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ABSTRACT
Undertaking research in domain-specific scenarios such as system-
atic review literature search, legal search, and patent search can
often have a high barrier of entry due to complicated indexing pro-
cedures and complex Boolean query syntax. Indexing and searching
document collections like PubMed in off-the-shelf tools such as
Elasticsearch and Lucene often yields less accurate (and less effec-
tive) results than the PubMed search engine, i.e., retrieval results do
not match what would be retrieved if one issued the same query to
PubMed. Furthermore, off-the-shelf tools have their own nuanced
query languages and do not allow directly using the often large and
complicated Boolean queries seen in domain-specific search scenar-
ios. The pybool_ir toolkit aims to address these problems and to
lower the barrier to entry for developing new methods for domain-
specific search. The toolkit is an open source package available
at https://github.com/hscells/pybool_ir.
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1 INTRODUCTION
Indexing and searching domain-specific document collections is
often challenging for various reasons. From the indexing side, de-
pending on the quality of the raw documents to be indexed, much
pre-processing is required, especially for documents with many
fields. From the querying side, implementing domain-specific query
languages is tedious and error-prone, especially if the goal is to
reproduce a domain-specific retrieval system. One example of a
domain-specific document collection frequently used by informa-
tion retrieval (IR) researchers is PubMed, which contains over
34 million documents at the time of writing. PubMed uses a custom
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Boolean query language. A Boolean query that one formulates for
PubMedwill not work on another search engine like Google Scholar.
Translating a PubMed query into a query for another search engine
is also usually not reliable: PubMed documents have specific fields
such as MeSH, a hierarchy of medical terminology used to tag and
classify documents.

It is difficult to fully exploit the PubMed document collection
given that the implementation of the PubMed indexing and search-
ing pipelines are proprietary and not publicly available. It is a rare
instance of a domain-specific search engine with an API that one
could use to issue queries in the PubMed query language syntax, but
this can be slow, rate limited, and limited in functionality. The alter-
native for IR researchers is to download the document collection,
index, and search in it themselves. However, once the document
collection has been indexed, including correct indexing of the many
fields a PubMed document contains, the main problem is searching
the collection. One must correctly implement the Boolean query
syntax used by PubMed: this involves not just fielded search for
terms and phrases (which can have wildcards) but date range fil-
ters, MeSH explosion (i.e., subsumption of child MeSH terms in the
hierarchy), and the Boolean operator semantics. These challenges
are present across domain-specific search research.

pybool_ir was developed to facilitate clean-room re-implemen-
tations of domain-specific search engines. Not only does pybool_ir
re-implement the indexing process, ensuring that documents are
accurately parsed and indexed, but it also provides an interface
for closely replicating domain-specific query languages, which
are often variations of the Boolean query syntax. The pybool_ir
toolkit uses the pylucene library, which provides a low-level, di-
rect interface with Lucene in Python.1 The use of pylucene en-
ables pybool_ir to more closely re-implement features of existing
search engines such as PubMed directly in Python. No separate
search engine written in another programming language needs to
be maintained, like in the case of pyserini [7] and pyterrier [8],
both of which require programming in Java to implement addi-
tional functionality. In short, what differentiates pybool_ir from
other toolkits is the tight integration with domain-specific col-
lections and the ability to closely replicate query languages. In
more detail, pybool_ir has the following design goals: (1) Indexing
pipelines should be concise and straightforward, with support for
documents with multiple fields and indexing arbitrary document
corpora. (2) Test collections should be easy to load and perform
experiments with, including support for existing and arbitrary col-
lections. (3) Implementation of and experimentation with domain-
specific query languages should be made as easy as possible. The
rest of this paper demonstrates the philosophy of these goals with
two concrete examples: a fully operational reproduction of PubMed
search,2 and the first Boolean search engine for the IR Anthology.3

1https://lucene.apache.org/pylucene/index.html
2https://pubmed.chatnoir.eu
3https://IR.chatnoir.eu
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("Acne Vulgaris "[Mesh] OR Acne[tiab] OR Blackheads[tiab] OR
Whiteheads[tiab] OR Pimples[tiab]) AND (" Phototherapy "[Mesh] OR
"Blue light"[tiab] OR Phototherapy[tiab] OR Phototherapies[tiab]
OR "Photoradiation therapy "[tiab] OR "Photoradiation
Therapies "[tiab] OR "Light Therapy "[tiab] OR "Light
Therapies "[tiab]) AND (Randomized controlled trial[pt] OR
controlled clinical trial[pt] OR randomized[tiab] OR
randomised[tiab] OR placebo[tiab] OR "drug therapy "[sh] OR
randomly[tiab] OR trial[tiab] OR groups[tiab]) NOT
(Animals[Mesh] not (Animals[Mesh] and Humans[Mesh]))

Listing 1: Example of a relatively short Boolean query used
to search with PubMed from the Wang et al. [21] collection.
Longer queries in this collection are up to ten times as
large. This query still shows the nuances of domain-specific
search: fielded search (i.e., square brackets), implicit query
expansion (i.e., use of MeSH terms, which by default include
all children within the hierarchy), and the semantics of
Boolean operators (e.g., how the NOT operator is implicitly
an AND+NOT combination).

from pybool_ir.experiments.collections import load_collection
from pybool_ir.experiments.retrieval import RetrievalExperiment
from ir_measures import *
import ir_measures

# Automatically downloads , then loads this collection.
col = load_collection("ielab/sysrev -seed -collection")

# Point the experiment to your index , your collection.
with RetrievalExperiment(indexer=PubmedIndexer("./ pubmed"),

collection=col) as experiment:
# Get the run of the experiment.
# This automatically executes the queries.
run = experiment.run

# Evaluate the run using ir_measures.
ir_measures.calc_aggregate ([SetP , SetR , SetF], col.qrels , run)

Listing 2: Executing PubMed queries from a published test
collection and evaluating them. pybool_irwill automatically
download the test collection and the output of an experiment
can be used directly in ir-measures.4

2 FEATURE SHOWCASE
We first demonstrate the ability of pybool_ir to accurately repli-
cate the indexing and searching pipelines of PubMed. Next, we
showcase a research use-case for pybool_ir by detailing how it can
be used to modify documents at indexing-time to support custom
query syntax. We then show how to index arbitrary document col-
lections, and finally the integrations pybool_ir has with libraries
like ir_datasets and pyserini.

2.1 Replicating PubMed Search
This section explains (1) basic usage guidelines for how to employ
pybool_ir for retrieval experiments, and (2) the results of these
experiments comparing pybool_ir to the PubMed search engine
(i.e., via the Entrez API [15]). The experiments are conducted using
the 2022 baseline document collection of PubMed and the test col-
lection fromWang et al. [21]. This collection is used because it only
contains queries issued to the PubMed search engine, unlike the
CLEF-TAR collections [4–6], which contain queries issued to other
4https://github.com/terrierteam/ir_measures

pybool_ir

Figure 1: Precision and recall for each query in the Wang
et al. [21] collection, comparing PubMed to pybool_ir. Note
that the query issued to PubMed is identical to the query
issued in pybool_ir.

from pybool_ir.pubmed.index import PubmedIndexer

with PubmedIndexer("./pubmed -pico",
store_fields=True ,
fields =["P", "I", "O"]) as idx:

idx.bulk_index("path/to/baseline", fields ={
# The pico function returns the annotation
# given a document ID.
"P": lambda doc: pico(doc.id, "population"),
"I": lambda doc: pico(doc.id, "intervention"),
"O": lambda doc: pico(doc.id, "outcome")

})

Listing 3: Indexing PubMed with additional PICO fields. This
listing demonstrates a feature of pybool_ir that allows doc-
uments to be modified at index time, but these fields could
also be computed offline.

search engines (e.g., Embase). Support for these query languages in
pybool_ir is planned in future releases. Listing 1 contains a query
from the Wang et al. collection to give an understanding of the
PubMed query syntax being used.

Listing 2 shows how to use pybool_ir for running the experi-
ment. This snippet assumes that the PubMed document collection
has already been indexed, which can also be accomplished with
pybool_ir as it includes a command line tool for downloading
and indexing document collections. Special care has been taken
for collections like PubMed within pybool_ir to ensure that fields
like the publication date are indexed correctly. The queries issued
to PubMed and pybool_ir are identical and no manual processing
was required to execute the queries in pybool_ir.

Figure 1 reports precision and recall for all topics in the Wang
et al. collection. Most results are identical, with no statistical differ-
ences (two-tailed paired t-test). Further, the average document over-
lap across topics (i.e., set overlap between the documents retrieved
by PubMed and by pybool_ir) is approximately 92.5% (𝜎=8%). On
average, PubMed retrieved 1325.95 (𝜎=1722.86) documents, while
pybool_ir retrieved 1386.08 (𝜎=1644.93). These results show that
it is possible to accurately replicate domain-specific search engines
using pybool_ir. This opens the door to new research possibilities
that would otherwise be challenging, if not impossible to study
using off-the-shelf tools or APIs, such as extending the syntax of
PubMed queries. The following section demonstrates this.
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from pybool_ir.pubmed.index import PubmedIndexer
from pybool_ir.experiments.collections import Collection
from pybool_ir.experiments.retrieval import RetrievalExperiment

from ir_measures import *
import ir_measures

# Tell the PubMed query parser about the new fields.
parser = PubmedQueryParser(fields =["P", "I", "O"])

# Load our new custom collection that
# has queries that search on the PICO fields.
col = Collection.from_dir("./sysrev -seed -pico/")

# Experiment loads annotated collection.
with RetrievalExperiment(PubmedIndexer(Path("./pubmed -pico")),

collection=col ,
query_parser=parser )) as exp:

pico_run = exp.run

# Evaluate the run using ir_measures.
ir_measures.calc_aggregate ([SetP , SetR , SetF], col.qrels , pico_run)

Listing 4: Running the retrieval experiment on the PubMed
PICO index. Note the loading of a collection from a directory.

Search Engine Recall Precision F1

PubMed 0.7362 0.0367 0.0651
pybool_ir 0.7273 0.0366 0.0649

+PICO 0.5911 0.0400 0.0675

Table 1: Results using PICO-annotated documents and
queries. Results are similar to those from the original pa-
per: PICO fields on queries increase precision but trade-off
this gain in effectiveness for lower recall.

2.2 Reproducing PICO Search
In addition to supporting the indexing of existing collections such as
PubMed, it is possible to modify documents at indexing time, or to
add additional pre-computed fields to the index. This section shows
how custom indexing and query processing pipelines can be im-
plemented. We do this by reproducing the experiments from Scells
et al. [17]. In short, these experiments involve indexing additional
fields that correspond to different types of clinical information:
Population, Intervention, Control, and Outcome. The procedure
for extracting these annotations for PubMed documents is identical
to the original work. However, rather than using Elasticsearch for
indexing and searching, as in the original work, pybool_ir is used
instead. The main benefit here being that queries do not need to
be translated into Elasticsearch queries. Listing 3 shows the code
required to index PubMed alongside the PICO annotations. List-
ing 4 shows the code required to run the experiment. Queries were
hand-annotated by the authors to search using the additional fields.

Table 1 contains the main results for the PICO experiments.
Consistent with previous results, the addition of PICO annotations
reduces the recall while increasing precision. Figure 2 provides a
topic-oriented view of the results, showing the difference in F1
between the pybool_ir PubMed index and the index with PICO
annotations. Together, these experiments demonstrate how easy
it is to use pybool_ir for researching new domain-specific search
methods, namely experimenting with modifying and extending
existing query languages.

Topic

0.1

0.0

0.1

F1

Figure 2: Difference in F1 when using PICO annotations
(pybool_ir versus pybool_ir + PICO).

{ "id": "2013. sigirconf_conference -2013.2" ,
"date": 1541498845.0 ,
"authors ": ["Ryen White"],
"title": "Beliefs and biases in web search",
"abstract ": "People 's beliefs , and unconscious biases that arise ...
"booktitle ": "The 36th International ACM SIGIR conference on ...
"pages": "3-12",
"publisher ": "ACM",
"year": "2013" ,
"doi": "10.1145/2484028.2484053" ,
"venue": "SIGIR" }

Listing 5: Example document from the IR Anothology to be
indexed. Only a selection of document fields are shown.

from pybool_ir.index.generic import JsonlIndexer

with JsonlIndexer("ir-anthology", store_fields=True ,
fields =["#authors", "title", "abstract",

"booktitle", "pages", "publisher",
"year", "doi", "venue"]) as idx:

idx.bulk_index("ir-anthology -raw.jsonl")

Listing 6: Indexing data from the IR Anthology. The
pybool_ir library has support for indexing arbitrary collec-
tions. Note the usage of the special ‘#’ symbol for the author
field, which ensures that each author is indexed separately.

2.3 Indexing the IR Anthology
We next demonstrate indexing and searching on a dataset that is
not natively supported by pybool_ir. The IR Anthology [11] is a
corpus of information retrieval publications. Listing 5 shows what
the raw data of the IR Anthology looks like for a single document.
Each document in the raw corpus is a JSON object, and the cor-
pus is represented as a JSONL file, where each document is stored
on a new line. This is also similar to the JSONLD format which
Elasticsearch uses; meaning that corpora in these formats can be in-
dexed in pybool_ir with little effort. Listing 6 shows the complete
code required to index the data (three lines in total). Once indexed,
searches can be performed on the index in several ways. As there
are no Cranfield-style test collections for the IR Anthology yet, we
instead demonstrate how one can perform ad-hoc searches using
pybool_ir. Listing 7 shows the first method, which can be achieved
with only a handful of lines of Python code. Listing 8 shows the
second method, which uses the command-line tool bundled with
pybool_ir to perform an interactive search. pybool_ir simplifies
analysing collections of documents using complex queries, e.g., es-
timating the popularity of different keywords in a document while
filtering different attributes such as author, venue, or year.
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from pybool_ir.query import GenericQueryParser
from pybool_ir.index.generic import GenericSearcher
from pybool_ir.experiments.retrieval import AdHocExperiment

with AdHocExperiment(GenericSearcher("ir-anthology"),
'beliefs:title␣AND␣"Ryen␣White": authors ',
query_parser=GenericQueryParser ()) as exp:

docs = exp.run
[d.doc_id for d in docs] #-> [ '2013. sigirconf_conference -2013.2 ']

Listing 7: Performing a search on the indexed IR Anthology.
The pybool_ir library has several different query parsers to
experiment with query languages, a generic query language
similar to the default Lucene syntax is shown here.

$ pybool_ir generic search -i ir-anthology
pybool_ir 0.0.4
loaded: ir-anthology
?>beliefs:title AND "Ryen White": authors
hits: 1
2013. sigirconf_conference -2013.2 Beliefs and biases in web ...

Listing 8: Performing a search on the indexed IR Anthology,
but using the interactive search on the command line.

$ pybool_ir ir-datasets index \
--collection -name cord19/trec -covid \
--index ./ indexes/trec -covid

[ ... ]
$ pybool_ir experiment retrieval \

--collection -name ird:cord19/trec -covid \
--index ./ indexes/trec -covid \
--run -path trec -covid.run \
-e SetR -e SetP -e MAP -e nDCG

{SetR: 0.8405 , SetP: 0.01282 , AP: 0.0107 , nDCG: 0.4048}

Listing 9: Indexing the TREC-COVID collection directly from
ir-datasets and then immediately performing a retrieval ex-
periment.

2.4 Experiments with ir_datasets
The ir_datasets catalogue contains information retrieval test col-
lections (document corpora, topics, and relevance assessments).
pybool_ir is tightly integrated with ir_datasets to the extent
that indexing a collection and obtaining baseline retrieval metrics
is possible with two commands on the command line. Listing 9
shows the two commands for indexing and performing a baseline
retrieval experiment using the TREC-COVID collection [19]. Given
that one of the design goals of pybool_ir is to experiment with
query parsing and query languages in general, the integration with
ir_datasets provides a platform for conducting information re-
trieval experiments with complex queries such as domain-specific
Boolean query languages. The experiments in Listing 9 support
the same arguments as the Python code, allowing one to study the
effect of different query parsers. This integration allows others to
use ir_datasets for domain-specific collections.

Existing instances of collections in the ir_datasets catalogue
that may benefit from the investigation into domain-specific queries
include the args.me collection [1, 20], which contains complex
documents containing different aspects of argumentation and the
TREC tracks that use medical corpora, e.g., the genomics track [3],
the clinical decisions support track [18], and the precision medicine
track [13] which all also have documents containing multiple fields.

$ python -m pyserini.search.lucene \
--topics /path/to/topics \
--index ./ indexes/trec -covid

Listing 10: Searching the TREC-COVID collection that was
indexed using pybool_ir with pyserini.

2.5 Compatibility with pyserini
Finally, since pybool_ir uses Lucene, indexes created with it are
compatible with pyserini. This means that one can index docu-
ments using either toolkit and then perform retrieval experiments
using the other. Listing 10 shows the pyserini command onewould
use to search the index created with pybool_ir. This compatibility
makes pybool_ir a viable tool to implement more advanced index-
ing techniques for use in pyserini and pybool_ir also inherits
many useful features from pyserini for search.

3 DISCUSSION
Boolean retrieval is an essential tool for many scientific and spe-
cialised research fields. Medical information retrieval, particularly
systematic review literature search, is one of the primary examples
where Boolean retrieval is the norm rather than the exception. For
researchers in these domains, there are tools that exist to assist with
developing queries [14, 16, 22], as well as a variety of tools to assist
with ranking or filtering retrieved documents [2, 9, 10, 12], to name
some prominent tools in the medical domain. However, few tools
exist for the information retrieval practitioner (i.e., the target audi-
ence of this demo) to study the retrieval or ranking mechanisms in
these domain-specific systems; existing tools often do not support
the particular indexing and search requirements of domain-specific
search. pybool_ir provides the tools for information retrieval prac-
titioners to study and improve the underlying mechanisms that
domain-specific search systems depend on.

4 CONCLUSIONS
Future plans for pybool_ir include replication of more domain-
specific search engines from the biomedical, legal, and patent search
domains. We envision that the indexing of documents as well as
domain-specific query languages, e.g., the Boolean query syntax in
the case of PubMed, are to be replicated for these search engines.
Due to how pybool_ir parses and represents queries, it is also
possible to use pybool_ir for query analysis by navigating the
parse tree, and programmatically modify the syntax of queries
using code, such as extracting clauses from a query or performing
query expansion on Boolean queries. These research avenues were
previously challenging to study, since the barrier to entry was high
compared to ad-hoc search. pybool_ir lowers this barrier for any
kind of domain-specific IR. pybool_ir is open source and freely
available from https://github.com/hscells/pybool_ir.
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