
Set-Encoder: Permutation-Invariant Inter-Passage Attention for
Listwise Passage Re-Ranking with Cross-Encoders

Ferdinand Schlatt
Friedrich-Schiller-Universität Jena

Maik Fröbe
Friedrich-Schiller-Universität Jena

Harrisen Scells
Leipzig University

Shengyao Zhuang
CSIRO

Bevan Koopman
CSIRO

Guido Zuccon
University of Queensland

Benno Stein
Bauhaus-Universität Weimar

Martin Potthast
University of Kassel, hessian.AI, and

ScadDS.AI

Matthias Hagen
Friedrich-Schiller-Universität Jena

ABSTRACT
Cross-encoders are effective passage re-rankers. But when re-rank-
ing multiple passages at once, existing cross-encoders inefficiently
optimize the output ranking over several input permutations, as
their passage interactions are not permutation-invariant. Moreover,
their high memory footprint constrains the number of passages
during listwise training. To tackle these issues, we propose the
Set-Encoder, a new cross-encoder architecture that (1) introduces
inter-passage attention with parallel passage processing to ensure
permutation invariance between input passages, and that (2) uses
fused-attention kernels to enable training with more passages at
a time. In experiments on TREC Deep Learning and TIREx, the
Set-Encoder is more effective than previous cross-encoders with a
similar number of parameters. Compared to larger models, the Set-
Encoder is more efficient and either on par or even more effective.

CCS CONCEPTS
• Information systems→ Learning to rank; Languagemodels.

KEYWORDS
Cross-encoder; Re-ranking; Listwise learning to rank; Permutation
invariance; Inter-passage attention; Fused-attention kernel

1 INTRODUCTION
Cross-encoders [1, 49, 81] using pre-trained transformer-based lan-
guage models are among the most effective re-rankers [36, 65]. By
building a semantic representation of a query and a passage, they
circumvent the vocabulary-mismatch problem during relevance
scoring [40]. However, when re-ranking multiple passages at once,
the existing cross-encoders lack a central desirable property of
learning-to-rank models [52]: permutation-invariant interactions
between the input passages. Interactions between passages can im-
prove the semantic representations through information exchange,
and permutation invariance ensures the same ranking is output
independent of the ordering of the input passages.

Several cross-encoders, such as ‘duo’ models [51, 57] for two-
passage inputs or decoder-only LLMs for up to 20 passages [58, 59,
69], model passage interactions when re-ranking many of them at
once. However, these models all just concatenate the input passages

...

...

...

...

...

...

...

...

...

In
te

r-p
as

sa
ge

 a
tte

nt
io

n

➜ ➜

[CLS]
token

Query
token

Passage
token

Batch

1.5
0.7
0.3

0.9
0.5
0.1

➜

P1 > P2 > P3
P2 > P1 > P3
P1 > P3 > P2
P1 > P2 > P3
P1 > P2 > P3
P1 > P3 > P2

Permutation-
invariant ranking

State of the ArtSet-Encoder

Passage 3

Passage 2

Passage 1

Query

Transformer

Input
sequence
encoder

Figure 1: Architecture comparison of our new Set-Encoder
with previous state-of-the-art re-rankers that model pas-
sage interactions, exemplified by three passages. Previous
re-rankers concatenate the input passages, leading to poten-
tially inconsistent rankings between different passage per-
mutations so that many (or all) permutations are re-ranked
for optimization. The Set-Encoder avoids input concatena-
tion and instead uses a novel inter-passage attention pattern
that makes the re-ranking process permutation-invariant.

1

https://orcid.org/0000-0002-6032-909X
https://orcid.org/0000-0002-1003-981X
https://orcid.org/0000-0001-9578-7157
https://orcid.org/0000-0002-6711-0955
https://orcid.org/0000-0001-5577-3391
https://orcid.org/0000-0003-0271-5563
https://orcid.org/0000-0001-9033-2217
https://orcid.org/0000-0003-2451-0665
https://orcid.org/0000-0002-9733-2890

Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen

into a single sequence, so that the derived re-rankings frequently
depend on the order of the input passages. Figure 1 (right) illustrates
that a solution then usually is to re-rank multiple input permuta-
tions to optimize the final re-ranking’s effectiveness. There are
heuristics to reduce the number of permutations [32, 69, 72], but
re-rankers that directly output the same ranking, irrespective of
the order of the input passages, would be more efficient.

In this paper, we propose the Set-Encoder,1 a new cross-encoder
architecture that models passage interactions in a permutation-
invariant way (see Figure 1, left). Instead of concatenating the
input passages, the Set-Encoder processes them in parallel as dif-
ferent sequences in a batch. To enable passage interactions, the
Set-Encoder lets each sequence aggregate information in a single
special [CLS] embedding token that all other sequences can attend
to. The model is permutation-invariant because all [CLS] tokens
share the same positional encoding. We call our new attention
pattern inter-passage attention (Section 3).

Besides their input permutation dependence, another issue of
current transformer-based cross-encoders is that their memory
inefficiency limits the number of passages per query during train-
ing or fine-tuning—to our knowledge, 36 is the highest number
reported [84]. For the Set-Encoder, we alleviate the memory issue
by using fused-attention kernels [39] that enable fine-tuning on and
re-ranking of 100 passages per query. For the actual fine-tuning, we
further revisit the observation that cross-encoders, which are fine-
tuned on the “standard” MS MARCO with heuristically sampled
(i.e., noisy) hard negatives, are less effective than distilled cross-
encoders, which are fine-tuned on LLM-based rankings [69, 71].
But as the available distillation datasets have shortcomings (e.g.,
only 20 passages per query [69]), we create an improved distillation
dataset with 100 passages per query using more recent LLMs, and
fine-tune our Set-Encoder in a two-stage process. First, we fine-tune
on the large but noisy MS MARCO data, and then continue on our
smaller but high-quality distillation data (Section 4).

Our experiments on the TREC Deep Learning tracks [23, 24]
and the TIREx platform [30] demonstrate that the Set-Encoder im-
proves effectiveness over a cross-encoder without inter-passage
attention, especially in out-of-domain scenarios. Compared to exist-
ing cross-encoders, the Set-Encoder is similarly effective but with
substantially fewer parameters. Furthermore, due to its permutation
invariance, the Set-Encoder does not need to re-rank multiple per-
mutations of a set of passages and thus is more efficient at inference
time than existing listwise cross-encoders (Section 5).

2 RELATEDWORK
In this section, we review the benefits of passage interactions and
permutation invariance in cross-encoders, the techniques for fine-
tuning them, the limitations of these techniques, and how we over-
come these limitations.

2.1 Passage Interactions in Cross-Encoders
Pre-trained transformer-based language models currently are the
most effective for passage re-ranking [40]. The models can be
divided into two types: cross-encoders and bi-encoders. Cross-
encoders receive a query and a passage as input and predict the
1Code and data: https://github.com/webis-de/set-encoder.

relevance of the passage [1, 36, 45, 49]. Note that, for brevity, we
also refer to other transformer-based language models, be they
encoder-only, decoder-only, or encoder-decoders that process a
query and a passage simultaneously, as cross-encoders. In contrast
to cross-encoders, bi-encoders encode a query and a passage into
separate embedding vectors to obtain semantic representations [61],
scoring relevance via vector similarity. Bi-encoders are more effi-
cient than cross-encoders since their passage representations can
be indexed offline [67]. However, cross-encoders are more effective
as they model query–passage interactions.

Current cross-encoders lack a central property that previously
boosted the effectiveness of feature-based learning-to-rank mod-
els [9, 38, 52, 53, 55]. They cannot model passage interactions and
be permutation-invariant at the same time. Passage interactions
improve the effectiveness of re-ranking models by allowing pas-
sages to exchange information. Permutation invariance is essential
for efficiency. In its absence, a model is sensitive to ranking per-
turbations and one must resort to testing multiple permutations to
achieve maximum effectiveness.

Re-ranking models could use corpus-level [6, 44] or ranking-
level [51, 57, 83] passage interactions. Corpus-level passage interac-
tions provide information about a passage given all other passages
in the corpus. For example, PageRank [6] can be used to determine a
passage’s importance based on the link graph. Or the graph induced
by passage similarities in the corpus can be analyzed [44]. However,
even if corpus-level passage interactions may be useful for effective
retrieval [83], they are difficult to integrate into transformer-based
language models [42, 82], and query-independent.

Therefore, we focus on ranking-level passage interactions which
allow for scoring passage relevance dependent on the query and
other passages within the ranking. Previous work has shown that
incorporating ranking-level passage interactions can improve the
effectiveness of cross-encoders [51, 57, 83]. For example, duo cross-
encoders concatenate the query and two passages to predict which
passage of the input pair should be ranked higher [51, 57]. However,
predictions of duo cross-encoders are not symmetric and not tran-
sitive [32]; switching the order of the input passage pair can lead to
a different ranking preference. Therefore, duo cross-encoders must
score all passage pairs for maximum effectiveness. This problem is
alleviated by increasing the number of passages that are simultane-
ously passed to the transformer model. Recent decoder-only LLMs
simultaneously re-rank up to 20 passages [58, 59, 69]. However,
running LLMs with billions of parameters is expensive, and many
permutations need to be tested for maximum effectiveness, despite
heuristics to minimize the number of permutations to test [72].

Existing cross-encoders that model passage interactions are not
permutation-invariant because they concatenate passages in the
input. Our Set-Encoder follows a different strategy and processes
passages in parallel. Like a bi-encoder, the Set-Encoder encodes the
semantic information of a passage in a single embedding vector.
This embedding vector is shared with all other passages, enabling
passage interactions while ensuring permutation invariance. This
strategy is similar to the Fusion-in-Encoder (FiE) [37]. FiE enables
passage interactions within the encoder by adding additional so-
called global tokens. Passage tokens can attend to global tokens
and vice-versa. However, no direct interaction between passage

2

https://github.com/webis-de/set-encoder

Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders

tokens is possible. In contrast, our Set-Encoder allows for direct in-
teractions between passage tokens, enabling more effective passage
interactions.

2.2 Fine-Tuning Cross-Encoders
The MS MARCO dataset [48] is now the most commonly used
dataset for fine-tuning cross-encoders, as it contains many query–
passage pairs. The major drawback of this dataset is that most
queries have only a single passage labeled as relevant. This la-
bel sparsity has two implications: (1) the options for suitable loss
functions are limited, and (2) “non-relevant” passages have to be
sampled heuristically, leading to noisy data.

Regarding the first implication, initial work resorted to pointwise
or pairwise loss functions [49, 50]. More recently, listwise losses
have been shown to produce more effective models [31, 56, 70, 84].
Instead of computing the loss using a single relevant and one non-
relevant passage, a set of 𝑘 non-relevant passages is considered.
Generally, the more non-relevant passages are included in a train-
ing sample, the more effective models are. The highest reported
number of passages is 𝑘 = 36 [84], with most work citing resource
constraints as the limiting factor for further increasing 𝑘 . The qua-
dratic memory requirements of the transformer’s self-attention
mechanism [73] make it difficult to fine-tune models on more pas-
sages. We rely on recent work on memory-efficient fused-attention
kernels [25, 26, 39] to circumvent the memory constraints and fine-
tune models on the full set of up to 100 passages, which they then
also receive during re-ranking.

Regarding the second implication, previous work has mostly
relied on “hard negative” sampling, i.e., using an effective first-
stage retrieval model to sample “non-relevant” samples. The more
effective the first-stage retrieval model is, the more difficult it is
for the cross-encoder to assess which passage is sampled, and the
more effective the fine-tuned model becomes [31]. This sampling
technique, however, has its limits. Previous work found that the
corpus often contains passages that are actually more relevant than
the labeled passage for a substantial number of queries [2]. It was
found that models can pick up on biases in the labeling process,
overfitting the training data.

To obtain training data of higher quality, Sun et al. [69] propose
using LLMs in a zero-shot manner to re-rank passages retrieved by
a first-stage retrieval model. Using a permutation distillation loss, a
cross-encoder is then fine-tuned to mimic the LLM’s ranking [71].
This approach has several advantages over using the MSMARCO la-
bels and heuristic negative samples. First, since the LLM is applied in
a zero-shot manner, it is unaffected by the biases of the MS MARCO
labeling process. Second, the resulting data is densely labeled; each
passage’s rank is considered its label. Third, the improved ranking
of the LLM reduces noise in the training data. However, distilling
cross-encoders from LLMs also comes with drawbacks, namely that
the effectiveness of the LLM is the upper bound of the cross-encoder,
and that it is unclear if LLMs can reliably produce relevance labels
for information retrieval setups [28]. In our case, we do not use
an LLM to judge passages but instead use its predictions to rank
them (which is much cheaper than human assessors [28]), and then
distill it into a cross-encoder based on its rankings.

Sun et al. [69] released the top 20 passages retrieved by BM25,
re-ranked by OpenAI’s GPT-3.5 for 100k queries. While the scale of
the dataset makes it a valuable resource, we find several points for
improvement. Chiefly among them, previous insights for improving
the fine-tuning cross-encoders on MS MARCO have not yet been
applied, namely using a more effective first-stage retrieval model
to sample data [31], and second, fine-tuning cross-encoders on as
many passages as possible [84]. Rectifying these two issues, we
build and release a new dataset for listwise distillation of cross-
encoders. We use ColBERTv2 [66] as first-stage retrieval model and
re-rank the top 100 passages using OpenAI’s GPT-4 Turbo.

3 THE SET-ENCODER MODEL
In this section, we introduce our new cross-encoder architecture:
the Set-Encoder. It uses a novel inter-passage attention pattern to
model permutation-invariant interactions between passages.

To enable permutation-invariant interactions between multiple
passages in a cross-encoder, the three main challenges are: (1) the
passages must be able to attend to each other, (2) the interactions
between the passages must not encode any positional information
about the passage ordering, and (3) the interactions should be “light-
weight” enough for efficient cross-encoder training / fine-tuning.

Previous work has addressed the first challenge (attention be-
tween passages) by concatenating the query and multiple passages
into one input sequence for a transformer-based language model;
visualized in Figure 1 (right). Concatenation, however, “violates”
the second challenge: the language model’s positional encodings
(used to determine the token positions) span across passage bound-
aries and thus encode the order of the passages in the sequence.
A different input ordering of the passages can then change the
output re-ranking. Furthermore, concatenation also violates the
third challenge (efficiency) as the language model’s computational
cost scales quadratically with the length of the input sequence.

Instead of concatenating passages, we use a novel pattern: inter-
passage attention, as visualized in Figure 1 (left). Inter-passage
attention processes the passages in parallel with individual input
sequences per passage—similar to batched processing of standard
cross-encoders. Each of the individual input sequences—one per
passage—has its positional encodings starting from zero so that
no information about the passage order is encoded (second chal-
lenge). To still let the passages in a batch attend to each other (first
challenge), we use a special [CLS] token per sequence that aggre-
gates semantic information about its passage and to which tokens
from other sequences it can attend. The interactions between pas-
sages then are based on just these single [CLS] tokens per passage
and not on full-attention between all tokens of different passages.
This makes inter-passage attention computationally efficient (third
challenge). In principle, our novel pattern also supports passing
multiple queries to a model. The inter-passage attention is then
only enabled between input sequences with the same query. We
formalize the described ideas in the below sections.

3.1 Permutation-Invariant Input Encoding
Standard cross-encoders compute relevance scores for query–pas-
sage pairs (𝑞, 𝑑) given as token sequences 𝑡1𝑞 . . . 𝑡𝑚𝑞

and 𝑡1𝑑 . . . 𝑡𝑚𝑑
.

Using a BERT-style encoding [27], the final tokens 𝑡𝑚𝑞
and 𝑡𝑚𝑑

are

3

Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen

special [SEP] separator tokens. Prepended by a special [CLS] classi-
fication token 𝑐 , the concatenated sequence 𝑐 𝑡1𝑞 . . . 𝑡𝑚𝑞

𝑡1𝑑 . . . 𝑡𝑚𝑑

is passed through a transformer-based encoder model, and the rele-
vance score of 𝑑 for 𝑞 is computed by a linear transformation on
the final contextualized embedding of the [CLS] token 𝑐 .

The Set-Encoder gets a query 𝑞 and a set of passages {𝑑1, . . . , 𝑑𝑘 }
as input and computes a relevance score for each passage. To this
end, the Set-Encoder builds a set of input sequences by prepending
a [CLS] token and the query sequence to each passage individually.
The set of input sequences is then processed simultaneously similar
to batched processing with a standard cross-encoder—but with
attention from an input sequence’s tokens to the class tokens of
the other input sequences (see Section 3.2). The batched input
sequences are passed through an encoder, and the relevance scores
of the passages 𝑑𝑖 for 𝑞 are computed by a linear transformation
on the passage’s final contextualized class token embedding.

In contrast to concatenating passages, our batched input en-
coding is permutation-invariant as each input sequence starts its
positional encodings from zero. This means that the first token of
each passage is at position𝑚𝑞 + 1. The model then cannot distin-
guish between different permutations of the input sequences and,
therefore, also not between different permutations of the passages.

3.2 Inter-Passage Attention
In the Set-Encoder, we use a special form of attention to model
passage interactions: we only allow every sequence to attend to
the [CLS] tokens of every other sequence. Our intuition is that
these [CLS] tokens aggregate the semantic information from their
sequence and can share it with all other sequences.

Using single tokens for passage interactions is on the efficiency
end of a spectrum of possible variants for exchanging information
between passages. Sharing more tokens can make the information
exchange between passages more fine-grained but definitely makes
it computationally more expensive. Increasing the number of pas-
sage interactions increases the computational cost quadratically.
The extreme case of concatenating passages and thus having ev-
ery token attend to all other tokens might offer more potential
for information exchange but it also is particularly inefficient. We
hypothesize that using single tokens for information exchange offer
a dramatic improvement of efficiency at sufficient effectiveness.

Our hypothesis is motivated by the semantic information aggre-
gation in many model architectures. For instance, in bi-encoders,
the [CLS] tokens capture the semantic information of a passage
and in standard cross-encoders, the [CLS] tokens aggregate query–
passage information to compute a relevance score. We hypothesize
that a [CLS] token then is also able to share this information with
other passages and select the [CLS] tokens as the single tokens that
ensure passage interactions in the Set-Encoder. The Set-Encoder’s
novel inter-passage attention pattern thus lets an input sequence
of [CLS], query, and passage tokens attend to itself and to all other
input sequences’ [CLS] tokens.

To implement the novel pattern, we modify the original dot-
product attention function of the transformer [73]:

Attention(𝑄,𝐾,𝑉) = softmax
(
𝑄𝐾𝑇
√
ℎ

)
𝑉 ,

where 𝑄 , 𝐾 , and 𝑉 are matrices of embedding vectors and ℎ is
the dimensionality of the embeddings. Each vector in the matrices
corresponds to a token from the transformer’s input of two token
sequences (‘origin’ and ‘target’) for which the transformer derives
the attention. With 𝑥 as the length of the origin and 𝑦 as the length
of the target sequence, 𝑄 is an 𝑥 × ℎ matrix containing the origin
sequence’s token embedding vectors, and𝐾 and𝑉 are𝑦×ℎmatrices
containing embedding vectors of the target sequence. Normalizing
and softmaxing the 𝑥 × 𝑦 product matrix 𝑄𝐾𝑇 yields probabilities
of how much the 𝑖-th token from the origin sequence attends to
the 𝑗-th token from the target sequence. The transformer’s output
Attention(𝑄,𝐾,𝑉) then is an 𝑥 × ℎ matrix of probability-weighted
target sequence embedding vectors from 𝑉 .

The Set-Encoder uses an encoder transformer model. Encoders
employ self-attention (i.e., the origin and target sequence are iden-
tical), so that their input is just one sequence from which each
token can attend to all tokens from within the sequence. For the
Set-Encoder’s batched input representation, input sequences are
instead embedding vector matrices 𝑄 (𝑖) , 𝐾 (𝑖) , and 𝑉 (𝑖) for each
passage 𝑑𝑖 ’s input sequence. To allow the 𝑖-th input sequence to
attend to the [CLS] tokens of all other input sequences, we ap-
pend the [CLS] token’s embedding vectors from the other input
sequences’ target embedding matrices 𝐾 (𝑗) and 𝑉 (𝑗) to the in-
put sequence’s target embedding matrices 𝐾 (𝑖) and 𝑉 (𝑖) . Specif-
ically, let 𝐾 (𝑖) = [𝐾 (𝑗)

1 : 𝑗 ≠ 𝑖] and 𝑉 (𝑖) = [𝑉 (𝑗)
1 : 𝑗 ≠ 𝑖] be

the concatenated matrices of the [CLS] token’s embedding vectors
from 𝐾 and 𝑉 of every passage except passage 𝑑𝑖 , with [· ·] denot-
ing column-wise vector /matrix concatenation (i.e., [𝑀𝑀′] is equal
to a matrix whose “left” columns come from𝑀 and whose “right”
columns come from 𝑀′). Once the [CLS] tokens from the other
passages’ embedding vectors have been appended to the target
sequence matrices, we obtain the inter-passage attention pattern:
Attention(𝑄 (𝑖) , [𝐾 (𝑖)𝐾 (𝑖)], [𝑉 (𝑖)𝑉 (𝑖)]).

4 CROSS-ENCODER TRAINING
The standard paradigm for training cross-encoders is to use pas-
sages that have been assessed as relevant from the MS MARCO
dataset [48] and sample pseudo non-relevant passages from the
retrieved passages of a first-stage retrieval model. Recently, a new
paradigm has emerged in which a cross-encoder is distilled tomimic
the ranking of a highly effective LLM [69]. Both paradigms have
advantages and disadvantages but have only been applied in a
complementary manner. We discuss the pros and cons of each par-
adigm and how we combine them to obtain the advantages from
both approaches.

4.1 Sampling Negative Passages
We first discuss the standard paradigm of sampling negatives using
a first-stage retrieval model. Its main advantage is that obtaining a
sizable training dataset is relatively cheap. The MS MARCO dataset
contains over 500k queries with, on average, one relevant passage
each. Since first-stage retrieval models are usually very efficient,
sampling negative “non-relevant” passages is fast and inexpensive.
The main drawbacks are that the training data is noisy and that
the single relevant sample per query limits the options for loss
functions. The noise stems from the fact that the passage marked

4

Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders

as relevant for a query is usually not the only relevant passage
and often not even the most relevant passage [2]. Consequently,
sampled negative “non-relevant” passages are often more relevant
than those marked as relevant.

Twomain strategies to counteract the training disadvantages and
fine-tune effective cross-encoders have emerged from the literature.
The first strategy is to use a highly effective first-stage ranker which
is used to sample “hard negatives”. For example, sampling negative
passages using a neural retrieval model such as ColBERTv2 yields
more effective cross-encoders than using BM25 [31]. The second
strategy is to use a listwise loss function with as many negative
“non-relevant” samples as possible [56].

Previous work was able to fine-tune cross-encoders with only
a limited number of negative samples due to resource constraints.
The highest number we are aware of is 𝑘 = 36 [84]. We circumvent
this resource constraint by using memory-efficient fused-attention
kernels [39]. We aim to investigate whether a cross-encoder or
the Set-Encoder profits from fine-tuning on the same number of
passages as it will see during re-ranking—up to 100 passages. This
is especially important for the Set-Encoder since encoder models
are sensitive to shifts between training and inference data [47]. For
instance, fine-tuning the Set-Encoder on 8 passages but running
inference on 100 passages will likely result in a stronger drop in
effectiveness compared to a standard cross-encoder. The passage
distribution during inference would substantially differ from the
training distribution, which is also known to cause problems in
traditional learning-to-rank models [46].

4.2 LLM Distillation
Adifferent andmore recent paradigm for fine-tuning cross-encoders
is to distill a model from the rankings of a more effective but con-
siderably less efficient decoder-only LLM, as proposed by [69]. The
main advantage of this paradigm is that the noise in the train-
ing data is reduced, especially on MS MARCO, where relevance
judgments of LLMs are highly correlated with human expert judg-
ments [28]. The LLM is applied in a zero-shot setting, i.e., it was
not explicitly trained or prompted for MS MARCO queries or docu-
ments so that the LLM is not affected by the sparsity of the labels
(albeit contamination effects might occur [43], because it is unclear
what proportion of MS MARCO the model implicitly saw during
training). Additionally, since the LLM assigns a rank to each pas-
sage, the training data is densely labeled, allowing for the use of
more nuanced loss functions. The main drawback is that the train-
ing data is comparatively expensive to obtain. The most effective
decoder-only LLMs for re-ranking, referred to as RankGPT, use
closed-source GPT models hosted by OpenAI. Inference costs for
RankGPT depend on the model but can quickly exceed hundreds
of dollars [69]. Open-source alternatives exist but do not match the
effectiveness of RankGPT [58, 59].

Sun et al. [69] released a sizable dataset of 100k queries with
the top 20 passages as retrieved by BM25 re-ranked by RankGPT-
3.5. While the scale of this dataset is impressive, we note several
aspects in which it can be improved. Due to the large scale, the
weaker (compared to GPT-4 Turbo) GPT-3.5 model was used to
save costs. We hypothesize a higher quality but smaller dataset
generated with GPT-4 Turbo will yield more effective models. In

addition, the dataset does not follow the strategies previous work
showed to improve cross-encoder effectiveness. First, BM25 is a
relatively weak first-stage retrieval model. We checked several
samples in preliminary experiments and often found none of the
20 retrieved passages relevant to the query. Second, only 20 passages
were retrieved per query. We hypothesize that a more effective first-
stage retrieval model and a greater number of passages per query
will improve the effectiveness of the Set-Encoder model and cross-
encoders in general.

4.3 Two-Stage Fine-Tuning
We employ a two-stage strategy for fine-tuning cross-encoders to
achieve high effectiveness while minimizing costs. Instead of only
distilling from LLM ranking data, we first fine-tune a model on a
large set of noisy data (MS MARCO negative sampling paradigm)
and then continue to fine-tune on a smaller but higher-quality
dataset (LLM distillation paradigm). Thus, we create our own high-
quality LLMdistillation dataset.We use ColBERTv2 as the first-stage
retrieval model [66] to retrieve 100 passages for 1, 000 randomly
sampled MS MARCO training queries, then use RankGPT-4 Turbo
to re-rank the passages, costing a total of USD $100.

As RankGPT-4 Turbo has a larger context size, we slightly mod-
ify the dataset creation process compared to Sun et al. [69]. The
limited context size of LLMs normally necessitates using a sliding
window approach to re-rank an adequate number of passages. To
re-rank 100 passages, Sun et al. [69] first re-rank the bottom 20 pas-
sages, then the 70-th to 90-th passages, and so on. This windowed
strategy is expensive as many passages are re-ranked twice. To
re-rank 100 passages, 180 passages are passed to the model. The
windowed strategy also has a strong positional bias, as a passage
ranked in the top 10 by the first stage retrieval model can, in the
worst case, be re-ranked to position 20. RankGPT-4 Turbo can re-
rank all 100 passages simultaneously. While re-ranking all passages
simultaneously is cheaper, it may lead to lower effectiveness. LLMs
have implicit positional biases when re-ranking passages [72]. To
verify these biases do not substantially influence RankGPT-4 Turbo,
we run a pilot study on the TREC Deep Learning 2019 and 2020
tracks [23, 24]. We run RankGPT-4 (using the windowed strategy)
and RankGPT-4 Turbo on the top 100 passages retrieved by Col-
BERTv2. Bothmodels achieve similar effectiveness, with RankGPT-4
and RankGPT-4 Turbo reaching 0.779 and 0.770 nDCG@10, respec-
tively, highlighting that the windowed strategy is not required for
achieving high effectiveness and that RankGPT-4 Turbo is a suitable
replacement for windowed RankGPT-4.

4.4 Fine-Tuning Settings
We mostly follow Pradeep et al. [56] for fine-tuning baseline mod-
els and the Set-Encoder. We use an ELECTRABASE [10] check-
point from HuggingFace [80] as starting point for fine-tuning
(google/electra-base-discriminator). For the initial fine-tuning,
we use the relevance labels from theMSMARCOpassage dataset [48]
and sample hard-negatives from the top-200 passages retrieved by
ColBERTv2 [66]. We truncate sequences longer than 256 tokens
and train monoELECTRA and Set-Encoder models for 50K steps
with a batch size of 32 using LCE loss [31] and 7 negative examples
per query. Separate monoELECTRA and Set-Encoder models are

5

Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen

then further fine-tuned for 320 steps (10 epochs of our new dataset)
on the previously released RankGPT-3.5 distillation dataset and
our new RankGPT-4 Turbo distillation dataset using the RankNet
loss function [7]. For comparison, we continue fune-tuning a mono-
ELECTRA and Set-Encodermodel with 99 hard-negatives using LCE
loss. We additionally fine-tune monoELECTRA and Set-Encoder
models for 320 steps from scratch using both distillation datasets for
comparison. We use the AdamW [41] optimizer with a learning rate
of 10−5. All models were trained on a single NVIDIA A100 40GB
GPU and implemented using PyTorch [54] and Lightning [29].

5 EVALUATION
To evaluate the effectiveness of our proposed dataset and model,
we conduct experiments on the TREC Deep Learning 2019 and
2020 tracks [23, 24] and the TIREx platform [30]. Our analyses are
guided by the following research questions, which we investigate
in subsequent subsections:
RQ1 How does the quality of listwise training data affect the

re-ranking effectiveness of cross-encoders?
RQ2 Can inter-passage information improve the re-ranking ef-

fectiveness of cross-encoders?
RQ3 How important is permutation invariance for the robust-

ness and efficiency of cross-encoders?

5.1 LLM Distillation Fine-Tuning
To investigate our first research question we compare the various
fine-tuning configurations described in Section 4.4 on the TREC
Deep Learning 2019 and 2020 tracks [23, 24]. We measure and
report the nDCG@10 of each model re-ranking the top 100 pas-
sages retrieved by BM25 [64] and ColBERTv2 [66]. We compare the
effectiveness with RankGPT-4 [69], RankGPT-4 Turbo, and LiT5-
Distill [71]. LiT5 is a recently proposed cross-encoder based on
the T5 model [60]. It is fine-tuned on the RankGPT-3.5 distillation
dataset and can model interactions between passages but is not
permutation invariant because it encodes the rank position of the
passage in the input. It additionally has an explicit position bias as it
uses the same sliding window strategy as RankGPT (see Section 4.2).
Table 1 shows the results for the various fine-tuning configurations.

We first investigate the effects of the configurations on mo-
noELECTRA. Fine-tuning monoELECTRA using only RankGPT
distillation data produces rather ineffective models. They are sub-
stantially worse than RankGPT-4 and RankGPT-4 Turbo when re-
ranking passages retrieved by BM25. When re-ranking passages
retrieved by ColBERTv2, the models are even worse than the first-
stage retrieval model. This is in stark contrast to LiT5, which is also
only fine-tuned using permutation distillation. LiT5 achieves simi-
lar effectiveness on BM25 but is considerably better on ColBERTv2.
We attribute this to the explicit positional bias from the windowed
strategy. We investigate this effect further in Section 5.3.

Fine-tuning using hard-negative produces more effective models.
But, similar to previous work, we find that alignment between the
first-stage retrieval model and the training data is important [31].
Themodel fine-tuned on 8 samples using ColBERTv2 hard-negatives
is almost as effective as both RankGPT-4 and RankGPT-4 Turbo
when re-ranking passages retrieved by ColBERTv2 but is substan-
tially less effective when re-ranking passages retrieved by BM25.

Table 1: Comparison of nDCG@10 on the TREC Deep Learn-
ing 2019 and 2020 [23, 24] tracks of monoELECTRA and Set-
Encoder models using either hard-negative sampling (HN) or
RankGPT distillation (RG) for initial fine-tuning (1. FT) and
subsequent fine-tuning (2. FT) with the number of passages
per sample given in parentheses. The highest and second-
highest scores per task are bold and underlined, respectively.

Model 1. FT 2. FT BM25 ColBERTv2

2019 2020 2019 2020

First Stage – – 0.480 0.494 0.732 0.725

RankGPT-4 – – 0.713 0.713 0.766 0.793
RankGPT-4 T. – – 0.716 0.699 0.777 0.764

LiT5-Distill RG-3.5 (20) – 0.696 0.679 0.753 0.744

monoELEC.
HN (8)

– 0.668 0.681 0.760 0.746

HN (100) 0.677 0.685 0.757 0.739
RG-3.5 (20) 0.697 0.689 0.757 0.740
RG-4T (100) 0.730 0.710 0.769 0.762

RG-3.5 (20) – 0.695 0.645 0.717 0.677
RG-4T (100) – 0.681 0.672 0.727 0.677

Set-Encoder
HN (8)

– 0.633 0.645 0.728 0.677

HN (100) 0.668 0.671 0.751 0.731
RG-3.5 (20) 0.691 0.668 0.721 0.699
RG-4T (100) 0.725 0.704 0.770 0.752

RG-3.5 (20) – 0.676 0.645 0.708 0.687
RG-4T (100) – 0.672 0.659 0.716 0.687

Continuing to fine-tune the model fine-tuned on hard-negatives
with 100 instead of 8 samples barely changes the effectiveness. The
potential of fine-tuning on hard negatives seems to be exhausted.
Continuing to fine-tune on the less noisy RankGPT-3.5 distillation
dataset similarly does not change the effectiveness.

In contrast, fine-tuning on our new RankGPT-4 Turbo data im-
proves effectiveness substantially, especially for re-ranking the pas-
sages retrieved by BM25. Improvements for ColBERTv2 re-ranking
are marginal, but they close the slight effectiveness gap to RankGPT-
4 and RankGPT-4 Turbo. On the BM25 passages, monoELECTRA
achieves the highest effectiveness on TREC DL 2019 and the second
highest on the 2020 track of all models, even outperforming the
RankGPT-4 Turbo model that it was distilled from. This effect is
caused by the lack of permutation invariance of RankGPT, which
we investigate in more detail in Section 5.3.

The effect of the various fine-tuning configurations on the Set-
Encoder is much different. Like monoELECTRA, using LLM dis-
tillation data as the initial fine-tuning dataset produces poor Set-
Encoder models. However, while fine-tuning on 8 hard-negative
samples is effective for monoELECTRA, it leads to poor effective-
ness for the Set-Encoder. Further fine-tuning the model on the
RankGPT-3.5 data with 20 samples leads to a slight improvement,
but the model is still substantially less effective than monoELEC-
TRA using the same configuration. Only when the Set-Encoder is
fine-tuned on 100 samples can it match monoELECTRA’s effective-
ness. The model fine-tuned with 100 hard-negative samples and the

6

Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders

20 40 60 80 100
Fine-tuning Sample Size

0.5350

0.5375

0.5400

0.5425

0.5450

nD
C

G
@

10

BM25 Top 10

20 40 60 80 100
Fine-tuning Sample Size

0.62

0.63

0.64

0.65

BM25 Top 25

20 40 60 80 100
Fine-tuning Sample Size

0.62

0.64

0.66

0.68

BM25 Top 50

20 40 60 80 100
Fine-tuning Sample Size

0.625

0.650

0.675

0.700

0.725
BM25 Top 100

monoELECTRA Set-Encoder Hard-Negatives LLM Distillation

Figure 2: nDCG@10 of monoELECTRA and Set-Encoder models fine-tuned on different numbers of passages 𝑘 ∈ {10, 25, 50, 100}
using hard-negative and LLM distillation data and re-ranking the top 𝑘 passages retrieved by BM25.

model fine-tuned with our RankGPT-4 Turbo data achieve similar
effectiveness as monoELECTRA in its respective configurations.

In summary, when first fine-tuned with hard negatives and then
with our distillation dataset, the Set-Encoder is on par with mo-
noELECTRA overall, slightly less effective than both RankGPT
models when re-ranking ColBERTv2, and slightly more effective
than RankGPT on passages retrieved by BM25. The fact that mo-
noELECTRA and the Set-Encoder are on par suggests that interac-
tions between passages do not improve re-ranking effectiveness.
Section 5.2 investigates this in more detail. The need to fine-tune
the Set-Encoder on 100 passages suggests it is sensitive to a shift
between training and inference data.

To gain a better understanding of the effect, we further fine-tuned
additional monoELECTRA and Set-Encoder models for different
numbers of passages 𝑘 ∈ {10, 25, 50, 100} per fine-tuning sample
using ColBERTv2 hard-negatives and our RankGPT-4 Turbo data.
Figure 2 visualizes the nDCG@10 for each model re-ranking the
top 𝑘 passages retrieved by BM25. Supporting our hypothesis, we
observe that the Set-Encoder’s effectiveness increases with increas-
ing sample size for both hard-negative and LLM distillation data.
The effect is less pronounced when re-ranking fewer passages, i.e., a
Set-Encoder model fine-tuned on 100 passages can still re-rank less
than 100 passages effectively. To effectively re-rank 100 passages,
the Set-Encoder model should be fine-tuned on at least 50 passages.

We also observe an effectiveness gap between the hard-negative
training data (circles) and our LLM distillation data (crosses) for
monoELECTRA and the Set-Encoder. Our LLM distillation data
improves model effectiveness for almost all combinations of re-
ranking depth and fine-tuning sample size. The difference is less
pronounced at lower sample sizes, especially for monoELECTRA.
A larger sample size leads to more effective monoELECTRA models
when fine-tuned on our distillation data, while the effectiveness
for monoELECTRA fine-tuned on hard-negatives stays more or
less constant with increasing sample size. This suggests that the
distillation dataset should contain at least 25 or 50 samples for a
model to profit from high-quality LLM distillation data.

In conclusion, a two-stage fine-tuning approach, with hard-
negative samples first and LLM distillation data second, works well
for fine-tuning cross-encoders. Second, LLM distillation data must
be high-quality and have an adequate depth to have a noticeable ef-
fect compared to hard-negative data. Finally, the Set-Encoder must
be fine-tuned with an adequate number of samples to be effective.

Table 2: Overview of the corpora and tasks used for evalua-
tion. For each corpus, we report the mean document length
(of the top 100 retrieved by BM25), the number of queries,
and the average judgments per query.

Corpus Tasks Queries Documents

Details # Judg. # Length

Antique QA Benchmark [33] 1 32.9 200 49.9
Args.me Touché [3, 4] 2 60.7 99 435.5
ClueWeb09 Web Tracks [12–15] 4 421.8 200 1132.6
ClueWeb12 Web Tracks, Touché [3, 4, 18, 19] 4 163.8 200 5641.7
CORD-19 TREC-COVID [76, 79] 1 1386.4 50 3647.7
Cranfield Fully Judged Corpus [17] 1 8.2 225 234.8
Disks4+5 TREC-7/8, Robust04 [74, 75, 77, 78] 3 1367.4 350 749.3
GOV TREC Web Tracks [20–22] 3 603.9 325 2700.5
GOV2 TREC TB [8, 11, 16] 3 902.3 150 2410.3
MEDLINE Genom., PM [34, 35, 62, 63] 4 518.3 180 309.1
MS MARCO TREC DL [23, 24] 2 212.8 97 77.1
NFCorpus Medical LTR Benchmark [5] 1 48.7 325 364.6
Vaswani Scientific Abstracts 1 22.4 93 51.3
WaPo Core ’18 1 524.7 50 713.0

5.2 Inter-Passage Attention
Next, we investigate our second research question regarding the
effect of inter-passage attention on cross-encoders. We evaluate
the Set-Encoder and monoELECTRA models fine-tuned using our
RankGPT-4 Turbo distillation data on the TIREx platform [30]. The
platform combines 31 TREC-style retrieval tasks across 14 cor-
pora. See Table 2 for an overview. Note that TIREx includes the
TREC Deep Learning 2019 and 2020 tracks under the MS MARCO
corpus. Since we fine-tune our models on MS MARCO, it serves
as the in-domain evaluation corpus. All other corpora are out-of-
domain or zero-shot evaluation corpora. We follow Fröbe et al. [30]
and re-rank the top 100 passages retrieved by either ChatNoir (for
the ClueWeb corpora) or BM25 (for all other corpora). We mea-
sure nDCG@10 and micro-average the scores across all queries
associated with a corpus. We also report the arithmetic mean and
geometric mean across all corpora. Table 3 shows the results for
our fine-tuned monoELECTRA and Set-Encoder models, various
sizes of monoBERT [49] and monoT5 [50], a sparse cross-encoder
model [68], and LiT5-Distill [71].

7

Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen

Table 3: Comparison of various cross-encoder and LLM re-ranking models in terms of nDCG@10 micro-averaged across all
queries from a corpus from the TIREx benchmark [30]. Macro-averaged arithmetic and geometric means are computed across
all corpora. Model sizes are given in the number of parameters. The highest and second-highest scores per corpus are bold and
underlined, respectively.

Model Parameters
Antique

Args.me
ClueWeb09

ClueWeb12
CORD-19

Cranfield
Disks4+5 GOV GOV2

MEDLINE
MS MARCO

NFCorpus
Vaswani

WaPo
A. Mean

G. Mean

First Stage – 0.516 0.404 0.178 0.364 0.586 0.012 0.436 0.237 0.466 0.358 0.487 0.281 0.447 0.364 0.367 0.394

Sparse monoMiniLM 11M 0.545 0.312 0.198 0.312 0.673 0.014 0.498 0.267 0.502 0.228 0.691 0.299 0.436 0.434 0.386 0.427
monoBERT base 110M 0.512 0.314 0.192 0.263 0.690 0.009 0.531 0.265 0.489 0.256 0.701 0.310 0.321 0.449 0.379 0.422
monoBERT large 340M 0.489 0.371 0.134 0.251 0.625 0.009 0.504 0.250 0.474 0.296 0.714 0.303 0.476 0.438 0.381 0.422
monoT5 base 220M 0.510 0.304 0.186 0.260 0.688 0.009 0.535 0.267 0.486 0.253 0.705 0.310 0.306 0.451 0.376 0.420
monoT5 large 770M 0.532 0.337 0.182 0.266 0.636 0.010 0.566 0.267 0.512 0.313 0.717 0.311 0.414 0.492 0.397 0.438
monoT5 3b 3B 0.543 0.391 0.201 0.279 0.603 0.011 0.569 0.292 0.513 0.348 0.736 0.324 0.458 0.476 0.410 0.448
LiT5-Distill 220M 0.576 0.394 0.215 0.275 0.686 0.011 0.509 0.268 0.534 0.334 0.687 0.293 0.429 0.470 0.406 0.445
monoELECTRA 110M 0.539 0.379 0.174 0.288 0.674 0.008 0.460 0.229 0.513 0.366 0.720 0.280 0.482 0.435 0.396 0.438
Set-Encoder 110M 0.569 0.406 0.175 0.296 0.663 0.007 0.474 0.253 0.516 0.369 0.715 0.287 0.507 0.443 0.406 0.446

Compared to the other models, the Set-Encoder reaches the
second-highest effectiveness on average across all corpora for both
arithmetic and geometric mean. Only the largest monoT5 model is
marginally more effective but uses 27-times more parameters. De-
spite being less effective for in-domain retrieval, LiT5-Distill is also
similarly effective on average across all corpora. However, it uses
twice the number of parameters and is not permutation invariant,
which we investigate further in Section 5.3. Additionally, our fine-
tuned monoELECTRA is on par with monoT5 large, the previously
second-best model on TIREx, highlighting the effectiveness of our
two-stage fine-tuning approach.

In the direct comparison to monoELECTRA, for in-domain re-
trieval on MS MARCO, the Set-Encoder model is marginally less
effective. However, the difference is not significant (paired t-test,
𝑝 < 0.01 Bonferroni-corrected). For out-of-domain retrieval, the
Set-Encoder improves over monoELECTRA on 11 out of 13 corpora.
Wemeasure significant improvements on the Antique, Args.me, and
Gov corpora. Across all corpora, the Set-Encoder is more effective
regarding both arithmetic and geometric mean.

To better understand how the Set-Encoder uses inter-passage
attention, Figure 3 visualizes the attention saliency per token type
of monoELECTRA and the Set-Encoder. We average the attention
probabilities of the [CLS] token to itself, query tokens, passage
tokens, and other passages’ [CLS] tokens per layer for the TREC
Deep Learning tracks. In monoELECTRA, the [CLS] token spreads
its attention mostly evenly across the token types for the initial
layers 1 to 8. In layers 9 through 10, the model focuses almost
exclusively on the passage tokens. In the final 12-th layer, the model
aggregates information about the query-passage interaction by
balancing attention between the two.

The Set-Encoder’s attention pattern differs considerably. In the
first two layers, the [CLS] token puts around 18% of its attention
on the passage and most of the remaining attention on the other
passage’s [CLS] tokens. In the layers 3 through 8, the [CLS] token
attends almost exclusively to the other passage’s [CLS] tokens. This
suggests the model aggregates information about the passage in
the first two layers and then shares this information with the other
passages in the intermediate layers. Like monoELECTRA, in the

[CLS]

Query

Passage

0.28 0.15 0.26 0.21 0.22 0.27 0.26 0.18 0.06 0.02 0.05 0.02

0.06 0.15 0.27 0.23 0.25 0.28 0.27 0.22 0.11 0.08 0.15 0.53

0.66 0.70 0.47 0.55 0.52 0.44 0.47 0.59 0.83 0.90 0.80 0.45

monoELECTRA

1 2 3 4 5 6 7 8 9 10 11 12
Layer

[CLS]

Query

Passage

Other [CLS]

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.03 0.02 0.09 0.38

0.20 0.16 0.04 0.07 0.08 0.02 0.02 0.04 0.22 0.39 0.29 0.37

0.77 0.82 0.94 0.92 0.90 0.97 0.97 0.95 0.74 0.58 0.61 0.25

Set-Encoder

To
ke

n
Ty

pe

Figure 3: Attention saliency of monoELECTRA and the Set-
Encoder of the [CLS] token to itself, query tokens, passage
tokens, and other passages’ [CLS] tokens per layer.

layers 9 through 11, the [CLS] token increases attention to the
passage. The query–passage interaction is then modeled in the final
layer, where the [CLS] token also attends to the query tokens.

In conclusion, our new inter-passage attention pattern improves
the effectiveness of cross-encoders, especially for out-of-domain
re-ranking. It does so by aggregating semantic information about
the passage in the initial layers of the encoder model. In the in-
termediate layers, the semantic information is shared with other
passages. The final two layers are used to predict the passage’s
relevance to the query, incorporating the semantic information of
the other passages in the ranking for the query.

5.3 Permutation Invariance
Finally, we investigate our final research question regarding the
permutation-invariance of cross-encoder models. We generate sev-
eral “corrupted” perturbations of the top 100 passages retrieved by
BM25 on the TREC Deep Learning 2019 and 2020 tracks: a random

8

Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders

Inverse Ideal Random BM25 Ideal
Permutation Type

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

nD
C

G
@

10

Ranking Permutation Effectiveness

RankGPT-4 Turbo
LiT5-Distill
Set-Encoder

1 25 50 75 100
First-Stage Position

1

25

50

75

100

R
e-

R
an

ke
d

Po
si

tio
n

RankGPT-4 Turbo

1 25 50 75 100
First-Stage Position

LiT5-Distill

1 25 50 75 100
First-Stage Position

Set-Encoder

0.0

0.1

0.2
0.3
0.4
0.5
0.6

(a) (b) (c) (d)

Figure 4: Effectiveness in terms of nDCG@10 for different permutations of a BM25 ranking (a) and proportional rank changes
for re-ranking BM25 (b-c) averaged across all queries from the TREC Deep Learning 2019 and 2020 tracks [23, 24].

permutation, an ideal permutation, and a reverse-ideal permutation.
Ideal and reverse-ideal permutations are generated by reordering
the passages according to their relevance judgments. The random
permutation is generated by randomly shuffling the passages. We
then measure nDCG@10 of our Set-Encoder model and compare it
with RankGPT-4 Turbo and LiT5-Distill. Figure 4 (a) visualizes the
results. We additionally investigate the re-ranking behavior of the
models in terms of their proportional rank changes on the TREC
Deep Learning tasks. Figures 4 (c-d) visualize the proportion of how
often a passage at a certain position in the BM25 first-stage ranking
is re-ranked by a model to another position.

We observe that the Set-Encoder is robust to ranking pertur-
bations (see Figure 4). It has a constant nDCG@10 of 0.715, irre-
spective of the ranking permutation. In contrast, RankGPT-4 Turbo
and LiT5-Distill are sensitive to the ranking permutation. They
are both substantially worse for the reverse-ideal initial ranking,
with nDCG@10 of 0.634 and 0.619, respectively. The effectiveness
of both models increases with an increasingly better first-stage
ranking. The effectiveness of the models on the random permuta-
tion is better than on the reverse-ideal permutation but worse than
on the unaltered BM25 ranking. Despite increasing effectiveness,
RankGPT-4 Turbo and LiT5-Distill are worse than our Set-Encoder
model in all those cases. Only when re-ranking with the ideal rank-
ing do the models achieve higher effectiveness than Set-Encoder.
This result aligns with our effectiveness comparison in Section 5.1.
RankGPT-4 Turbo and LiT5-Distill are on par with the Set-Encoder
when re-ranking passages retrieved by the more ColBERTv2 but
not when re-ranking BM25.

Analyzing the re-ranking behavior of the models gives insight
into why RankGPT-4 Turbo and LiT5-Distill achieve worse effec-
tiveness. Figure 4 (b) visualizes the re-ranking behavior of RankGPT-
4 Turbo. It reveals a distinct diagonal band, suggesting the model
is biased to maintain a passage’s position. This result aligns with
previous work finding implicit biases in ranking LLMs [72]. The vi-
sualization of the re-ranking behavior of LiT5-Distill in Figure 4 (c)
displays, next to a slight diagonal band, a distinct step pattern. This
reflects the explicit position bias caused by the windowed strategy
(see Section 4.2). Figure 4 (d) visualizes the Set-Encoder’s re-ranking
behavior. The distribution is more uniform because the model lacks
information about a passage’s position in the initial ranking.

In conclusion, the Set-Encoder is robust to ranking perturbations
because it models interactions between passages in a permutation-
invariant way. Models that lack permutation invariance need an
already effective ranking to be effective. This can be achieved by,
for example, running inference multiple times [72]. This approach
is substantially less efficient than using a permutation invariant
model. Re-ranking 100 passages with RankGPT-4 Turbo takes about
30 seconds. Using an NVIDIA A100 40 GPU, LiT5-Distill takes about
4 seconds, while our Set-Encoder takes only around 0.3 seconds,
and the result is always the same, irrespective of the initial ranking.

6 CONCLUSION
In this paper, we introduced the Set-Encoder, a new cross-encoder
that is both permutation-invariant andmodels interactions between
passages. We also built a new high-quality dataset for fine-tuning
cross-encoders using ranking distillation from LLMs that densely
labels the top 100 passages for 1000 queries. Using our new dataset,
we show that effective cross-encoders can be trained by fine-tuning
them on a large but noisy dataset and then fine-tuning the model on
a smaller set of high-quality data. This training strategy is especially
effective for our new Set-Encoder because it can model interactions
between more passages than previous models.

Empirical results show that the Set-Encoder is more effective
than previous cross-encoders with a similar number of parame-
ters. Compared to larger models, the Set-Encoder is often also
more effective. Only the largest and previously most effective mod-
els can achieve slightly higher effectiveness. A direct comparison
to the same model architecture without inter-passage attention
shows that interaction between passages greatly improves effective-
ness, especially for out-of-domain scenarios. We additionally find
permutation-invariance to be a vital property for cross-encoders.
Our experiments show that models that have access to the rank
position of the previous stage depend strongly on the effectiveness
of the previous retrieval stage. They often benefit from multiple re-
ranking cascades that employ a sequence of increasingly expensive
models to improve their effectiveness. However, as the Set-Encoder
is permutation invariant, such re-ranking cascades can be skipped.

Our proposed model opens many options for future work. One
direction is to investigate exchanging or scaling the backbone en-
coder model. Increasing the model size or using a different encoder
architecture could improve effectiveness. Scaling in the opposite
direction and using distilled or sparse models could produce highly

9

Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen

effective and very efficient models. Further, LLM distillation al-
lows for more sophisticated listwise loss functions that directly
approximate a desired ranking measure. Lastly, as positional infor-
mation is not provided to the Set-Encoder, there is no dependency
between the rank positions of documents provided by the previous
stage ranker and those computed by the Set-Encoder. Therefore,
another study could investigate comparing the robustness of the
Set-Encoder to non-permutation invariant models like RankGPT or
LiT5 when the first-stage retrieval system changes between training
and test setups.

REFERENCES
[1] Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. 2019.

Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval. In
Proceedings of EMNLP-IJCNLP 2019. Association for Computational Linguistics,
Hong Kong, China, 3490–3496. https://doi.org/10.18653/v1/D19-1352

[2] Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan, and Charles L. A. Clarke.
2022. Shallow Pooling for Sparse Labels. Information Retrieval Journal 25 (2022),
365–385. https://doi.org/10.1007/s10791-022-09411-0

[3] Alexander Bondarenko, Maik Fröbe, Johannes Kiesel, Shahbaz Syed, Timon
Gurcke, Meriem Beloucif, Alexander Panchenko, Chris Biemann, Benno Stein,
Henning Wachsmuth, Martin Potthast, and Matthias Hagen. 2022. Overview of
Touché 2022: Argument Retrieval. In Proceedings of CLEF 2022 (Lecture Notes in
Computer Science, Vol. 13390). Springer International Publishing, Bologna, Italy,
311–336. https://doi.org/10.1007/978-3-031-13643-6_21

[4] Alexander Bondarenko, Lukas Gienapp, Maik Fröbe, Meriem Beloucif, Yamen
Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, HenningWachsmuth,
Martin Potthast, and Matthias Hagen. 2021. Overview of Touché 2021: Argu-
ment Retrieval. In Proceedings of CLEF 2021 (Lecture Notes in Computer Sci-
ence, Vol. 12880). Springer International Publishing, Virtual Event, 450–467.
https://doi.org/10.1007/978-3-030-85251-1_28

[5] Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. 2016. A Full-
Text Learning to Rank Dataset for Medical Information Retrieval. In Proceedings
of ECIR 2016 (Lecture Notes in Computer Science, Vol. 9626). Springer International
Publishing, Padua, Italy, 716–722. https://doi.org/10.1007/978-3-319-30671-1_58

[6] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-scale Hypertex-
tual Web Search Engine. Computer Networks and ISDN Systems 30, 1 (April 1998),
107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

[7] Christopher J C Burges. 2010. From RankNet to LambdaRank to LambdaMART:
An Overview. Technical Report MSR-TR-2010-82. Microsoft Research, Redmond,
WA. 19 pages. https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/02/MSR-TR-2010-82.pdf

[8] Stefan Büttcher, Charles L. A. Clarke, and Ian Soboroff. 2006. The TREC 2006
Terabyte Track. In Proceedings of TREC 2006 (NIST Special Publication, Vol. 500–
272). National Institute of Standards and Technology, Gaithersburg, Maryland,
USA, 14. http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf

[9] Maarten Buyl, Paul Missault, and Pierre-Antoine Sondag. 2023. RankFormer:
Listwise Learning-to-Rank Using Listwide Labels.. In Proceedings of KDD 2023.
Association for Computational Linguistics, Long Beach, CA, USA, 3762–3773.
https://doi.org/10.1145/3580305.3599892

[10] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning.
2020. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators.. In Proceedings of ICLR 2020. OpenReview.net, Addis Ababa, Ethiopia,
14.

[11] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. 2004. Overview of the
TREC 2004 Terabyte Track.. In Proceedings of TREC 2004 (NIST Special Publication,
Vol. 500–261). National Institute of Standards and Technology, Gaithersburg,
Maryland, USA, 9. http://trec.nist.gov/pubs/trec13/papers/TERA.OVERVIEW.
pdf

[12] Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. 2009. Overview of the TREC
2009 Web Track.. In Proceedings of TREC 2009 (NIST Special Publication, Vol. 500–
278). National Institute of Standards and Technology, Gaithersburg, Maryland,
USA, 9. http://trec.nist.gov/pubs/trec18/papers/WEB09.OVERVIEW.pdf

[13] Charles L. A. Clarke, Nick Craswell, Ian Soboroff, and Gordon V. Cormack. 2010.
Overview of the TREC 2010 Web Track.. In Proceedings of TREC 2010 (NIST
Special Publication, Vol. 500–294). National Institute of Standards and Technology,
Gaithersburg, Maryland, USA, 9. https://trec.nist.gov/pubs/trec19/papers/WEB.
OVERVIEW.pdf

[14] Charles L. A. Clarke, Nick Craswell, Ian Soboroff, and Ellen M. Voorhees. 2011.
Overview of the TREC 2011 Web Track.. In Proceedings of TREC 2011 (NIST
Special Publication, Vol. 500–296). National Institute of Standards and Technology,
Gaithersburg, Maryland, USA, 9. http://trec.nist.gov/pubs/trec20/papers/WEB.
OVERVIEW.pdf

[15] Charles L. A. Clarke, Nick Craswell, and Ellen M. Voorhees. 2012. Overview of
the TREC 2012 Web Track.. In Proceedings of TREC 2012 (NIST Special Publication,
Vol. 500–298). National Institute of Standards and Technology, Gaithersburg,
Maryland, USA, 8. http://trec.nist.gov/pubs/trec21/papers/WEB12.overview.pdf

[16] Charles L. A. Clarke, Falk Scholer, and Ian Soboroff. 2005. The TREC 2005
Terabyte Track.. In Proceedings of TREC 2005 (NIST Special Publication, Vol. 500–
272). National Institute of Standards and Technology, Gaithersburg, Maryland,
USA,, 11. http://trec.nist.gov/pubs/trec14/papers/TERABYTE.OVERVIEW.pdf

[17] Cyril W. Cleverdon. 1991. The Significance of the Cranfield Tests on Index
Languages.. In Proceedings of SIGIR 1991. Association for Computing Machinery,
Chicago, Illinois, USA, 3–12. https://doi.org/10.1145/122860.122861

[18] Kevyn Collins-Thompson, Paul N. Bennett, Fernando Diaz, Charlie Clarke, and
Ellen M. Voorhees. 2013. TREC 2013 Web Track Overview. In Proceedings of
TREC 2013 (NIST Special Publication, Vol. 500-302).

[19] Kevyn Collins-Thompson, Craig Macdonald, Paul N. Bennett, Fernando Diaz,
and Ellen M. Voorhees. 2014. TREC 2014 Web Track Overview. In Proceedings of
TREC 2014 (NIST Special Publication, Vol. 500-308).

[20] Nick Craswell and David Hawking. 2002. Overview of the TREC-2002Web Track..
In Proceedings of TREC 2002 (NIST Special Publication, Vol. 500–251). National
Institute of Standards and Technology, Gaithersburg, Maryland, USA, 10. http:
//trec.nist.gov/pubs/trec11/papers/WEB.OVER.pdf

[21] Nick Craswell and David Hawking. 2004. Overview of the TREC 2004Web Track..
In Proceedings of TREC 2004 (NIST Special Publication, Vol. 500–261). National
Institute of Standards and Technology, Gaithersburg, Maryland, USA, 9. http:
//trec.nist.gov/pubs/trec13/papers/WEB.OVERVIEW.pdf

[22] Nick Craswell, David Hawking, Ross Wilkinson, and Mingfang Wu. 2003.
Overview of the TREC 2003 Web Track.. In Proceedings of TREC 2003 (NIST
Special Publication, Vol. 500–255). National Institute of Standards and Technology,
Gaithersburg, Maryland, USA, 78–92. http://trec.nist.gov/pubs/trec12/papers/
WEB.OVERVIEW.pdf

[23] Nick Craswell, BhaskarMitra, Emine Yilmaz, and Daniel Campos. 2020. Overview
of the TREC 2020 Deep Learning Track. In Proceedings of TREC 2020 (NIST
Special Publication, Vol. 1266). National Institute of Standards and Technology,
Gaithersburg, Maryland, USA, 13. https://trec.nist.gov/pubs/trec29/papers/
OVERVIEW.DL.pdf

[24] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2019. Overview of the TREC 2019 Deep Learning Track. In Pro-
ceedings of TREC 2019 (NIST Special Publication, Vol. 500–331). National Insti-
tute of Standards and Technology, Gaithersburg, Maryland, USA, 22. https:
//trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf

[25] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning. arXiv. https://doi.org/10.48550/arXiv.2307.08691

[26] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
In Proceedings of NeurIPS 2022. 16344–16359.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of NAACL-HLT 2019. 4171–4186. https://doi.org/10.18653/v1/N19-
1423

[28] Guglielmo Faggioli, Laura Dietz, Charles L. A. Clarke, Gianluca Demartini,
Matthias Hagen, Claudia Hauff, Noriko Kando, Evangelos Kanoulas, Martin
Potthast, Benno Stein, and Henning Wachsmuth. 2023. Perspectives on Large
Language Models for Relevance Judgment. In Proceedings of the 2023 ACM SIGIR
International Conference on Theory of Information Retrieval (ICTIR 2023), Masa-
haru Yoshioka, Julia Kiseleva, and Mohammad Aliannejadi (Eds.). ACM, Taipei,
Taiwan, 39–50. https://dl.acm.org/doi/10.1145/3578337.3605136

[29] William Falcon and The PyTorch Lightning team. 2023. PyTorch Lightning.
https://doi.org/10.5281/zenodo.7859091

[30] Maik Fröbe, Jan Heinrich Reimer, Sean MacAvaney, Niklas Deckers, Simon
Reich, Janek Bevendorff, Benno Stein, Matthias Hagen, and Martin Potthast.
2023. The Information Retrieval Experiment Platform. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, Taipei Taiwan, 2826–2836. https://doi.org/10.1145/3539618.
3591888

[31] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink Training of BERT
Rerankers in Multi-stage Retrieval Pipeline. In Proceedings of ECIR 2021. 280–286.
https://doi.org/10.1007/978-3-030-72240-1_26

[32] Lukas Gienapp, Maik Fröbe, Matthias Hagen, and Martin Potthast. 2022. Sparse
Pairwise Re-ranking with Pre-trained Transformers. In Proceedings of the 2022
ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR
’22). New York, NY, USA, 72–80. https://doi.org/10.1145/3539813.3545140

[33] Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce Croft.
2020. ANTIQUE: A Non-factoid Question Answering Benchmark. In Proceedings
of ECIR 2020. 166–173.

[34] William R. Hersh, Ravi Teja Bhupatiraju, L. Ross, Aaron M. Cohen, Dale Kraemer,
and Phoebe Johnson. 2004. TREC 2004 Genomics Track Overview. In Proceedings
of TREC 2004 (NIST Special Publication, Vol. 500-261).

10

https://doi.org/10.18653/v1/D19-1352
https://doi.org/10.1007/s10791-022-09411-0
https://doi.org/10.1007/978-3-031-13643-6_21
https://doi.org/10.1007/978-3-030-85251-1_28
https://doi.org/10.1007/978-3-319-30671-1_58
https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/MSR-TR-2010-82.pdf
http://trec.nist.gov/pubs/trec15/papers/TERA06.OVERVIEW.pdf
https://doi.org/10.1145/3580305.3599892
http://trec.nist.gov/pubs/trec13/papers/TERA.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec13/papers/TERA.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec18/papers/WEB09.OVERVIEW.pdf
https://trec.nist.gov/pubs/trec19/papers/WEB.OVERVIEW.pdf
https://trec.nist.gov/pubs/trec19/papers/WEB.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec20/papers/WEB.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec20/papers/WEB.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec21/papers/WEB12.overview.pdf
http://trec.nist.gov/pubs/trec14/papers/TERABYTE.OVERVIEW.pdf
https://doi.org/10.1145/122860.122861
http://trec.nist.gov/pubs/trec11/papers/WEB.OVER.pdf
http://trec.nist.gov/pubs/trec11/papers/WEB.OVER.pdf
http://trec.nist.gov/pubs/trec13/papers/WEB.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec13/papers/WEB.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec12/papers/WEB.OVERVIEW.pdf
http://trec.nist.gov/pubs/trec12/papers/WEB.OVERVIEW.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf
https://doi.org/10.48550/arXiv.2307.08691
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://dl.acm.org/doi/10.1145/3578337.3605136
https://doi.org/10.5281/zenodo.7859091
https://doi.org/10.1145/3539618.3591888
https://doi.org/10.1145/3539618.3591888
https://doi.org/10.1007/978-3-030-72240-1_26
https://doi.org/10.1145/3539813.3545140

Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders

[35] William R. Hersh, Aaron M. Cohen, Jianji Yang, Ravi Teja Bhupatiraju, Phoebe M.
Roberts, and Marti A. Hearst. 2005. TREC 2005 Genomics Track Overview. In
Proceedings of TREC 2005 (NIST Special Publication, Vol. 500-266).

[36] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2021. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. https://doi.org/10.48550/arXiv.2010.02666
arXiv:2010.02666

[37] Akhil Kedia, Mohd Abbas Zaidi, and Haejun Lee. 2022. FiE: Building a Global
Probability Space by Leveraging Early Fusion in Encoder for Open-Domain
Question Answering. In Proceedings of EMNLP 2022. Association for Compu-
tational Linguistics, Abu Dhabi, United Arab Emirates, 4246–4260. https:
//doi.org/10.18653/v1/2022.emnlp-main.285

[38] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and
Yee Whye Teh. 2019. Set Transformer: A Framework for Attention-based
Permutation-Invariant Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning. PMLR, 3744–3753.

[39] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio
Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick
Labatut, andDaniel Haziza. 2022. xFormers: Amodular and hackable Transformer
modelling library. https://github.com/facebookresearch/xformers.

[40] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2022. Pretrained Transformers
for Text Ranking: BERT and Beyond. Springer International Publishing. https:
//doi.org/10.1007/978-3-031-02181-7

[41] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In Proceedings of ICLR 2019.

[42] Zhengyi Ma, Zhicheng Dou, Wei Xu, Xinyu Zhang, Hao Jiang, Zhao Cao, and
Ji-Rong Wen. 2021. Pre-Training for Ad-hoc Retrieval: Hyperlink Is Also You
Need. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management. ACM, Virtual Event Queensland Australia, 1212–1221.
https://doi.org/10.1145/3459637.3482286

[43] Sean MacAvaney and Luca Soldaini. 2023. One-Shot Labeling for Automatic Rel-
evance Estimation. In Proceedings of the 46th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Tai-
wan, July 23-27, 2023, Hsin-Hsi Chen, Wei-Jou (Edward) Duh, Hen-Hsen Huang,
Makoto P. Kato, Josiane Mothe, and Barbara Poblete (Eds.). ACM, New York,
2230–2235. https://doi.org/10.1145/3539618.3592032

[44] Sean MacAvaney, Nicola Tonellotto, and Craig Macdonald. 2022. Adaptive Re-
Ranking with a Corpus Graph. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, Atlanta, GA, USA, October
17-21, 2022, Mohammad Al Hasan and Li Xiong (Eds.). ACM, 1491–1500. https:
//doi.org/10.1145/3511808.3557231

[45] Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’19). New York, NY, USA, 1101–1104. https://doi.org/10.1145/
3331184.3331317

[46] Tom Minka and Stephen Robertson. 2008. Selection bias in the LETOR datasets.
In Proceedings of SIGIR 2008 workshop on learning to rank for information retrieval,
Vol. 2.

[47] Iurii Mokrii, Leonid Boytsov, and Pavel Braslavski. 2021. A Systematic Evaluation
of Transfer Learning and Pseudo-labeling with BERT-based Ranking Models. In
Proceedings of SIGIR 2021. Association for Computing Machinery, New York, NY,
USA, 2081–2085. https://doi.org/10.1145/3404835.3463093

[48] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A Human Generated MAchine
Reading COmprehension Dataset. In Proceedings of COCO@NeurIPS 2016.

[49] Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage Re-ranking with BERT.
https://doi.org/10.48550/arXiv.1901.04085 arXiv:1901.04085

[50] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Doc-
ument Ranking with a Pretrained Sequence-to-Sequence Model. In Findings
of the Association for Computational Linguistics: EMNLP 2020. Online, 708–718.
https://doi.org/10.18653/v1/2020.findings-emnlp.63

[51] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-
Stage Document Ranking with BERT. https://doi.org/10.48550/arXiv.1910.14424
arXiv:1910.14424

[52] Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi Cheng, and Jirong Wen.
2020. SetRank: Learning a Permutation-Invariant Ranking Model for Information
Retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, Virtual Event China,
499–508. https://doi.org/10.1145/3397271.3401104

[53] Rama Kumar Pasumarthi, Honglei Zhuang, Xuanhui Wang, Michael Bendersky,
and Marc Najork. 2020. Permutation Equivariant Document Interaction Network
for Neural Learning to Rank. In Proceedings of ICTIR 2020. 145–148. https:
//doi.org/10.1145/3409256.3409819

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Proceedings of NeurIPS 2019, Vol. 32.

[55] Przemysław Pobrotyn, Tomasz Bartczak, Mikołaj Synowiec, Radosław Biało-
brzeski, and Jarosław Bojar. 2020. Context-Aware Learning to Rank with Self-
Attention. In Proceedings of ACM SIGIR Workshop on eCommerce (SIGIR eCom’20).
https://sigir-ecom.github.io/ecom2020/ecom20Papers/paper18.pdf

[56] Ronak Pradeep, Yuqi Liu, Xinyu Zhang, Yilin Li, Andrew Yates, and Jimmy Lin.
2022. Squeezing Water from a Stone: A Bag of Tricks for Further Improving
Cross-Encoder Effectiveness for Reranking.. In Proceedings of ECIR 2022. 655–670.
https://doi.org/10.1007/978-3-030-99736-6_44

[57] Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. 2021. The Expando-Mono-
Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence
Models. arXiv:2101.05667 http://arxiv.org/abs/2101.05667

[58] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankVicuna:
Zero-Shot Listwise Document Reranking with Open-Source Large Language
Models. arXiv. https://doi.org/10.48550/arXiv.2309.15088

[59] Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. RankZephyr:
Effective and Robust Zero-Shot Listwise Reranking Is a Breeze! arXiv. https:
//doi.org/10.48550/arXiv.2312.02724

[60] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of
Machine Learning Research 21 (2020), 140:1–140:67.

[61] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
Using Siamese BERT-Networks. In Proceedings of EMNLP-IJCNLP 2019. 3980–
3990. https://doi.org/10.18653/v1/D19-1410

[62] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, William R. Hersh,
Steven Bedrick, and Alexander J. Lazar. 2018. Overview of the TREC 2018
Precision Medicine Track. In Proceedings of TREC 2018 (NIST Special Publication,
Vol. 500-331).

[63] Kirk Roberts, Dina Demner-Fushman, Ellen M. Voorhees, William R. Hersh,
Steven Bedrick, Alexander J. Lazar, and Shubham Pant. 2017. Overview of the
TREC 2017 Precision Medicine Track. In Proceedings of TREC 2017 (NIST Special
Publication, Vol. 500-324).

[64] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. 1994. Okapi at TREC-3. In Proceedings of The Third Text
REtrieval Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4,
1994 (NIST Special Publication, Vol. 500–225). 109–126. http://trec.nist.gov/pubs/
trec3/papers/city.ps.gz

[65] Guilherme Rosa, Luiz Bonifacio, Vitor Jeronymo, Hugo Abonizio, Marzieh Fadaee,
Roberto Lotufo, and Rodrigo Nogueira. 2022. In Defense of Cross-Encoders for
Zero-Shot Retrieval. https://doi.org/10.48550/arXiv.2212.06121 arXiv:2212.06121

[66] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, andMatei
Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. https://doi.org/10.48550/arXiv.2112.01488 arXiv:2112.01488

[67] Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. 2022. Reduce, Reuse,
Recycle: Green Information Retrieval Research. In Proceedings of SIGIR 2022.
2825–2837. https://doi.org/10.1145/3477495.3531766

[68] Ferdinand Schlatt, Maik Fröbe, and Matthias Hagen. 2023. Investigating the
Effects of Sparse Attention on Cross-Encoders. arXiv. https://doi.org/10.48550/
arXiv.2312.17649

[69] Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin
Chen, Dawei Yin, and Zhaochun Ren. 2023. Is ChatGPT Good at Search? In-
vestigating Large Language Models as Re-Ranking Agents. In Proceedings of
EMNLP 2023. Association for Computational Linguistics, 14918–14937. https:
//doi.org/10.18653/v1/2023.emnlp-main.923

[70] Xingwu Sun, Hongyin Tang, Fuzheng Zhang, Yanling Cui, Beihong Jin, and
ZhongyuanWang. 2020. TABLE: A Task-Adaptive BERT-based ListwisE Ranking
Model for Document Retrieval. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management (CIKM ’20). New York, NY,
USA, 2233–2236. https://doi.org/10.1145/3340531.3412071

[71] Manveer Singh Tamber, Ronak Pradeep, and Jimmy Lin. 2023. Scaling Down, LiT-
ting Up: Efficient Zero-Shot Listwise Reranking with Seq2seq Encoder-Decoder
Models. arXiv. https://doi.org/10.48550/arXiv.2312.16098

[72] Raphael Tang, Xinyu Zhang, Xueguang Ma, Jimmy Lin, and Ferhan Ture. 2023.
Found in the Middle: Permutation Self-Consistency Improves Listwise Ranking
in Large Language Models. arXiv. https://doi.org/10.48550/arXiv.2310.07712

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is
All You Need. In Advances in Neural Information Processing Systems, Vol. 30.
Long Beach, CA, 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[74] Ellen Voorhees. 2004. Overview of the TREC 2004 Robust Retrieval Track. In
TREC.

[75] Ellen M. Voorhees. 1996. NIST TREC Disks 4 and 5: Retrieval Test Collections
Document Set.

[76] Ellen M. Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman,
William R. Hersh, Kyle Lo, Kirk Roberts, Ian Soboroff, and Lucy Lu Wang. 2020.

11

https://doi.org/10.48550/arXiv.2010.02666
https://arxiv.org/abs/2010.02666
https://doi.org/10.18653/v1/2022.emnlp-main.285
https://doi.org/10.18653/v1/2022.emnlp-main.285
https://github.com/facebookresearch/xformers
https://doi.org/10.1007/978-3-031-02181-7
https://doi.org/10.1007/978-3-031-02181-7
https://doi.org/10.1145/3459637.3482286
https://doi.org/10.1145/3539618.3592032
https://doi.org/10.1145/3511808.3557231
https://doi.org/10.1145/3511808.3557231
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3331184.3331317
https://doi.org/10.1145/3404835.3463093
https://doi.org/10.48550/arXiv.1901.04085
https://arxiv.org/abs/1901.04085
https://doi.org/10.18653/v1/2020.findings-emnlp.63
https://doi.org/10.48550/arXiv.1910.14424
https://arxiv.org/abs/1910.14424
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3409256.3409819
https://doi.org/10.1145/3409256.3409819
https://sigir-ecom.github.io/ecom2020/ecom20Papers/paper18.pdf
https://doi.org/10.1007/978-3-030-99736-6_44
https://arxiv.org/abs/2101.05667
http://arxiv.org/abs/2101.05667
https://doi.org/10.48550/arXiv.2309.15088
https://doi.org/10.48550/arXiv.2312.02724
https://doi.org/10.48550/arXiv.2312.02724
https://doi.org/10.18653/v1/D19-1410
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.48550/arXiv.2212.06121
https://arxiv.org/abs/2212.06121
https://doi.org/10.48550/arXiv.2112.01488
https://arxiv.org/abs/2112.01488
https://doi.org/10.1145/3477495.3531766
https://doi.org/10.48550/arXiv.2312.17649
https://doi.org/10.48550/arXiv.2312.17649
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.1145/3340531.3412071
https://doi.org/10.48550/arXiv.2312.16098
https://doi.org/10.48550/arXiv.2310.07712
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koopman, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen

TREC-COVID: constructing a pandemic information retrieval test collection.
SIGIR Forum 54, 1 (2020), 1:1–1:12.

[77] Ellen M. Voorhees and Donna Harman. 1998. Overview of the Seventh Text
Retrieval Conference (TREC-7). In TREC.

[78] EllenM. Voorhees and DonnaHarman. 1999. Overview of the Eight Text Retrieval
Conference (TREC-8). In TREC.

[79] Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang
Yang, Darrin Eide, Kathryn Funk, Rodney Kinney, Ziyang Liu, William Mer-
rill, Paul Mooney, Dewey A. Murdick, Devvret Rishi, Jerry Sheehan, Zhi-
hong Shen, Brandon Stilson, Alex D. Wade, Kuansan Wang, Chris Wilhelm,
Boya Xie, Douglas Raymond, Daniel S. Weld, Oren Etzioni, and Sebastian
Kohlmeier. 2020. CORD-19: The Covid-19 Open Research Dataset. arXiv.
https://doi.org/10.48550/arXiv.2004.10706

[80] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. arXiv. https://doi.org/10.48550/arXiv.1910.03771

[81] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval.. In Proceedings of ICLR
2021. https://openreview.net/forum?id=zeFrfgyZln

[82] Michihiro Yasunaga, Jure Leskovec, and Percy Liang. 2022. LinkBERT: Pretrain-
ing Language Models with Document Links. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Dublin, Ireland, 8003–8016.
https://doi.org/10.18653/v1/2022.acl-long.551

[83] Dawei Yin, Yuening Hu, Jiliang Tang, Tim Daly, Mianwei Zhou, Hua Ouyang,
Jianhui Chen, Changsung Kang, Hongbo Deng, Chikashi Nobata, Jean-Marc
Langlois, and Yi Chang. 2016. Ranking Relevance in Yahoo Search. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD ’16). Association for Computing Machinery, New York, NY,
USA, 323–332. https://doi.org/10.1145/2939672.2939677

[84] Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni,
Xuanhui Wang, and Michael Bendersky. 2022. RankT5: Fine-Tuning T5 for
Text Ranking with Ranking Losses. https://doi.org/10.48550/arXiv.2210.10634
arXiv:2210.10634

12

https://doi.org/10.48550/arXiv.2004.10706
https://doi.org/10.48550/arXiv.1910.03771
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/2022.acl-long.551
https://doi.org/10.1145/2939672.2939677
https://doi.org/10.48550/arXiv.2210.10634
https://arxiv.org/abs/2210.10634

	Abstract
	1 Introduction
	2 Related Work
	2.1 Passage Interactions in Cross-Encoders
	2.2 Fine-Tuning Cross-Encoders

	3 The Set-Encoder Model
	3.1 Permutation-Invariant Input Encoding
	3.2 Inter-Passage Attention

	4 Cross-Encoder Training
	4.1 Sampling Negative Passages
	4.2 LLM Distillation
	4.3 Two-Stage Fine-Tuning
	4.4 Fine-Tuning Settings

	5 Evaluation
	5.1 LLM Distillation Fine-Tuning
	5.2 Inter-Passage Attention
	5.3 Permutation Invariance

	6 Conclusion
	References

