
TITE: Token-Independent Text Encoder for Information Retrieval
Ferdinand Schlatt
Friedrich-Schiller-
Universität Jena
Jena, Germany

Tim Hagen
University of Kassel

and hessian.AI
Kassel, Germany

Martin Potthast
University of Kassel,

hessian.AI, and ScaDS.AI
Kassel, Germany

Matthias Hagen
Friedrich-Schiller-
Universität Jena
Jena, Germany

Abstract
Transformer-based retrieval approaches typically use the contextu-
alized embedding of the first input token as a dense vector repre-
sentation for queries and documents. The embeddings of all other
tokens are also computed but then discarded, wasting resources. In
this paper, we propose the Token-Independent Text Encoder (TITE)
as a more efficient modification of the backbone encoder model. Us-
ing an attention-based pooling technique, TITE iteratively reduces
the sequence length of hidden states layer by layer so that the final
output is already a single sequence representation vector. Our em-
pirical analyses on the TREC 2019 and 2020 Deep Learning tracks
and the BEIR benchmark show that TITE is on par in terms of effec-
tiveness compared to standard bi-encoder retrieval models while
being up to 3.3 times faster at encoding queries and documents.
Our code is available at: https://github.com/webis-de/SIGIR-25.

CCS Concepts
• Information systems→ Language models.

Keywords
Bi-Encoder, Transformer, Attention-based Pooling
ACM Reference Format:
Ferdinand Schlatt, Tim Hagen, Martin Potthast, and Matthias Hagen. 2025.
TITE: Token-Independent Text Encoder for Information Retrieval. In Pro-
ceedings of the 48th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR ’25), July 13–18, 2025, Padua, Italy.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3726302.3730094

1 Introduction
Transformer-based encoder language models [4, 12, 22] have be-
come ubiquitous in information retrieval. Among them, the bi-
encoder [56] is one of the most popular architectures. It represents
queries and documents each by a single latent embedding vector
and then determines a document’s relevance to a query by comput-
ing the two vectors’ similarity. However, as the backbone encoder
model actually computes contextualized embedding vectors for
each token in the input sequence (see Figure 1, left), bi-encoder
models perform pooling to obtain the single vectors.

The most popular choices are mean and [CLS] pooling (i.e., av-
eraging all tokens’ contextual embeddings or only using the first
token’s embedding, the [CLS] token). Empirically, these strategies
are similarly effective for retrieval [39, 56] so that it may not be

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGIR ’25, Padua, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1592-1/2025/07
https://doi.org/10.1145/3726302.3730094

Input
Tokens

...

...

...

Standard Encoder Model

Sequence
Embedding

...

...

TITE

Attention-
based

PoolingTransformer
Encoder

Figure 1: Comparison of a standard transformer encoder
model and our new TITEmodel. To obtain a sequence embed-
ding, a standard encoder model usually uses the embedding
of the first token in the sequence. TITE uses attention-based
pooling to reduce the sequence length of the hidden states
and outputs a single vector for an input sequence. Option-
ally, the dimensionality of the hidden states can be increased,
denoted by the transparent and dashed rectangles.

necessary to compute contextualized embeddings for all tokens,
but directly computing a single sequence-level embedding suffices.

In this paper, we demonstrate that an encoder model that di-
rectly computes only a single semantic embedding vector for an
input sequence can be as effective as a standard encoder model,
while being substantially more efficient. For our respective new
Token-Independent Text Encoder (TITE) we adapt and improve the
Funnel-Transformer’s previously introduced attention-based pool-
ing mechanism [8] and perform pooling within transformer layers
to reduce the sequence length until only a single vector remains (see
Figure 1, right). To compensate for the lower number of vectors in
the hidden states, we introduce the option for upscaling the dimen-
sionality to increase the representational capacity of each vector.
Additionally, we also compare several pooling strategies, locations,
and arrangements to trade off efficiency vs. effectiveness and we
test several different objectives for pre-training TITE.

Contrasting previous encoder models, TITE’s single sequence-
level output embedding vector has no direct link to the input to-
kens. That is, the representation is not tied to the [CLS] token
or the pooled representations of multiple tokens, and, as such,
is a truly token-independent sequence-level representation. Our
comparison with state-of-the-art retrieval models [17, 59, 76, 78]
on the TREC 2019 and 2020 Deep Learning tracks [6, 7] and the
BEIR data [66] shows that TITE achieves competitive effectiveness
and is up to 3.3 times faster at encoding queries and documents
compared to a standard encoder model. We further find that upscal-
ing model size improves effectiveness while upholding most of the
efficiency gains. In ablation analyses, we find that the effectiveness
of TITE is mainly influenced by the pre-training objective.

https://orcid.org/0000-0002-6032-909X
https://orcid.org/0009-0000-4854-7249
https://orcid.org/0000-0003-2451-0665
https://orcid.org/0000-0002-9733-2890
https://github.com/webis-de/SIGIR-25
https://doi.org/10.1145/3726302.3730094
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3726302.3730094

SIGIR ’25, July 13–18, 2025, Padua, Italy Schlatt et al.

2 Related Work
Transformer-based retrieval models can loosely be categorized into
bi-encoder and cross-encoder models [36]. Bi-encoder models em-
bed queries and documents separately [18, 19, 26, 29, 39, 56, 76,
77, 79, 84] and approximate a document’s relevance to the query
through their embeddings’ similarity. The contextualized embed-
dings of the backbone encoder model allow bi-encoders to circum-
vent the lexical mismatch problem and to determine the semantic
similarity between queries and documents. This often makes them
more effective than lexical retrieval models [57].

Cross-encoders [50, 61, 63, 64, 83], on the other hand, compute
the relevance score directly by passing the query and document
through the encoder together. This allows them to capture complex
interactions between query and document terms. It, however, also
requires cross-encoders to process documents at query time,making
them less efficient than bi-encoders, which can precompute an index
of document embeddings. Though cross-encoders are less efficient
than bi-encoders, they can be used to label training data which
bi-encoders are distilled from [23]. We make use of distillation to
fine-tune TITE and other baseline models.

Bi-encoder Models. Most bi-encoder architectures use a single
embedding vector as the representation for queries and documents.
Multi-vector bi-encoder models, which use all contextualized token
embeddings of the backbone encoder model [20, 27, 30, 34, 60, 82],
also exist. However, multi-vector bi-encoder models require more
complex scoring functions to aggregate the similarities of each
pair of query and document tokens. They further require vastly
more storage for their index as each document is represented by
more vectors, and they need involved multi-stage retrieval pipelines
to efficiently retrieve documents [42, 46, 59]. Additionally, recent
single vector bi-encoders are as effective as multi-vector models [76,
77], making the more inefficient multi-vector models less attractive.

To obtain a single semantic embedding vector for an input se-
quence, bi-encoders aggregate the token embeddings of the back-
bone encoder model. Initial work found minimal differences in ef-
fectiveness between computing the mean over token-based embed-
dings and using the [CLS] token as the sequence embedding [39, 56].
Since then, the design decision to use mean token pooling [26] or
[CLS] pooling [18, 19, 29, 76, 77, 79] has been largely arbitrary.

However, we emphasize that there is a central difference between
the two pooling strategies: In mean token pooling, a static aggrega-
tion function is applied to the token embeddings, while [CLS] pool-
ing allows the model to learn to aggregate semantic information
into a single embedding vector. Furthermore, [CLS] pooling discards
the generated token embeddings and wastes the computational re-
sources used to generate them. TITE combines the advantages of
both pooling methods: A static token pooling operation is applied
inside the transformer layers such that the model learns to aggre-
gate semantic information into a single sequence embedding vector
without the need for output token embeddings.

Transformer-based Encoders. We modify the backbone encoder’s
architecture to obtain a single embedding vector. Transformer-
based encoder models consist of several bidirectional self-attention
transformer layers [69]. These layers take a sequence of vectors
as input—essentially a matrix called hidden states—and output a

sequence of vectors of the same length. Attention-based pooling [8]
modifies the attention mechanism to reduce the number of vectors
in the output hidden states. By stacking multiple attention-based
pooling layers, we iteratively reduce the sequence length and output
only a single vector after the final layer.

Previous work has demonstrated that improving efficiency
through pooling or compression within the attention mechanism
is viable. For example, key-value compression is commonly used
to make long-context decoder-only LLMs feasible [48, 81]. Other
types of models like the Hourglass transformer [47, 49] and the
Funnel-Transformer [8] use a pooling strategy to reduce the num-
ber of vectors. However, after pooling the representations, these
types of models upsample the hidden states to the original sequence
length to apply standard language modeling objectives on the to-
ken embeddings. In contrast, TITE pools the hidden states down
to a single vector. Therefore, TITE’s representation is not tied to
input tokens and the model cannot be pre-trained with standard
token-level pre-training objectives.

Sequence-level Pre-training Objectives. Most transformer-based
encoder models are pre-trained by adding noise to the input and
the model is tasked to reconstruct the original sequence [4, 12,
22, 37, 54]. Based on the contextualized token embeddings of the
encoder model, a linear feed-forward decoder is trained to predict
the original input tokens. As TITE does not output contextualized
token embeddings, we cannot use standard pre-training objectives.

Instead we use objectives designed for training sequence-level
embeddings, of which several have previously been proposed. For
example, the influential and original BERT encoder model pre-
trained the [CLS] token’s embedding using next sentence predic-
tion [12]. However, subsequent work discarded the next sentence
prediction task as it did not improve effectiveness in downstream
sequence classification tasks [22, 37, 54].

More recently, the value of training encoder models to aggre-
gate the semantic information of an entire sequence has been re-
discovered. Several encoder models have found that training the
[CLS] token to aggregate semantic information improves effective-
ness in semantic similarity tasks [18, 19, 26, 40, 76, 77]. For example,
the Condenser model feeds hidden states from early layers and the
final [CLS] token embedding into the masked language modeling
head. This forces the model to aggregate semantic information in
the [CLS] token to predict the masked tokens [18].

Another approach, RetroMAE, proposes combining masked lan-
guage modeling with a new masked auto-encoding objective for
pre-training [76, 77]. Masked auto-encoding uses an additional sin-
gle layer encoder model to reconstruct an aggressively masked
input sequence using the [CLS] token’s embedding vector as con-
text information. Next to the standard method, the authors propose
an enhanced variant where masking is handled by the single layer
encoder model, further improving effectiveness. Finally, masked
bag-of-words modeling is another alternative [40]. In masked bag-
of-words modeling, a linear decoder model is fine-tuned to predict
the bag-of-words distribution of a masked input representation
given the [CLS] token’s embedding. We find that combining both
enhanced masked auto encoding and masked bag-of-words model-
ing for pre-training produces the most effective TITE models.

TITE: Token-Independent Text Encoder for Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy
At

te
nt

io
n

R
es

id
ua

l
an

d
N

or
m

Linear Projections

)(LN

H

+

A H’

=

SM)(
√d

⋅
Q KT

⋅

V

H

Residual

H

)(LN

H

+

A H’

=

SM)(
√d

⋅
Q KT

⋅

V

H

)(LN

H

+

A H’

=

SM)(
√d

⋅
Q KT

⋅

V

H

()LN

H

+

A H’

=

SM)(
√d

Q

⋅
KT V

⋅

()LN + =

SM)(
√d

⋅ ⋅

)(LN + =

SM)(
√d

⋅ ⋅

)(LN + =

SM)(
√d

⋅ ⋅

KT V

H

Q KT V

H

H A

pool()

Pre-Attention Pooling Intra-Attention Pooling Post-Attention Pooling
Standard Self-Attention Attention-Based Pooling

H
Seq.
Len

x
Hidden

dim

Figure 2: Comparison of standard self-attention with three attention-based pooling mechanisms. Attention-based pooling
reduces the sequence length in the output hidden states 𝐻 ′. Pre-attention pooling applies pooling to 𝐻 before the attention
mechanism. Intra-attention pooling applies pooling to the query matrix 𝑄 within the attention mechanism and to the input
hidden states for the residual connection. Post-attention pooling pools after the residual connection and before normalization.1

3 Token-Independent Text Encoder
TITE is a novel type of encoder model that outputs a single latent
embedding vector that captures the semantic information of the
entire input sequence. To achieve this, we build upon the attention-
based pooling technique introduced by Dai et al. [8]. Pooling the
representations reduces the representational capacity, i.e., the num-
ber of scalar values the model can use to represent information.
We compensate for this reduced capacity by upscaling the dimen-
sionality of the hidden states. In the following, we first present
the attention-based pooling technique. We then formalize how we
upscale the hidden states to obtain the TITE model. The final sub-
section shows how we pre-train and fine-tune TITE for retrieval.

Preliminaries. A standard transformer encoder sequentially ap-
plies a token embedding layer and a stack of 𝐿 self-attention trans-
former layers [69]. Let 𝑡 = (𝑡1, . . . , 𝑡ℓ) denote an input sequence of
length ℓ where 𝑡𝑖 ∈ {1, . . . , 𝑣} is the 𝑖-th token index in the sequence
and 𝑣 is the size of the vocabulary. The token embedding layer then
maps each token to a 𝑑-dimensional embedding vector by look-
ing up the 𝑡𝑖 -th row in a learned embedding matrix 𝐸 ∈R𝑣×𝑑 for
each 1 ≤ 𝑖 ≤ ℓ . The resulting matrix, 𝐻 ∈Rℓ×𝑑 , is called the hidden
states. Then, multiple transformer layers sequentially update 𝐻 .

3.1 Attention-based Pooling
One of the central components of a transformer layer is the multi-
head self-attention mechanism (MHA) [69]. It first projects the
hidden states to query, key, and value matrices with which it com-
putes dot-product attention. The original hidden states are added
to the attention output using a residual connection and layer nor-
malization (LN) is applied to obtain the updated hidden states 𝐻 ′:

𝐻 ′ ≔ LN(𝐻 + MHA(𝑞 = 𝐻,𝑘 = 𝐻, 𝑣 = 𝐻)) .
Figure 2 (left) visualizes the standard self-attention mechanism.
1 The figure is inspired by: https://jalammar.github.io/illustrated-transformer/

As the computational complexity 𝑂 (ℓ2 · 𝑑) of the self-attention
mechanism scales quadratically with the sequence length ℓ [69],
reducing the sequence length substantially reduces the actual com-
putational effort. Dai et al. [8] proposed the Funnel-Transformer
which uses an attention-based pooling technique to reduce the
sequence length of the hidden states. The central idea is to apply a
convolutional mean pooling operation and aggregate the vectors
of neighboring tokens into a single vector. Given a kernel size 𝑘
and stride 𝑠 , we define the pooling operation pool(𝑘,𝑠) as the mean
vector over a strided window of vectors from the hidden states. The
result is a pooled hidden states matrix, �̂� ∈Rℓ̂×𝑑 , with ℓ̂ ≤ ℓ :

pool(𝑘,𝑠) : 𝐻 ↦→ �̂� ≔ (ℎ̂𝑖, 𝑗) 1≤𝑖≤ ℓ̂
1≤ 𝑗≤𝑑

with ℎ̂𝑖, 𝑗 =
1
𝑘

𝑘∑︁
𝑛=1

𝐻𝑖 ·𝑠+𝑛,𝑗 .

Several different locations are possible for applying the pooling
operation. The Funnel-Transformer pools the hidden states before
passing them into the linear projection for the query matrix and
also uses the pooled representations for the residual connection:

𝐻 ′ ≔ LN(�̂� + MHA(𝑞 = �̂�, 𝑘 = 𝐻, 𝑣 = 𝐻)) .
We call this intra-attention pooling since the hidden states are
pooled within the attention mechanism. Intra-attention pooling is
visualized in Figure 2 (middle).

We test additional locations for pooling the hidden states as a
potential means to trade-off efficiency and effectiveness. First, we
also evaluate pre-attention pooling, visualized in Figure 2 (left), by
applying the pooling operation prior to passing the hidden states
into the attention mechanism:

𝐻 ′ ≔ LN(�̂� + MHA(𝑞 = �̂�, 𝑘 = �̂�, 𝑣 = �̂�)) .
Second, we test post-attention pooling, visualized in Figure 2 (right),
by applying the pooling operation after the residual connection
and before the layer normalization:

𝐻 ′ ≔ LN(pool(𝑘,𝑠) (𝐻 + MHA(𝑞 = 𝐻,𝑘 = 𝐻, 𝑣 = 𝐻))) .

https://web.archive.org/web/20250428061858/http://jalammar.github.io/illustrated-transformer/

SIGIR ’25, July 13–18, 2025, Padua, Italy Schlatt et al.

Pooling Strategies. Next to the pooling location, we investigate
two further aspects to parameterize the model: (1) pooling severity,
i.e., how much the sequence length is reduced by each layer, and
(2) pooling arrangement, i.e., which layers of the model apply pool-
ing. Similar to the pooling location, each aspect also has a trade-off
between representational capacity and computational efficiency.
Regarding pooling severity, the stronger the reduction in sequence
length, the more information the model has to compress into fewer
vectors at once. For pooling arrangement, if early layers in the
model apply pooling, the model needs to more quickly compress
low-level token information into high-level semantic information.

For severity, the Funnel-Transformer [8] uses a kernel size and
stride of 𝑘 = 𝑠 = 2. This configuration halves the sequence length
for each pooling layer. We additionally test 𝑘 = 𝑠 = 3, i.e., the out-
put sequence length of a pooling layer is one third of the input
sequence length to the pooling layer. While other kernel and stride
configurations—such as overlapping pooling windows—would be
interesting to investigate, we leave this to further work and rather
investigate the effect of the arrangement of pooling layers.

In order to discuss the pooling layer arrangement, we first must
determine the number of layers that need to apply pooling. Our
goal with the TITE model is to output a single embedding vector for
an arbitrary input sequence. We train and parameterize TITE with
a maximum sequence length of 512 tokens. Therefore, we need to
use nine pooling layers to reduce the sequence length to a single
vector when 𝑘 = 𝑠 = 2 and six layers when 𝑘 = 𝑠 = 3.

We test two different variants for distributing the pooling layers
across the twelve total layers (see Section 4.1 for further details on
the model architecture). We coin the first variant late pooling and
simply apply pooling to the last nine or six layers of the model,
respective of the pooling severity. We call the second variant stag-
gered pooling and distribute the pooling layers across the twelve
layers. For a kernel size and stride of 𝑘 = 𝑠 = 2, layers 2–4, 6–8, and
10–12 apply pooling. For a kernel size and stride of 𝑘 = 𝑠 = 3, every
second layer applies pooling, i.e., layers 2, 4, 6, 8, 10, and 12.

Finally, we emphasize that the original Funnel-Transformer [8]
used a staggered strategy but only applied 3 pooling layers in total.
Therefore, the output sequence length of the model is only reduced
to an eighth of the original sequence length. For pre-training, the
sequence length is then upsampled to the original sequence length.
TITE instead reduces the sequence length to a single vector and
does not upsample the hidden states, ensuring the output vector is
not tied to the input tokens.

3.2 Upscaling Hidden States
Reducing the sequence length of the hidden states reduces the
representational capacity of the encoder model in each layer such
that the model has access to fewer vectors to capture the semantics
of the sequence. To counteract this, we increase the dimensionality
of the hidden states. We upscale the hidden states by increasing
the dimensionality of the query 𝑄 , key 𝐾 , and value 𝑉 matrices
within the the multi-head attention mechanism. These matrices are
computed using linear projections with weights𝑊 𝑥 ∈R𝑑×𝑑 and
biases b𝑥 ∈R𝑑 for 𝑥 ∈ {𝑞, 𝑘, 𝑣}. We simply exchange these weights
and biases for𝑊 𝑥 ∈R𝑑×𝑑 ′

and b̄𝑥 ∈R𝑑 ′
with 𝑑′ > 𝑑 . The output

hidden states of a (pooled) transformer layer are then 𝐻 ′ ∈Rℓ ′×𝑑 ′
.

A few further modifications to the encoder architecture are nec-
essary when applying upscaling. First, we cannot apply the residual
connection within the attention mechanism as is, because the di-
mensionality of the output hidden states 𝑑′ does not align with
the dimensionality of the input hidden states 𝑑 . To address this we
simply add the input hidden states to the sub-matrix of the output
hidden states up to the 𝑑-th column. The matrix passed into the
normalization then contains the sum of the input hidden states and
the self-attention output up to the 𝑑-th column and contains only
the self-attention output from the (𝑑 + 1)-th to the 𝑑′-th column.

Second, when pre-training encoder models (see Section 3.3 for
further details on pre-training), a feed-forward decoder predicts the
tokens given the final hidden states. The decoder’s final layer is a lin-
ear layer, with weights𝑊 𝑜 ∈R𝑑×𝑣 and biases b𝑜 ∈R𝑣 , that maps the
final hidden states to a logit distribution over the vocabulary. Previ-
ous work [55] has found that tying the decoder layer’s weights𝑊 𝑜

to the token embedding layer 𝐸, i.e.,𝑊 𝑜 = 𝐸𝑇 , improves effective-
ness. When upscaling the hidden states, the output hidden state’s
dimensionality is larger than the token embedding layer’s dimen-
sionality. To tie the weights, we replace the token embedding layer
with a composed embedding matrix 𝐸′ that is equal to the decoder
layer’s weights𝑊 𝑜 but scaled down to the input dimensionality
using a linear transformation 𝐸′ = (𝑊 𝑜)𝑇 ·𝑊 𝑒 with𝑊 𝑒 ∈ R𝑑×𝑑 ′

.

Upscaling Strategies. Next to the attention mechanism, a trans-
former layer also includes a feed-forward network, bringing the
complexity of a transformer layer to𝑂 (ℓ2 ·𝑑 + ℓ ·𝑑2) [69]. This sug-
gests that any efficiency gains we achieve by reducing the sequence
length are offset by the higher dimensionality of the hidden states.
However, we do not scale the dimensionality of the hidden states
linearly with the number of layers. Empirical evidence suggests
that the effectiveness of language models scales with the number
of parameters according to a power law [28]. Therefore, there is a
diminishing return on increasing the number of parameters.

In this paper, we test a single upscaling strategy as a proof of
concept and leave investigating the space of different upscaling
strategies for future work. We use a staggered upscaling strategy
and upscale the hidden states by one third of the original dimension-
ality every three layers. With 12 layers, the first three layers are 𝑑-
dimensional, the next three layers 𝑑 + 𝑑

3 -dimensional, then 𝑑 + 2𝑑
3 -,

and finally 2𝑑-dimensional, which is also the final dimensionality of
the output hidden states. We also apply the same upscaling strategy
to the number of attention heads and the intermediate sizes in the
feed-forward layers.

3.3 Pre-training
Previous encoder models were pre-trained using token-level pre-
training objectives, for example masked language modeling [12, 22,
37] or replaced token detection [4]. This includes encoder models
applying token pooling, such as the Funnel-Transformer [8], be-
cause they upscale the pooled embeddings to apply the token-level
pre-training objective. As TITE outputs a single sequence-level em-
bedding vector, we cannot apply token-level pre-training objectives.
Instead, we evaluate two different sequence-level pre-training ob-
jectives: masked auto-encoding [76, 77] and masked bag-of-words
modeling [40]. Figure 3 visually compares these two pre-training
methods with standard masked language modeling.

TITE: Token-Independent Text Encoder for Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy

Encoder

FFN Decoder

Encoder

FFN Decoder

Light Encoder

Encoder

FFN Decoder

Masked Language
Modeling

Masked
Auto-Encoding

Masked BOW
Modeling

Mask

Token Embed.

Contextualized
Sequence Embed.
Contextualized
Token Embed.

Predicted Token

Only sequence
embedding is trained

Figure 3: Comparison of masked language modeling, masked
auto-encoding, and masked bag-of-words modeling. Masked
language modeling needs token embeddings, whilst masked
auto-encoding and masked bag-of-words modeling train the
sequence embedding generated by the encoder model.

The underlying idea of masked auto-encoding is to train an ad-
ditional lightweight encoder model to reconstruct the original, but
aggressively masked input given the sequence-level embedding
vector as context. To enable the lightweight encoder to reconstruct
the input, the larger encoder model must encode the semantic
information of the input sequence into the sequence-level embed-
ding vector. In practice, the sequence-level embedding vector is
prepended to the input embeddings of the original, but aggressively
masked input tokens. This concatenated input is then passed into
a single transformer layer and a feed-forward decoder then pro-
cesses the second encoder model’s contextualized embeddings to
predict the tokens of the aggressively masked input sequence. Let
𝑋MAE ∈ R𝑛×𝑣 correspond to the matrix of logit vectors output by
the feed-forward decoder for masked-auto-encoding, the loss is
then defined as follows:

LMAE =
1
ℓ

ℓ∑︁
𝑖=1

− log
exp

(
𝑋MAE
𝑖,𝑡𝑖

)
∑𝑣

𝑗=1 exp
(
𝑋MAE
𝑖, 𝑗

) .
We use an enhanced variant of masked auto-encoding which han-
dles masking internally within the single-layer encoder. Therefore,
the loss can be computed over all tokens in the input instead of
only the tokens masked in the input. We refer to the original paper
for further details [77].

In masked bag-of-words modeling, a feed-forward decoder is
trained to predict the bag-of-words distribution of an input repre-
sentation using only the sequence-level embedding generated by
the encoder model. Let x ∈ R𝑣 equal the logit distribution over the
vocabulary generated by a feed-forward decoder which receives
the sequence-level embedding as input. For every token in the vo-
cabulary, the loss computes the binary cross entropy between the
predicted probability of the token being in the original unmasked
sequence and whether the token was actually present in the origi-
nal unmasked sequence. Let 𝜎 be the sigmoid function, p = 𝜎 (x) be
the probability vector produced by the decoder, and y𝑖 = 1 if 𝑖 ∈ 𝑡
and y𝑖 = 0 otherwise. The loss is defined as follows:

LBOW =
1
𝑣

𝑣∑︁
𝑖=1

− [y𝑖 · log(p𝑖) + (1 − y𝑖) · log(1 − p𝑖)] .

For our overall loss we simply combine masked auto-encoding
and masked bag-of-words modeling: Lpre-train = LMAE + LBOW,
as both pre-training methods together yielded the most effective
models. Section 4.3 provides ablation tests on pre-training methods.

Lastly, we point out that masking input tokens is not necessary
for masked auto-encoding and masked bag-of-words modeling. The
standard token-level masked language modeling is a denoising ob-
jective, i.e., the model must reconstruct a corrupted input sequence.
Masking input tokens is an integral part of the objective. Masked
auto-encoding and masked bag-of-words modeling, however, are
auto-encoding objectives. The encoder model must compress the
input sequence such that the decoder network can reconstruct it.
As such, input masking is not required for these pre-training meth-
ods and may actually be detrimental to the model’s effectiveness.
Therefore, we do not apply input masking when pre-training TITE
and leave investigating the effect of input masking for future work.

3.4 Fine-tuning for Retrieval
Previous work has shown that encoder models trained using
masked bag-of-words modeling or masked auto-encoding can be
effective zero-shot retrievers [40, 77]. However, further fine-tuning
for retrieval can substantially improve effectiveness. We follow the
same procedure and fine-tune TITE using distillation data.

The idea of distillation is to let a more effective but less efficient
model generate relevance scores and teach a more efficient model
to replicate these [23]. We follow Lassance et al. [33] and combine
Margin-MSE distillation [23] and KL-divergence distillation [60].
The Margin-MSE loss function minimizes the difference between
the scores of a pair of target relevance scores and a pair of predicted
relevance scores. The KL-divergence distillation loss minimizes the
KL-divergence between the distribution of a set of target relevance
scores and a set of predicted relevance scores. We further add a
contrastive InfoNCE loss using in-batch negatives and in-sample
hard-negatives, as Santhanam et al. [60] found this to also improve
effectiveness when combined distillation.

Formally, given a query 𝑞 and a document 𝑑 , let 𝑟𝑞,𝑑 = q · d
denote the relevance score of the query-document pair which is
the dot-product similarity of the query q and document d embed-
ding vectors generated by an encoder model. Given a sequence
of documents 𝐷 = (𝑑1, . . . , 𝑑𝑛) and a sequence of target relevance
scores 𝑌 = (𝑦1, . . . , 𝑦𝑛), the Margin-MSE loss, KL-divergence loss,
and InfoNCE loss are defined as follows:

LM-MSE =
1(𝑛
2
) 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

((𝑦𝑞,𝑑𝑖 − 𝑦𝑞,𝑑 𝑗
) − (𝑟𝑞,𝑑𝑖 − 𝑟𝑞,𝑑 𝑗

))2,

LKL =

𝑛∑︁
𝑖=1

𝑦𝑞,𝑑𝑖 · log
𝑦𝑞,𝑑𝑖

𝑟𝑞,𝑑𝑖
,

LInfoNCE = − log

(
exp(𝑟𝑞,𝑑+)∑

𝑑 𝑗 ∈𝑁 exp(𝑟𝑞,𝑑 𝑗
)

)
,

where 𝑦 and 𝑟 are softmaxed probabilities of the respective rele-
vance scores, 𝑑+ is a positive sampled document, and 𝑁 =𝑁ib ∪𝑁is
is a set of negative sampled documents consisting of in-batch nega-
tives 𝑁ib and in-sample hard-negatives 𝑁is. The positive sampled
document, 𝑑+ = arg max𝑑 𝑗

𝑦𝑞,𝑑 𝑗
, corresponds to the document with

SIGIR ’25, July 13–18, 2025, Padua, Italy Schlatt et al.

the highest target relevance score for the query. In-batch nega-
tives 𝑁ib = {𝑑𝑖 | 𝑑𝑖 ∈𝐷 𝑗 , (𝑞 𝑗 , 𝐷 𝑗) ∈B} are gathered from all other
documents in the batch B= ((𝑞1, 𝐷1), . . . , (𝑞𝑏 , 𝐷𝑏)) with a batch
size 𝑏. In-sample negatives 𝑁is = {𝑑𝑖 | 𝑦𝑞,𝑑+ − 𝑦𝑞,𝑑𝑖 > 𝜃 } consist of
all documents in the same sample that have a threshold 𝜃 lower
relevance score than the positive document. We fine-tune TITE, on
the sum of these loss functions:

Lfine-tune = LM-MSE + LKL + LInfoNCE .

4 Experiments and Results
We evaluate the effectiveness and efficiency of TITE to determine
the impact of attention-based pooling on transformer-based re-
trieval models. In this section, we first provide details on our exper-
imental setup. We then present TITE’s effectiveness using different
pooling and upscaling strategies in comparison to state-of-the-art
retrieval models. Ablation experiments then show the effects of
different pre-training objectives. Finally, we evaluate the efficiency
improvements of TITE compared to standard encoder models.

4.1 Experimental Setup
TITE Configuration. Unless otherwise specified, all models we

pre-train or fine-tune are based on the BERT-base architecture [12],
meaning twelve transformer layers with 768-dimensional hidden
states, 12 attention heads, and 3072-dimensional linear layers in
the feed-forward network. For our implementation, we use Rotary
Position Embeddings (RoPE) [65] instead of absolute positional
encoding to enable longer sequence lengths during inference, and
we use FlashAttention-2 [9, 10] with unpadding [54, 74] to improve
efficiency. Otherwise, we keep the standard architecture. For the
pooling strategies, we test the four configurations described in
Section 3.1. The upscaled model uses the staggered configuration
described in Section 3.2 with a pooling strategy of intra-attention
pooling, a kernel size and stride of 𝑘 = 𝑠 = 2, and late pooling.

Pre-training. Pre-training was done on the FineWeb-Edu cor-
pus [53] without masking the input sequence and, following Xiao
et al. [77], by masking 50% of the lightweight encoder’s inputs for
masked auto-encoding. All models were pre-trained for 200k steps
with a batch size of 256, and the inputs were truncated to 512 tokens
for a total of about 21B tokens. The learning rate was set to 10−4

with 3k warm-up steps and a cosine decay schedule down to 2% of
the learning rate with an AdamW optimizer [38] using the default
PyTorch [52] parameters. The loss functions are described in Sec-
tion 3.3. Dropout within the self-attention layers was deactivated,
as we observed that they lead to unstable pre-training for TITE.

Fine-tuning. We use the MS MARCO passage dataset [1] for
fine-tuning. We retrieve the top-100 passages for every query in
the training dataset using ColBERTv2 [60] and obtain target rele-
vance scores using a monoELECTRA large model [64]. We truncate
queries and passages to 32 and 512 tokens, respectively. We use
a batch size of 256, i.e., each batch contains 256 queries, and ran-
domly sample 8 passages per query. All models are fine-tuned for
50k steps with a learning rate of 10−5 using the same optimizer
and learning rate schedule as for pre-training and with the loss
functions described in Section 3.4.

Evaluation. We compare the effectiveness of models using
nDCG@10 on the TREC Deep Learning 2019 and 2020 tracks [6, 7]
and the 14 publicly available zero-shot retrieval datasets [2, 3, 5, 11,
13, 24, 32, 45, 67, 71–73, 80] in the BEIR benchmark [66]. Queries are
truncated to 32 tokens and documents to 512 tokens. For efficiency,
we sample 50k queries and 50k documents from the MS MARCO
passage dataset and measure the time it takes to encode them using
the largest batch size that fits into GPU memory for each model.

Comparison Models. We compare TITE with BM25 [57] and sev-
eral externally fine-tuned models. We also pre-train and fine-tune
models to verify our pre-training and fine-tuning setup. The exter-
nally fine-tuned models are ColBERTv2 [59],2 SPLADE++ [16],3
and three generic bi-encoder (Sentence-BERT) models [56]; the
first4 is based on BERT [12], the second5 on DistilBERT [58], and
the third on ModernBERT [74]. For Sentence-ModernBERT, we
report the values from the paper, as no official checkpoint is avail-
able and fine-tuning our own model was unstable. We additionally
pre-train and fine-tune our own BERT [12] and RetroMAE [77]
models. Finally, we fine-tune a RetroMAE model from the officially
released checkpoint.6 We use the indexes7 provided by Pyserini [35]
for SPLADE++ and build our own indexes for ColBERTv2 using
PLAID [59] and Sentence-BERT models using FAISS [14].

Hardware and Implementation. We pre-train and fine-tune all
models on a single NVIDIA A100 GPU with 40 GB of memory. Ad-
ditionally, we used the following frameworks, libraries, and tools
to implement the models, run experiments, and evaluate results:
ir_datasets [43], ir-measures [41], Jupyter [31], Lightning [15],
Lightning IR [62], matplotlib [25], NumPy [21], pandas [51], PyTer-
rier [44], PyTorch [52], SciPy [70], and Transformers [75].

4.2 Effectiveness Results
Table 1 reports the nDCG@10 scores on the TREC Deep Learning
2019 and 2020 tracks and the BEIR benchmark for the baseline
models and our TITE models with the default configuration (intra-
attention and late pooling with 𝑘 = 𝑠 = 2) with or without upscal-
ing. We macro average the effectiveness for all sub datasets in the
CQADupStack dataset into a single value and additionally report
the arithmetic and geometric macro-averaged mean values over all
BEIR datasets to provide an overview of the overall effectiveness.
We check for statistically significant differences to our reproduced
Sentence-BERT model using a two-tailed paired t-test with Holm-
Bonferroni correction at a significance level of 𝑝 < 5%. We do not
report significance for the arithmetic and geometric mean values
as well as CQADupStack as these are macro-averaged values.

Model Comparison. First, we find that our reproduced Sentence-
BERT and RetroMAE models achieve on par effectiveness with
the officially released checkpoints, validating our pre-training and
fine-tuning setups. Our Sentence-BERT model is slightly but not
significantly less effective than the released checkpoint on the TREC
Deep Learning 2019 and 2020 tracks. For out-of-domain retrieval on
BEIR, the difference in effectiveness on average across all datasets is
negligible. The results are similar when comparing our reproduced
RetroMAE model to the official checkpoint.
2 ColBERTv2 3 SPLADE++ 4 Sentence-BERT 5 Sentence-DistilBERT
6 RetroMAE 7 Pyserini BEIR Indexes

https://huggingface.co/colbert-ir/colbertv2.0
https://huggingface.co/naver/splade-cocondenser-ensembledistil
https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5
https://huggingface.co/sentence-transformers/msmarco-distilbert-dot-v5
https://huggingface.co/Shitao/RetroMAE
https://castorini.github.io/pyserini/2cr/beir.html

TITE: Token-Independent Text Encoder for Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy

Table 1: Effectiveness in nDCG@10 on TREC Deep Learning 2019 and 2020 and BEIR. S-ModernBERT scores are taken from
the paper [74]. The highest scores per dataset are marked bold. Reproduced models were pre-trained and fine-tuned using
our setups. † indicates statistical significance (𝑝 < 5%, Holm-Bonferroni corrected) to the underlined Sentence-BERT model.
CQADupStack, arithmetic mean, and geometric mean values are macro-averaged and therefore excluded from statistical testing.

Model TREC DL BEIR

2019 2020

ArguAna

Climate-FEVER

CQADupStack
DBPedia

FEVER
FiQA
HotpotQA

NFCorpus NQ
Quora

SCIDOCS
SciFact

TREC-COVID
Touché

Arith. Mean

Geom. Mean

BM25 .506† .480† .397† .165† .302 .318† .651† .236† .633† .322 .305† .789† .149 .679† .595† .442† .427 .379

S-BERT (reproduced) .700 .688 .336 .224 .319 .369 .727 .317 .574 .303 .510 .844 .146 .603 .756 .256 .449 .399
S-BERT .705 .726 .384† .221 .337 .385 .762† .323 .585† .315 .522† .844 .146 .606 .744 .237 .458 .407
S-DistilBERT .705 .699 .355† .233 .322 .375 .774† .286† .571 .298 .497† .833† .140 .596 .666† .224 .441 .391
S-ModernBERT – – .357 .236 .331 .238 .599 .288 .461 .237 .395 .859 .125 .570 .721 .208 .402 .352
RetroMAE (reproduced) .723 .711 .375† .242† .340 .406† .737† .340† .624† .336† .539† .844 .163† .663† .780 .273 .476 .428
RetroMAE .712 .730 .367† .240† .342 .428† .777† .343† .668† .325† .573† .853† .160† .638 .759 .280 .482 .432
ColBERTv2 .732 .724 .453† .176† .359 .441† .774† .346† .665† .330† .547† .851† .150 .691† .732 .257 .484 .427
SPLADE++ .731 .720 .520† .230 .334 .437† .788† .347† .687† .347† .538† .834† .159† .704† .727 .247 .493 .440

TITE (Base) .705 .670 .391† .204† .312 .376 .699† .302 .604† .334† .484† .818† .156 .647† .691 .271 .449 .403
TITE (Upscale) .724 .686 .373† .209† .323 .374 .704† .298 .616† .328† .490† .827† .155 .632 .715 .275 .451 .404

Regarding TITE, the base model without upscaling achieves
marginally higher effectiveness on the 2019 and marginally lower
effectiveness on the 2020 TRECDL tracks compared to our Sentence-
BERT reproduction. Again, the differences are not statistically sig-
nificant. For out-of-domain retrieval on BEIR, TITE is more effective
on some datasets and less effective on others. The differences are
significant in 8 of 13 cases, showing a fair amount of fluctuation, but
on average across all datasets the effectiveness is virtually identical.

Upscaling hidden states within the TITE model leads to a mi-
nor increase in effectiveness for in-domain retrieval. The upscaled
model is about 0.02 nDCG@10 more effective than the base model.
For out-of-domain retrieval, upscaling the hidden states does not
lead to noticeable difference in effectiveness. To our knowledge,
this is the first instance of a transformer-based language model that
allows increasing the dimensionality of hidden states. Our results
show that this approach has merit and further research is warranted
to explore its potential further.

Comparing with other more efficiency-oriented models, we find
that Sentence-DistilBERT features similar effectiveness to TITE,
but Sentence-ModernBERT is substantially less effective. Despite
using half as many layers as a standard BERT model, Sentence-
DistilBERT is more or less on par for in-domain and out-of-domain
retrieval. Sentence-ModernBERT, on the other hand, is the least
effective model in our comparison. Note that we were unable to fine-
tune Sentence-ModernBERT using our setup due to instabilities
in the fine-tuning process and rather use the values reported in
the paper [74]. Future work is necessary to determine whether the
effectiveness of ModernBERT can be improved.

As such, TITE achieves similar effectiveness compared to pre-
vious popular single-vector bi-encoders. Compared to more com-
plex retrieval models like ColBERTv2 and SPLADE, TITE does not
reach the same effectiveness for in and out-of-domain retrieval.
ColBERTv2 and SPLADE both take advantage of the contextualized

token embedding vectors, suggesting that token-level embeddings
are actually necessary to increase retrieval effectiveness. In other
words, because the Sentence-BERT models use the [CLS] token’s
embedding as the sequence embedding and our TITE model uses
attention-based pooling to obtain a single sequence-level embed-
ding vector they do not reach the same effectiveness as ColBERTv2
and SPLADE which use all tokens’ embeddings.

However, the comparison to RetroMAE—which uses [CLS] pool-
ing but is specifically pre-trained for retrieval—shows single vector
bi-encoder models are competitive with more complex models.
RetroMAE is slightly more effective than ColBERTv2 and slightly
less effective than SPLADE for both in and out-of-domain retrieval.
As TITE and RetroMAE are pre-trained and fine-tuned nearly identi-
cally, the question arises whether the effectiveness difference comes
from the modified encoder architecture using attention-based pool-
ing or from the different pre-training objectives.

4.3 Ablation Experiments
TITE is as effective as a Sentence-BERT model but less effective
than RetroMAE. The three models differ in their backbone encoder
architecture and pre-training objectives. Sentence-BERT and Retro-
MAE share the same backbone encoder model, but Sentence-BERT
is pre-trained using only masked language modeling, while Retro-
MAE is additionally pre-trained using masked auto-encoding. TITE
uses attention-based pooling to increase the efficiency of the back-
bone encoder (see Section 4.5 for efficiency results) and outputs
only a single sequence representation vector for an input sequence.
As a consequence, it cannot use masked language modeling for pre-
training and instead combines masked auto-encoding with masked
bag-of-words modeling.

We conduct ablation experiments to determine how the pre-
training objectives and backbone architectures impact effective-
ness. Table 2 compares nDCG@10 on the TREC Deep Learning

SIGIR ’25, July 13–18, 2025, Padua, Italy Schlatt et al.

Table 2: Ablation results over model architecture and pre-
training objectives. We report the nDCG@10 scores on the
TREC DL 2019 and 2020 tracks and arithmetic and geometric
means over all datasets in the BEIR benchmark.

Model L TREC DL BEIR

MLM MAE BOW 2019 2020 Arith. Geom.

S-BERT ✓ ✗ ✗ .700 .688 .449 .400
RetroMAE ✓ ✓ ✗ .723 .711 .476 .428
CLS-BERT ✗ ✓ ✓ .704 .674 .444 .400
TITE ✗ ✓ ✓ .705 .670 .449 .403
TITE ✗ ✓ ✗ .657 .657 .400 .353
TITE ✗ ✗ ✓ .660 .676 .426 .380

2019 and 2020 tracks and the BEIR benchmark for our reproduced
Sentence-BERT and RetroMAE models, our TITE model, and a
BERT model pre-trained using the same pre-training objectives
as TITE. We call this model CLS-BERT, as only the [CLS] token’s
contextualized embedding is used during pre-training. The table
additionally reports the effectiveness of TITE pre-trained using
only masked auto-encoding or masked bag-of-words modeling.

First and foremost, we find that CLS-BERT and TITE have virtu-
ally the same effectiveness. Pre-training only the [CLS] token and
discarding the other contextualized token embeddings gives the
same effectiveness as applying attention-based pooling within the
encoder model to obtain only a single sequence-level embedding
vector. Therefore, the effectiveness difference between TITE and
RetroMAE is not due to the different encoder architecture.

Rather, the effectiveness difference is caused by the different pre-
training objectives. Pre-training TITE with masked-auto-encoding
and masked bag-of-words modeling leads to the same effectiveness
as pre-training BERT with masked language modeling. RetroMAE
improves effectiveness by combining masked language modeling
with masked auto-encoding. Additionally, TITE pre-trained on both
masked auto-encoding and masked bag-of-words modeling is more
effective than when pre-trained with only one of the objectives.
Further work on new and more advanced pre-training objectives
may be able to close this small gap in effectiveness.

4.4 Pooling Parameterizations
Table 3 compares the effectiveness of TITE models using different
pooling parameterizations. It reports nDCG@10 for the TREC Deep
Learning 2019 and 2020 tracks and the arithmetic and geometric
means for the BEIR benchmark. We compare two pooling sever-
ities (𝑘 = 𝑠 = 2 and 𝑘 = 𝑠 = 3), two pooling arrangements (late and
staggered pooling), and three pooling locations (pre-, intra-, and
post-attention pooling). The first model (➀) corresponds to the de-
fault base configuration from Table 1. We also include the upscaled
model (➆) for comparison.

First, across all pooling parameterizations we observe virtually
no difference in effectiveness for out-of-domain retrieval. Across all
variations of pooling severity, arrangement, location, and upscal-
ing (➀–➆), the differences in arithmetic mean and geometric mean
effectiveness are within a range of 0.008 and 0.005, respectively.

Table 3: Effectiveness in nDCG@10 on TREC Deep Learning
2019 and 2020 and BEIR (arithmetic and geometric means)
for TITE models varying the kernel size and stride, pooling
arrangement, pooling location, and output dimensionality.
The highest scores per dataset are marked bold. Circled num-
bers are used to reference different TITE variants in the text.

Model Parameters TREC DL BEIR

𝑘,𝑠 Arr. Loc. Dim. 2019 2020 Arith. Geom.

TI
TE

➀ 2 L Intra 768 .705 .670 .449 .403
➁ 2 S Intra 768 .675 .663 .443 .397
➂ 3 L Intra 768 .683 .672 .445 .400
➃ 3 S Intra 768 .673 .669 .443 .399
➄ 2 L Pre 768 .686 .682 .445 .400
➅ 2 L Post 768 .670 .683 .446 .399
➆ 2 L Intra 1536 .724 .686 .451 .404

Only in-domain retrieval yields notable but nonetheless small
differences. Namely, more severe pooling leads to lower effective-
ness. The models using a kernel size and stride of 2 (➀ and ➁)
are more effective than their counterparts using a kernel size and
stride of 3 (➂ and ➃). The differences for different pooling arrange-
ments is slightly more prominent. Applying pooling earlier within
a model leads to lower effectiveness. The two models using late
pooling (➀ and ➂) are more effective than their staggered pooling
counterparts (➁ and ➃). Lastly, we cannot confirm the claim made
by Dai et al. [8] that pooling within the attention-mechanism is the
most effective strategy. We find that pooling before, within, or after
the attention mechanism does not lead to a noticeable difference in
effectiveness (➀, ➄, and ➅).

4.5 Efficiency
TITE demonstrates competitive effectiveness with state-of-the-art
retrieval models (see Section 4.2). At the same time, the reduction
of the sequence length using attention-based pooling substantially
lowers the computational cost of TITE compared to standard en-
coder models. We discussed the theoretical efficiency improvements
in Section 3.1. Achieving these improvements in practice, however,
is non-trivial and requires ensuring high occupancy of GPU re-
sources. To ensure this, we implement our pooling operation and
the corresponding backward pass using Triton [68] and accommo-
date attention masking and variable sequence lengths to allow the
parallel processing of multiple sequences of different lengths.

We compare TITE in terms of efficiency with a standard BERT
model, a smaller DistilBERT model, a Funnel-Transformer model
with the same number of parameters as the BERT model, and with
a ModernBERT model. Table 4 reports the number of queries and
documents from the MS MARCO passage dataset that each model
can process per second. The table and our analysis covers three
different attention kernels (naive eager attention, PyTorch’s official
scaled dot-product attention, and FlashAttention-2) for different
models where available.We also evaluate the efficiency of TITEwith
different pooling severity, pooling arrangement, pooling location,
and upscaling configurations.

TITE: Token-Independent Text Encoder for Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy

Table 4: Number of documents and queries processed per sec-
ond in thousands from the MS MARCO passage dataset. The
numbers in parentheses indicate the improvement versus
the underlined BERT model. The circled numbers are used
to reference the different TITE configurations in the text.

Model Kernel Queries Documents

BERT Eager 24.0 (0.5×) 2.0 (0.2×)
DistilBERT Eager 47.1 (1.0×) 3.7 (0.4×)
Funnel Transformer Eager 14.2 (0.3×) 1.3 (0.1×)
TITE (Pool Param.: ➀) Eager 69.8 (1.5×) 6.7 (0.8×)
BERT SDPA 28.9 (0.6×) 3.2 (0.4×)
DistilBERT SDPA 57.9 (1.2×) 6.4 (0.7×)
TITE (Pool Param.: ➀) SDPA 81.2 (1.7×) 13.4 (1.5×)
BERT Flash 48.0 8.7
ModernBERT Flash 41.1 (0.9×) 8.3 (1.0×)

𝑘,𝑠 Arr. Loc. Dim.

TI
TE

➀ 2 L Intra 768 Flash 89.0 (1.9×) 20.8 (2.4×)
➁ 2 S Intra 768 Flash 96.0 (2.0×) 28.5 (3.3×)
➂ 3 L Intra 768 Flash 68.1 (1.4×) 14.5 (1.7×)
➃ 3 S Intra 768 Flash 94.6 (2.0×) 30.8 (3.5×)
➄ 2 L Pre 768 Flash 89.6 (1.9×) 21.2 (2.4×)
➅ 2 L Post 768 Flash 89.0 (1.9×) 20.3 (2.3×)
➆ 2 L Intra 1536 Flash 70.1 (1.5×) 16.3 (1.9×)

Model Comparison. For eager attention, the standard TITE con-
figuration is around 2.9 and 3.4 times faster than a standard
BERT model at encoding queries and documents, respectively. The
efficiency-oriented DistilBERT model is faster than BERT, but still
substantially slower than our TITE model. Lastly, the comparison
to the Funnel-Transformer demonstrates the difficulty of achieving
high efficiency. While the Funnel-Transformer also reduces the
number of operations, in practice, the standard implementation
from Hugging Face [75] is substantially slower than a BERT model.

Exchanging eager attention for scaled dot-product attention
improves the efficiency of all models. Note that the Funnel-Trans-
former does not support scaled dot-product attention, so we cannot
compare it to the other models. Additionally, scaled dot-product
attention is the current default implementation for a BERT model
from Hugging Face. Therefore, this implementation can be consid-
ered as the standard for BERT. Our TITE model is around 2.8 and 4.2
times faster than the standard BERT model at encoding queries and
documents when using scaled dot-product attention. DistilBERT is
again faster than BERT, but still substantially slower than TITE.

Using FlashAttention-2 again leads to further substantial ef-
ficiency improvements. DistilBERT and BERT do not support
FlashAttention-2, we therefore drop DistilBERT from our com-
parison and use our TITE implementation without attention-based
pooling as a BERT model with FlashAttention-2. We additionally
add ModernBERT to our comparison, which uses FlashAttention-2.
The base TITE configuration (➀) is around 1.9 and 2.4 times faster
than a BERT model at encoding queries and documents, respec-
tively, when both use FlashAttention-2. However, considering that

scaled dot-product attention is the default implementation for BERT,
TITE is actually around 3.1 to 6.5 times faster than the default BERT
implementation. Lastly, ModernBERT is slightly slower than BERT
when using the same attention kernel because ModernBERT adds
additional parameters and layers.

In summary, across all three attention kernels we observe TITE
is vastly more efficient than the comparison models. Additionally,
the efficiency improvements are greater for documents than for
queries, due to documents being longer and because the attention
mechanism’s complexity scales quadratically with the sequence
length. We note that the documents in the MS MARCO passage
dataset are in fact rather short, and, therefore, additional efficiency
improvements are likely to be achieved on longer documents.

Pooling Parameterizations. The different pooling configurations
have varying effects on the efficiency of TITE. Pooling severity has
a negligible impact. In fact, for the two models with late pooling,
the model with a lower kernel size and stride (➀) is counterin-
tuitively more efficient than the model with a higher kernel size
and stride (➂) despite compressing more tokens. This is due to the
substantial impact of the pooling arrangement on efficiency. The
earlier pooling is applied, the more efficient the model becomes, as
is evident from the comparison of the late pooling models (➀ and
➂) to the staggered pooling models (➁ and ➃).

The pooling location’s impact is again less pronounced but still
measurable. Applying pooling earlier in the attention layer makes
the model faster. The model using pre-attention pooling (➄) is
slightly faster than the model using intra-attention pooling (➀),
which is in turn slightly faster than the model using post-attention
pooling (➅).Finally, upscaling the model (➆) adds some overhead,
but by reducing the sequence length at the same time as increasing
the dimensionality of the hidden states TITE maintains the majority
of the efficiency improvements compared to a standard encoder
model without attention-based pooling.

5 Conclusion
We have introduced TITE, a novel transformer-based encoder ar-
chitecture that uses attention-based pooling to reduce the sequence
length of hidden states layer by layer so that the model outputs a
single sequence-level representation vector. We extensively evalu-
ated several pooling configurations and found that TITE is on par
in terms of retrieval effectiveness compared to a bi-encoder model
using a standard encoder architecture. At the same time, TITE is
up to 3.3 times faster at encoding sequences, substantially reducing
pre-training, fine-tuning, indexing, and retrieval times.

Compared to more sophisticated retrieval models, TITE is com-
petitive but slightly less effective. Our ablation tests show that this
effectiveness gap is not caused by the modified encoder architecture
but is due to different pre-training objectives. The development of
new pre-training objectives to improve TITE’s retrieval effective-
ness is an interesting direction for future work. Additionally, we
plan to explore other pooling and upscaling strategies. Lastly, as
TITE is a general encoder architecture, it can be used for other tasks
within and beyond the field of information retrieval. Fine-tuning
a TITE-based cross-encoder for efficient re-ranking or evaluating
TITE’s effectiveness for other NLP tasks thus are further interesting
directions for future work.

SIGIR ’25, July 13–18, 2025, Padua, Italy Schlatt et al.

References
[1] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong

Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018. MS
MARCO: A Human Generated MAchine Reading COmprehension Dataset. doi:10
.48550/arXiv.1611.09268

[2] Alexander Bondarenko, Maik Fröbe, Meriem Beloucif, Lukas Gienapp, Yamen
Ajjour, Alexander Panchenko, Chris Biemann, Benno Stein, HenningWachsmuth,
Martin Potthast, and Matthias Hagen. 2020. Overview of Touché 2020: Argument
Retrieval. In Proceedings of CLEF 2020. 384–395. doi:10.1007/978-3-030-58219-
7_26

[3] Vera Boteva, Demian Gholipour, Artem Sokolov, and Stefan Riezler. 2016. A Full-
Text Learning to Rank Dataset for Medical Information Retrieval. In Proceedings
of ECIR 2016. 716–722. doi:10.1007/978-3-319-30671-1_58

[4] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. 2020.
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In Proceedings of ICLR 2020. 14 pages. https://openreview.net/forum?id=r1xM
H1BtvB

[5] Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel Weld. 2020.
SPECTER: Document-level Representation Learning Using Citation-informed
Transformers. In Proceedings of ACL 2020. 2270–2282. doi:10.18653/v1/2020.acl-
main.207

[6] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2020. Overview
of the TREC 2020 Deep Learning Track. In Proceedings of TREC 2020 (NIST Special
Publication, Vol. 1266). 13 pages. https://trec.nist.gov/pubs/trec29/papers/OVE
RVIEW.DL.pdf

[7] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2019. Overview of the TREC 2019 Deep Learning Track. In Proceed-
ings of TREC 2019 (NIST Special Publication, Vol. 500–331). 22 pages. https:
//trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf

[8] Zihang Dai, Guokun Lai, Yiming Yang, and Quoc Le. 2020. Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Language Processing. In Pro-
ceedings of NeurIPS 2020. 4271–4282. https://proceedings.neurips.cc/paper/2020/
hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html

[9] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning. doi:10.48550/arXiv.2307.08691

[10] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
In Proceedings of NeurIPS 2022. 16344–16359. http://papers.nips.cc/paper
_f iles/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-
Conference.html

[11] DataCanary, hilfialkaff, Lili Jiang, Meg Risdal, Nikhil Dandekar, and tomtung.
2017. Quora Question Pairs. https://kaggle.com/competitions/quora-question-
pairs. Kaggle.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL 2019. 4171–4186. doi:10.18653/v1/N19-1423

[13] ThomasDiggelmann, Jordan Boyd-Graber, Jannis Bulian,Massimiliano Ciaramita,
and Markus Leippold. 2021. CLIMATE-FEVER: A Dataset for Verification of Real-
World Climate Claims. doi:10.48550/arXiv.2012.00614

[14] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy,
Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. 2024.
The Faiss Library. doi:10.48550/arXiv.2401.08281

[15] William Falcon and The PyTorch Lightning team. 2023. PyTorch Lightning.
doi:10.5281/zenodo.7859091

[16] Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
2022. From Distillation to Hard Negative Sampling: Making Sparse Neural IR
Models More Effective. In Proceedings of SIGIR 2022. 2353–2359. doi:10.1145/3477
495.3531857

[17] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse Lexical and Expansion Model for First Stage Ranking. In Proceedings of
SIGIR 2021. 2288–2292. doi:10.1145/3404835.3463098

[18] Luyu Gao and Jamie Callan. 2021. Condenser: A Pre-training Architecture for
Dense Retrieval. In Proceedings of EMNLP 2021. 981–993. doi:10.18653/v1/2021.e
mnlp-main.75

[19] Luyu Gao and Jamie Callan. 2022. Unsupervised Corpus Aware Language Model
Pre-training for Dense Passage Retrieval. In Proceedings of ACL 2022. 2843–2853.
doi:10.18653/v1/2022.acl-long.203

[20] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical
Match in Information Retrieval with Contextualized Inverted List. In Proceedings
of NAACL 2021. 3030–3042. doi:10.18653/v1/2021.naacl-main.241

[21] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, ChristophGohlke, and Travis E. Oliphant. 2020. Array

Programming with NumPy. Nature 585, 7825 (2020), 357–362. doi:10.1038/s41586-
020-2649-2

[22] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. DeBERTa:
Deconding-Enhanced BERT with Disentangled Attention. In Proceedings of ICLR
2020. 21 pages. https://openreview.net/forum?id=XPZIaotutsD

[23] Sebastian Hofstätter, Sophia Althammer, Michael Schröder, Mete Sertkan, and
Allan Hanbury. 2021. Improving Efficient Neural Ranking Models with Cross-
Architecture Knowledge Distillation. arXiv. doi:10.48550/arXiv.2010.02666

[24] Doris Hoogeveen, Karin M. Verspoor, and Timothy Baldwin. 2015. CQADup-
Stack: A Benchmark Data Set for Community Question-Answering Research. In
Proceedings of ADCS 2015. 1–8. doi:10.1145/2838931.2838934

[25] John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in
Science & Engineering 9, 03 (2007), 90–95. doi:10.1109/MCSE.2007.55

[26] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bo-
janowski, Armand Joulin, and Edouard Grave. 2022. Unsupervised Dense Infor-
mation Retrieval with Contrastive Learning. Transactions on Machine Learning
Research (2022), 21 pages. https://openreview.net/forum?id=jKN1pXi7b0

[27] Ziwei Ji, Himanshu Jain, Andreas Veit, Sashank J. Reddi, Sadeep Jayasumana,
Ankit Singh Rawat, Aditya Krishna Menon, Felix Yu, and Sanjiv Kumar. 2024.
Efficient Document Ranking with Learnable Late Interactions. doi:10.48550/arX
iv.2406.17968

[28] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. doi:10.48550/arXiv.2001.08361
arXiv:2001.08361

[29] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of EMNLP 2020. 6769–6781. doi:10.1
8653/v1/2020.emnlp-main.550

[30] Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage
Search via Contextualized Late Interaction over BERT. In Proceedings of SIGIR
2020. 39–48. doi:10.1145/3397271.3401075

[31] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing,
and Jupyter Development Team. 2016. Jupyter Notebooks – A Publishing Format
for Reproducible ComputationalWorkflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas. 87–90. doi:10.3233/978-1-61499-649-1-87

[32] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur
Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,
Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural Questions: A
Benchmark for Question Answering Research. Transactions of the Association for
Computational Linguistics 7 (2019), 452–466. doi:10.1162/tacl_a_00276

[33] Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. 2024.
SPLADE-v3: New Baselines for SPLADE. doi:10.48550/arXiv.2403.06789

[34] Jinhyuk Lee, Zhuyun Dai, Sai Meher Karthik Duddu, Tao Lei, Iftekhar Naim,
Ming-Wei Chang, and Vincent Y. Zhao. 2024. Rethinking the Role of Token
Retrieval in Multi-Vector Retrieval. In Proceddings of NeurIPS 2024. 22 pages.
https://proceedings.neurips.cc/paper_files/paper/2023/file/31d997278ee9069d
6721bc194174bb4c-Paper-Conference.pdf

[35] Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep,
and Rodrigo Nogueira. 2021. Pyserini: An Easy-to-Use Python Toolkit to Support
Replicable IR Research with Sparse and Dense Representations. In Proceedings of
SIGIR 2021. 2356–2362. doi:10.1145/3404835.3463238

[36] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2022. Pretrained Transformers
for Text Ranking: BERT and Beyond. doi:10.1007/978-3-031-02181-7

[37] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. doi:10.48550/arXiv.1907.11692
arXiv:1907.11692

[38] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In Proceedings of ICLR 2019. https://openreview.net/forum?id=Bkg6RiCqY7

[39] Wenhao Lu, Jian Jiao, and Ruofei Zhang. 2020. TwinBERT: Distilling Knowl-
edge to Twin-Structured Compressed BERT Models for Large-Scale Retrieval. In
Proceedings of CIKM 2020. 2645–2652. doi:10.1145/3340531.3412747

[40] Guangyuan Ma, Xing Wu, Zijia Lin, and Songlin Hu. 2024. Drop Your Decoder:
Pre-training with Bag-of-Word Prediction for Dense Passage Retrieval.. In Pro-
ceedings of SIGIR 2024. 1818–1827. doi:10.1145/3626772.3657792

[41] Sean MacAvaney, Craig Macdonald, and Iadh Ounis. 2022. Streamlining Evalua-
tion with ir-measures. In Proceedings of ECIR 2022. 305–310. doi:10.1007/978-3-
030-99739-7_38

[42] Sean MacAvaney and Nicola Tonellotto. 2024. A Reproducibility Study of PLAID.
In Proceedings of SIGIR 2024. 1411–1419. doi:10.1145/3626772.3657856

[43] Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan,
and Nazli Goharian. 2021. Simplified Data Wrangling with ir_datasets. In
Proceedings of SIGIR 2021. 2429–2436. doi:10.1145/3404835.3463254

https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.48550/arXiv.1611.09268
https://doi.org/10.1007/978-3-030-58219-7_26
https://doi.org/10.1007/978-3-030-58219-7_26
https://doi.org/10.1007/978-3-319-30671-1_58
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/2020.acl-main.207
https://doi.org/10.18653/v1/2020.acl-main.207
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec29/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf
https://trec.nist.gov/pubs/trec28/papers/OVERVIEW.DL.pdf
https://proceedings.neurips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2cd2915e69546904e4e5d4a2ac9e1652-Abstract.html
https://doi.org/10.48550/arXiv.2307.08691
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://kaggle.com/competitions/quora-question-pairs
https://kaggle.com/competitions/quora-question-pairs
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.2012.00614
https://doi.org/10.48550/arXiv.2401.08281
https://doi.org/10.5281/zenodo.7859091
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3477495.3531857
https://doi.org/10.1145/3404835.3463098
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2021.emnlp-main.75
https://doi.org/10.18653/v1/2022.acl-long.203
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.48550/arXiv.2010.02666
https://doi.org/10.1145/2838931.2838934
https://doi.org/10.1109/MCSE.2007.55
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.48550/arXiv.2406.17968
https://doi.org/10.48550/arXiv.2406.17968
https://doi.org/10.48550/arXiv.2001.08361
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.2403.06789
https://proceedings.neurips.cc/paper_files/paper/2023/file/31d997278ee9069d6721bc194174bb4c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/31d997278ee9069d6721bc194174bb4c-Paper-Conference.pdf
https://doi.org/10.1145/3404835.3463238
https://doi.org/10.1007/978-3-031-02181-7
https://doi.org/10.48550/arXiv.1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.1145/3340531.3412747
https://doi.org/10.1145/3626772.3657792
https://doi.org/10.1007/978-3-030-99739-7_38
https://doi.org/10.1007/978-3-030-99739-7_38
https://doi.org/10.1145/3626772.3657856
https://doi.org/10.1145/3404835.3463254

TITE: Token-Independent Text Encoder for Information Retrieval SIGIR ’25, July 13–18, 2025, Padua, Italy

[44] Craig Macdonald, Nicola Tonellotto, Sean MacAvaney, and Iadh Ounis. 2021.
PyTerrier: Declarative Experimentation in Python from BM25 to Dense Retrieval.
In Proceedings of CIKM 2021. 4526–4533. doi:10.1145/3459637.3482013

[45] Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDer-
mott, Manel Zarrouk, and Alexandra Balahur. 2018. WWW’18 Open Challenge:
Financial Opinion Mining and Question Answering. In Companion Proceedings
of WWW 2018. 1941–1942. doi:10.1145/3184558.3192301

[46] Franco Maria Nardini, Cosimo Rulli, and Rossano Venturini. 2024. Efficient
Multi-vector Dense Retrieval with Bit Vectors. In Proceedings of ECIR 2024. 3–17.
doi:10.1007/978-3-031-56060-6_1

[47] Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. 2023.
Efficient Transformers with Dynamic Token Pooling. In Proceedings of ACL 2023.
6403–6417. doi:10.18653/v1/2023.acl-long.353

[48] Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo
Ponti. 2024. Dynamic Memory Compression: Retrofitting LLMs for Accelerated
Inference. In Proceedings of ICML 2024. 17 pages. https://openreview.net/forum
?id=tDRYrAkOB7

[49] Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser, Yuhuai Wu,
Christian Szegedy, and Henryk Michalewski. 2022. Hierarchical Transformers
Are More Efficient Language Models. In Findings of NAACL 2022. 1559–1571.
doi:10.18653/v1/2022.findings-naacl.117

[50] Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage Re-ranking with BERT.
doi:10.48550/arXiv.1901.04085

[51] The pandas development team. 2024. Pandas-Dev/Pandas: Pandas. Zenodo.
doi:10.5281/zenodo.10957263

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Proceedings of NeurIPS 2019. 8024–8035. https://proceedings.neurips.
cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[53] Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret
Mitchell, Colin Raffel, Leandro Von Werra, and Thomas Wolf. 2024. The FineWeb
Datasets: Decanting the Web for the Finest Text Data at Scale. doi:10.48550/arX
iv.2406.17557

[54] Jacob Portes, Alexander R. Trott, Sam Havens, Daniel King, Abhinav Veni-
galla, Moin Nadeem, Nikhil Sardana, Daya Khudia, and Jonathan Frankle.
2023. MosaicBERT: How to Train BERT with a Lunch Money Budget. In
Workshop on Efficient Systems for Foundation Models @ ICML2023. 15 pages.
https://openreview.net/forum?id=WH1S0gonzR

[55] Ofir Press and LiorWolf. 2017. Using the Output Embedding to Improve Language
Models. In Proceedings of EACL 2017. 157–163. https://aclanthology.org/E17-
2025/

[56] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
Using Siamese BERT-Networks. In Proceedings of EMNLP-IJCNLP 2019. 3980–3990.
doi:10.18653/v1/D19-1410

[57] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-Beaulieu,
and Mike Gatford. 1994. Okapi at TREC-3. In Proceedings of TREC 1994 (NIST
Special Publication, Vol. 500–225). 109–126. http://trec.nist.gov/pubs/trec3/paper
s/city.ps.gz

[58] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020. Dis-
tilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter.
doi:10.48550/arXiv.1910.01108

[59] Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. 2022.
PLAID: An Efficient Engine for Late Interaction Retrieval. In Proceedings of CIKM
2022. 1747–1756. doi:10.1145/3511808.3557325

[60] Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei
Zaharia. 2022. ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction. In Proceedings of NAACL-HLT 2022. 3715–3734. doi:10.18653/v1/2022
.naacl-main.272

[61] Ferdinand Schlatt, Maik Fröbe, and Matthias Hagen. 2024. Investigating the
Effects of Sparse Attention on Cross-Encoders. In Proceedings of ECIR 2024. 173–
190. doi:10.1007/978-3-031-56027-9_11

[62] Ferdinand Schlatt, Maik Fröbe, and Matthias Hagen. 2025. Lightning IR: Straight-
forward Fine-tuning and Inference of Transformer-based Language Models for
Information Retrieval. In Proceedings of WSDM 2025. doi:10.1145/3701551.3704118

[63] Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koop-
man, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen. 2024.
Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage
Re-Ranking with Cross-Encoders. In Proceedings of ECIR 2025. doi:10.1007/978-3-
031-88711-6_1

[64] Ferdinand Schlatt, Maik Fröbe, Harrisen Scells, Shengyao Zhuang, Bevan Koop-
man, Guido Zuccon, Benno Stein, Martin Potthast, and Matthias Hagen. 2024.
A Systematic Investigation of Distilling Large Language Models into Cross-
Encoders for Passage Re-ranking. doi:10.48550/arXiv.2405.07920

[65] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng
Liu. 2024. RoFormer: Enhanced Transformer with Rotary Position Embedding.

Neurocomputing 568 (2024), 127063. doi:10.1016/j.neucom.2023.127063
[66] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna

Gurevych. 2021. BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Proceedings of NeurIPS 2021 Track on Datasets
and Benchmarks. 24 pages. https://openreview.net/forum?id=wCu6T5xFjeJ

[67] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal.
2018. FEVER: A Large-scale Dataset for Fact Extraction and VERification. In
Proceedings of NAACL-HLT 2018. 809–819. doi:10.18653/v1/N18-1074

[68] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: An Intermediate Lan-
guage and Compiler for Tiled Neural Network Computations. In Proceedings of
MAPL@PLDI 2019. 10–19. doi:10.1145/3315508.3329973

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of NeurIPS 2017. 5998–6008. https://proceedings.neurip
s.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[70] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod
Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, IanHenriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul van
Mulbregt. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods 17, 3 (2020), 261–272. doi:10.1038/s41592-019-0686-2

[71] Ellen Voorhees, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman,
William R. Hersh, Kyle Lo, Kirk Roberts, Ian Soboroff, and Lucy Lu Wang. 2020.
TREC-COVID: Constructing a Pandemic Information Retrieval Test Collection.
doi:10.48550/arXiv.2005.04474

[72] Henning Wachsmuth, Shahbaz Syed, and Benno Stein. 2018. Retrieval of the Best
Counterargument without Prior Topic Knowledge. In Proceedings of ACL 2018.
241–251. doi:10.18653/v1/P18-1023

[73] David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu Wang, Madeleine van Zuylen,
Arman Cohan, and Hannaneh Hajishirzi. 2020. Fact or Fiction: Verifying Scientific
Claims. In Proceedings of EMNLP 2020. 7534–7550. doi:10.18653/v1/2020.emnlp-
main.609

[74] Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hall-
ström, Said Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom
Aarsen, Nathan Cooper, Griffin Adams, Jeremy Howard, and Iacopo Poli. 2024.
Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory
Efficient, and Long Context Finetuning and Inference. doi:10.48550/arXiv.2412.
13663

[75] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. doi:10.48550/arXiv.1910.03771

[76] Shitao Xiao and Zheng Liu. 2022. RetroMAE v2: DuplexMasked Auto-Encoder For
Pre-Training Retrieval-Oriented LanguageModels. doi:10.48550/arXiv.2211.08769

[77] Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. 2022. RetroMAE: Pre-
Training Retrieval-oriented Language Models Via Masked Auto-Encoder. In Pro-
ceedings of EMNLP 2022. 538–548. doi:10.18653/v1/2022.emnlp-main.35

[78] Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and
Jian-Yun Nie. 2024. C-Pack: Packaged Resources To Advance General Chinese
Embedding. doi:10.48550/arXiv.2309.07597

[79] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N. Bennett,
Junaid Ahmed, and Arnold Overwijk. 2021. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Retrieval. In Proceedings of ICLR
2021. 16 pages. https://openreview.net/forum?id=zeFrfgyZln

[80] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan
Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset for
Diverse, Explainable Multi-hop Question Answering. In Proceedings of EMNLP
2018. 2369–2380. doi:10.18653/v1/D18-1259

[81] Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng Chuang, Songchen Li,
Guanchu Wang, Duy Le, Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui
Liu, and Xia Hu. 2024. KV Cache Compression, But What Must We Give in
Return? A Comprehensive Benchmark of Long Context Capable Approaches. In
Findings of EMNLP 2024. 4623–4648. doi:10.18653/v1/2024.findings-emnlp.266

[82] Shunyu Zhang, Yaobo Liang, Ming Gong, Daxin Jiang, and Nan Duan. 2022. Multi-
View Document Representation Learning for Open-Domain Dense Retrieval. In
Proceedings of ACL 2022. 5990–6000. doi:10.18653/v1/2022.acl-long.414

[83] Honglei Zhuang, Zhen Qin, Rolf Jagerman, Kai Hui, Ji Ma, Jing Lu, Jianmo Ni,
Xuanhui Wang, and Michael Bendersky. 2022. RankT5: Fine-Tuning T5 for Text
Ranking with Ranking Losses. doi:10.48550/arXiv.2210.10634

[84] Shengyao Zhuang, XueguangMa, Bevan Koopman, Jimmy Lin, and Guido Zuccon.
2024. PromptReps: Prompting Large Language Models to Generate Dense and
Sparse Representations for Zero-Shot Document Retrieval. In Proceedings of
EMNLP 2024. 4375–4391. doi:10.18653/v1/2024.emnlp-main.250

https://doi.org/10.1145/3459637.3482013
https://doi.org/10.1145/3184558.3192301
https://doi.org/10.1007/978-3-031-56060-6_1
https://doi.org/10.18653/v1/2023.acl-long.353
https://openreview.net/forum?id=tDRYrAkOB7
https://openreview.net/forum?id=tDRYrAkOB7
https://doi.org/10.18653/v1/2022.findings-naacl.117
https://doi.org/10.48550/arXiv.1901.04085
https://doi.org/10.5281/zenodo.10957263
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.48550/arXiv.2406.17557
https://doi.org/10.48550/arXiv.2406.17557
https://openreview.net/forum?id=WH1S0gonzR
https://aclanthology.org/E17-2025/
https://aclanthology.org/E17-2025/
https://doi.org/10.18653/v1/D19-1410
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
http://trec.nist.gov/pubs/trec3/papers/city.ps.gz
https://doi.org/10.48550/arXiv.1910.01108
https://doi.org/10.1145/3511808.3557325
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.18653/v1/2022.naacl-main.272
https://doi.org/10.1007/978-3-031-56027-9_11
https://doi.org/10.1145/3701551.3704118
https://doi.org/10.1007/978-3-031-88711-6_1
https://doi.org/10.1007/978-3-031-88711-6_1
https://doi.org/10.48550/arXiv.2405.07920
https://doi.org/10.1016/j.neucom.2023.127063
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.1145/3315508.3329973
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.48550/arXiv.2005.04474
https://doi.org/10.18653/v1/P18-1023
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.18653/v1/2020.emnlp-main.609
https://doi.org/10.48550/arXiv.2412.13663
https://doi.org/10.48550/arXiv.2412.13663
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.48550/arXiv.2211.08769
https://doi.org/10.18653/v1/2022.emnlp-main.35
https://doi.org/10.48550/arXiv.2309.07597
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2024.findings-emnlp.266
https://doi.org/10.18653/v1/2022.acl-long.414
https://doi.org/10.48550/arXiv.2210.10634
https://doi.org/10.18653/v1/2024.emnlp-main.250

	Abstract
	1 Introduction
	2 Related Work
	3 Token-Independent Text Encoder
	3.1 Attention-based Pooling
	3.2 Upscaling Hidden States
	3.3 Pre-training
	3.4 Fine-tuning for Retrieval

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Effectiveness Results
	4.3 Ablation Experiments
	4.4 Pooling Parameterizations
	4.5 Efficiency

	5 Conclusion
	References

