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Abstract
Active learning is the iterative construction
of a classification model through targeted la-
beling, enabling significant labeling cost sav-
ings. As most research on active learning has
been carried out before transformer-based lan-
guage models (“transformers”) became popu-
lar, despite its practical importance, compara-
bly few papers have investigated how trans-
formers can be combined with active learning
to date. This can be attributed to the fact that
using state-of-the-art query strategies for trans-
formers induces a prohibitive runtime over-
head, which effectively nullifies, or even out-
weighs the desired cost savings. For this rea-
son, we revisit uncertainty-based query strate-
gies, which had been largely outperformed be-
fore, but are particularly suited in the context
of fine-tuning transformers. In an extensive
evaluation, we connect transformers to exper-
iments from previous research, assessing their
performance on five widely used text classifi-
cation benchmarks. For active learning with
transformers, several other uncertainty-based
approaches outperform the well-known predic-
tion entropy query strategy, thereby challeng-
ing its status as most popular uncertainty base-
line in active learning for text classification.

1 Introduction

Collecting labeled data for machine learning can
be costly and time-consuming. A key technique to
minimize labeling costs has been active learning,
where an oracle (e.g., a human expert) is queried to
label problem instances selected that are deemed
to be most informative to the learning algorithm’s
next iteration according to a query strategy.

Active learning is characterized by the real-
world machine learning scenario in which large
amounts of training data are unavailable, which
may explain why comparably little research has
investigated deep learning in this context. The re-
cent widely successful transformer-based language
models can circumvent the limitations imposed by

small training datasets (Vaswani et al., 2017; De-
vlin et al., 2019). Pre-trained on large amounts of
unlabeled text, they can be fine-tuned to a given
task using far less training data than when trained
from scratch. However, their high number of model
parameters renders them computationally highly
expensive, for query strategies that are targeted at
neural networks or text classification (Settles et al.,
2007; Zhang et al., 2017), resulting in prohibitive
turnaround times between labeling steps.

In this paper, we systematically investigate
uncertainty-based query strategies as a computa-
tionally inexpensive alternative. Despite their rela-
tive disadvantages in traditional active learning,
when paired with transformers, they are highly
effective as well as efficient. Our extensive ex-
periments assess a multitude of combinations in-
cluding state-of-the-art transformer models BERT
(Devlin et al., 2019) and DistilRoBERTa (Sanh
et al., 2019), five well-known sentence classifica-
tion benchmarks, and five query strategies.1

2 Related Work

Uncertainty-based query strategies used to be the
most common choice in active learning, using
uncertainty scores obtained from the learning al-
gorithm (Lewis and Gale, 1994), estimates ob-
tained via ensembles (Krogh and Vedelsby, 1994;
RayChaudhuri and Hamey, 1995), or prediction
entropy (Perona et al., 2008). More recently—
predating transformers—neural network-based ac-
tive learning predominantly employed query strate-
gies that select problem instances according to
(1) the magnitude of their backpropagation-induced
gradients (Settles et al., 2007; Zhang et al., 2017),
where instances causing a high-magnitude gradient
inform the model better, and (2) representativity-
based criteria (e.g., coresets (Sener and Savarese,
2018)), which select instances from a vector space
to geometrically represent the full dataset.
1Code: https://github.com/webis-de/ACL-22
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For today’s deep neural networks, ensembles are
too computationally expensive, and prediction en-
tropy has been observed to be overconfident (Guo
et al., 2017; Lakshminarayanan et al., 2017). The
exception are flat architectures, where, among oth-
ers, Prabhu et al. (2019) showed fastText (Joulin
et al., 2017) to be effective, well-calibrated, and
computationally efficient. Prior to transformers,
query strategies relying on expected gradient length
(Settles et al., 2007) achieved the best results on
many active learning benchmarks for text classifi-
cation (Zhang et al., 2017). Gradients depend on
the current model, which means, when used for a
query strategy, they scale with the vast number of a
transformer’s parameters, and moreover, they need
to be computed per-instance instead of batch-wise,
thereby becoming computationally expensive.

The cost of ensembles, the adverse scaling of net-
work parameters in gradient-based strategies, and a
history of deeming neural networks to be overcon-
fident effectively rule out the most predominantly
used query strategies. This might explain why
transformers, despite the success of fine-tuning
them for text classification (Howard and Ruder,
2018; Yang et al., 2019; Sun et al., 2019), have only
very recently been considered at all in combination
with active learning (Lu and MacNamee, 2020;
Yuan et al., 2020; Ein-Dor et al., 2020; Margatina
et al., 2021). All of the related works mitigate the
computationally complex query strategies by sub-
sampling the unlabeled data before querying (Lu
and MacNamee, 2020; Ein-Dor et al., 2020; Mar-
gatina et al., 2021), by performing fewer queries
with larger sample sizes (Yuan et al., 2020; Mar-
gatina et al., 2021), or by tailoring to less expen-
sive settings, namely binary classification (Ein-Dor
et al., 2020). Subsampling, however, introduces
additional randomness which can aggravate com-
parability across experiments, and large sample
sizes increase the amount of labeled data, which is
contrary to minimizing the labeling effort.

Due to this computationally challenging setting,
the uncertainty-based prediction entropy query
strategy (Roy and McCallum, 2001; Schohn and
Cohn, 2000) is therefore a frequently used baseline
and a lowest common denominator in recent work
on active learning for text classification (Zhang
et al., 2017; Lowell et al., 2019; Prabhu et al., 2019;
Ein-Dor et al., 2020; Lu and MacNamee, 2020;
Yuan et al., 2020; Margatina et al., 2021; Zhang and
Plank, 2021). Apart from being employed as base-

lines, uncertainty-based query strategies have not
been systematically analyzed in conjunction with
transformers, and moreover, comparisons to the
previous benchmarks by Zhang et al. (2017) have
been omitted by the aforementioned related work.
Our work not only closes this gap, but also reevalu-
ates the relative strength of uncertainty-based ap-
proaches, including two recently largely neglected
strategies, thereby challenging the status of predic-
tion entropy as the most popular baseline.

3 Transformer-based Active Learning

The goal of active learning is to minimize the label-
ing costs of training data acquisition while maxi-
mizing a model’s performance (increase) with each
newly labeled problem instance. In contrast to reg-
ular supervised text classification (“passive learn-
ing”), it operates iteratively, where in each iteration
(1) a so-called query strategy selects new instances
for labeling according to an estimation of their in-
formativeness, (2) an oracle (e.g., a human expert)
provides the respective label, and (3) a learning
algorithm either uses the newly labeled instance for
its next learning step, or a model is retrained from
scratch using all previously labeled instances. This
work considers pool-based active learning (Lewis
and Gale, 1994), where the query strategies have
access to all unlabeled data. Notation-wise, we
denote instances by x1, x2, . . . , xn, the number of
classes by c, the respective label for instance xi by
yi (where ∀i : yi ∈ {1, . . . , c}), and P (yi|xi) is a
probability-like predicted class distribution.

Query Strategies We consider three well-known
uncertainty-based query strategies, one recent state-
of-the-art strategy that coincidentally also includes
uncertainty, and a random baseline:
(1) Prediction Entropy (PE; Roy and McCallum,
2001; Schohn and Cohn, 2000) selects instances
with the highest entropy in the predicted label dis-
tribution with the aim to reduce overall entropy:

argmax
xi

− c∑
j=1

P (yi = j|xi) logP (yi = j|xi)


(2) Breaking Ties (BT; Scheffer et al., 2001; Luo
et al., 2005) takes instances with the minimum mar-
gin between the top two most likely probabilities:

argmin
xi

[
P (yi = k∗1|xi)− P (yi = k∗2|xi)

]
where k∗1 is the most likely label in the posterior
class distribution P (yi|xi), and k∗2 the second most



Dataset Name (ID) Type Classes Training Test

AG’s News (AGN) N 4 120,000 (*) 7,600
Customer Reviews (CR) S 2 3,397 378
Movie Reviews (MR) S 2 9,596 1,066
Subjectivity (SUBJ) S 2 9,000 1,000
TREC-6 (TREC-6) Q 6 5,500 (*) 500

Table 1: Key information about the examined datasets.
The dataset type was abbreviated as follows: N: News,
S: Sentiment, Q: Questions. (*): Predefined test sets
were available and adopted.

likely label respectively. In the binary case, this
margin is small iff the label entropy is high, which
is why BT and PE then select the same instances.
(3) Least Confidence (LC; Culotta and McCallum,
2005) selects instances whose most likely label has
the least confidence according to the current model:

argmax
xi

[
1− P (yi = k∗1|xi)

]
(4) Contrastive Active Learning (CA; Margatina
et al., 2021) selects instances with the maximum
mean Kullback-Leibler (KL) divergence between
the predicted class distributions (“probabilities”) of
an instance and each of its m nearest neighbors:

argmax
xi

 1

m

m∑
j=1

KL(P (yj |xknnj ) ‖ P (yi|xi))


where the instances xknnj are the m nearest neigh-
bors of instance xi.
(5) Random Sampling (RS), a commonly used base-
line, draws uniformly from the unlabeled pool.

Oracle The oracle is usually operationalized us-
ing the training datasets of existing benchmarks:
To ensure comparability with the literature, we pick
important standard text classification tasks.

Classification We fine-tune BERT (Devlin et al.,
2019) and DistilRoBERTa (Sanh et al., 2019) on
several natural language understanding datasets.
BERT is well-researched as transformer and has
recently also shown strong results in active learning
(Yuan et al., 2020; Ein-Dor et al., 2020; Margatina
et al., 2021). The model consists of 24 layers, hid-
den units of size 1024 and 336M parameters in total.
DistilRoBERTa, by contrast, is a more parameter-
efficient alternative which has merely six layers,
hidden units of size 768, and 82M parameters. We
also trained a passive model on the full data.

The classification model consists of the respec-
tive transformer, on top of which we add a fully

Model Strategy
Mean Rank Mean Result

Acc. AUC Acc. AUC

SVM PE 1.80 2.60 0.764 0.663
BT 1.60 1.60 0.767 0.697
LC 3.00 2.60 0.751 0.672
CA 5.00 5.00 0.667 0.593
RS 3.00 2.60 0.757 0.686

KimCNN PE 1.60 2.40 0.818 0.742
BT 1.60 2.00 0.818 0.750
LC 3.80 2.80 0.810 0.732
CA 3.80 4.80 0.793 0.711
RS 3.60 2.40 0.804 0.749

D.RoBERTa PE 2.60 3.00 0.901 0.856
BT 2.20 1.80 0.902 0.864
LC 1.40 2.00 0.904 0.860
CA 3.00 3.40 0.901 0.852
RS 5.00 4.20 0.884 0.853

BERT PE 2.40 2.40 0.909 0.859
BT 2.00 1.60 0.914 0.873
LC 2.20 3.80 0.917 0.866
CA 2.80 2.60 0.916 0.872
RS 5.00 4.00 0.899 0.861

Table 2: The “Mean Rank” columns show the mean
rank when ordered by mean accuracy (Acc.) after the
final iteration and by overall AUC. The “Mean Result”
columns show the mean accuracy and AUC.

connected projection layer, and a final softmax out-
put layer. We use the “[CLS]” token that is com-
puted by the transformer as sentence representa-
tion. Regarding fine-tuning, we adopt the com-
bination of discriminative fine-tuning and slanted
triangular learning rates (Howard and Ruder, 2018).
The main active learning routine is then as follows:
(1) The query strategy, either using the model from
the previous iteration, or sampling randomly, se-
lects 25 instances from the unlabeled pool. (2) The
oracle provides labels for these instances. (3) The
next model is trained using all data labeled so far.

Baselines For comparison, we consider a linear
SVM, and KimCNN (Kim, 2014), which have been
used extensively in text classification, disregarding
active learning. We adopted the KimCNN parame-
ters from Kim (2014) and Zhang et al. (2017).

4 Evaluation

We evaluate five query strategies in combination
with BERT, DistilRoBERTa and two baselines.

Datasets and Experimental Setup In Table 1,
we show the five datasets employed, which have
previously been used to evaluate active learning:
AG’s News (AGN; Zhang et al., 2015), Customer
Reviews (CR; Hu and Liu, 2004), Movie Reviews
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Figure 1: Active learning curves of BERT and DistilRoBERTa when combined with five query strategies: Predic-
tion Entropy (PE), Breaking Ties (BT), Least Confidence (LC), Contrastive Active Learning (CA), and Random
Sampling (RS). The tubes around the lines represent standard deviation over five runs. For comparison, the hori-
zontal line depicts a passive text classification for which BERT has been trained using the entire training set.

(MR; Pang and Lee, 2005), Subjectivity (SUBJ;
Pang and Lee, 2004), and TREC-6 (Li and Roth,
2002). These datasets encompass binary and multi-
class classification in different domains, and they
are class-balanced, except for TREC-6. Where
available, we employed the pre-existing test sets,
or otherwise a random sample of 10%.

We follow the experiment setup of Zhang et al.
(2017): 25 training instances are used to train the
first model, followed by 20 active learning itera-
tions, during each of which 25 instances are queried
and labeled. Using 10% of the so far labeled data
as validation set, we stop early (Duong et al., 2018)
when accuracy surpasses 98%, or the validation
loss does not increase for five epochs.

Results For each combination of dataset, model,
and query strategy, Figure 1 shows the respec-
tive learning curves. The horizontal line shows
the best model’s score when trained on the full
dataset, which four out of five datasets approach
very closely, or even exceed. As expected, BERT
generally achieves steeper learning curves than Dis-
tilRoBERTa, but surprisingly, during later itera-
tions DistilRoBERTa reaches scores only slightly
worse than BERT for all datasets except MR. Re-
garding query strategies, RS is a strong contender
during early iterations, e.g., as can be seen for the

Dataset Model Strategy Acc. Data Use

AGN
BERT BT 0.904 0.4%
BERT passive (ours) 0.946 100.00%
XLNet1 passive 0.955 100.00%

CR
BERT LC 0.919 15.45%
BERT passive (ours) 0.925 100.00%
HAC2 passive 0.889 100.00%

MR
BERT PE, BT 0.857 0.547%
BERT passive (ours) 0.893 100.00%
SimCSE3 passive 0.884 100.00%

SUBJ
BERT LC 0.958 5.83%
BERT passive (ours) 0.969 100.00%
AdaSent4 passive 0.955 100.00%

TREC-6
BERT CA 0.968 9.55%
BERT passive (ours) 0.958 100.00%
RCNN5 passive 0.962 100.00%

Table 3: Best final accuracy compared to (our) pas-
sive classification and state-of-the-art text classifica-
tion: 1Yang et al. (2019), 2Zheng et al. (2019), 3Gao
et al. (2021), 4Zhao et al. (2015), 5Tay et al. (2018).
“Data Use” indicates proportion of training data used.

first few iterations of CR. This is partly because all
but one of the datasets are balanced, but neverthe-
less, RS is eventually outperformed by the other
strategies in most cases. For imbalanced datasets,
Ein-Dor et al. (2020) have shown RS to be less ef-
fective, which we can confirm for TREC-6. While
in terms of area under the learning curve (AUC)



there seems to be no overall best strategy, PE/BT
and CA often show very steep learning curves.

In Table 2, we rank the query strategies by their
average accuracy and AUC results, ranging from
1 (best) to 5 (worst). We also report their average
accuracy and AUC per model and query strategy.
Surprisingly, we can see that PE, a commonly used
and proven to be strong baseline, which has been
a lowest common denominator in recent work on
active learning for text classification (Zhang et al.,
2017; Lowell et al., 2019; Prabhu et al., 2019; Ein-
Dor et al., 2020; Lu and MacNamee, 2020; Yuan
et al., 2020; Margatina et al., 2021; Zhang and
Plank, 2021), is on average outranked by BT when
using transformers. BT achieves the best AUC
ranks and scores, and in many cases also the best
accuracy ranks and scores. It seems to be simi-
larly effective on the baselines as well. Moreover,
LC also outperforms PE for DistilRoBERTa where
it even competes with BT. Detailed accuracy and
AUC scores including standard deviations are re-
ported in Appendix Tables 5 & 7.

Table 3 compares the best model trained via ac-
tive learning per dataset against passive text clas-
sification, namely (1) our own model trained on
the full training set, and (2) state-of-the-art results.
The largest discrepancy between active learning
and passive text classification is observed on AGN,
which is also the largest dataset from which the
active learning models use less than 1% for train-
ing. Otherwise, all models are close to or even sur-
pass the state of the art, using only between 0.4%
and 14% of the data. Noteworthy, LC achieves
the best accuracy result for two datasets, while the
strong baseline PE and the state-of-the-art approach
CA perform best on only one dataset each.

In Table 4, we report the best AUC scores per
dataset, and compare them to previous work. BT
ranks highest in two out of three cases with CA
achieving the best result on the remaining two
datasets. BERT achieves the best AUC scores on
all datasets with a considerable increase in AUC
compared to Zhang et al. (2017).

In summary, we use recent transformer mod-
els in combination with several query strategies
to evaluate a previously established but lately ne-
glected benchmark. We find that the PE baseline
is outperformed by BT, which, as a reminder, se-
lects the same instances as PE for binary classifi-
cation, but shows superior results on multi-class
datasets. We conclude that BT, which even out-

Dataset Model AUC

AGN BERT (BT, ours) 0.875
–

CR BERT (PE, BT; ours) 0.877
CNN6 0.743

MR BERT (PE, BT; ours) 0.833
CNN6 0.707

SUBJ BERT (CA, ours) 0.943
CNN6 0.856

TREC-6 BERT (CA, ours) 0.868
–

Table 4: Best area under curve (AUC) scores (averaged
over five runs) compared to Zhang et al. (2017).

performs the state-of-the-art strategy CA in many
cases, is therefore a strong contender to become
the new default uncertainty-based baseline. Finally,
DistilRoBERTa, using less than 25% of BERT’s
parameters, achieves results that are remarkably
close to BERT at only a fraction of the overhead.
Considering the computational burdens that moti-
vated this work, this increase in efficiency is often
preferable from a practitioner’s perspective.

5 Conclusions

An investigation of the effectiveness of uncertainty-
based query strategies in combination with BERT
and DistilRoBERTa for active learning on sev-
eral sentence classification datasets shows that
uncertainty-based strategies still perform well. We
evaluate five query strategies on an established
benchmark, for which we achieve results close to
state-of-the-art text classification on four out of five
datasets, using only a small fraction of the training
data. Contrary to current literature, prediction en-
tropy, the supposedly strongest uncertainty-based
baseline, is outperformed by several uncertainty-
based strategies on this benchmark—in particularly
by the breaking ties strategy. This invalidates the
common practice of solely relying on prediction en-
tropy as baseline, and shows that uncertainty-based
strategies demand renewed attention especially in
the context of transformer-based active learning.
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Ethical Considerations

Research on active learning improves the labeling
of data, by efficiently supporting the learning al-
gorithm with targeted information, so that overall
less data has to be labeled. This could contribute
to creating machine learning models, which would
otherwise be infeasible, either due to limited bud-
get, or time. Active learning can be used for good
or bad, and our contributions would—in both cases–
show how to make this process more efficient.

Moreover, we use pre-trained models, which can
contain one or more types of bias. Bias, however,
affects all approaches based on fine-tuning pre-
trained language models, but therefore this has to
be kept in mind and mitigated all the more.
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Supplementary Material

The experiments can be reproduced using the code
that is referenced on the first page2. In the follow-
ing, we summarize important details for reproduc-
tion, including details on the results.

A Technical Environment

All experiments were conducted within a Python
3.8 environment. The system had CUDA 11.1 in-
stalled and was equipped with an NVIDIA GeForce
RTX 2080 Ti (11GB VRAM). Computations for
fine-tuning transformers and training KimCNN
were performed on the GPU .

B Implementation Details

Our experiments were built using well-known ma-
chine learning libraries: PyTorch3, huggingface
transformers4, scikit-learn5, scipy6, and numpy7.
2https://github.com/webis-de/ACL-22
3https://pytorch.org/, 1.8.0
4https://github.com/huggingface/transformers, 4.11.0
5https://scikit-learn.org/, 0.24.0
6https://www.scipy.org/, 1.6.0
7https://numpy.org/, 1.19.5

For active learning and text classification, we used
small-text8 (Schröder et al., 2022).

C Experiments

Each experiment configuration represents a combi-
nation of model, dataset and query strategy, and has
been run for five times. We used a class-balanced
initial set to support the warm start of the first
model for the imbalanced TREC-6 dataset, whose
rarest class would otherwise only rarely be encoun-
tered if sampled randomly.

C.1 Pre-Trained Models
We fine-tuned DistilRoBERTa (distilroberta-base)
and BERT-large (bert-large-uncased). Both of them
are available via the huggingface model repository.

Dataset Max. Seq. Length

AGN 60
CR 50
MR 60
SUBJ 50
TREC 40

Table 6: Hyperparameter settings for the maximum se-
quence length (as number of tokens) per dataset.

8https://github.com/webis-de/small-text, 1.0.0a8

Dataset Model Query Strategy

PE BT LC CA RS

AGN

SVM 0.804 ± 0.000 0.804 ± 0.000 0.802 ± 0.009 0.539 ± 0.088 0.801 ± 0.006
KimCNN 0.871 ± 0.004 0.874 ± 0.005 0.856 ± 0.012 0.814 ± 0.015 0.866 ± 0.007
DistilRoBERTa 0.892 ± 0.002 0.894 ± 0.003 0.894 ± 0.002 0.894 ± 0.008 0.879 ± 0.008
BERT 0.896 ± 0.003 0.904 ± 0.002 0.894 ± 0.006 0.889 ± 0.014 0.884 ± 0.003

CR

SVM 0.757 ± 0.000 0.755 ± 0.014 0.742 ± 0.022 0.763 ± 0.025
KimCNN 0.765 ± 0.012 0.762 ± 0.012 0.748 ± 0.015 0.745 ± 0.014
DistilRoBERTa 0.906 ± 0.007 0.911 ± 0.008 0.905 ± 0.011 0.886 ± 0.007
BERT 0.904 ± 0.010 0.919 ± 0.009 0.913 ± 0.005 0.896 ± 0.008

MR

SVM 0.674 ± 0.000 0.650 ± 0.012 0.633 ± 0.014 0.641 ± 0.010
KimCNN 0.719 ± 0.011 0.719 ± 0.017 0.726 ± 0.008 0.720 ± 0.013
DistilRoBERTa 0.819 ± 0.012 0.826 ± 0.009 0.826 ± 0.011 0.809 ± 0.011
BERT 0.857 ± 0.009 0.852 ± 0.009 0.856 ± 0.015 0.846 ± 0.011

SUBJ

SVM 0.843 ± 0.000 0.857 ± 0.006 0.827 ± 0.012 0.839 ± 0.012
KimCNN 0.897 ± 0.004 0.880 ± 0.008 0.877 ± 0.010 0.896 ± 0.009
DistilRoBERTa 0.944 ± 0.004 0.948 ± 0.008 0.939 ± 0.008 0.926 ± 0.005
BERT 0.957 ± 0.004 0.958 ± 0.005 0.954 ± 0.005 0.949 ± 0.003

TREC-6

SVM 0.740 ± 0.000 0.758 ± 0.000 0.692 ± 0.101 0.596 ± 0.145 0.742 ± 0.031
KimCNN 0.840 ± 0.016 0.836 ± 0.012 0.834 ± 0.015 0.802 ± 0.017 0.792 ± 0.020
DistilRoBERTa 0.942 ± 0.008 0.950 ± 0.009 0.942 ± 0.009 0.940 ± 0.011 0.918 ± 0.016
BERT 0.932 ± 0.010 0.947 ± 0.014 0.960 ± 0.006 0.968 ± 0.004 0.921 ± 0.025

Table 5: Final accuracy per dataset, model, and query strategy. We report the mean and standard deviation over
five runs. The best result per dataset is printed in bold.

https://github.com/webis-de/ACL-22
https://pytorch.org/
https://github.com/huggingface/transformers
https://scikit-learn.org/
https://www.scipy.org/
https://numpy.org/
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
https://huggingface.co/models
https://github.com/webis-de/small-text


C.2 Datasets
Our experiments used datasets that are well-known
benchmarks in text classification and active learn-
ing. All datasets have been made accessible to the
Python ecosystem by several Python libraries that
provide fast access to the raw text of those datasets.
We obtain CR and SUBJ using gluonnlp, and AGN,
MR, and TREC using huggingface datasets.

C.3 Hyperparameters
Maximum Sequence Lenght We set the maxi-
mum sequence length to the minimum multiple
of ten for which 95% of the respective dataset’s
sentences contain less than or an equal number of
tokens for both KimCNN and transformers (shown
in Table 6).

Transformers AGN is trained for 50 epochs and
all other datasets for 15 epochs (Howard and Ruder,
2018). For training, we use AdamW (Loshchilov
and Hutter, 2019) with a learning rate of η = 2e−5,
beta coefficients of β1 = 0.9 and β2 = 0.999, and
an epsilon of ε = 1e−8. Training is done in batches,
with a batch size of 12.

KimCNN We adopt the parameters by Zhang
et al. (2017), i.e., 50 filters and filter heights of
(3, 4, 5). Training is done in batches with a batch
size of 25, a learning rate of η = 1e−3, and word
embeddings from word2vec (Mikolov et al., 2013).

D Standard Deviations and Runtimes

In Table 5 and Table 7 we report final accuracy
and AUC scores including standard deviations,
measured after the last iteration of active learn-
ing. Moreover, we report the runtimes of the query
step per strategy in Table 8.

D.1 Evaluation Metrics
Active learning was evaluated using standard active
learning metrics, namely accuracy und area under
the learning curve. For both metrics, the respective
scikit-learn implementation was used.
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Dataset Model Query Strategy

PE BT LC CA RS

AGN

SVM 0.693 ± 0.000 0.705 ± 0.000 0.690 ± 0.011 0.458 ± 0.057 0.699 ± 0.012
KimCNN 0.753 ± 0.005 0.791 ± 0.013 0.739 ± 0.019 0.699 ± 0.022 0.810 ± 0.013
DistilRoBERTa 0.855 ± 0.018 0.875 ± 0.007 0.852 ± 0.018 0.863 ± 0.020 0.855 ± 0.006
BERT 0.858 ± 0.015 0.872 ± 0.005 0.848 ± 0.018 0.864 ± 0.012 0.849 ± 0.007

CR

SVM 0.717 ± 0.000 0.713 ± 0.009 0.695 ± 0.009 0.718 ± 0.007
KimCNN 0.713 ± 0.015 0.717 ± 0.009 0.707 ± 0.004 0.705 ± 0.014
DistilRoBERTa 0.874 ± 0.012 0.875 ± 0.008 0.853 ± 0.019 0.870 ± 0.010
BERT 0.877 ± 0.011 0.857 ± 0.016 0.866 ± 0.017 0.868 ± 0.008

MR

SVM 0.612 ± 0.000 0.615 ± 0.012 0.584 ± 0.018 0.597 ± 0.004
KimCNN 0.674 ± 0.009 0.683 ± 0.015 0.671 ± 0.009 0.677 ± 0.011
DistilRoBERTa 0.784 ± 0.013 0.786 ± 0.026 0.785 ± 0.010 0.783 ± 0.007
BERT 0.833 ± 0.013 0.831 ± 0.012 0.817 ± 0.009 0.827 ± 0.006

SUBJ

SVM 0.801 ± 0.000 0.802 ± 0.003 0.768 ± 0.008 0.797 ± 0.010
KimCNN 0.859 ± 0.013 0.841 ± 0.007 0.838 ± 0.011 0.864 ± 0.008
DistilRoBERTa 0.924 ± 0.006 0.925 ± 0.003 0.915 ± 0.015 0.902 ± 0.008
BERT 0.939 ± 0.007 0.938 ± 0.016 0.943 ± 0.005 0.933 ± 0.005

TREC-6

SVM 0.491 ± 0.000 0.648 ± 0.000 0.538 ± 0.085 0.462 ± 0.112 0.619 ± 0.026
KimCNN 0.711 ± 0.010 0.714 ± 0.009 0.683 ± 0.029 0.639 ± 0.025 0.688 ± 0.013
DistilRoBERTa 0.840 ± 0.023 0.864 ± 0.014 0.860 ± 0.013 0.842 ± 0.005 0.856 ± 0.020
BERT 0.789 ± 0.032 0.844 ± 0.013 0.858 ± 0.030 0.868 ± 0.027 0.828 ± 0.018

Table 7: Final AUC per dataset, model, and query strategy. We report the mean and standard deviation over five
runs. The best result per dataset is printed in bold.
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Dataset Model Query Strategy

PE BT LC CA RS

AGN

SVM 1.852 ± 0.415 0.907 ± 0.203 0.432 ± 0.097 516.554 ± 115.583 0.001 ± 0.000
KimCNN 7.264 ± 1.626 6.199 ± 1.389 10.256 ± 2.359 481.758 ± 142.013 0.002 ± 0.000
DistilRoBERTa 97.479 ± 21.800 96.372 ± 21.551 87.398 ± 19.560 852.457 ± 230.157 0.002 ± 0.000
BERT 528.884 ± 118.347 503.454 ± 112.583 480.401 ± 107.422 1475.960 ± 391.579 0.002 ± 0.000

CR

SVM 0.005 ± 0.001 0.005 ± 0.001 0.003 ± 0.001 0.307 ± 0.070 0.000 ± 0.000
KimCNN 0.184 ± 0.042 0.155 ± 0.035 0.163 ± 0.036 0.705 ± 0.189 0.000 ± 0.000
DistilRoBERTa 1.942 ± 0.434 1.916 ± 0.428 1.912 ± 0.428 2.627 ± 0.648 0.000 ± 0.000
BERT 12.112 ± 2.709 12.374 ± 2.767 12.427 ± 2.780 12.750 ± 2.852 0.000 ± 0.000

MR

SVM 0.014 ± 0.003 0.014 ± 0.003 0.009 ± 0.002 1.889 ± 0.425 0.000 ± 0.000
KimCNN 0.521 ± 0.117 0.436 ± 0.098 0.468 ± 0.105 3.672 ± 1.098 0.000 ± 0.000
DistilRoBERTa 7.558 ± 1.691 7.481 ± 1.673 7.183 ± 1.627 12.303 ± 3.293 0.000 ± 0.000
BERT 41.428 ± 9.265 42.247 ± 9.447 41.960 ± 9.391 43.480 ± 9.747 0.000 ± 0.000

SUBJ

SVM 0.014 ± 0.003 0.013 ± 0.003 0.009 ± 0.002 1.969 ± 0.444 0.000 ± 0.000
KimCNN 0.472 ± 0.106 0.409 ± 0.091 1.708 ± 1.144 3.161 ± 0.954 0.000 ± 0.000
DistilRoBERTa 5.219 ± 1.167 5.153 ± 1.153 5.099 ± 1.140 10.508 ± 2.885 0.000 ± 0.000
BERT 31.332 ± 7.006 32.908 ± 7.358 33.043 ± 7.393 37.832 ± 8.478 0.000 ± 0.000

TREC-6

SVM 0.085 ± 0.019 0.042 ± 0.009 0.018 ± 0.004 0.609 ± 0.138 0.000 ± 0.000
KimCNN 0.289 ± 0.065 0.248 ± 0.055 1.111 ± 0.745 1.504 ± 0.447 0.000 ± 0.000
DistilRoBERTa 2.934 ± 0.656 2.887 ± 0.646 3.239 ± 1.473 4.691 ± 1.271 0.000 ± 0.000
BERT 14.577 ± 3.260 14.539 ± 3.251 14.963 ± 3.350 17.901 ± 17.213 0.000 ± 0.000

Table 8: Query time in seconds. We report the mean and standard deviation over five runs. The best result (with
the lowest query time) per dataset and model is printed in bold.
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