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ABSTRACT
A wide range of transformer-based language models have been
proposed for information retrieval tasks. However, fine-tuning and
inference of these models is often complex and requires substan-
tial engineering effort. This paper introduces Lightning IR, a Py-
Torch Lightning-based framework for fine-tuning and inference
of transformer-based language models for information retrieval.
Lightning IR provides a modular and extensible architecture that
supports all stages of an information retrieval pipeline: from fine-
tuning and indexing to searching and re-ranking. It is designed to
be straightforward to use, scalable, and reproducible. Lightning IR is
available as open-source: https://github.com/webis-de/lightning-ir.
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1 INTRODUCTION
Pre-trained transformer-based language models have become a cor-
nerstone in information retrieval (IR) research [13]. Many different
architectures have been proposed, each with their ownmodel imple-
mentation and training procedure. This plethora makes fine-tuning
different model architectures cumbersome and comparing different
model architectures even more so. However, all these models use
the same basic building blocks, can be fine-tuned in the same way,
and have only minor differences in their inference procedure.

To unify the usage of transformer-based language models in IR
we present the Lightning IR framework. Lightning IR builds on and
extends PyTorch Lightning [8] to provide several key features that
set it apart from existing libraries for neural IR: (1) It is backbone
agnostic, i.e., (almost) any HuggingFace [24] transformer-based
language model can be used. (2) It supports the entire pipeline
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Table 1: Comparison of different IR frameworks’ supported
stages (FT: fine-tuning, I: indexing, S: searching, RR: re-
ranking) and model types (Bi-/Cr.-Enc.: bi-/cross-encoder,
SV/MV: single-/multi-vector, DE: dense, SP: sparse, PW/LW:
point-/listwise). (✓) denotes support for some model types.

Framework Stages Model Types

FT I S RR Bi-Enc. Cr.-Enc.

SV MV DE SP PW LW

baguetter [11] ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Capreolus [25] ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

Experimaestro-IR [20] ✓ (✓) (✓) ✓ ✓ ✓ ✓ ✓ ✓ ✗

FlexNeuART [1] ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

OpenNIR [14] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Patapasco [4] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Pyserini [12] ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

PyTerrier [16] ✗ (✓) (✓) ✓ ✓ ✓ ✓ ✗ ✓ ✗

RAGatouille1 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

rerankers [3] ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

retriv2 ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Seismic [2] ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗

SentenceBERT [21] ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Lightning IR (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

of IR models, from fine-tuning and indexing to searching and re-
ranking. (3) It is flexible and supports, for example, multi-vector or
sparse bi-encoder models and pointwise or listwise cross-encoder
models out-of-the-box. (4) It provides an easy-to-use API and CLI
for fine-tuning and inference. (5) It is easily configurable, allowing
for reproducible experiments and easy model comparison.

In this paper, we compare Lightining IR to existing frameworks,
we describe its features and API, and we demonstrate Lightning IR’s
capabilities in a series of reproducibility experiments.

2 COMPARISON TO SIMILAR FRAMEWORKS
Several existing frameworks support the development and use of re-
trieval models, but they differ in the supported stages of the retrieval
pipeline and the types of models they can handle (see Table 1 for
an overview). Frameworks like RAGatouille, SentenceBERT [21], or
Seismic [2] focus on specific model types. In contrast, frameworks
like Experimaestro-IR [20] or PyTerrier [16] are more generic and
support a wide range of models and stages, but each model type
requires a separate implementation, and not all model types are
available for all pipeline stages.
1https://github.com/AnswerDotAI/RAGatouille
2https://github.com/AmenRa/retriv
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Lightning IR is a framework that implements models as generic,
configurable, and extensible modules. In essence, a model is de-
fined by its backbone encoder model and how the contextualized
embeddings of a query and document are combined to compute
a relevance score. This design allows Lightning IR to support a
wide range of model types. In addition, as all model types use the
same API, the same fine-tuning and inference procedures can be
used for all model types. This makes it easy to compare different
model types and to experiment with new model types.

3 LIGHTNING IR: COMPONENTS
Lightning IR has four central components: (1) Model, (2) Dataset,
(3) Trainer, and (4) the CLI. We describe each component in detail
in the following sections.

3.1 Model
Lightning IR supports two types of models: cross-encoders and
bi-encoders. Both model types are built on top of a backbone en-
coder model from HuggingFace [24]. For example, the following
code shows how to initialize a new bi-encoder and cross-encoder
model using some pre-trained model from HuggingFace, where
{HF_MODEL} is a placeholder for the model name.

from lightning_ir import BiEncoderModel , CrossEncoderModel
bi_encoder = BiEncoderModel.from_pretrained("{HF_MODEL}")
cross_encoder = CrossEncoderModel.from_pretrained("{HF_MODEL}")

A configuration class defines how each model type uses the
contextualized embeddings generated by the backbone model to
compute a relevance score. For example, a ColBERT-style [10]model
does not pool the contextualized embeddings. It instead uses late-
interaction to compute relevance scores over the contextualized
query and document token embeddings. A ColBERT-style model
can be initialized in Lightning IR as follows.

from lightning_ir import BiEncoderConfig , BiEncoderModel
config = BiEncoderConfig(

similarty_function="dot",
query_pooling_strategy=None ,
doc_pooling_strategy=None ,
embedding_dim =128,

)
colbert = BiEncoderModel.from_pretrained(

"bert -base -uncased", config=config
)

For usability and reproducibility, we combine a Lightning IR
model and tokenizer in a PyTorch Lightning module [8]. The mod-
ule is responsible for handling training and inference logic, but it
also provides convenience functions to quickly score queries and
documents. For example, the following code snippet shows how to
compute scores using a pre-trained BERT-based bi-encoder and an
ELECTRA-based cross-encoder.

from lightning_ir import BiEncoderModule , CrossEncoderModule
bi_encoder = BiEncoderModule("webis/bert -bi-encoder")
cross_encoder = CrossEncoderModule("webis/monoelectra -base")
query = "What is the capital of Germany?"
docs = [

"Berlin is the capital of Germany.",
"Paris is the capital of France."

]
print(bi_encoder.score(query , docs).scores.numpy().round (2))
# [39.37 31.4]
print(cross_encoder.score(query , docs).scores.numpy().round (2))
# [ 7.81 -4.13]

3.2 Dataset
Lightning IR tightly integrates with ir_datasets [15] to provide
access to a wide range of common information retrieval datasets,
but custom datasets are also supported. Datasets are split into four
different classes: Document, Query, Tuple, and Run datasets. A
Document dataset iterates over a document collection and is used
for indexing. Query datasets iterate over queries and are used for
retrieval. Tuple datasets are used for fine-tuning as they contain
samples consisting of a query andmultiple documents. Run datasets
contain ranked documents for a query (optional: relevance judg-
ments) and are used for re-ranking; also fine-tuning is possible
by sampling n-tuples from rankings. The following code snippet
shows how to load the MS MARCO passage dataset [17] and the
TREC Deep Learning 2019 passage ranking dataset [6].

from lightning_ir import DocDataset , QueryDataset , RunDataset
print(next(iter(DocDataset("msmarco -passage/train"))))
# QuerySample(query_id ='121352', query='define extreme ')
print(next(iter(QueryDataset("msmarco -passage/train"))))
# DocSample(doc_id='0', doc='The presence of communication ...')
print(RunDataset("msmarco -passage/trec -dl -2019", depth =3) [0])
# RankSample(query_id ='1037798', query='who is robert gray ',

doc_ids =( '7134595' , '7134596', '8402859 '), docs =(..., ..., ...))

Multiple datasets can be combined into a single PyTorch Light-
ning datamodule. Similar to the model’s Lightning module, the
datamodule makes fine-tuning and inference easier by handling
data sampling and batching. It also cleanly separates fine-tuning
and evaluation data. The following code snippet shows how to cre-
ate a datamodule for fine-tuning a bi-encoder model onMSMARCO
triples and evaluating it on the TREC Deep Learning 2019 and 2020
passage ranking datasets.

from lightning_ir import LightningIRDataModule , TupleDataset
bi_encoder = BiEncoderModule (...)
data_module = LightningIRDataModule(

module=module ,
train_dataset=TupleDataset("msmarco -passage/train/triples -v2"),
inference_datasets =[

RunDataset("msmarco -passage/trec -dl -2019"),
RunDataset("msmarco -passage/trec -dl -2019"),

]
)

3.3 Trainer
The trainer component builds on PyTorch Lightning’s trainer class
to provide flexible, scalable, and reproducible training. Lightning IR
adds functionality to support indexing, retrieval, and re-ranking.
The following code snippet shows how to fine-tune a bi-encoder
model on the MS MARCO triples dataset. Hyperparameters (e.g.,
batch size, learning rate, number of epochs) should be adjusted in
the module, datamodule, and trainer to the specific use case.

from lightning_ir import LightningIRTrainer
module = BiEncoderModule("{HF_MODEL}", config =...)
data_module = LightningIRDataModule(train_dataset =...)
trainer = LightningIRTrainer (...)
trainer.fit(module , data_module)

After fine-tuning a model, the trainer can be used to run infer-
ence for all stages of a retrieval pipeline. Indexing, searching, and
re-ranking are all implemented as PyTorch Lightning callbacks (but
indexing and searching are only needed for bi-encoders). Light-
ning IR currently supports two indexing and searching methods:
faiss [7] for dense retrieval and a custom PyTorch-based [19] sparse
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retrieval method. The following code snippet shows how to index
and search documents using a fine-tuned bi-encoder model.

from lightning_ir import FaissFlatIndexConfig , FaissFlatIndexer
module = BiEncoderModule("{PATH_TO_MODEL}")
data_module = LightningIRDataModule(

inference_datasets =[ DocDataset("msmarco -passage")]
)
index_callback = IndexCallback(

index_dir="index", index_config=FaissFlatIndexConfig ()
)
trainer = LightningIRTrainer(callbacks =[ index_callback ])
trainer.index(module , data_module)

To use the index for retrieval, the path of the index must be
passed to a searcher class that matches the indexer class used to
create the index. If a dataset has relevance judgments in ir_datasets

and evaluation metrics are specified in the module’s configuration,
the trainer will automatically evaluate the retrieval effectiveness.
The following code snippet shows how to retrieve documents for a
query using the indexed documents.

from lightning_ir import FaissSearchConfig , SearchCallback
module = BiEncoderModule(

"{PATH_TO_MODEL}",
evaluation_metrics =["nDCG@10"]

)
search_callback = SearchCallback("index", FaissSearchConfig(k=10))
data_module = LightningIRDataModule(inference_datasets =[

QueryDataset("msmarco -passage/trec -dl -2019/ judged")])
trainer = LightningIRTrainer(callbacks =[ search_callback ])
trainer.search(module , data_module)

3.4 CLI
Lightning IR provides a command-line interface (CLI) to simplify
the usage of the framework. The CLI is built on top of PyTorch
Lightning’s CLI and provides commands for fine-tuning, index-
ing, searching, and re-ranking. All options are configurable via
command-line arguments or a configuration yaml file. The con-
figuration yaml files are especially useful for reproducibility. For
example, to fine-tune a bi-encoder model on the MS MARCO triples
dataset, the following command can be used.
# > train.yaml
# trainer:
# ... # trainer hyperparameters
# model:
# class_path: BiEncoderModule
# init_args:
# model_name_or_path: bert -base -uncased
# config:
# class_path: BiEncoderConfig
# init_args:
# ... # model hyperparameters
# data:
# class_path: LightningIRDataModule
# init_args:
# ... # data hyperparameters
# train_dataset:
# class_path: TupleDataset
# init_args:
# tuples_dataset: msmarco -passage/train/triples -v2
# optimizer:
# class_path: torch.optim.AdamW
# init_args:
# ... # optimizer hyperparameters
lightning -ir fit --config train.yaml

The CLI also supports indexing, searching, and re-ranking via the
index, search, and re_rank commands. The configuration file and
command for indexing the MS MARCO passage collection using
a fine-tuned bi-encoder model is shown below. The configuration
files for searching and re-ranking are similar.

# > index.yaml
# trainer:
# callbacks:
# - class_path: IndexCallback
# init_args:
# index_dir: index
# index_config:
# class_path: FaissFlatIndexConfig
# model:
# class_path: BiEncoderModule
# init_args:
# model_name_or_path: {PATH_TO_MODEL}
# data:
# class_path: LightningIRDataModule
# init_args:
# inference_datasets:
# - class_path: DocDataset
# init_args:
# doc_dataset: msmarco -passage
lightning -ir index --config index.yaml

4 LIGHTNING IR: SUPPORTED MODELS
Lightning IR supports fine-tuning and running inference on a wide
range of bi- and cross-encoder models. We have additionally added
support for a number of popular models not natively fine-tuned in
Lightning IR. This includes all bi-encoders from the sentence trans-
formers library [21], SPLADE models released by Naver labs [9],
the official ColBERT checkpoints [10], and monoT5 and RankT5
models [18, 26]. Additional models can be easily added by providing
the corresponding configuration files and adding the model to the
Lightning IR model registry.

Table 2 compares a selection of supported models when re-
ranking the TREC 2019 and 2020 Deep Learning track data [5, 6]
using the following configuration file and command.
# > re-rank.yaml
# trainer:
# logger: false
# model:
# class_path: BiEncoderModule
# init_args:
# model_name_or_path: {PATH_TO_MODEL}
# evaluation_metrics:
# - nDCG@10
# data:
# class_path: LightningIRDataModule
# init_args:
# inference_datasets:
# - class_path: RunDataset
# init_args:
# run_path_or_id: msmarco -passage/trec -dl -2019/ judged
# - class_path: RunDataset
# init_args:
# run_path_or_id: msmarco -passage/trec -dl -2020/ judged
lightning -ir index --config re-rank.yaml

5 REPRODUCIBILITY EXPERIMENT
To demonstrate the capabilities of Lightning IR, we conducted a
reproducibility experiment. Using the bert-base-uncased1 model
as the backbone, we fine-tuned a single-vector bi-encoder [21], a
SPLADE model [9], and a ColBERT model [10]. The models are
available in the HuggingFace model hub2,3,4 along with the corre-
sponding configuration files for reproducing the models and results
using the Lightning IR command-line interface.
1https://huggingface.co/google-bert/bert-base-uncased
2https://huggingface.co/webis/bert-bi-encoder
3https://huggingface.co/webis/splade
4https://huggingface.co/webis/colbert

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/webis/bert-bi-encoder
https://huggingface.co/webis/splade
https://huggingface.co/webis/colbert
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Table 2: Effectiveness (nDCG@10) of a selection of models
supported by Lightning IR when re-ranking the TREC 2019
and 2020 Deep Learning track data.

Model TREC DL 2019 TREC DL 2020

Cross-Encoders

monoELECTRA Large [23] 0.750 0.791
monoT5 3B [18] 0.726 0.752
RankT5 3B [26] 0.721 0.776

Bi-Encoders

SBERT [21] 0.705 0.735
ColBERT [9] 0.732 0.746
SPLADE [10] 0.715 0.749

Table 3: Effectiveness (nDCG@10) of our fine-tuned models
and of the official checkpoints for first-stage retrieval on
TREC DL 2019 and 2020. † denotes a statistically significant
difference (𝑝 < 0.05) between our and the original model.

Model TREC DL 2019 TREC DL 2020

SBERT (Ours) 0.705 0.696
SBERT [21] (Original) 0.705 0.726

SPLADE (Ours) 0.760† 0.720†
SPLADE [9] (Original) 0.722 0.754

ColBERT (Ours) 0.738 0.726
ColBERT [10] (Original) 0.722 0.723

Table 3 compares the effectiveness of our fine-tuned models
with the official checkpoints5,6,7 provided by the authors on the
TREC 2019 and 2020 Deep Learning track data [5, 6]. Our fine-tuned
models achieve competitive effectiveness compared to the official
checkpoints. Minor differences between our results and the official
checkpoints can be attributed to randomness in the training process
and are not statistically significant, except for the SPLADE models
(our SPLADE model is more effective on TREC Deep Learning 2019
and less effective on TREC Deep Learning 2020). These results
demonstrate that one is capable of reproducing the effectiveness of
state-of-the-art models with minimal effort using Lightning IR.

6 CONCLUSION
We have introduced Lightning IR, a PyTorch Lightning-based frame-
work that enables straightforward fine-tuning and inference of
transformer-based language models for information retrieval. By
conducting a reproducibility experiment, we have demonstrated
the simplicity and flexibility of the framework’s API and the capa-
bilities of Lightning IR. We were able to fine-tune and evaluate a
variety of models that achieve competitive effectiveness compared
to state-of-the-art neural ranking models with short code snippets
and minimal effort. Future work includes extending Lightning IR
5https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5
6https://huggingface.co/naver/splade-v3
7https://huggingface.co/colbert-ir/colbertv2.0

to support additional efficient dense, sparse, and multi-vector in-
dexing and retrieval pipelines, such as PLAID [22] and Seismic [2],
to improve the latency and scalability of multi-vector and sparse
retrieval models.
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