recommend alternative queries to the user. Subtasks
include clustering [17], query similarity [25], and query expansion
using relevance feedback [44, 45, 59]. The AQL can support both
tasks in general, in particular as pre-training data. However, model
transfer to a specific application domain will be required.

Session analysis examines how users reformulate their queries
across one or more sessions [5], a key subtask being session detec-
tion [52, 56]. User modeling involves analyzing logs to build models
of user interaction. Subtasks include examining the distributions
of query lengths and query terms [65, 103, 106, 111], relevance
feedback mechanisms [104], and what users consider relevant [62].
The AQL does not support these tasks; it lacks session or user data.

Learning to rank is about exploiting query logs to derive effective
ranking models. Subtasks include developing click models [70, 71]
and models that incorporate implicit feedback such as dwell time on
pages [3, 114]. The AQL supports this task despite the lack of click
data. Craswell et al.’s [38] rationale for the design of theMSMARCO
benchmark corroborates this claim. Here, only passages (judged for
relevance) from the top-ranked documents returned by Bing for a
query are included as ground truth for training, which has proven to
be sufficient to yield effective retrieval models. The same is true for
the AQL, where the ranked results of third-party retrieval models
encode the domain expertise and the implicit relevance feedback
from query logs that the respective search providers incorporated
into their development.

2.2 Search Engine Result Pages
Search engine result pages (SERPs) are how search engines present
results to users in response to a query. SERPs for web search typi-
cally consist of a list of links to web pages ranked by their relevance
to the user’s query, along with additional information such as snip-
pets, images, and other features designed to help users meet their

information needs. SERPs have been studied in information re-
trieval research for many years to understand how users interact
with them, how they can be improved, and how they can present
information more effectively to better meet user needs. The AQL
contains the SERP for the majority of its queries.

One area of SERP research has focused on understanding how
users interact with search results. Researchers have used techniques
such as eye-tracking [10, 68, 69] and brain monitoring [88] to study
how users perceive SERPs. These studies have led to a deeper un-
derstanding of how to improve the presentation of results and the
ranking algorithms used by search engines. Another area of SERP
research is the study of their design and layout [90, 91]. These
longitudinal studies show how SERPs evolve in response to new
technologies. The AQL provides millions of archived SERPs which
include all necessary assets for showing them in a browser, so that
they can be used for user studies and offline experiments.

2.3 Transparency and Accountability
In November 2022, the Digital Market Act [1] and the Digital Ser-
vices Act [2] came into force in the European Union. The former
applies primarily to so-called “gatekeepers” in digital markets, such
as Google for the search market, the latter to all digital services that
act as so-called (information) intermediaries. Both laws contain
provisions that, among other things, require search providers to in-
crease data privacy, transparency, and accountability, with the goal
of ensuring fair and open digital markets. In particular, legislators
are allowed to exercise regulatory and market investigation pow-
ers, which may include looking into the algorithms used. The AQL
complements these measures and also gives civilian initiatives the
means to conduct independent investigations of search providers.
Previous studies on search accountability raise the question of
how to inform users about a search engine’s retrieval algorithms
to raise awareness of how they work [37, 76, 77] and to ensure
unbiased results [51, 78]. While we cannot consider all previous
work in this context, a recent overview was provided at the FACTS-
IR workshop [92, 93] on fairness, accountability, confidentiality,
transparency, and safety in information retrieval. In terms of both
algorithm transparency and search engine accountability, archived
search result pages are perhaps one of the best representations of
a search engine’s behavior, and archiving them on a large scale
allows for corresponding post-hoc analyses.

2.4 Internet Archive
The Internet Archive is a nonprofit digital library that has grown to
become the largest and most comprehensive digital library in the
world since its inception in 1996. In addition to providing access to
extensive archives of books, audio recordings, videos, images, and
software, the Internet Archive’s best-known service is probably the
Wayback Machine, which provides a digital archive of the web.3 At
the time of writing, it contains 788 billion web pages. We believe
that the AQL accumulated both due to accidental crawling by their
crawlers and intentional archiving by their users, since any user
can request archiving of any publicly accessible URL. AOLIA [82]
extends the original AOL log by providing links to archived versions
of its search results, originally specified as URLs only.
3https://web.archive.org/

https://web.archive.org/
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3 MINING THE ARCHIVE QUERY LOG
Besides general-purpose search engines, many other websites such
as social media platforms offer a search function (a query field)
for users. The answer to a query is often encoded as URL linking
to a SERP, which is displayed to the user. Like other URLs, these
“SERP URLs” can be linked to by web pages and are thus included
in automated web crawls. The Internet Archive, as the world’s
largest digital library of archived web pages, is likely to include
many SERPs, a fact which can be exploited for large-scale query
log mining. This section describes a multi-step process to mine a
query log from the Internet Archive’s Wayback Machine, which
eventually becomes the Archive Query Log (see Figure 1).

First, a list of popular search providers including general-purpose
search engines and all kinds of media platforms is compiled (see
upper part of Figure 1; Section 3.1). Second, for each provider the
top-level domains, subdomains, and URL patterns under which
SERPs are likely to be found are semi-automatically generated
and the URL captures found in the Internet Archive (using the
CDX API4 of the Wayback Machine) are aggregated (Section 3.2).
Third, the queries are extracted from the URLs using provider-
specific parsers (Section 3.3). Fourth, the HTML content of archived
SERPs is downloaded and its search results snippets are extracted
(Section 3.4). Both queries and snippets form the AQL 2022 Corpus
(Section 3.5); the corpus will be made accessible for shared tasks and
experiments via the TIRA platform [97] as discussed in Section 4.

3.1 Search Provider Collection
Our search provider collection shall contain both (1) websites that
primarily act as search engines, and (2) highly relevant websites
that have been identified by their Alexa Rank.5

Regarding (1), we exploit a dedicated list of search engines on
Wikipedia which we extend manually.6 Regarding (2), we take
the 3,088 archived snapshots of the Alexa top-1M ranking be-
tween June 2010 and November 20227 and apply reciprocal rank
fusion [36] considering the 1,000 highest ranked domains of each
snapshot. The resulting list of 13,647 domains is narrowed down to
951 search providers by checking whether a search bar is present
on the website’s landing page of the respective provider. For this
purpose we load the landing page directly or from an Internet
Archive snapshot from 2022, render the page if JavaScript content
is found, and check for HTML forms or <div> elements containing
the pattern “search” in its attributes.

The merged list of 1,028 unique candidate search providers is
used to identify relevant URL patterns as well as suitable approaches
for query extraction (see Section 3.2). Further manual curation
steps weed out providers because they have been identified as
spam, do not encode the search query in their URL, or offer only
an autocomplete search that links directly to a page. Also, search
providers are merged because more than one of their second-level
domains appears in the merged Alexa list (e.g., so.com is merged
into 360.com). After these analyses and curation steps, the list still
includes 793 search providers.
4https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
5The Alexa Rank was a ranking system that reflected the global popularity of websites
based on estimated visits; it was shut down end of 2022.
6See https://en.wikipedia.org/wiki/List_of_search_engines
7See https://web.archive.org/web/*/s3.amazonaws.com/alexa-static/top-1m.csv.zip

1,072
URL

prefixes

+
1,028

candidate
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Section 3.1 curation cleansing
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total

queries
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Section 3.2
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Section 3.3
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Section 3.4
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extraction

extraction

Figure 1: Overview of the AQL creation process.

3.2 Provider Domains and URLs
Since many search providers are available under multiple top-level
domains and/or subdomains,8 we expand the list of the 793 provider
domains manually as well as with publicly available lists.9

However, on high-traffic domains, only a small fraction of all
archived URLs is likely to link SERPs and thus is relevant for our
purposes. To identify common prefixes of URLs that contain queries,
we submit multiple test queries using the search provider’s query
field and examine the URL the request is redirected to. For discon-
tinued or otherwise inaccessible websites, we resort to the most
recent functional snapshot of the search provider’s homepage in
the Internet Archive. The final list of 1,072 URL prefixes is used
to filter the list of available captures with the help of the Internet
Archive’s CDX API. This API allows to request a list of URLs by
the crawling date they were archived in the Wayback Machine
for a certain domain or URL prefix. Via the CDX API, a list of all
available captures for each of the 1,072 URL prefixes is retrieved
and filtered for successful captures with HTML content (i.e., HTTP
status code 200). This process further narrows the search provider
list with archived SERPs to 550.

Altogether, 1.1B URL captures along with their crawling date are
collected, an average of 1.8M URLs per provider. Most of the cap-
tures originate from search engines (226M URLs, 22 %) with Google
being the largest contributor of archived URLs (89M URLs, 9 %).

3.3 Query Extraction
To extract the query from a SERP URL, the URL is parsed into
its components10 and the query encoding is identified as one of
three possible categories: (1) URL parameter, (2) path segment,
or (3) fragment identifier. Examples of the first two patterns are
illustrated in Figure 2.
8Google lists 190 supported domains https://www.google.com/supported_domains
9E.g., https://github.com/JamieFarrelly/Popular-Site-Subdomains
10RFC 2396; https://datatracker.ietf.org/doc/html/rfc2396.html

http://so.com
http://360.com
https://github.com/internetarchive/wayback/tree/master/wayback-cdx-server
https://en.wikipedia.org/wiki/List_of_search_engines
https://web.archive.org/web/*/s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.google.com/supported_domains
https://github.com/JamieFarrelly/Popular-Site-Subdomains
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(a) Query parameter:

scheme network loc. path query string

https://google.com/search?q=covid+19+usa+map&start=10&ei=...

URL prefix query offset

(b) Path segment:

scheme network loc. path

http://chefkoch.de/rs/s0/backen%20dinkelmehl/Rezepte.html

URL prefix page query

Figure 2: Illustration of the components of SERP URLs and
the relevant parts for query extraction by (a) query parameter
or (b) path segment.

For each of the three patterns, configurable query parsers are
built using the urllib package:11 (1) parsing a query parameter by
its name (e.g., name q for the first URL in Figure 2), (2) parsing a
segment from the URL’s path component by its index (e.g., index 2
for the second URL in Figure 2), or (3) parsing a parameter from the
fragment identifier by treating it like a query parameter. In addition
to the query, URLs can include a page number or offset. These help
in reconstructing longer rankings from separate SERPs for the same
query that are captured at nearly the same time. Google’s SERPs,
for instance, are paginated with 10 results per page. Thus, the page
number can be used to infer the continued ranks of documents on
the next page.

To determine the query, page, and offset of the parsers for each
search provider, we manually examined the captured URLs in a
similar way as for URL prefixes (see Section 3.2) and derive suited
URL parser types and parameters. Regular expressions are option-
ally used to limit parsing to specific URLs, and to further refine the
parsers (e.g., removing prefixes such as page- in /search/page-4).
The resulting set of parsers is applied to all available captures of
all search providers, ordered by preference, so that the first parser
that returns a non-empty query, page, or offset is used.

Altogether a total of 356.5M URLs containing queries are col-
lected. Again, the majority of queries stems from search engines
(162M queries, 46 %) such as Google (73M queries, 20 %) and Baidu
(70M queries, 20 %). On average, 648,092 queries are extracted
per search provider. This unfiltered set of queries contains large
amounts of duplicates (288M, 81%) for which we identify three
reasons: (1) the same query is captured at different times, (2) the
query is captured at approximately the same time but with different
result page offsets, and (3) the same query is captured as issued
from different users (e.g., if a user identifier is included in the URL).
This is supported by the fact that search engines are the main con-
tributors of duplicates (131M); however, government sites have the
highest share (91 %).

We create a set of unique queries for each search provider by
selecting a representative query URL (the capture with the shortest
query string) from each group with the same parsed query.12 If
a group of duplicates has multiple captures with the same query
11https://docs.python.org/3/library/urllib.html
12As split according to RFC 2396.

input#sb_form_q

ol#b_results li.b_algo

h2 a

div.b_caption

Figure 3: Screenshot of an archived Bing SERP along with
the CSS selectors for the query and result items. The nearest
archived version of the referenced article is shown on the
right.

parameter and URL length, the representative URL is chosen by
lexicographic order. We refrain from using the capture’s timestamp
as a tie-breaker to not favor older or newer captures. The dedu-
plication results in 64.5M unique queries across the final list of
550 search providers. There are 117,353 unique queries per each
provider on average. Again, the search engines make up the major-
ity of deduplicated queries (31M, 45 %).

3.4 SERP Acquisition and Parsing
Previous query logs rarely contain results for the logged queries
(see Section 2). The AQL however, since it is obtained from web
page captures in the Internet Archive, naturally contains the full
ranking of results for the majority of queries. By downloading and
parsing the archived SERPs, one has access to the full ranking of
results for each search query (including the processed query itself,
as it appears in the query field of the SERP). Parsing the search
results including result titles, referenced URLs, snippets, and the
query from a SERP facilitates not only the comparison of different
search provider’s ranking functions but also the evaluation of their
query understanding and reformulation techniques.

We download the SERP HTML content for the unique search
queries identified in the previous step and save it inWARC format:13
For the 20 most popular search providers SERPs are downloaded
for all unique URLs; for the remaining providers the download is
limited to a maximum of 25,000 due to resource constraints. Con-
nection timeouts and other errors during download are handled by
repeating the download up to 10 times, after which we consider
the archived SERP snapshot to be unavailable. Altogether, a total
of 166.4M SERPs are collected most of which originate from search
engines (ca. 40 %) and media sharing platforms (ca. 20 %). The down-
loads are ongoing, and we plan on scaling them up (see Section 5)
to compile the full set of estimated SERPs available (see Section 4).

From the downloaded SERPs the search result ranking is ex-
tracted and processed using a configurable parser pipeline based on
13ISO 28500:2017; https://iipc.github.io/warc-specifications/
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FastWARC [19], Beautiful Soup,14 and Approval Tests.15 In detail,
the CSS path or selector16 to the result list items is specified, as
well as the path from each individual result item to its title element,
the referenced URL anchor, and the snippet text. Similarly, the pro-
cessed query is parsed based on the CSS path to the query field.
Figure 3 shows an archived Bing SERP and highlights how CSS
paths are used to select relevant HTML tags. Each search provider
can have multiple parser configurations, ordered by preference,
that, for example, account for a changed HTML structure after
redesigns of a search provider’s SERPs.

We derive parser configurations (CSS paths) for the 50 most pop-
ular search providers by generating Approval Tests according to
following workflow for a provider: (1) Randomly sample 10 SERPs
from the downloaded SERPs. (2) For each SERP manually annotate
the expected ranking and query. (3) Apply the existing parser con-
figurations to the sampled SERPs. (4) Compare the parsed results
to the annotations. (5) If the annotations do not match, inspect the
HTML page in a browser, adapt or extend missing patterns, and add
them to the provider’s parser configurations. New configurations
are added iteratively until all sampled SERPs are correctly parsed.
Altogether, 70 parser configurations for SERPs and 57 parsers for
processed queries of the 50 most popular providers are derived.
With additional manual tests for the 10 most popular providers (see
Table 1), the parsers pass a test suite of 444 Approval Tests. The
code base is available open source.17

3.5 The Archive Query Log 2022 (AQL-22)
We merge the filtered URL captures, queries, and SERPs into a
single corpus to be used in subsequent analyses (see Section 4).
This corpus, the Archive Query Log 2022, consists of two artifacts:
(1) a set of queries and (2) a set of ranked documents (search result
snippets). Both artifacts are stored in a GZIP-compressed, newline-
delimited JSON format.18 To create the query set, each captured
URL is assigned a unique identifier based on the full URL string
and timestamp of the capture.19 The captured URL is associated
with its parsed query, the location of the stored copy of the SERP,
and the processed query and search results parsed from that SERP.
In addition, we include the URL to the SERP’s archived snapshot
on the Wayback Machine and tag the query language based on the
parsed query text using cld3.20

The set of result documents is created by concatenating all
ranked search results (i.e., rank, snippet text with title, and docu-
ment URL to the referenced web page) from all parsed SERPs. Each
document is assigned a unique identifier based on the document
URL, the timestamp of its origin query, and the rank of the snippet
on the SERP. We also associate each document with the attributes
of the corresponding query in the query set. Two additional fields
are the URL to the nearest available snapshot of the SERP on the
Wayback Machine and the snippet language as tagged using cld3

based on the snippet’s title and text.
14https://pypi.org/project/beautifulsoup4/
15https://pypi.org/project/approvaltests/
16See https://facelessuser.github.io/soupsieve/ for a list of supported selectors. The
CSS path to an HTML element can be inferred using a web browser’s developer tools.
17AQL code: https://github.com/webis-de/archive-query-log
18https://jsonlines.org/
19Name-based SHA-1 UUID according to RFC 4122: https://rfc-editor.org/rfc/rfc4122
20Google’s Compact Language Detector; https://github.com/google/cld3
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Figure 4: Distribution of query lengths for 5 search providers
contributing the highest amount of queries. The remaining
search providers are grouped as “others”.

4 ANALYSIS
In order to provide a better understanding of the corpus, we conduct
some analyses on the query and SERP characteristics and highlight
potential use cases. Detailed analyses of the AQL will be the subject
of future work. At the time of writing, we could download and
parse all URLs and queries. However, due to computational con-
straints, only a subset of all available SERPs could be parsed yet (cf.
Section 4.4) and are used for our analyses.

4.1 Query Characteristics
A central feature of the AQL is its diversity. In addition to the va-
riety of search providers, it also features a total of 104 different
languages21 with Cantonese and English being the most frequently
used query languages (see Table 3). The query length in the AQL
follows a skewed distribution, with most queries containing be-
tween 5 and 20 characters. Figure 4 provides a visualization for the
5 search providers with the most queries. We inspect samples of
queries with 5, 10, 100, and 1000 characters. Very short queries are
often Mandarin keywords (e.g,⻓袖衬衫男, “men’s long sleeve shirt’)
or single English words (e.g., video). Queries with 10 characters
are mostly keyword-style queries from Latin languages (e.g., comic
font) or hashtags (e.g. #чемпионат, “championship”). Most longer
queries extensively use search operators like site: and order:, in-
clude literature references, or include long multi-line text like stack
traces from errors in programming.

Second, we evaluate whether obscene or unwanted terms com-
prise a large share of the AQL. We use lists of obscene words for
27 languages22 and expand the list of English terms with new ex-
pressions found in the downloaded queries. We check each query
from the two most dominant languages, Cantonese and English,
for their lists of obscene terms. Overall, only 1.30 % of all queries
contain obscene terms. The highest share of these obscene queries
21Out of 107 detectable with cld3.
22Compiled by Shutterstock; https://github.com/LDNOOBW/List-of-Dirty-Naughty-
Obscene-and-Otherwise-Bad-Words.
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Table 3: The Archive Query Log 2022 (AQL-22) in detail. Categories manually annotated. Top-3 languages tagged by cld3. Ticks
in the timelines indicate days of archival from Jan 1999 to Dec 2022. Number of SERPs and results estimated (c.f. Section 4.4).

Search provider Category URLs Queries SERPs Results

Total Total Unique Lang. Timeline Estimate Estimate Lang. Timeline
Google Search engine 89,364,948 72,673,044 19,953,592 en, th, zh 33,974,648 270,874,852 en, de, pt
YouTube Media sharing 41,846,525 41,365,166 11,250,179 ru, ko, ja 19,338,215 411,842,988 ru, en, ko
Baidu Search engine 78,506,825 69,619,339 2,900,878 zh, ga, ja 32,547,041 130,685,140 zh, en, mr
QQ Web portal 515,895 513,608 51,228 zh, ja, lb 240,112 2,552,346 –
Facebook Social media 3,131,212 159,087 35,492 ca, en, bs 74,373 790,571 –
Yahoo! Web portal 8,787,707 2,827,103 1,232,589 en, la, de 1,321,671 11,223,594 en, es, pt
Amazon E-commerce 66,795,164 776,127 315,068 en, ja, zh 362,839 9,458,241 en, ja, it
Wikipedia Wiki 68,547,509 1,707,058 621,971 sv, zh, en 798,049 8,483,111 –
JD.com E-commerce 4,370,884 3,902,604 370,473 zh, hr, ja 1,824,467 19,393,742 –
360 Search engine 1,495,365 1,090,152 65,596 zh, ja, mg 509,646 4,234,775 zh, mr, en
Weibo Social media 6,245,012 5,324,385 1,886,458 zh, ja, en 2,489,150 26,459,198 –
Reddit Forum 94,162 89,492 36,852 en, la, de 41,837 444,719 –
Vk.com Social media 643,354 153,642 46,134 ru, sr, ky 71,828 763,518 –
CSDN Social media 21,863 946 736 zh, en, vi 405 4305 –
Bing Search engine 11,263,539 6,152,425 2,253,965 en, zh, pt 2,876,259 15,330,377 en, pt, fr
Twitter Social media 55,499,532 48,084,528 3,869,382 ja, en, gl 22,479,517 293,657,729 en, ja, es
Twitch Streaming 21,931 15,225 11,445 en, zh, de 6,294 66,904 –
eBay E-commerce 7,927,123 5,507,532 1,379,646 zh, en, la 2,574,771 30,515,373 en, es, de
Naver Search engine 1,063,991 756,153 400,490 ja, ko, vi 353,502 3,568,671 ko, en, hi
AliExpress E-commerce 4,620,331 1,861,642 55,849 en, lb, fy 870,318 6,944,542 en, fr, ru

... 530 others 559,225,614 93,871,236 17,806,322 en, zh, de 43,677,091 461,732,643 en, zh, de∑
550 1,009,988,486 356,450,494 64,544,345 zh, en, ga 166,432,033 1,709,027,339 en, ru, ko
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Figure 5: Time coverage of the total amount of different data
types collected for the AQL-22, per quarter.

were observed on pornography (19.48 %), torrent (3.73 %), and fo-
rum (2.87 %) websites. For non-pornographic search providers, most
stem from heroturko.org (16.13 %, e-commerce), reddit.com (5.05 %,
forum), and kat.cr (4.08 %, forum).

Regarding time coverage, Figure 5 shows that the archival of
SERPs dropped between 2004 and 2010 for unknown reasons, which
might indicate that using more specialized SERP parsers are re-
quired, or that results were loaded using Javascript. The queries,
however, extend over the whole timespan, with tens of thousands
of queries recorded for the early 2000’s as well. Table 3 contains an
overview of the 20 most popular services’ time coverage.

4.2 SERP Characteristics
In Table 4, we consider the most frequently referenced URLs from
search results as an indicator of plausible rankings. Excluding fre-
quent self-references (e.g., to internal redirect pages), by far themost

Table 4: Most frequent document domains in the top-5 or the
top-10 search results compared to references to the search
provider’s own domain (⟲) or 791,646 other domains (...).

Top ... ⟲

5 2.9 % 0.8 % 0.6 % 0.4 % 0.3 % 0.3 % 0.3 % 0.2 % 24.3 % 69.6 %
10 2.2 % 0.7 % 0.5 % 0.3 % 0.3 % 0.2 % 0.3 % 0.3 % 24.6 % 70.4 %

frequently ranked domain is wikipedia.org contributing 2.9 % of
all top-5 results and 2.2 % of the top-10. Other popular domains like
youtube.com and facebook.com also frequently appear on high ranks.
The most frequent languages are shown in Table 3. Interestingly,
Cantonese is not among the top-3 languages of search results, even
though it is the most frequently used query language, representing
a bias that should be evaluated more thoroughly in future work.

4.3 Use Cases
The AQL opens up a variety of use cases for the IR community. We
highlight two promising applications.

First, we evaluate the exact overlap of the queries in the AQLwith
the collections used in various TREC tracks from 2004 to 2022 [7,
8, 21, 27–34, 39–43, 108, 109]. As shown in Figure 6, the highest
overlap exists with the Web tracks, specifically in 2010 (74 %), 2003,
and 2009 (both 72 %). The lowest overlap was found with the Deep
Learning tracks, ranging between 0–2 %. The high overlap on older
Web tracks poses an interesting opportunity for enriching existing
benchmarks. While query logs have been used previously in shared
community tasks [83], shared tasks often specify only one query
for each topic. We propose to sample semantically similar queries

https://github.com/google/cld3
http://heroturko.org
http://reddit.com
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http://wikipedia.org
http://youtube.com
http://facebook.com


SIGIR ’23, July 23–27, 2023, Taipei, Taiwan J. H. Reimer, S. Schmidt, M. Fröbe, L. Gienapp, H. Scells, B. Stein, M. Hagen, and M. Potthast

1% 1% 0% 2%

7% 10% 0%

33% 54%

20% 26% 34%

16% 72% 32% 72% 74% 30% 68% 58% 56%

D
L

M
Q

R
ob

Te
ra

W
eb

2002 2014201120082005 2019 2022

Figure 6: Query overlap with TREC Robust (Rob), Terabyte
(Tera), Million Query (MQ), Web, and Deep Learning (DL).

from the AQL to generate topics with user query variations [16]
automatically. On the other hand, the low overlap with the Deep
Learning tracks highlights a sampling bias in creating the Deep
Learning topics. The topics were sampled from the official eval set of
MS MARCO, which includes only natural language questions from
a Bing query log [43, 89]. The AQL, on the other hand, contains a
much broader range of queries, including queries from other search
providers and non-question-like queries. Therefore, we propose
using the AQL to create new, “harder” Deep Learning topics that
are more representative of other kinds of queries users submit.

Second, we demonstrate how global trends are reflected in the
AQL on the example of the Covid-19 pandemic. In Figure 7, we count
the occurrences of the terms covid 19, sars cov 2, and corona virus

each month since the outbreak in 2019. A peak can be observed
during the first global lockdowns in early 2020, but overall, interest
in the pandemic has yet to stagnate. The example showcases how
the AQL enables unique opportunities for diachronically analysing
global trends.

4.4 Total Size Estimates
As Section 3 explains, we have only downloaded and parsed a subset
of all available SERPs. Based on our results so far, we estimate 85 % of
all SERP snapshots to be available for download. Assuming an
estimated parsing success rate of 55 % and 10.6 results per SERP, we
expect the total number of parsed SERPs in the AQL-22 to be 166.4M
with 1.7B search results. As outlined in Section 5, we continue to
download and parse SERPs and look forward to expanding the AQL
with the IR community.

5 DISCUSSION
Access to query logs has long been an insurmountable barrier to
answering critical questions about the search economy at large—if
not to ask them in the first place. As a consequence, the media
and general public were left with no choice but to trust search
engines on questions such as “How accountable are organizations
operating search engines in terms of measures of interest, like repre-
sentation and fairness?”, “How have these accountability measures
changed for these organizations over time?”, and “How honest has
self-reported accountability of these organizations been?”. As the
most extensive public query log to date, the AQL enables detailed
analyses of and thus facilitates the public discourse on the search in-
dustry. It also furthers the research on information retrieval, whose
retrieval models are often presumed to be behind or at least de-
tached from those of industry players (e.g., [13]). Using the AQL,
researchers will also be able to answer questions such as “How far
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Figure 7: Timeline of Covid-19-related terms in the AQL-22.

is academic information retrieval research behind industry?”, “How
much do query logs contribute compared to other ranking signals?”,
and not least “What are domain-specific differences?”.

However, with the scale of the AQL, several ethical and legal
considerations also arise, particularly around personally identifiable
information or illegal content. To address inherent risks, we release
the data by imposing a barrier to access that minimizes potential
harms while giving the information retrieval community as much
freedom to conduct their research as possible. In addition, we also
acknowledge the challenges of creating such extensive collections
and discuss our plans for opening contributions to the AQL.

5.1 Accessing the AQL
Our goal with releasing the AQL is to do so responsibly and in a
privacy-preserving manner. We work towards that goal using the
TIRA platform [50, 97] for any analysis on the AQL one wishes to
conduct. TIRA has been used since 2012 [53] to facilitate shared
tasks with software submissions while ensuring that the submit-
ted software can process the data without giving the participants
themselves access. TIRA achieves this through sandboxing, i.e.,
disconnecting the software from the internet while it is running
and thus ensuring that it can not leak data. We added the AQL
to TIRA to allow researchers to submit their analysis software as
Docker images. The platform is open to the public, and we provide
examples and documentation on how to perform analyses on the
AQL.23 Specific shared tasks will be developed as well.

TIRA allows running arbitrary software packaged in Docker
images on the AQL dataset in a privacy-preserving way, as the
analysis results are blinded until reviewed. Specifically, we review
the output and the software installed in the Docker image to ensure
no sensitive data is leaked. TIRA runs the software in a Kubernetes
cluster (1,620 CPU cores, 25.4 TB RAM, 24 GeForce GTX 1080 GPUs)
with a timeout of 24 hours, so that almost any evaluation is sup-
ported.24 In summary, TIRA provides the ideal means to work with
the AQL, ensuring sensitive query log data remains secure and is
responsibly used for academic research.

5.2 Limitations and Scalability
While creating the AQL, we encountered several technical limi-
tations that guide future optimizations and improvements. First,
the various parsers for creating the AQL-22 corpus were written
semi-automatically. This approach was error-prone and inefficient,
requiring much manual work. When building future versions of the
AQL, we plan to train token classification models like BERT [47]
to automatically generate query parsers based on a training set
derived from our existing parsers. Manually finding the correct CSS
23https://tira.io/task/archive-query-log
24We can extend the timeouts and available resources individually if the need arises.
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paths for snippets on a SERP is a similarly tedious process that can
benefit from wrapper generation [75], which has successfully been
applied to web page parsing [23].

Second, dynamic content cannot be interpreted by our existing
parsers. The SERPs of DuckDuckGo, for instance, are loaded dy-
namically using JavaScript and thus cannot be parsed from just the
archived HTML snapshot, yet the search results are still archived
as a different record. To overcome this limitation, we plan to use
a headless browser to render the SERPs and then parse them. A
helpful library for this type of content extraction is Scriptor.25

However, the last and most pressing limitation is that all URL
captures and SERP contents must first be downloaded from the
Internet Archive, which is restricted by both rate limits and network
bandwidth. As estimated in Section 4.4, currently 96 % of the SERPs
still need to be fully downloaded from the Internet Archive and
thus could not yet be parsed. Hence, more computational resources
are required to use this extensive collection. In this regard, we will
reach out to the Internet Archive whose privileged access to their
infrastructure will allow for much faster compilation of the data.

5.3 Contributing to the AQL
There is an inherent boundary between search providers and re-
searchers when using query logs. The AQL lowers this boundary by
exploiting the web archival process of the Internet Archive. As we
have described above, physical limitations such as network speed
restrict the rate at which we can further grow the AQL. One way to
overcome such limitations is to distribute computations across an
open community, an approach that has been successfully employed
in mathematics.26 We will therefore open source our code to allow
the community to contribute query and SERP parsers.

6 CONCLUSION
The Archive Query Log provides an unparalleled academic resource
for information retrieval researchers. It consists of over 356 million
queries, over 166million SERPs, and over 1.7 billion results extracted
from the SERPs, all coming from 550 search providers spanning
25 years. The AQL is the largest and most diverse query log ever
publicly available. From an academic perspective, the AQL will
enable researchers to tackle challenges in information retrieval that
were not possible until now, ranging from the development of new
retrieval models, the development of query suggestion or query
prediction models, to large-scale diachronic analyses of search
engines; to name the most salient research avenues. Furthermore,
our release plan for accessing the AQL ensures that we minimize
the harm to society and will allow researchers to safely research
the transparency and accountability of commercial search engines
while protecting user privacy.

In this paper, we have documented the initial version of the AQL
(i.e., AQL-22). We have plans to release future versions of the AQL
that will further expand the collection. First, we will continue to
add to the long tail of search providers and continue our efforts to
download and extract more data from the Internet Archive. Con-
tinuing to grow the types of data provided, the next version of the
AQL will also include the content of web pages for each result in a
25https://github.com/webis-de/scriptor
26E.g., at the Great Internet Mersenne Prime Search: https://mersenne.org/

SERP. Not least, we will investigate the training of large re-ranking
models based on this data.

Altogether, the AQL is an exceedingly valuable resource for re-
searchers and will enable advances in information retrieval research
that were previously insurmountable due to the relatively low scale
of query logs. Because of its scope, size, and diversity we consider
the AQL a significant contribution to the community, and these
dimensions will continue to grow as we build upon and expand
future versions of the AQL.
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