Answering Comparative Questions: Better than Ten-Blue-Links?

Matthias Schildwachter

University of Hamburg, Germany

Alexander Bondarenko
Martin Luther University of

Julian Zenker
University of Hamburg, Germany

Halle-Wittenberg, Germany

Matthias Hagen
Martin Luther University of
Halle-Wittenberg, Germany

ABSTRACT

We present CAM (comparative argumentative machine), a novel
open-domain IR system to argumentatively compare objects with
respect to information extracted from the Common Crawl. In a
user study, the participants obtained 15% more accurate answers
using CAM compared to a “traditional” keyword-based search and
were 20% faster in finding the answer to comparative questions.

KEYWORDS

HCI, Comparative Question Answering, Keyword Search, Natural
Language Processing

ACM Reference Format:

Matthias Schildwichter, Alexander Bondarenko, Julian Zenker, Matthias
Hagen, Chris Biemann, and Alexander Panchenko. 2019. Answering Com-
parative Questions: Better than Ten-Blue-Links?. In 2019 Conference on
Human Information Interaction and Retrieval (CHIIR °19), March 10-14,
2019, Glasgow, United Kingdom. ACM, New York, NY, USA, 5 pages. https:
//doi.org/lO.l145/3295750.3298916

1 INTRODUCTION

Everyone faces choice problems on a daily basis. Besides choosing
what to wear or what to have for lunch, people compare all kinds of
options: cameras to buy, universities to study at, or even program-
ming languages to use. Question answering platforms like Quora,
Reddit, or StackExchange are packed with comparative questions
like “How does X compare to Y with respect to Z?”. An informed
choice then is often based on an objective argumentation why to
favor one of the candidates (e.g., comparing important aspects).
Specific product comparison systems, such as Compare.com or
Check24, allow to compare any subset of objects in narrow do-
mains such as cameras. Other systems like WolframAlpha aim at
providing comparative functionality across domains, but also often
only use some (limited) structured database while ignoring the rich
textual content available on the web. Somewhat surprising, no sys-
tem is currently able to satisfy comparative information needs for
the general domain with sufficient coverage and explanations. No
available system is able to support comparisons on a broad range
of object types with arguments about relative qualities or even

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHIIR 19, March 10-14, 2019, Glasgow, United Kingdom

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6025-8/19/03.

https://doi.org/10.1145/3295750.3298916

Chris Biemann
University of Hamburg, Germany

Alexander Panchenko
University of Hamburg, Germany

supporting objective arguments about the best choice. Indeed, web
search engines are able to directly answer many factoid questions
but do not treat comparative questions any special beyond return-
ing default search results. Advanced question answering systems,
such as IBM’s Watson [6], answer factoid questions very well, but
do not really handle comparative questions of everyday users.

We present CAM (comparative argumentative machine), a sys-
tem that aims at solving the shortcomings mentioned above. CAM
is a tool for answering comparative general-domain questions based
on information extracted from the web-scale Common Crawl.!

2 RELATED WORK

Commercial systems like GoCompare, Compare.com, Diffen.com,
and Versus.com offer high-precision comparison capabilities based
on well-curated structured data sources focusing on single domains.
But their low coverage in other than their focus domains rules out
answering most of the comparative questions found on portals like
Quora or Yahoo! Answers—that themselves form a good source of
(argumentative) comparisons and results.

Previous text-based comparison approaches have mostly focused
on the biomedical domain. Fiszman et al. [7] collected sentences
comparing drug therapies using manually crafted patterns to recog-
nize the subjects of comparison and the comparison direction. They
reached a very high precision at moderate recall. On a set of full-text
articles on toxicology, Park and Blake [13] succeeded in training
a highly precise Bayesian Network for identifying comparative
sentences relying on lexical clues and dependency parsers. More
recently, Gupta et al. [9] described a system based on manually
collected patterns on the basis of lexical matches and dependency
parses in order to identify comparison targets and to classify the
type of comparison into the classes given by Jindal and Liu [11]:
gradable vs. non-gradable and superlative comparisons.

Building a general-domain argumentative comparison facility
comes with the additional challenge of argument mining from user-
generated content [15]. Text is typically noisy, misses argument
structures and contains poorly formulated claims. On the other
hand, specialized jargon and idiosyncrasies of a platform can be
utilized [4] (e.g., hashtags for mining argumentative tweets).

Aker et al. [1] confirmed the findings of Stab and Gurevych [17]
that information from dependency parsers does not help to find the
(general) argument structure in persuasive essays and Wikipedia
articles while simpler structural features such as punctuation are
more effective. Daxenberger et al. [3] noted that claims across
different domains share lexical clues and further stated that current

!Demo, API & code: http://Itdemos.informatik.uni-hamburg.de/cam/

https://doi.org/10.1145/3295750.3298916
https://doi.org/10.1145/3295750.3298916
https://doi.org/10.1145/3295750.3298916
http://ltdemos.informatik.uni-hamburg.de/cam/

—

CommonCrawl:
Full text search index

User Section 3.5
Section 3.1

JSON | Sentence Preprocessing:
Extraction, aggregation and
question removal

J Comparative
Sentence
< Classifier

Section 3.2

Input Mask:
Enter comparison

Resull

Section 3.5 Request Section 3.1

Retrieval of
ElasticSearch API

Answer Pr

Presentable result
containing scores and

aspects Section 3.3

Preprocessed
sentence list

Section 3.4

Aspect Extraction: ‘ ing: Cl ificati
Generates aspects ‘ ‘ Ordering of sentences ‘ ‘ keyword or ML approach

Ordered and object
assigned sentences

Figure 1: Design of the CAM system.

Preprocessed sentence list
+ classification results

datasets are too small for recent DNN-based classifiers resorting to
traditional feature engineering for argument mining.

Some argument mining systems work on larger corpora of user-
generated content to find the most relevant argument for a given
claim [10] or to oppose different argumentative viewpoints [19].
Web-scale systems for comparing query results [18] or for retrieving
single arguments matching a user query [16] form the inspiration
for our new CAM system (comparative argumentative machine).

3 THE CAM SYSTEM DESIGN

To ensure a wide coverage, a comparative answer of our CAM sys-
tem for two objects is based on argumentative structures extracted
from web-scale text resources. The system looks for textual struc-
tures asserting that one of the compared objects is superior to
the other, that they are equal, or that they are not comparable.
A comparison of two objects 0 and o’ in the CAM sense is de-
fined as “0 ? o’ w.rt. a;,...,a; € a”, where ? is in {>, <,=,#} and
a = {aj,...,ar} is the set of comparison aspects of 0 and o’. We
thus focus on mining sentences like “Python=o is better than Mat-
lab=0’ for web development=a;”

The design of our CAM system is shown in Figure 1. It consists of
the following generic stages, which are further described in details:
(1) retrieval of relevant sentences, (2) classification of comparative
sentences, (3) ranking of the comparative sentences, (4) extraction
of object aspects, and (5) presentation of the answer.

3.1 Sentence Retrieval

Our CAM system uses an Elasticsearch full text index of a linguis-
tically pre-processed corpus [12] containing 14.3 billion English
sentences from the Common Crawl. To retrieve textual argumenta-
tive structures relevant to a comparative user input, the index is
queried for sentences matching the input objects and containing
comparison aspects; sentences without aspects are used as a fall-
back. Questions are removed from the initial retrieval results since
they usually do not help in returning an argumentative answer.

3.2 Sentence Classification

We use a classifier to distinguish between four classes: the first ob-
ject from the user input is better / equal / worse than the second one
(>, =, <) w.r.t. a comparison aspect, or no comparison is found (#).
The classifier uses the text between both objects to identify the
“polarity” and is inspired by the best model reported by Franzek et al.
[8]: XGBoost [2] using word frequencies as representations, which
achieves a high F1 score of 0.92 for #, a good F1 of 0.74 for > but a

rather low F1 of 0.46 for <. We identified the main issue in missing
negation handling, for which we added a simple keyword-based
heuristic to our CAM system inverting common negations.

3.3 Sentence Ranking and Object Comparison

To rank comparative sentences (category > or <), we score them
by combining the classifier confidence and the Elasticsearch score?
according to the following heuristic s:

a+e+emax, if confidence >y,
s = .
(ax+e)-6, otherwise,

where e is the Elasticsearch score of the sentence, e;,qx is the
maximum Elasticsearch score of any comparative sentence re-
trieved for the user input, and a = wg; emax if the user-specified
aspect a; is present in the sentence and a = 0 otherwise. For the a
aspect boost, the weights wg,; are specifiable in the user interface.
Confidently classified sentences obtain a boost of ey, 4x While scores
of low confidence sentences are decreased by a factor of §; we set
y = 0.8 and § = 0.1 in our experiments.

For scoring a CAM output “o > o’ w.rt. a”, we sum up the s-
scores of all sentences supporting the statement. To this end, we
have developed a heuristic to include two directions of comparison
and thus taking into account that a statement like “Python is better
than Matlab” (class >) is also supported by “Matlab is worse than
Python” (class <); important factors being the object ordering and
the polarity.

3.4 Aspect Extraction

In addition to user-specified comparison aspects, CAM generates
up to ten supplementary aspects (even when no comparison aspect
at all was provided by the user). We use three different methods
for aspect mining: (1) searching for comparative adjectives and
adverbs; (2) searching for phrases with comparative adjectives /
adverbs and a preposition like fo, for, etc. (e.g., “quicker to develop
code” or “better for scientific computing”); (3) searching for specific
hand-crafted patterns like “because of higher speed”, “since it has
more options”, “as we have proven its resilience” or “reason for this
is the price”. An extracted aspect is assigned to the object with the
higher co-occurrence frequency (cf. Figure 2 for examples).

3.5 CAM User Interface

The user interface consists of a question input form (Figure 3) and
an answer presentation component (Figure 2). The input inter-
face allows to submit a comparative question in the form of two
compared objects and their aspects. The answer presentation sum-
marizes the sentences retrieved from the Common Crawl providing
decision-making support for the informed choice.

Input Form. The input form is divided into three parts (cf. Fig-
ure 3). On the top, the user enters two comparison target objects.
In the middle, the interface allows to add an arbitrary number of
aspects and assign them a weight indicating their importance (1 to
5; used to boost the scores of the sentences containing the aspect).
On the bottom, one of the three different search models can be
selected: Default is based on keyphrases like “better than” or “faster

https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html

https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-theory.html

python (58.20%)

54.15%

Generated Aspects for python

easier faster quicker to develop code quicker

easier to write and debug

Wow, Python much faster than MatLab .
RE: Wow, Python much faster than MatLab .

Remember that Python with NumPy tend to be faster than Matlab.

Python might be faster I'm not good at

MATLAB so | don't know how to get computational times (or in
Python, for that matter).

faster

Entered Aspects

faster

matlab (41.80%)

45.85%

Generated Aspects for matlab

better for scientific computing experience

As you can see from the results- Matlab is significantly faster than
python.

Right, exactly; but "flat" Matlab (that is, Matlab with few looping
constructs) has been shown to me to be faster than
Python+NumPy for intensive calculations.

But | also tested with 64 bit float maxtrix and on my machine,
Matlab 2010b is still faster than Python 3.2 with Numpy-MKL

Figure 2: CAM answer presentation for the question “Is Python faster than Matlab?”. Pro and con sentences are shown.

First object Second object

python versus matlab
Aspect Aspect importance:
faster e
e price —e

Default - [[] Faster Search

Figure 3: CAM input form.

than” to find comparative sentences; BoW is built upon the word
frequency-based XGBoost classifier described above, and Infersent
uses sentence embeddings. The Faster Search option limits the num-
ber of queried fall-back sentences to 500 in order to speed up the
answer construction.

Answer Presentation. On the top of the comparative answer pre-
sentation (cf. Figure 2), different score bars are given. The overall
score distribution allows the user to grasp a general impression for
the entered comparative question while the aspect-specific score
bars show the distribution for the individual user-specified aspects.

Additionally, up to ten automatically generated aspects are pre-
sented in a clickable manner to allow the user to only display result
sentences for such aspects (disjunctive filter interpretation). The
user-specified aspects are used on both result sentence sides while
the generated aspects only filter the corresponding column.

The objects in the displayed sentences are highlighted with their
respective colors from the score bars, while the aspect highlighting
uses different colors. Clicking on a result sentence reveals its Com-
mon Crawl context—by default the +3 sentences around it, with
the possibility of expanding to the whole original document.

4 EVALUATION

We compare our new CAM system to a keyword-based search in
two user studies with 14 and 9 participants on 34 comparison topics.

4.1 Experimental Setup

The 34 topics (two compared objects + one aspect) for our stud-
ies were created from comparative Quora questions containing

the phrase “better than” and also being present on comparison
pages like Diffen.com and DifferenceBetween.net. For each topic,
we manually double-checked that the underlying corpus of our
CAM system and the keyword-based search (i.e., the 14.3 billion
Common Crawl sentences) allows to answer the comparison; we
only included topics with at least 20 support sentences. One of
the topics for instance has mp3 and wma as objects and compres-
sion ratio as the aspect. Given the ground truth answer worse, a
study participant should answer that mp3 is worse than wma with
respect to compression ratio. To clarify potential ambiguities or
subjectivities, descriptions for the participants were added to the
topics (e.g., to inform a potential music afficionado who might claim
a worse compression rate being better since it might come with an
improved sound quality).

In a Group A setup, we focus on the question whether users are
faster answering correctly when using the CAM system. A G*Power
analysis [5] did output a required sample size of 272 comparisons to
be a able to measure a statistically significant difference in answer
times. We thus decided to engage 14 participants on all 34 topics
(477 comparisons). Each participant uses both experimental systems
alternatingly (CAM / keyword-based search). Since every partici-
pant should work on each topic just once with one of the systems
but not the other, we randomly split the 34 topics into two groups
(one for each system). To avoid any order bias, the topics of each
group were presented in random order.

The participants were informed that they should give an answer
as quickly as possible; the whole study took about one hour per
participant and ended with a questionnaire. We measured the time
for different phases (e.g., the time needed to enter a query and
the time needed to determine an answer) and the correctness of a
participant’s answer with respect to manually derived gold labels.

In a Group B setup, we focussed on collecting some more “nat-
ural” feedback using a less forced study environment. We had 9 dif-
ferent participants (not from Group A) who were allowed to just
“play” with the systems for any and as many of our 34 comparison
topics as they liked. In total, 85 comparisons were performed.

4.2 Study Participants

Among the 14 Group A participants, 9 were male (5 female), 13 in-
dicated 18-24 as their age (1 was in the 25-34 range), 8 participants
had an Engineering & Computer Science background (3 from Arts,
Culture & Entertainment, 1 from Law & Public Policy, 2 selected
“other”) with 9 having a Bachelor’s degree. The participants char-
acterized themselves as having a proficient (nine) or intermediate
(five) English level. Seven participants stated to use comparison
websites rarely or never (once a year or less), whereas five used
them once a month and two even once a week.

Group B consisted of five female and four male participants,
1 participant was 13—-17 years old, 2 participants fell in the 18-24
age range, 5 in the 25-34 range, and one in 35-44. This group was
dominated by an Engineering & Computer Science background
(five out of nine); one from Education, one from Business, one from
Arts, Culture & Entertainment, and one “other” background. Four
participants already had a Master’s degree, two were students, one
had a Bachelor’s degree, one a doctorate degree, and one selection
of “other”. Six participants rated their English level as proficient and
three as intermediate. Five participants stated they used comparison
websites rarely or never, whereas two used them once a month and
two even once a week or more.

4.3 Results and Discussion

A Shapiro-Wilk test [14] verified the visual assumption of a log-
normal distribution (& = 0.05) of the different measured times for
CAM usage and keyword-based search. Therefore, t-tests were used
to check whether the null hypothesis of same answer determination
times or same total times can be rejected.

Figure 4 shows the time distributions of Group A. Until typing
indicates the participants being about 19% faster starting to enter
a query with the CAM system (in Group B, the CAM users were
even about 25% faster). Typing is the time from the first key stroke
until the query is submitted. The Group A participants again were
faster with the CAM interface (about 24% on average); the Group B
participants needed about twice as long, being slightly faster with
the CAM system. The loading phase measures the time the system
needs to show the answer (from sending the query until the result is
presented). On average, keyword-based search loads slightly faster
than CAM since CAM uses a keyword-based search subroutine
with some further post-processing.

Most importantly, the time the users need to give their answer
(determination in Figure 4) shows that the Group A participants
were significantly faster when using the CAM system (about 39% dif-
ference). In Group B, the participants were slower in general, but in-
terestingly they were also slightly slower using CAM than keyword-
based search. One potential reason is that the participants explored
the new CAM interface more even providing verbal feedback dur-
ing their work (remember that Group B was allowed to “play” with
the systems).

For the overall task (total in Figure 4), Group A was significantly
faster when using the CAM interface while the more exploratory
Group B was overall slower but with no substantial advantage
for either system. Our main focus in a Group B was on observing
participants behavior which is why they were allowed to test, play
with and comment on the systems while using them.

System L]
- cam
250 [Keyword .
' :
200 ¢
L]
w
2 150 + .]
E []
5
100
L]
0
'
4+ 1 =3
0
until typing yping oading determination otal

Phase

Figure 4: Times of question answering phases (Group A).

CAM

System

Keyword

0.0 02 0.4 0.6 0.8 10
Accuracy
Figure 5: Answer accuracy (Group A).

confidence
o | w's |
4
3

Keyword *I 2 -
1

0 20 0 60 & 100
User selection distribution (%)

Figure 6: Responses on the question “How confident are you
that the determined answer is correct?” (Group A).

Besides statistically significant quicker answers, the Group A par-
ticipants also made fewer errors using the CAM system (cf. Figure 5).
The average CAM accuracy in Group A is 95% (9 of 14 participants
reached 100%), whereas for the keyword-search it is 81% (with a best
result of 94%). The Group B participants also were more accurate
using CAM (84%) than using keyword-based search (75%).

In the evaluation questionnaire, we asked the participants to
rate the system features on the scale from 1 (very negative) to 5
(very positive). The question “How convenient was it to use the
CAM system?” and the statement “Learning the usage of CAM is..”
achieved values between 4 and 5 for both groups, which is very
positive. In addition, the participants of both groups on average
were almost one point more confident that an answer determined
by CAM was correct than for keyword-based search (cf. Figure 6
for Group A; 5 being the highest confidence).

5 CONCLUSION

Our new CAM system helps users to faster and more confidently
find answers on comparative questions compared to a keyword-
based search. Moreover, a summary provided in the answer serves to
support a decision-making process. While the objects of comparison
and the important aspects have still to be stated explicitly, this
gives rise to comparative question handling in search engines once
respective questions can be identified automatically. A demo of our
CAM system is online® and available as open source.

Shttp://ltdemos.informatik.uni-hamburg.de/cam/
“https://github.com/uhh-1t/cam

http://ltdemos.informatik.uni-hamburg.de/cam/
https://github.com/uhh-lt/cam

ACKNOWLEDGMENTS

This work has been supported by the Deutsche Forschungsgemein-
schaft (DFG) within the project “Argumentation in Comparative
Question Answering (ACQuA)” (grant BI 1544/7-1 and HA 5851/2-1)
that is part of the Priority Program “Robust Argumentation Ma-
chines (RATIO)” (SPP-1999).

REFERENCES

[1] Ahmet Aker, Alfred Sliwa, Yuan Ma, Ruishen Lui, Niravkumar Borad, Seyedeh

Ziyaei, and Mina Ghobadi. 2017. What works and what does not: Classifier and

feature analysis for argument mining. In Proceedings of ArgMining@EMNLP 2017.

91-96.

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system.

In Proceedings of KDD 2016. 785-794.

[3] Johannes Daxenberger, Steffen Eger, Ivan Habernal, Christian Stab, and Iryna
Gurevych. 2017. What is the essence of a claim? Cross-domain claim identification.
In Proceedings of EMNLP 2017. 2055-2066.

[4] Mihai Dusmanu, Elena Cabrio, and Serena Villata. 2017. Argument mining on
Twitter: Arguments, facts and sources. In Proceedings of EMNLP 2017. 2317-2322.

[5] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. 2007. G*
Power 3: A flexible statistical power analysis program for the social, behavioral,
and biomedical sciences. Behavior Research Methods 39, 2 (2007), 175-191.

[6] David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John M. Prager,
Nico Schlaefer, and Christopher A. Welty. 2010. Building Watson: An overview
of the DeepQA project. AI Magazine 31, 3 (2010), 59-79.

[7] Marcelo Fiszman, Dina Demner-Fushman, Francois-Michel Lang, Philip Goetz,
and Thomas C. Rindflesch. 2007. Interpreting comparative constructions in
biomedical text. In Proceedings of BioNLP@ACL 2007. 137-144.

[2

Mirco Franzek, Alexander Panchenko, and Chris Biemann. 2018. Categorization
of comparative sentences for argument mining. CoRR abs/1809.06152 (2018).
http://arxiv.org/abs/1809.06152

Samir Gupta, A. S. M. Ashique Mahmood, Karen Ross, Cathy H. Wu, and K.
Vijay-Shanker. 2017. Identifying comparative structures in biomedical text. In
Proceedings of BioNLP@ACL 2017. 206-215.

Xinyu Hua and Lu Wang. 2017. Understanding and detecting supporting ar-
guments of diverse types. In Proceedings of ACL 2017 (Volume 2: Short Papers).
203-208.

Nitin Jindal and Bing Liu. 2006. Mining comparative sentences and relations. In
Proceedings of AAAI 2006. 1331-1336.

Alexander Panchenko, Eugen Ruppert, Stefano Faralli, Simone Paolo Ponzetto,
and Chris Biemann. 2018. Building a web-scale dependency-parsed corpus from
CommonCrawl. In Proceedings of LREC 2018.

Dae Hoon Park and Catherine Blake. 2012. Identifying comparative claim sen-
tences in full-text scientific articles. In Proceedings of DSSD@ACL 2012. 1-9.
Samuel Sanford Shapiro and Martin B. Wilk. 1965. An analysis of variance test
for normality (complete samples). Biometrika 52, 3/4 (1965), 591-611.

[15] Jan Snajder. 2017. Social media argumentation mining: The quest for deliberate-

ness in raucousness. CoRR abs/1701.00168 (2017). http://arxiv.org/abs/1701.00168
Christian Stab, Johannes Daxenberger, Chris Stahlhut, Tristan Miller, Benjamin
Schiller, Christopher Tauchmann, Steffen Eger, and Iryna Gurevych. 2018. Argu-
menText: Searching for arguments in heterogeneous sources. In Proceedings of
NAACL 2018 (Demonstrations). 21-25.

Christian Stab and Iryna Gurevych. 2014. Identifying argumentative discourse
structures in persuasive essays. In Proceedings of EMNLP 2014. 46-56.

[18] Jian-Tao Sun, Xuanhui Wang, Dou Shen, Hua-Jun Zeng, and Zheng Chen. 2006.

CWS: A comparative web search system. In Proceedings of WWW 2006. 467-476.
Henning Wachsmuth, Martin Potthast, Khalid Al Khatib, Yamen Ajjour, Jana
Puschmann, Jiani Qu, Jonas Dorsch, Viorel Morari, Janek Bevendorff, and Benno
Stein. 2017. Building an argument search engine for the web. In Proceedings of
ArgMining@EMNLP 2017. 49-59.

http://arxiv.org/abs/1809.06152
http://arxiv.org/abs/1701.00168

	Abstract
	1 Introduction
	2 Related Work
	3 The CAM System Design
	3.1 Sentence Retrieval
	3.2 Sentence Classification
	3.3 Sentence Ranking and Object Comparison
	3.4 Aspect Extraction
	3.5 CAM User Interface

	4 Evaluation
	4.1 Experimental Setup
	4.2 Study Participants
	4.3 Results and Discussion

	5 Conclusion
	Acknowledgments
	References

