
To appear in an IEEE VGTC sponsored conference proceedings

The NETSPEAK WORDGRAPH: Visualizing Keywords in Context

Patrick Riehmann Henning Gruendl
Bernd Froehlich

Virtual Reality Systems Group ∗

Martin Potthast Martin Trenkmann
Benno Stein

Web Technology and Information Systems Group ∗

Bauhaus-Universität Weimar

Figure 1: The textual Web interface versus the WORDGRAPH visualization of the NETSPEAK writing assistant.

ABSTRACT

NETSPEAK helps writers in choosing words while writing a text.
It checks for the commonness of phrases and allows for the re-
trieval of alternatives by means of wildcard queries. To support
such queries, we implement a scalable retrieval engine, which re-
turns high-quality results within milliseconds using a probabilistic
retrieval strategy. The results are displayed as WORDGRAPH vi-
sualization or as a textual list. The graphical interface provides an
effective means for interactive exploration of search results using
filter techniques, query expansion and navigation. Our observations
indicate that, of three investigated retrieval tasks, the textual inter-
face is sufficient for the phrase verification task, wherein both views
support context-sensitive word choice, and the WORDGRAPH best
supports the exploration of a phrase’s context or the underlying cor-
pus. The preferred view for context-sensitive word choice seems
to depend on query complexity (i.e. the number of wildcards in a
query).

Keywords: Information visualization, visual queries, text visual-
ization, information retrieval, Web n-grams, wildcard search.

Index Terms: H.5.2 [User Interfaces]: —

∗E-Mail: <first name>.<last name>@uni-weimar.de

1 INTRODUCTION

NETSPEAK is a tool for context-sensitive word choice. It allows
its users to check the commonness of a phrase and to express un-
certainties in choosing words by formulating queries that contain
wildcards. The search results are provided as a classic textual list
as well as a legible and interactive graph visualization—the WORD-
GRAPH (see Figure 1). The graph layers follow the structure of a
query, showing one layer for every literal word and wildcard, which
are filled dynamically with the results obtained from NETSPEAK’s
retrieval engine. Search results visualized by the WORDGRAPH
can be interactively explored, refined, and expanded by means of
filter techniques and navigation. Queries are processed by a scal-
able retrieval engine, which returns high-quality results within mil-
liseconds using a probabilistic retrieval strategy. It indexes a corpus
of more than 3 billion word n-grams up to a length of n = 5 words
along with their occurrence frequencies in a large portion of the
Web.

NETSPEAK’s intended audience is people who have doubts about
how certain phrases are commonly formed. In particular, second
language speakers face difficulties in this respect, since their innate
sense of language—their sprachgefühl—is often not sufficiently de-
veloped. They ask themselves how others would formulate a par-
ticular phrase; a piece of information that is generally hard to come
by. NETSPEAK implements a statistical solution by contrasting al-
ternative phrases based on their absolute and relative occurrence
frequency. Our working hypothesis is that choosing more common
phrases over uncommon ones may improve readability, comprehen-
sibility, and writing style. Obviously, this is not true in general, but
as non-native speakers we found the suggestions of NETSPEAK im-

1

To appear in an IEEE VGTC sponsored conference proceedings

mensely helpful in all our daily writing tasks.
A variety of visualizations of relations among words, phrases

or collocations (also called “keywords in context”) have ap-
peared in recent years, such as the WORDTREE, PHRASENETS,
Google Scribe, and AWKCHECKER, to name only a few. The
WORDTREE [17] employs suffix trees to index text and to visu-
alize the tree starting from the query word(s). PHRASENETS en-
code subject-predicate-object triplets in a directed graph, which
are mined from a text by specifying the predicate and consider-
ing subject and object as wildcards (e.g. ?loves?). Google
Scribe [6] assists authors with writing by suggesting the next word
in a phrase—very similar to AWKCHECKER [12]. Both systems are
(likely to be) based on language model theory.

The WORDGRAPH visualization and the NETSPEAK engine
can be considered as a generalization and a combination of the
aforementioned approaches: the WORDGRAPH has more com-
plex layout constraints than the tree layout of the WORDTREE.
PHRASENETS visualize only triplets with a fixed predicate and the
force-based layout limits the phrase legibility. Both tools focus on
corpus exploration instead of being interactive word choice tools.
AWKCHECKER and Google Scribe do not employ visualizations at
all, as they are not intended for ad hoc wildcard queries.

Thus, our contributions are threefold. First, we present the
WORDGRAPH, a dynamic graph visualization for interactive explo-
ration of search results for complex keywords-in-context queries.
Secondly, we introduce our new and scalable NETSPEAK retrieval
engine that operates efficiently on a huge corpus of text from the
Web. Lastly, we perform a pilot user study comparing WORD-
GRAPH visualization and the textual Web interface, analyze query
logs of the NETSPEAK service and investigate typical retrieval tasks
related to choosing words.

2 RELATED WORK

Besides the aforementioned systems, several others keyword-in-
context tools exist or are being developed. Viégas and Watten-
berg present the Web Seer prototype1, which allows one to con-
trast query suggestions from the Google Web search engine for
two queries. The visualization encompasses two trees whose roots
represent one of the queries each, while the children represent the
suggestions obtained from Google. Shared suggestions are unified,
thus visualizing tree similarity, while edge thickness and node po-
sitions tell something about how often a suggested query has been
posed. Paley’s Textarc [11] visualizes the sentences of a text cen-
trifugal along an ellipse shape. Frequent words of the text are de-
picted inside the ellipse. The legibility of individual phrases is lim-
ited with this approach. C. Harrison [7] has generated static word
graphs from small portions of the Google n-gram corpus as show-
case examples. However, no means is provided to generate these
visualizations on demand, and it also lacks interaction so that it
can only be viewed as is. Collins et al. [5] visualize the text pro-
duced by automatic machine translation tools in the form of lattice
graphs in order to support translators. Uncertainties of the tools
in choosing the right translation for a word are represented by al-
ternative paths in the lattice graph, where the commonness of an
alternative, as determined by the language model underlying the
machine translator, is encoded by size and shade of the nodes and
their edges. Here, however, no manual wildcard queries are pos-
sible. Although our system displays a graph instead of a tree, the
Degree-of-Interest Trees (DOITrees) by Heer and Card [8] and the
SpaceTree by Plaisant et al. [13] provide some convenient patterns
for the navigation of different levels of detail, supported by ani-
mated transitions in huge tree structures.

Corpora of n-grams are frequently used in natural language pro-
cessing and information retrieval for training purposes [10]. Search
engines comparable to ours include WEBCORP, WEBASCORPUS,

1 http://hint.fm/projects/seer

PHRASESINENGLISH, and LSE.2 They target researchers of lin-
guistics whose primary concern is the study of language use. By
contrast, our search engine also targets the average writer, whose
information needs and prior knowledge differ from those of a lin-
guist. An informal comparison suggests that NETSPEAK outper-
forms these tools both in terms of retrieval speed and the extent of
the indexed language resources. Cafarella et al. [4] propose a re-
trieval engine that supports linguistic queries; a comparison with
our approach is still missing.

3 NETSPEAK’S INTERFACES

The NETSPEAK text interface provides a straightforward way to
search for phrases.3 It is designed to conform to current and tradi-
tional best practices of Web interfaces for search engines, with an
emphasis on simplicity and minimalism (Figure 1, left). It utilizes
a query language that is defined by the grammar shown in Table 1.

Table 1: EBNF grammar of the NETSPEAK query language.

query = { word | wildcard }5
1

word = ([”’ ”] (letter { alpha })) | ”, ”
letter = ” a ” | ... | ” z ” | ” A ” | ... | ” Z ”
alpha = letter | ” 0 ” | ... | ” 9 ”
wildcard = ”? ” | ”* ” | synonyms | multiset
synonyms = ” ~ ” word
multiset = ” { ” word { word } ” } ”

A query is a sequence of literal words and wildcard operators,
wherein the literal words must occur in the expression sought af-
ter, while the wildcard operators allow to specify uncertainties.
Currently four operators are supported: the question mark, which
matches exactly one word; the asterisk, which matches any se-
quence of words; the tilde sign in front of a word, which matches
any of the word’s synonyms; and the multiset operator, which
matches any ordering of the enumerated words. The interface dis-
plays the search results for the given query as a ranked list of
phrases, ordered by decreasing occurrence of absolute and relative
frequencies. This way, the user can find confidence in choosing a
particular phrase by judging both its absolute and relative frequen-
cies. For example, a phrase may have a low relative frequency but
a high absolute frequency, or vice versa, which in both cases indi-
cates that the phrase is not the worst of all choices. Furthermore,
the Web interface offers example sentences for each phrase, which
are retrieved on demand when clicking on the plus sign next to a
phrase. This allows users who are still in doubt to get an idea of the
larger context of a phrase.

The WORDGRAPH visualizes the resulting n-grams of a query
in a layered graph (Figure 1, right) and offers interactions with the
result set. The nodes of the graph correspond to the words of the
n-grams, and an edge represents the connection between two sub-
sequent words of an n-gram. Consequently, each n-gram of a result
set is represented as a path through the graph. The layers of the
graph are arranged in vertical columns to facilitate reading. Every
column corresponds to one element of the query, which can be a
literal word or a wildcard character, as defined in Table 1. Multiple
occurrences of the same word in a column are merged into a single
node.

The graph can be drawn in two ways, a split path view and a
condensed path view (Figure 2). The split path view displays the n-
gram paths of a result set independently—similar to the text view—
and reveals the overall complexity of the result set. The condensed
path view merges shared subpaths of different n-grams, which is a
compact abstraction of the result set, where individual n-grams are

2 www.webcorp.org.uk, www.webascorpus.org, www.phrasesinenglish.org, and [14].
3NETSPEAK’s text interface is accessible at www.netspeak.cc.

2

To appear in an IEEE VGTC sponsored conference proceedings

still

still

without

is

waiting for a reply

? waiting * response

answer

response
answer

for an

for a
to

waiting

waiting
is answerfor anwaiting

waiting

~

waitingstill
without

are

is
while

answer
response

reply

for a
for an

to
for your

for the

waitingstill
without
are

is
while

answer
response

reply

for a
for an

to
for your

for the

QueryItem Edge Path Wordanswer

Figure 2: The query ? waiting * ~response combines one
word and three wildcards; the search results are shown. The WORD-
GRAPH visualizes n-grams as paths through the graph, merging mul-
tiple occurrences of a word within a column. Every path can be
drawn individually (split path view, middle) or shared subpaths can
be merged (condensed path view, bottom). The latter view increases
the result capacity (i.e. a path for is waiting for a reply is
there although this 5-gram is not part of the result set.)

no longer directly visible. While merging the paths significantly
enhances overall legibility of large graphs, it also brings about the
problem of increased result capacity (i.e. more paths can be created
than are actually supported by the result set). However, the con-
densed path view is the preferred view in practice, which is why we
have developed several interaction techniques to counter this prob-
lem, and, to allow users to explore the result set.

4 WORDGRAPH INTERACTIONS

While the text interface of NETSPEAK offers no interaction be-
yond the retrieval of example sentences for a particular n-gram, the
WORDGRAPH provides various means for exploring the search re-
sults, including filter techniques, query expansion, and support for
navigation.

The filter operations allow users to reveal the paths passing
through a certain node, to emphasize certain paths, and to select
a subgraph by specifying a set of nodes (Figure 3). The filter op-
erations are orthogonal, as in they can be applied repeatedly in an
arbitrary order. Users may also switch between the condensed path
view and the split path view at any time. Transitions between dif-
ferent views are animated to facilitate the understanding of the re-
lationships between the different layouts.

Since the basis of our retrieval engine is the Google n-gram cor-
pus, only n-grams up to a length of n = 5 words can be retrieved.
By means of our query expansion technique we can address this
limitation and allow the retrieval of longer phrases based on those

waitingstill
without

are

is
while

answer
response

reply

for a
for an

to

for

waitingstill answerfor an

waitingstill
answer

response

replyfor a
for an

for

Figure 3: The WORDGRAPH offers several filter operations: (1) Hov-
ering the mouse above a node highlights all n-gram paths passing
through the node. (2) Selecting a node deemphasizes all paths of
n-grams that do not contain the selected word. Multi-selection is sup-
ported. (3) The subgraph filter hides elements that do not belong to
selected paths.

answer ?
*

still
without

are

is
while

response

reply

for a
for an

to

for

waiting

from
your
any

to
all

?

answerstill
without

are

is
while

response

reply

for a
for an

to

for

waiting

Figure 4: Query expansion: by clicking on the wildcard icon next
to the word answer, a set of queries is generated for all n-grams
whose paths pass through this word’s node, complemented by the
respective wildcard. The n-grams retrieved with these queries are
integrated into WORDGRAPH which results in a new column.

already displayed in WORDGRAPH (Figure 4). By clicking on the
expansion icons shown next to a word while hovering over it, new
queries are constructed for all n-grams whose paths go through the
word’s node, using up to four preceding words and appending the
respective wildcard ? or *. The union of the result sets of all
these queries is then integrated into the existing graph structure,
adding new columns as needed. Every expansion entails O(k3) new
queries, where k denotes an upper bound on the number of incom-
ing edges of a word in the WORDGRAPH with k typically being
between 4 and 10. The n-grams formed in this way, where n > 5
may be incorrect or meaningless; yet, sensible results have been
observed in many cases.

The query expansion technique produces word graphs that con-
tain more columns than fit on the screen. To allow for naviga-
tion, we implemented horizontal panning and scrolling support. An
overview bar at the bottom of the screen (Figure 5) helps the user to
control the horizontal panning and allows to immediately jump to a
specific column, which scrolls automatically into the center of the

3

To appear in an IEEE VGTC sponsored conference proceedings

Figure 5: Navigation: The overview bar at the bottom of the screen
shows the columns of WORDGRAPH. Selecting a column (collapsed
or not) moves that column into the center using an animated transi-
tion. Also, the whole graph can be moved horizontally while columns
are collapsed and expanded as necessary.

screen. Columns, which do not fit on the screen appear collapsed
on the overview bar. Vertical navigation is also provided within
columns in case the vertical space is too small to display all words.
Currently, words outside the vertical scope are clipped while ver-
tical scrolling makes them visible. At first, the implementation of
an explicit focus and context technique was envisioned, but edges
of the graph pointing towards clipped words are a sufficient hint at
information outside the visible area.

5 WORDGRAPH LAYOUT DETAILS

This section explains the important design decisions for the layout
and rendering in WORDGRAPH. Central concern is the legibility of
phrases, and hence the placement of words in subsequent columns
is essential. The layout also needs to reflect properties of individ-
ual words (e.g. font, size, color and opacity), properties of edges
(e.g. path, color and width) and attributes of n-grams (e.g. absolute
and relative occurrence frequency). The layout process consists of
four steps: (1) horizontal partitioning of available screen space into
columns; (2) vertical ordering within these column; (3) exact place-
ment of words and (4) drawing of edges between (underscoring)
words.

5.1 Screen Partitioning and Word Placement
The initial layout of WORDGRAPH evolves from the submitted
query. The longest n-gram returned determines the number of nec-
essary columns. The width of each column considers font sizes,
word lengths and additional padding, as shown in Figure 6. Within
a column, each word is horizontally centered, except for the first
and last column respectively.

The vertical arrangement can be done in two ways: one strategy
is the top spread ordering (Figure 7, bottom), which is similar to
the text view. The second strategy is the center spread ordering,
which places words in a column with decreasing font size, starting
from the center and alternating the placement between above and
below (Figure 7, top). The latter strategy is preferred since it places
the most important query result in the middle of the screen and fa-
cilitates the tracing of alternative phrases without introducing large
inter-column skips.

For the vertical word placement within a column we experi-
mented with two possible layouts, shown in Figure 6: the maximal
word spreading uses the entire vertical and horizontal space of a
column for equally distributing the words; it is independently ap-
plied for each column. The alternative grid-based word placement

waiting answer

response

replyfor your

to

for a

for an

for the

column0 column1 column2

window width

w
in

do
w

 h
ei

gh
t

waiting answer
response

reply

for your

to
for a
for an
for the

w
in

do
w

 h
ei

gh
t

Figure 6: Column layout and word placement in a column. Maximal
word spreading (top). Grid-based word placement of all columns
(bottom).

still
without
are

is
while

answerfor a
for an

to

for the

still
without

are

is

while

answerfor a
for an

to

for your

for the

waiting

waiting

response

reply

for your

response
reply

Figure 7: Arranging words in a column according to their frequency:
The center spread ordering (top) and the top spread ordering or-
dering (bottom). The relative occurrence frequency of a word in a
column is mapped to its font size, color and brightness.

is more compact and uses a grid to place the words. The defined cell
height for all columns depends on the font size of the most frequent
word of all columns. In every column the algorithm starts from the
center and places the words above and below, aligned to the defined
cell height (Figure 6, bottom), which minimizes the vertical spread
from the center. In horizontal direction the algorithm is more flex-
ible: in the first and the last column the words are aligned to the
inner padding, while in the other columns they are centered. We
found that the grid-based vertical partitioning of all columns along
with a minimal spread from the center (Figure 6, bottom) facilitates
the readability of the phrase fragments since it resembles a printed
page.

5.2 Edge Drawing
As previously mentioned in section 3, the edges of WORDGRAPH
can be rendered in two different ways (Figure 2). The condensed
path view draws a direct representation of the graph with at most

4

To appear in an IEEE VGTC sponsored conference proceedings

only a single edge between words. The split path view shows all
n-grams contained in WORDGRAPH by drawing all the edges of
the n-grams into the graph. Each edge is defined by a cubic Bézier
curve. The start point and end point are located at defined locations
(ports) on the source word and the target word. The tangents at
these points are always horizontal to allow for a smooth transition
from a straight line through the word into the edge.

The condensed path view places the port for connecting edges
at either end of the baseline of the word. The baseline of the word
itself is drawn, such that the line passes below the word to the other
port and further on into an outgoing edge (Figure 8.1). We found
that drawing a continuous line below the words, which connects
incoming and outgoing edges significantly contributes to the read-
ability of phrase fragments. Moreover, interrupting the curves by
words is recognized rather as a set of single words without mean-
ing than as a coherent phrase.

waiting for a
for an

to
for your

for the

waiting for a
for an

to
for your

for the

(2)

(3)

waiting for a
for an

to
for your

for the

(1)

Figure 8: Possibilities for edge drawing. The edge ports are marked
as small dots. (1) Condensed path view: all paths between two words
are drawn as a single edge and the incoming and outgoing edges are
connected by a line passing below the word to improve readability.
(2) Split path view: each path is drawn independently. Crossings
occur in the background of the words. (3) Split path view: each path
is drawn independently. Crossings occur behind the words.

The split path view shows all paths defined by the n-grams from
the search result set at once. The paths are also drawn in the back-
ground of the words such that tracing of an individual path across
multiple columns is fully supported. Figure 8.2 and 8.3 show two
different ways of vertically arranging the incoming and outgoing
edges of a word. Figure 8.2 attaches the incoming and outgoing
edges of a path to ports at the same vertical position and avoids
crossings behind the word, but introduces additional crossing out-
side the word. Alternatively, incoming and outgoing edges on both
sides are attached to appropriate ports depending on their starting
position (Figure 8.3). In this case edge crossings occur behind the
word, which was generally preferred particularly in combination
with the available interaction techniques.

5.3 Layout Guidelines
Based on our experience with alternative implementations of the
graphical NETSPEAK interface we derived the following list of lay-

out guidelines:

• Prefer center spread ordering over top spread ordering.

• Use a vertical grid to align words across different columns.

• A minimal vertical word placement starting from the center is
preferred.

• Underlining emphasizes the connectivity of a collocation and
improves legibility significantly.

• Under the split path view, drawing edge crossings behind
words (instead of in the background of the words) appears
less tangled.

• Animated transitions are essential for filtering operations,
query exploration and navigation.

6 NETSPEAK’S RETRIEVAL ENGINE

The three main building blocks of NETSPEAK’s retrieval engine are
(1) an index of frequent n-grams on the Web, (2) a query language
to formulate n-gram patterns (introduced in Section 3, Table 1), and
(3) a probabilistic top-k retrieval strategy which finds n-grams that
match a given query and which allows to trade recall for time.4

6.1 Web Language Index
To provide relevant suggestions, a wide cross-section of written text
on the Web is required which is why we resort to the Google n-
gram corpus “Web 1T 5-gram Version 1” [3], which consists of
42 GB of phrases up to a length of n = 5 words along with their
occurrence frequency on the Web as of 2006. This corpus has been
compiled from approximately 1 trillion words extracted from the
English portion of the Web, totaling in more than 3 billion n-grams.
We applied two post-processing steps to the corpus: case reduction
and vocabulary filtering. For the latter, a white list vocabulary V
was compiled and only these n-grams whose words appear in V
were retained. V consists of the words found in the Wiktionary
and various other dictionaries, complemented by words from the
1-gram portion of the Google corpus whose occurrence frequency
is above 11 000. After post-processing, the size of the corpus has
been reduced by about 46%. In NETSPEAK the n-gram corpus is
implemented as an inverted index, µ , which maps each word w ∈V
onto a postlist πw. For this purpose we employ a minimal perfect
hash function based on the CHD algorithm [2]. πw is a list of tu-
ples 〈d ,̂ f (d)〉, where dˆrefers to an n-gram d on the hard disk that
contains w, and where f (d) is the occurrence frequency of d re-
ported in the n-gram corpus. A tuple also stores information about
w’s position.

6.2 Probabilistic Retrieval Strategy
Given the n-gram index µ and a query q, the task is to retrieve all
n-grams Dq from µ that match q according to the semantics de-
fined by NETSPEAK’s query language. This is achieved within two
steps: (1) computation of the intersection postlist πq =

⋂
w∈q πw

and (2) filtering of πq with a pattern matcher that is compiled at
run-time from the regular expression defined by q. Retrieving Dq
poses no algorithmic challenge unless retrieval time is considered.
Postlists often consist of up to millions of entries, which is the case
for stop words. If a query contains only stop words, the retrieval
for Dq may take tens of seconds or even up to a minute, depending
on the size of the indexed corpus. From a user’s perspective this is
clearly unacceptable. In cases where a query also contains a rare
word w′, it is often more effective to apply the pattern matcher di-
rectly to πw′ , which is possible since πq ⊆ πw holds for all w ∈ q.
But altogether this and similar strategies do not solve the problem:
the frequency distribution of the words used in queries will resem-
ble that of written text, simply because of the NETSPEAK use case.

4The results of this section have been described in a poster paper [16].

5

To appear in an IEEE VGTC sponsored conference proceedings

In contrast, Web search engines typically deal with queries consist-
ing of combinations of (comparatively infrequent) topic words.

To allow for an adjustable retrieval time at the cost of recall,5
we have devised a probabilistic retrieval strategy, which incorpo-
rates rank-awareness within the postlists. Hence, our strategy is
a special kind of a top-k query processing technique [1, 9]. The
strategy requires an offline pre-processing of µ , so that (1) each
postlist is sorted in order of decreasing occurrence frequencies and
(2) each postlist is enriched by quantile entries κ , which divide the
word-specific frequency distribution into portions of equal magni-
tude. Based on a pre-processed µ , the retrieval algorithm described
above is adapted to analyze postlists only up to a predefined quan-
tile. Consequently, the portion of a postlist whose frequencies be-
long to the long tail of the distribution is pruned from the search.

An important property of our search strategy is what we call
rank monotonicity: given a pre-processed index µ and a query q,
the search strategy will always retrieve n-grams in decreasing order
of relevance, independently of κ . This follows directly from the
postlist sorting and the intersection operation. An n-gram that is
relevant for a query q is not considered if it is beyond the κ-quantile
in some πw,w ∈ q. The probability for this depends, among other
things, on the co-occurrence probability between q’s words. This
fact opens up new possibilities for further research in order to in-
crease the recall (e.g. by adjusting κ in a query-specific manner).
Such options, however, have yet to be explored.

7 EVALUATION RESULTS AND DISCUSSION

With its textual interface, NETSPEAK has been publicly available
since 2008, while the WORDGRAPH interface is still in develop-
ment to be released to the public. In this section we provide im-
plementation details, and evaluate NETSPEAK’s components: we
report on experiments to assess the retrieval quality of our query
processing strategy, conduct a query log analysis as well as a pi-
lot user study, and conclude with a discussion of use cases for the
WORDGRAPH interface.

7.1 Implementations Details
The communication between NETSPEAK’s interfaces and its re-
trieval engine is implemented via Ajax, using the lightweight data-
interchange format JSON (JavaScript Object Notation). The re-
trieval engine is written in C/C++ and is deployed at our site, ac-
cessible through a servlet container. The textual Web interface is
implemented using the Google Web Toolkit and it is deployed on
the Google App Engine. The visualization client is as a stand-alone
application written in Java, deployed at our site. The Java scene
graph project Scenario is used to manage and display graphical 2D-
elements. Scenario provides convenient methods to handle different
kinds of animations (see [15]).

7.2 Retrieval Quality Evaluation
To evaluate the retrieval quality of our query processing strategy,
we report on an experiment in which the average recall is measured
for a set of queries Q, |Q|= 55702, with respect to different pruning
quantiles. The queries originate from the query logs of NETSPEAK.
We distinguish between macro-averaged recall and micro-averaged
recall:

recmacro(µ,q) =
|Dq∩D∗q|
|D∗q|

5Recall is one of the most prominent retrieval performance measures in
information retrieval. Given a query q, the recall quantifies whether ev-
erything that ought to be retrieved for q is actually retrieved by a retrieval
engine. Its counterpart is called precision, which quantifies whether every-
thing that is retrieved for q actually ought to be retrieved. The precision of
our retrieval engine is always perfect by construction.

quantile

 0

 0.2

 0.4

 0.6

 0.8

1

 0 0.2 0.4 0.6 0.8 1

m
ac

ro
-a

ve
ra

ge
d

re
ca

ll

 0.1 0.3 0.5 0.7 0.9

1-word-queries
2-word-queries
3-word-queries
4-word-queries

average
Netspeak quantile

 0

 0.2

 0.4

 0.6

 0.8

1

 0 0.2 0.4 0.6 0.8 1

m
ic

ro
-a

ve
ra

ge
d

re
ca

ll
quantile

 0.1 0.3 0.5 0.7 0.9

1-word-queries
2-word-queries
3-word-queries
4-word-queries

average
Netspeak quantile

0 0.0044 0.021 0.16 0.36 0.83 1.86 4.25 10.03
retrieval time (seconds)

0 0.01 0.06 0.21 0.59 1.47 3.36 7.37 15.94 34.88 100
percentage of a postlist evaluated

Figure 9: Macro-averaged recall (top) and micro-averaged recall
(bottom) over quantiles. The additional axes indicate how much of
a postlist is evaluated and the required processing time.

recmicro(µ,q) =
∑〈d ,̂ f (d)〉∈(πq∩π∗q)

f (d)

∑〈d ,̂ f (d)〉∈π∗q
f (d)

As described above, Dq and πq are the results retrieved from µ

for query q under a top-k strategy, while D∗q and π∗q are the results
if the postlists of µ are evaluated completely. While recmacro con-
siders only the result list lengths, recmicro attributes more weight to
n-grams with high occurrence frequencies, since they are more rel-
evant to the user. Figure 9 shows the obtained results for different
query sizes. The macro-averaged recall differs significantly from
the micro-averaged recall, which indicates that most of the relevant
n-grams are retrieved using our strategy. The current NETSPEAK
quantile of κ = 0.5 marks our chosen trade-off between recall and
retrieval time. At quantile 0.5 only 1.47% of a postlist is evalu-
ated on average, which translates into a retrieval speedup of fac-
tor 68. The average retrieval time at this quantile seems to leave
much room in terms of user patience to evaluate more of a postlist;
however, it does not include the time to generate and ship the re-
sults page. Short queries are more difficult to answer because the
size of the expected result set is much larger on average than that
of a long query. From an evaluation standpoint the micro-averaged
view appears to be more expressive.

7.3 Query Log Analysis
The analysis of the NETSPEAK’s query logs reveals interesting pat-
terns of user behavior. The average query length is 3.15 tokens
(words or wildcards), and since more than 50% of the queries con-
tain exactly 3 tokens, the major share of wildcard use occurs in

6

To appear in an IEEE VGTC sponsored conference proceedings

them, too. The distribution of wildcard use is dominated by the as-
terisk wildcard (*, 61%), which represents an arbitrary number of
words, whereas the simpler question mark wildcard (?) is only used
in 20% of the queries. The remainder of the queries either contain
the tilde wildcard (~) for synonym search or none at all. Interest-
ingly, the fraction of queries that do not contain any wildcards is
almost 20%, so that in turn, an average of 80% of the queries do.
Queries without wildcards supposedly only check for the existence
or the commonness of a phrase.

An in-depth analysis reveals that most users interact with NET-
SPEAK in sessions (i.e. by posing a series of queries within a certain
time frame). Only 18% of the queries belong to single-query ses-
sions. We have identified two different session types:

(1) Bunch of Queries. In this case, a session consists of unrelated
queries, where none of the queries have words or wildcards in
common with previous or succeeding queries. It appears as
if users first write a large chunk of text and then check those
phrases about which they are uncertain.

(2) Query Refinement Session. In this case, a session consists of
related queries, where queries following each other are very
likely to have words and wildcards in common. It appears
as if a user is working on a particular phrase, searching for
alternatives. This session type is most common.

The average number of queries per session is 5.6 and the average
duration of a session is about 6.5 minutes. A few sessions took very
long indeed, lasting more than half an hour. In some of the refine-
ment sessions the users obviously struggled with a certain phrase
and permanently exchanged words and wildcards over a long pe-
riod of time. Long refinement sessions are sometimes interrupted
by unrelated queries and then continued later on.

7.4 User Feedback
We performed an initial pilot study to assess the usability of our
system. In particular, we were interested in the following aspects:

• Is the WORDGRAPH interface intuitive?

• How does the WORDGRAPH interface compare to the textual
interface?

• Which of the two interfaces would the participants like to see
in the Web service?

Ten non-native English speakers with higher English education
(mostly postgraduate students) participated in this study. Some of
them were already familiar with the textual Web interface. The
study comprised of ten selected test queries from the NETSPEAK
query log files that were selected for variety. After a brief introduc-
tion of the WORDGRAPH interface, the participants were asked to
enter the test queries, select the most suitable results and to answer
the questionnaire. In addition, the participants were asked about
desired improvements with respect to interaction and layout.

All participants would like to see WORDGRAPH being provided
as an additional interface for NETSPEAK; 50% even considered
WORDGRAPH as a substitute for the textual Web interface. They
assessed WORDGRAPH as “very intuitive” with an average of 5.3
on a scale from 1 to 6. This coincides with the answers to the ques-
tion about the most useful WORDGRAPH features: a fluent result
filtering was mentioned by 80%, starting from an overview with
the most important information was mentioned by 60%, 50% em-
phasized the possibility of exploring the response set in detail by
succeeding or alternating applications of subgraph filtering. Finally,
two participants mentioned the improved legibility of the word se-
quences within the graph by following the edges through the nodes:
“It gives the impression of reading from a sheet of lined paper.”
These results are encouraging, and we plan to conduct an extensive

user study in the future that covers more aspects of WORDGRAPH
and the textual Web interface, in particular with regard to the use
cases outlined below.

7.5 Use Cases and Experiences
Based on our query log analysis, the session types identified and
the pilot study, we identified three practical retrieval tasks related
to word choice, which have an increasing level of difficulty:

(1) Phrase Verification. The most basic retrieval task is to check
whether a given phrase is commonly used. As mentioned
above, almost 20% of all queries come without wildcards. For
this task, the textual interface is fully sufficient.

(2) Context-Sensitive Word Choice. In this retrieval task a writer
is uncertain about what alternative for a word in a given phrase
is a good choice, or whether there are in fact any alternatives.
This task pertains particularly to second-language speakers
who often translate words using a dictionary—the exact trans-
lation of many words depends on context. In this respect,
NETSPEAK serves as a context-sensitive thesaurus. Choosing
the correct adverbs and prepositions is also a common prob-
lem.

Figure 10: Word choice with NETSPEAK’s Web interface (excerpt).

The query language of NETSPEAK is powerful in that it allows
to specify rather complex patterns of n-grams to be retrieved.
A user who inserts more than one wildcard into a query is
less confident about how to write a certain phrase and seeks
to generalize the query in order to cover more of the possi-
ble alternatives. This, in turn, yields a longer list of results
in the textual interface, which may be difficult to overview
and which may not always reveal the true picture about which
words to choose. Figure 10 shows an example, where about
appears in three of the n-grams, which indicates that this word
should most likely follow rotate. The textual Web inter-
face, however, obscures this fact and the user is forced to scan
the entire result list several times to grasp the true relation-
ships. By contrast, the WORDGRAPH visualization for the
same query as above provides an overview at a glance (see
Figure 11). It reveals the bimodal frequency distribution for
the words retrieved for both wildcards. In this respect, our pi-
lot user study indicates that there might be a relation between
interface preference and the number of wildcards contained in
a query.

(3) Exploration. This retrieval task is about writers who want
to explore the typical context of a phrase by looking at what
comes before, after or in between the phrase’s words. With
the NETSPEAK’s textual interface, this task is limited to ex-
ploring a context of up to four words around a query that com-
prises, say, only one word surrounded by asterisks. Only by
means of additional queries, a user may get a broader view of
a phrase’s context, having to keep in mind the results of all

7

To appear in an IEEE VGTC sponsored conference proceedings

Figure 11: Word choice with the NETSPEAK WORDGRAPH.

previous queries. With the WORDGRAPH interface, this task
is supported without further ado by means of the query expan-
sion technique (Figure 4). The results of additional queries,
which can be posed interactively, are integrated seamlessly
into an existing graph so that users can construct a full pic-
ture of a phrase’s context. This capability of WORDGRAPH
is particularly useful for expert users, including linguists who
investigate the characteristics of language use in a given cor-
pus.

Remarks. While writing a text, such as a scientific paper, users
often switch back and forth between different retrieval tasks. Phrase
verification is the least observed task, which is documented by
NETSPEAK’s query logs; 80% of the queries comprise wildcards.
There are two common types of queries: queries asking for the most
suitable word in a given context, and queries asking for the typical
context of a particular word or, more precisely, which common col-
locations a particular word has. Thus it is context sensitivity that is
most relevant to the users, which is difficult to express with other
commonly available tools. With the textual Web interface, one typ-
ically looks at the top results and ignores the rest—similar to the
use of a Web search engine. With WORDGRAPH, one explores the
results more thoroughly and discovers relationships between words
that are not apparent in the textual interface. While the latter often
forces a user to formulate a sequence of similar queries, the former
provides an effective means for implicit query specification, using
filter techniques, query expansion and navigation.

8 CONCLUSIONS AND FUTURE WORK

NETSPEAK answers complex word sequence queries that are for-
mulated in an expressive query language. The system is designed
for efficiency and allows for real-time querying of a 42 GB text
data base. The result set is explored via a textual Web interface or
the graphical WORDGRAPH interface. Our analysis shows that the
textual interface is sufficient for phrase verification and the com-
parison of related sentences. The WORDGRAPH interface allows
an interactive exploration of the result set and is superior for word
choice problems on complex queries. The layout of WORDGRAPH
focuses on facilitating legibility, which is achieved by using cen-
ter spread ordering, grid-based word placement and underscoring
edges. Participants of our pilot user study describe WORDGRAPH
as very intuitive and appreciate the possibility of graph-based filter-
ing during explorative analyses.

We see NETSPEAK as a great educational tool for improving the
knowledge of a second language. Additional smart operators for the
query language such as antonym wildcards or semantic constraints
(e.g. person names, places, dates and times) and support for further
languages besides English would broaden the scope of NETSPEAK.
An extension towards domain-specific corpora can help inexperi-

enced authors to become familiar with the appropriate expressions
and writing style in a specific field. However, if the domain be-
comes too small, such as using a corpus based simply on visualiza-
tion papers, all the papers and talks from non-native speakers might
end up using the same kind of Viz speak.

REFERENCES

[1] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum.
IO-top-k: index-access optimized top-k query processing. In VLDB
’06: Proceedings of the 32nd international conference on Very large
data bases, pages 475–486. VLDB Endowment, 2006.

[2] D. Belazzougui, F. Botelho, and M. Dietzfelbinger. Hash, displace,
and compress. In ESA ’09: Proceedings of the 17th European Sym-
posium on Algorithms, pages 682–693, Springer Berlin / Heidelberg,
2009. Springer.

[3] T. Brants and A. Franz. Web 1T 5-gram Version 1. Linguistic Data
Consortium LDC2006T13, Philadelphia, 2006.

[4] M. J. Cafarella and O. Etzioni. A search engine for natural language
applications. In WWW ’05: Proceedings of the 14th international
conference on World Wide Web, pages 442–452, New York, NY, USA,
2005. ACM.

[5] C. Collins, M. S. T. Carpendale, and G. Penn. Visualization of uncer-
tainty in lattices to support decision-making. In EuroVis, pages 51–58,
2007.

[6] GoogleLabs. Google scribe [online]. Available: http://scribe.
googlelabs.com/. [Accessed: September 22, 2010].

[7] C. Harrsion. Web trigrams [online]. Available: http://www.
chrisharrison.net/projects/visualization.html. [Accessed: March 22,
2010].

[8] J. Heer and S. K. Card. Doitrees revisited: scalable, space-constrained
visualization of hierarchical data. In AVI ’04: Proceedings of the
working conference on Advanced visual interfaces, pages 421–424,
New York, NY, USA, 2004. ACM.

[9] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40(4):1–58, 2008.

[10] C. D. Manning and H. Schütze. Foundations of Statistical Natural
Language Processing. The MIT Press, Cambridge, Massachusetts,
1999.

[11] W. B. Paley. Textarc: Showing word frequency and distribution in text.
Poster Infovis 2002. Available: http://www.textarc.org/appearances/
InfoVis02/InfoVis02_TextArc.pdf, 2002. [Accessed: September 22,
2010].

[12] T. Park, E. Lank, P. Poupart, and M. Terry. Is the sky pure today?
awkchecker: an assistive tool for detecting and correcting collocation
errors. In UIST ’08: Proceedings of the 21st annual ACM sympo-
sium on User interface software and technology, pages 121–130, New
York, NY, USA, 2008. ACM.

[13] C. Plaisant, J. Grosjean, and B. B. Bederson. Spacetree: Support-
ing exploration in large node link tree, design evolution and empirical
evaluation. In INFOVIS ’02: Proceedings of the IEEE Symposium
on Information Visualization (InfoVis’02), page 57, Washington, DC,
USA, 2002. IEEE Computer Society.

[14] P. Resnik and A. Elkiss. The linguist’s search engine: an overview.
In ACL ’05: Proceedings of the ACL 2005 on Interactive poster and
demonstration sessions, pages 33–36, Morristown, NJ, USA, 2005.
Association for Computational Linguistics.

[15] Scenario. Projekt scene graph [online]. Available: https://scenegraph.
dev.java.net/. [Accessed: August 30, 2010].

[16] B. Stein, M. Potthast, and M. Trenkmann. Retrieving Customary Web
Language to Assist Writers. In C. G. et al., editor, Advances in In-
formation Retrieval, Proceedings of the 32nd European Conference
on Information Retrieval, ECIR 2010, category poster, volume 5993
of Lecture Notes in Computer Science, pages 631–635, Heidelberg,
2010. Springer.

[17] M. Wattenberg and F. B. Viégas. The word tree, an interactive vi-
sual concordance. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1221–1228, 2008.

8

