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Abstract. Existing cross-encoder models can be categorized as point-
wise, pairwise, or listwise. Pairwise and listwise models allow passage
interactions, which typically makes them more effective than pointwise
models but less efficient and less robust to input passage order permu-
tations. To enable efficient permutation-invariant passage interactions
during re-ranking, we propose a new cross-encoder architecture with
inter-passage attention: the Set-Encoder. In experiments on TREC Deep
Learning and TIREx, the Set-Encoder is as effective as state-of-the-
art listwise models while being more efficient and invariant to input
passage order permutations. Compared to pointwise models, the Set-
Encoder is particularly more effective when considering inter-passage
information, such as novelty, and retains its advantageous properties
compared to other listwise models. Our code is publicly available at
https://github.com/webis-de/ECIR-25.

1 Introduction

Existing cross-encoders for passage re-ranking [41–43, 50–53, 61, 62, 73] lack a
central desirable property of learning-to-rank models [45]: permutation-invariant
passage interactions. Passage interactions help to improve effectiveness through
information exchange, while permutation invariance ensures that the same rank-
ing is output independent of the ordering of the input passages.

Pointwise cross-encoders process passages independently of each other [41, 42,
50, 73] and thus are permutation-invariant by design but cannot model passage
interactions. Pairwise [43, 51] and listwise cross-encoders [52, 53, 61, 62] enable
passage interactions by concatenating the passages as a single input sequence.
This way, pair- or listwise re-rankers are often more effective than pointwise
ones but the derived rankings depend on the concatenation order. To avoid
inconsistent rankings for different input orderings, many (or all) permutations
are re-ranked and fused to a final ranking; visualized in Figure 1 (bottom).
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Fig. 1: Comparison of our Set-Encoder architecture (top) with state-of-the-art listwise
re-rankers (bottom) for three input passages. List-wise re-rankers concatenate the in-
put passages, leading to potentially inconsistent rankings for different concatenation
orderings. Many (or all) permutations are thus re-ranked for optimization. Instead, the
Set-Encoder uses novel [INT] tokens for permutation-invariant inter-passage attention.

To directly model passage interactions in a permutation-invariant way, we
propose a new cross-encoder architecture: the Set-Encoder ; visualized in Figure 1
(top). Instead of concatenating the input passages, the Set-Encoder processes
them like a pointwise cross-encoder as different sequences in a batch. Passage
interactions are enabled by letting each sequence aggregate information in special
[INT] interaction embedding tokens that all other sequences can attend to. The
[INT] tokens can be interpreted as lightweight bridges which share information
between passages. To ensure permutation-invariance, the Set-Encoder assigns
every [INT] token the same positional encoding. We call this new attention
pattern inter-passage attention.

In experiments on the TREC 2019 and 2020 Deep Learning tracks [21, 22]
and the TIREx framework [25], the Set-Encoder is as effective as state-of-the-
art re-rankers [53, 61, 73]. At the same time, the Set-Encoder is robust to input
permutations and orders of magnitude more efficient. Interestingly, contrasting
previous work [42, 43, 51, 53, 62, 73], we find listwise interactions to not really
be necessary in the Deep Learning and TIREx scenarios. A pointwise model
fine-tuned with the currently best available data [60] is as effective as state-of-
the-art listwise models and the Set-Encoder. To still demonstrate the potential
advantages of listwise models, we fine-tune the Set-Encoder to re-rank passages
according to both relevance and novelty and find it to then be more effective
than its pointwise counterpart and other state-of-the-art listwise models.
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2 Related Work

Pre-trained transformer-based models can roughly be divided into two types [35]:
bi-encoders and cross-encoders. Bi-encoders embed queries and passages inde-
pendently so that pre-computed passage representations can be indexed. At
query time, only the query needs to be embedded and can then efficiently be
compared with the indexed passage embeddings [54]. Cross-encoders instead em-
bed queries and passages together, allowing for interactions [41]—for brevity, we
refer to all such transformer-based models as cross-encoders, be they encoder-
only [41], decoder-only [52, 53, 73], or encoder–decoders [42, 73].

This direct query–passage interaction makes cross-encoders particularly ef-
fective. However, current pairwise and listwise cross-encoders lack a central prop-
erty that previously improved feature-based learning-to-rank models [6, 34, 45,
46, 49]: input permutation-invariant interactions. The rank order of current list
and pairwise cross-encoders is sensitive to the input passage ordering and often
fuse multiple rankings for different input permutations to be effective.

For example, duo cross-encoders embed a query together with two passages
to predict which passage of the pair should be ranked higher [43, 51]. But the
predictions of duo cross-encoders are neither symmetric nor transitive [26], so
that they must process all pairs and twice for maximum effectiveness. More
recent decoder-only LLMs that simultaneously re-rank up to 20 passages [52,
53, 61] are also sensitive to the input ordering, so that they usually fuse the
re-rankings for several input permutations for maximum effectiveness [63].

Existing cross-encoders that model passage interactions are not permutation-
invariant because they concatenate passages into a single input sequence. Our
Set-Encoder follows a different strategy and processes passages in parallel. To
enable passage interactions while ensuring permutation invariance, we add a new
dedicated interaction token ([INT]) to each input sequence. The Set-Encoder
allows all passages to attend to the interaction tokens of all other passages.
This new inter-passage attention pattern is somewhat similar to the attention
pattern of the Fusion-in-Encoder model proposed for question answering [32].
The Fusion-in-Encoder model enables passage interactions within an encoder
by adding additional so-called global tokens to which all passage tokens can
attend to, and the global tokens can attend to all passage tokens. However,
no direct interaction between passage tokens is possible. In contrast, our Set-
Encoder allows for direct passage interactions as all passage tokens can attend
to the interaction tokens of every other passage.

3 The Set-Encoder Model

Our Set-Encoder introduces inter-passage attention, a novel attention pattern
to model permutation-invariant interactions between passages. Inter-passage at-
tention addresses three challenges: (1) input passages must be able to attend
to each other, (2) the interactions between the passages must not encode any
positional information about the passage ordering, and (3) the interactions must
be “lightweight” enough for efficient fine-tuning.



4 Schlatt et al.

Previous work has addressed the first challenge (attention between passages)
by concatenating the query and multiple passages into one input sequence, vi-
sualized in Figure 1 (bottom). However, concatenation violates the second chal-
lenge: the language model’s positional encodings (used to determine a token’s
position) span across passage boundaries and thus encode the order of passages
in the sequence. Furthermore, concatenation also violates the third challenge (ef-
ficiency), as the language model’s computational cost scales quadratically with
the length of the input sequence.

Instead of concatenating passages, our new inter-passage attention pattern
processes the passages in parallel with individual input sequences per passage,
as visualized in Figure 1 (top). Each input sequence’s positional encodings start
from zero, so no information about the passage order is encoded (second chal-
lenge). To still let the passages attend to each other (first challenge), we use
a special passage interaction [INT] token that aggregates semantic information
about its passage and to which tokens from other sequences can attend. The Set-
Encoder allows passage interactions solely through these [INT] tokens, making
inter-passage attention computationally efficient (third challenge).

3.1 Permutation-Invariant Input Encoding

Standard pointwise cross-encoders compute a relevance score for query–passage
pairs (q, d) given as token sequences t1q . . . tmq

and t1d . . . tmd
. In this work we

use BERT-style encoding [23], meaning the final tokens tmq and tmd
are special

[SEP] separator tokens. The concatenated sequence is prepended by a special
[CLS] classification token tc. The resulting input sequence tc t1q . . . tmq

t1d . . . tmd

is then passed through a transformer-based encoder model. Finally, the relevance
score of d for q is computed by a linear transformation on the final contextualized
embedding of the [CLS] token tc.

The Set-Encoder instead receives a query q and a set of passages {d1, . . . , dk}
as input and computes a relevance score for each passage. To this end, the
Set-Encoder builds a set of input sequences by prepending a [CLS] token, an
[INT] token, and the query sequence to each passage individually. The set of
input sequences is then processed simultaneously, similar to batched process-
ing with a standard cross-encoder, but with attention from an input sequence’s
tokens to the [INT] tokens of the other input sequences (see Section 3.2). The
batched input sequences are passed through an encoder, and the relevance scores
of the passages di for q are computed by applying a linear transformation to the
passage’s final [CLS] token embedding.

Our batched input encoding is permutation-invariant because each input
sequence’s positional encodings start from zero. For example, the [INT] token is
always at position 1 and the first token of each passage is at position mq + 1.
The model then cannot distinguish between different permutations of the input
sequences and, therefore, also not between different permutations of the passages.
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3.2 Inter-Passage Attention

The Set-Encoder allows every sequence to attend to the [INT] tokens of every
other sequence. Our intuition is that these [INT] tokens aggregate the semantic
information from their sequence and can share it with all other sequences.

This hypothesis is motivated by the token-based semantic information aggre-
gation in many model architectures. For instance, in bi-encoders, the [CLS] token
captures a query or passage’s semantic information, and in a standard pointwise
cross-encoder, the [CLS] token aggregates query–passage information to compute
a relevance score. We hypothesize that our additional [INT] token can also aggre-
gate semantic information and share this information with other passages. We
also tested directly using the [CLS] token for passage interactions and found this
variant of passage interaction to produce effective re-rankers but being incapable
of learning passage interactions (see Section 4.3). To implement inter-passage at-
tention, we modify the original attention function of the transformer [65]:

Attention(Q,K, V ) = softmax

(
QKT

√
h

)
V ,

where Q, K, and V are matrices of embedding vectors, in which each column
vector corresponds to a token from the encoder’s input sequence.

The inter-passage attention’s input has vector matrices Q(i), K(i), and V (i)

for each passage di’s input sequence. To allow the i-th input sequence to attend
to the [INT] tokens of all other input sequences, we append the [INT] token’s
embedding vectors from the other input sequences’ embedding matrices K(j)

and V (j) to the input sequence’s embedding matrices K(i) and V (i).

Specifically, let K̄(i) = [K
(j)
2 : j ̸= i] and V̄ (i) = [V

(j)
2 : j ̸= i] be the matrices

concatenating the [INT] token’s embedding vectors from K(j) and V (j) of every
passage dj ̸= di, with [· ·] denoting column-wise vector /matrix concatenation
(i.e., [MM ′] is equal to a matrix whose “left” columns come from M and whose
“right” columns come from M ′). Appending the [INT] tokens from the other
passages’ embedding vectors to the sequence matrices, we obtain the new inter-
passage attention pattern as: Attention(Q(i), [K(i)K̄(i)], [V (i)V̄ (i)]).

3.3 Fine-tuning

We follow Schlatt et al. [60] to fine-tune the Set-Encoder in two stages. In the
first stage, the model is fine-tuned on MS MARCO [40] relevance labels using
InfoNCE loss [44]:

LInfoNCE = − log
exp(s+)∑k
i=1 exp(si)

.

For a single query q, the loss is computed over the predicted relevance scores si
for a set of passages {d1, . . . dk} of which only one is a labeled relevant passage d+.
The other k − 1 passages are sampled from the top-200 passages retrieved by
ColBERTv2 [58] for q.
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In the second stage, the model is distilled from LLM-based cross-encoder
rankings using the Rank-DistiLLM dataset [60] and the RankNet loss [4]:

LRankNet =

n∑
i=1

n∑
j=1

1ri<rj log(1 + esi−sj ) ,

where 1 is the indicator function and ri is the rank the passage di gets assigned by
a RankZephyr [53] teacher model, a state-of-the-art LLM-based cross-encoder.

3.4 Fine-tuning to Detect Duplicates

In experiments on TREC Deep Learning and TIREx we found the Set-Encoder
does not need passage interactions to be effective and, therefore, does not make
use of the [INT] token to share information between passages (details in Sec-
tion 4.2). To ensure that the model actually learns passage interactions, we
modify the first-stage fine-tuning to include an inter-passage duplicate detection
loss. We randomly sample a passage d× from the set of input passages, duplicate
it, and add it to the set of input passages as passage dk+1. We then add a binary
classification head to the model that outputs a probability pi of whether pas-
sage di is the duplicate passage. As a duplicate-aware InfoNCE, we use InfoNCE
plus the binary cross-entropy loss over the model’s duplication probabilities:

LDA-InfoNCE = LInfoNCE +

k∑
i=1

1di=d× log pi + 1di ̸=d× log(1− pi) .

3.5 Fine-tuning to Rank According to Novelty

Finally, to demonstrate advantages of listwise models, we also fine-tune the Set-
Encoder to re-rank based on passage relevance and novelty (i.e., whether a pas-
sage provides novel information compared to above ranked ones [8]). As there are
no large-scale datasets for this task (e.g., the diversity portion of the TREC Web
tracks is too small for fine-tuning), we create the new Rank-DistiLLM-Novelty
dataset exploiting that MS MARCO, the basis for Rank-DistiLLM, contains
many near-duplicate passages. In a ranking from the Rank-DistiLLM dataset,
we group passages into a “novelty group” that scikit-learn’s [48] agglomerative
clustering combines with a word-based Jaccard similarity > 0.5. We treat the
TREC 2019 and 2020 Deep Learning data analogously for evaluation [21, 22].

For novelty-aware re-ranking, we propose a new novelty-aware RankNet loss
function. Intuitively, the loss penalizes a model if it ranks a less relevant pas-
sage higher than a more relevant one or a near-duplicate passage higher than a
non-duplicate one. Let ci be the cluster of near-duplicate passages to which di
belongs. The novelty-aware RankNet loss then is

LNA-RankNet =

k∑
i=1

k∑
j=1

1r̄i<r̄j log(1 + esi−sj ) ,

with r̄i = ri · (1−maxj=1...k 1ci=cj · 1si<sj ) denoting adjusted relevance labels
that are set to zero if the model already has ranked a near-duplicate higher.
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4 Evaluation

To evaluate the effectiveness of the Set-Encoder, we conduct experiments on
the TREC Deep Learning (DL) 2019 and 2020 passage tracks [21, 22] and on
all tasks from the 13 collections in the TIREx platform [1–3, 5, 9–22, 25, 28–
30, 55, 56, 67–71]. For TREC DL, we report nDCG@10 when re-ranking the top-
100 passages retrieved by either BM25 [57] or ColBERTv2 [58]. For the novelty-
based ranking, we also report α-nDCG@10 [8] and consider all passages from a
near-duplicate cluster to belong to a subtopic (cf. Section 3.5 for the clustering).
We set α = 0.99, so that only the first passage from a subtopic contributes
to the gain. For TIREx, we report nDCG@10 micro-averaged across all queries
associated with a collection and we report the macro-averaged arithmetic and
geometric mean across all collections.

We compare the Set-Encoder with RankGPT-4o [61] and RankZephyr [53],
two state-of-the-art listwise LLM-based cross-encoders. As GPT-4o has a max-
imum input length of 128, 000 tokens, we also test re-ranking 100 passages
at once (RankGPT-4o Full). Additionally, we include LiT5-Distill [62], mono-
T5 3B [42], and RankT5 3B [73] cross-encoders, and a pointwise monoELECTRA
model as it basically is the Set-Encoder without inter-passage attention [60].

4.1 Experimental Setup

We mostly follow Schlatt et al. [60] for fine-tuning the Set-Encoder and mo-
noELECTRA models. We truncate queries to at most 32 tokens and passages
to 256 tokens and use ELECTRABASE

1 and ELECTRALARGE
2 [7] checkpoints

from HuggingFace [72] as starting points for fine-tuning. We use the relevance
labels from the MS MARCO passage dataset [40] and the ColBERTv2 [58] hard
negatives from Rank-DistiLLM [60] for first-stage fine-tuning. We fine-tune all
models for 20k steps with a batch size of 32 using InfoNCE loss and 7 neg-
atives per query. We then use the ColBERTv2–RankZephyr distillation scores
from RankDistiLLM for second-stage fine-tuning with a batch size of 32 and
100 passages per query and fine-tune for 3 epochs using RankNet loss. For both
fine-tuning stages we use the AdamW [36] optimizer with a learning rate of 10−5.

We also fine-tune the Set-Encoder in the first-stage using our newly proposed
duplicate-aware InfoNCE for at least 20k steps but at most 60k steps or until the
duplicate-detection cross-entropy loss is smaller than 0.05 for at least 100 steps.
For the novelty ranking task, we fine-tune models for 10 epochs using our novelty-
aware RankNet loss, using early stopping and α-nDCG@10 on the TREC Deep
Learning 2021 task as the criterion.

All models were fine-tuned on a single NVIDIA A100 40GB GPU and we
used the following packages and frameworks: ir datasets, ir-measures, Jupyter,
Lightning, Lightning IR, matplotlib, NumPy, pandas, PyTerrier, PyTorch, and
SciPy [24, 27, 31, 33, 37–39, 47, 59, 64, 66].

1 google/electra-base-discriminator
2 google/electra-large-discriminator
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Table 1: Effectiveness (nDCG@10) of various cross-encoders on the TREC Deep
Learning 2019 and 2020 tracks using BM25 or ColBERTv2 as the first stage retrieval.
The highest and second-highest scores per setting are bold and underlined, respectively.
Model sizes given as number of parameters. † denotes a significant difference (p < 0.05,
Holm-Bonferroni-corrected) to the Set-Encoder with 330M parameters.

Model Size TREC DL 19 TREC DL 20

BM25 CBv2 BM25 CBv2

First Stage – 0.480† 0.732† 0.494† 0.724†

RankGPT-4o N/A 0.725 0.784 0.719 0.793
RankGPT-4o Full N/A 0.732 0.781 0.711 0.796
RankZephyr 7B 0.719 0.749 0.720 0.798

LiT5-Distill 220M 0.696 0.753 0.679† 0.744†

monoT5 3B 3B 0.705 0.745 0.715 0.757
RankT5 3B 3B 0.710 0.752 0.711 0.772

monoELECTRA
110M 0.720 0.768 0.711† 0.770
330M 0.733 0.765 0.727 0.799

Set-Encoder
110M 0.724 0.788 0.710† 0.777
330M 0.727 0.789 0.735 0.790

4.2 Effectiveness on Cranfield-Style Datasets

In-domain Re-ranking. Table 1 shows the models’ effectiveness on TREC DL.
The Set-Encoder is on par with the state-of-the-art cross-encoders—the 330M
parameter variant even is the most effective in two of four retrieval settings
and the differences to the other cross-encoders is not significant in any of the
scenarios (paired t-test with p < 0.05 and Holm-Bonferroni correction). Interest-
ingly, the pointwise monoELECTRA model is similarly effective and the most
effective model in the other two of the four settings. This suggests that passage
interactions are unnecessary in the TREC DL scenarios; a stark contrast to pop-
ular belief and previous work stating that passage interactions are beneficial for
re-ranking [42, 43, 51, 53, 62, 73].

Out-of-domain Re-ranking. The in-domain findings also hold in out-of-domain
scenarios. Table 2 shows the effectiveness on the 13 TIREx collections (RankGPT
excluded as TIREx does not allow external API calls) and the Set-Encoder is
again on par with the state-of-the-art RankZephyr. In some cases RankZephyr is
more effective in other cases the Set-Encoder. The differences are significant in
some cases, but on average both models are similarly effective. The same holds
true for the large monoELECTRA model.

Passage Interaction “Unneccessity”. The on-par monoELECTRA effectiveness
in the above experiments suggests that passage interactions are not really nec-
essary. We think that there are three main reasons. First, we have fine-tuned
monoELECTRA with the best available data [60], second, the TREC DL and
TIREx scenarios come with relevance judgments that are independent of each
other, and third, the standard evaluation schemes do not discount near-duplicate
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Table 2: Effectiveness (nDCG@10) of various cross-encoders micro-averaged for test
collections from the TIREx framework [25]. The macro-averaged geometric means (col-
umn ‘G. Mean’) are computed across all collections. Model sizes given as the number of
parameters. The highest and second-highest averaged scores per collection are bold and
underlined, respectively. † denotes a significant difference (p < 0.05, Holm-Bonferroni-
corrected) to the Set-Encoder with 330M parameters.

Model Size

Antique

Args.m
e

ClueW
eb09

ClueW
eb12

CORD-19

Cranfield

Disks4+
5
G
OV

G
OV2

M
EDLIN

E

N
FCorpus

Vaswani

W
aPo

G
. M

ean

First Stage – .510† .405 .174† .344† .586† .012 .424† .332† .467† .385 .268† .447† .364† .289

RankZephyr 7B .528† .364† .220 .287 .767† .009 .542 .423 .560 .461† .299 .512 .508 .322

LiT5-Distill 220M .571† .395 .223 .259† .686 .011 .495† .385† .534† .354† .278† .429† .470 .305

monoT5 3B 3B .537† .392 .202† .268 .603† .011 .545 .407 .514† .378 .308 .458† .476 .307

RankT5 3B 3B .592 .421 .228 .326 .713 .010 .538 .415 .528† .406 .307 .459† .468† .324

m.ELECTRA
110M .587 .375† .219† .288 .692 .010 .507† .388† .541† .399 .291 .522 .458† .314

330M .570† .369† .230 .301 .716 .008 .546 .424 .572 .419 .301 .526 .504 .321

Set-Encoder
110M .588 .375† .220† .285 .683 .010 .513† .389† .543† .396 .291 .523 .461† .314
330M .600 .409 .242 .297 .702 .009 .534 .418 .573 .405 .297 .530 .508 .325

results. As the assessors and evaluation treat passages independent of each other,
re-rankers very likely can also score passages individually and still be effective.
Passage interactions are beneficial in tasks where, for example, fairness, diversity,
or novelty are considered, and we investigate this in more detail in Section 4.3.

Permutation Invariance. Additionally, despite being fine-tuned on RankZephyr
rankings, the Set-Encoder and monoELECTRA are more effective in most out-
of-domain re-ranking tasks. The Set-Encoder achieves a higher effectiveness than
RankZephyr on 6 out of 13 corpora, RankZephyr is more effective on 5 corpora,
and they reach same effectiveness on 2. Also monoELECTRA is more effective
than RankZephyr on 9 corpora and less effective on only 4. RankZephyr only
reaches a comparable mean effectiveness by being substantially more effective on
the two medical corpora, CORD-19 and MEDLINE. We attribute the teacher
model, RankZephyr, to be less effective than the student models to the fact that
it is not permutation invariant. Consequently, RankZephyr is sensitive to the
quality of the first-stage retrieval, which we investigate further in Section 4.4.

4.3 Novelty-Aware Ranking

To investigate the potential of passage interactions, we task the models to also
take novelty into account (i.e., from a group of relevant but near-duplicate pas-
sages, only one should be ranked high). Using our novelty-aware RankNet loss
(see Section 3.5), we fine-tune the Set-Encoder and monoELECTRA on novelty
and we fine-tune the Set-Encoder on duplicate detection using our duplicate-
aware InfoNCE loss (cf. Section 3.4; monoELECTRA is incapable of detecting
duplicates). For the LLM-based cross-encoders, we augment the prompt to ac-
count for novelty. Table 3 shows the nDCG@10 and α-nDCG@10 of the models.
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Table 3: Effectiveness (nDCG@10 and α-nDCG@10, α = 0.99) of cross-encoders on
the TREC Deep Learning 2019 and 2020 tracks clustered into near-duplicate subtopics.
The highest and second-highest scores per setting are bold and underlined, respectively.
† denotes a significant difference (p < 0.05, Holm-Bonferroni-corrected) to the Set-
Encoder fine-tuned using LDA-InfoNCE and then LNA-RankNet (Row 14).

Model Prompt / Loss nDCG α-nDCG

2019 2020 2019 2020

(1) First Stage – 0.732 0.724 0.700† 0.722†

(2)
RankGPT-4o

Relevance 0.784† 0.793† 0.750 0.759

(3) Novelty 0.778† 0.806† 0.741 0.773

(4)
RankGPT-4o Full

Relevance 0.781† 0.796† 0.738 0.763

(5) Novelty 0.785† 0.803† 0.750 0.771

(6)
RankZephyr

Relevance 0.749 0.798† 0.699† 0.765

(7) Novelty 0.753 0.800† 0.700† 0.760

(8) Model 1st L 2nd L

(9)
monoELECTRA LInfoNCE

LRankNet 0.768† 0.770† 0.718† 0.745†

(10) LNA-RankNet 0.704 0.675 0.785 0.753

(11)

Set-Encoder

LInfoNCE
LRankNet 0.780† 0.757† 0.733† 0.747†

(12) LNA-RankNet 0.714 0.651 0.779 0.743†

(13) LDA-InfoNCE
LRankNet 0.788† 0.777† 0.740† 0.752†

(14) LNA-RankNet 0.710 0.690 0.821 0.803

(15) Set-Enc. [INT] LDA-InfoNCE LNA-RankNet 0.707 0.670 0.773 0.748†

The LLM-based cross-encoders are largely unaffected by the novelty prompt.
Only RankGPT-4o Full has marginally but consistently higher α-nDCG@10 us-
ing the novelty prompt compared to the relevance prompt. One reason probably
is the windowed ranking strategy of LLM-based cross-encoders. As the windowed
strategy starts from the bottom of a ranking, initially highly ranked passages
that are near-duplicates of other highly ranked passages simply cannot be moved
to low ranks (cf. Section 4.4 for a more detailed analysis).

In contrast, the Set-Encoder improves considerably when fine-tuned using
the novelty-aware NA-RankNet. It is significantly more effective in terms of α-
nDCG@10 than its counterpart (compare rows 13 and 14) fine-tuned using nor-
mal RankNet. While not all α-nDCG@10 differences to the other cross-encoders
are significant, the differences to the second-best models are sizable and are the
largest between any two neighboring models when sorted by α-nDCG@10.

Looking at the InfoNCE-based fine-tuning, we find that the Set-Encoder
fine-tuned with standard InfoNCE (row 12) is on par with a pointwise mono-
ELECTRA model (row 10) in novelty-aware ranking. That is, the Set-Encoder is
unable to profit from inter-passage attention when first fine-tuned to only rank
according to relevance. However, when initially fine-tuned using duplicate-aware
DA-InfoNCE (i.e., when the model learns to rank according to relevance and to
detect exact duplicates; row 14), the Set-Encoder profits from inter-passage at-
tention and is substantially more effective. We interpret this as further evidence
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Fig. 2: Proportional rank changes of various cross-encoders for re-ranking BM25 aver-
aged across all queries from the TREC Deep Learning 2019 and 2020 tracks.

that typical TREC-style relevance assessments and evaluation setups do not con-
tain a training signal which necessitates passage interactions. Therefore, trained
on such data, the Set-Encoder does not learn to use inter-passage attention.
Only when the model is specifically “primed” to use inter-passage attention, by
being fine-tuned to detect duplicates, can it learn passage interactions and then
improve on novelty ranking.

[INT] Ablation. To determine the effect of the [INT] token, we compare the Set-
Encoder’s effectiveness when using the [INT] token and when using the [CLS] to-
ken for interaction. The results in the row 15 of Table 3 indicate that the model
using the [CLS] token does not model passage interactions since it is on par with
the pointwise monoELECTRA (row 10). In fact, using the [CLS] token instead
of the [INT] token, the model is already unable to learn to detect duplicates
during the initial fine-tuning. We hypothesize that the [CLS] token is not suited
to model passage interactions as it has been heavily pre-trained and thus is not
flexible enough to learn new interactions in fine-tuning. Further investigating
this hypothesis could be an interesting direction for future work.

4.4 Permutation Invariance

Positional Biases. All previous listwise cross-encoders have an implicit positional
bias by concatenating the input passages. Most LLM-based cross-encoders also
have an explicit positional bias due to the limited input length. For example,
to re-rank 100 passages, the original RankGPT model, RankZephyr, and LiT5-
Distill use an overlapping windowed strategy. Starting from the bottom of the
ranking, the models re-rank the passages from positions 100 to 81, then from
90 to 71, and so on until the top 20 passages are re-ranked. We visualize these
explicit and implicit biases in Figure 2 as the average proportional rank changes
when re-ranking the top-100 passages retrieved by BM25 for TREC DL 2019
and 2020. The lighter a pixel, the more frequently a model ranks a passage from
a particular position to another particular position.

For RankGPT-4o, RankZephyr, and LiT5-Distill, the explicit bias from the
windowed strategy is immediately visible as a distinct step pattern. RankGPT-
4o Full, which does not use the windowed strategy and re-ranks all 100 passages
at once, does not exhibit the step pattern but instead has a distinct diagonal
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Fig. 3: Effectiveness (nDCG@10) on dif-
ferent permutations of BM25 rankings for
TREC Deep Learning 2019 and 2020.
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Table 4: Time (sec.) and memory foot-
print (GB) for re-ranking 100 passages.

Model Size Time Memory

RankGPT-4o N/A 18.773 N/A
RankGPT-4o Full N/A 7.362 N/A
RankZephyr 7B 24.047 15.48
LiT5-Distill 220M 2.054 2.69
monoT53B 3B 0.998 29.36
RankT53B 3B 0.942 29.04

monoELECTRA
110M 0.139 1.18
330M 0.215 2.69

Set-Encoder
110M 0.147 1.25
330M 0.219 2.60

line that indicates that the model tends to keep passages in the same position as
in the original ranking, caused by the model’s auto-regressiveness. It is tasked to
output the order of passages in the form of bracketed positions (e.g., [2] > [1]

> [3] > ...) and has an implicit bias to simply output sequential positions.
By contrast, the Set-Encoder does not exhibit any immediately obvious po-

sitional biases; only a slight clustering of lighter pixels in the lower left corner
and darker areas in the upper left and lower right show that the Set-Encoder’s
top-results correlate to some degree with the ones from the original BM25.

Ranking Perturbations. To test how the positional biases affect a cross-encoder’s
ranking effectiveness, we generate several “corrupted” perturbations of the top-
100 passages retrieved by BM25 on the TREC DL 2019 and 2020 tracks: a ran-
dom permutation, an ideal permutation, and a reverse-ideal permutation. Ideal
and reverse-ideal permutations are generated by reordering the passages accord-
ing to their relevance judgments. Figure 3 visualizes the nDCG@10 of various
LLM-based cross-encoders and our Set-Encoder on the different permutations.

The Set-Encoder is robust to the order of input passages and has the same
effectiveness irrespective of the permutation. All other listwise cross-encoders
are affected by the ranking permutations. RankGPT-4o, RankGPT-4o Full, and
LiT5-Distill lose a substantial portion of their effectiveness when re-ranking the
inverse ideal ranking and improve with increasingly better initial rankings. Only
RankZephyr is comparatively robust to perturbations because it is fine-tuned to
counteract positional biases, but it nonetheless fluctuates slightly.

Overall, the Set-Encoder reaches a higher nDCG@10 than the other cross-
encoders on the inverse ideal, on the random, and on the original BM25 rankings.
The LLM-based cross-encoders only achieve higher effectiveness when re-ranking
the already ideal permutation. Due to the positional biases, most LLM-based
cross-encoders require a good initial ranking to be effective. This insight explains
how the Set-Encoder and monoELECTRA can manage to be more effective than
their RankZephyr teacher model when re-ranking BM25 rankings for both the
in-domain TREC Deep Learning scenarios and for most collections in the out-
of-domain TIREx scenarios from Section 4.2.
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5 Efficiency Analysis

As for the models’ efficiency, we report inference time and GPU memory foot-
print when re-ranking TREC DL. The results in Table 4 show that the Set-
Encoder adds only minimal overhead over monoELECTRA (i.e., over a similar
model but without inter-passage attention). The Set-Encoder models are slightly
slower than the respective monoELECTRA counterparts and the 110M param-
eter model uses marginally more memory. Interestingly, the 330M Set-Encoder
uses slightly less memory than monoELECTRA, despite adding the additional
[INT] interaction tokens. As this result is consistent across different batch sizes,
we hypothesize that the CUDA-backend may be able to use more efficient ker-
nels, but leave deeper investigations of the effect to future work.

Compared to state-of-the-art listwise LLM-based cross-encoders, the Set-
Encoder substantially improves efficiency. While achieving comparable or better
effectiveness (Sections 4.2 and 4.4), the 330M Set-Encoder is around 85 times
faster than RankGPT-4o using a windowed strategy, about 33 times faster than
RankGPT-4o re-ranking 100 passages at once, and about 110 times faster than
RankZephyr. RankGPT-4o’s memory consumption is not available, but com-
pared to RankZephyr, the Set-Encoder uses 6 times less memory. Comparing
with the smaller LLM-based LiT5-Distill cross-encoder, the Set-Encoder has the
same memory footprint but is 9.5 times faster and substantially more effective.

6 Conclusion

In this paper, we have introduced the Set-Encoder: a new cross-encoder archi-
tecture that models passage interactions in a permutation-invariant way. Con-
trasting previous work, our empirical results show that passage interactions do
not necessarily improve a cross-encoder’s re-ranking effectiveness. A pointwise
model fine-tuned using current distillation methods is as effective as state-of-
the-art LLM-based cross-encoders in typical Cranfield-style settings in which the
passages were judged independent of each other so that passage interactions are
not important for effective re-ranking. But when additionally considering inter-
document related aspects such as novelty, the Set-Encoder is more effective than
its pointwise counterpart and previous state-of-the-art listwise cross-encoders.

Our results also show that permutation invariance is very helpful for an effi-
cient and effective re-ranking. Explicit and implicit positional biases in previous
listwise cross-encoders lead to inconsistent and suboptimal effectiveness across
different settings. Using our new permutation-invariant inter-passage attention
pattern, the Set-Encoder is on par or more effective than previous listwise cross-
encoders in all ranking settings. At the same time, the Set-Encoder is way more
efficient in terms of both memory consumption and query latency.
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