
On the Automated Design of Technical Systems ∗

André Schulz Benno Stein † Annett Kurzok ‡

October 15, 2001

Contents

1 Introduction 1

2 A Design Task from the Domain of Chemical Engineering 2

2.1 Model Simplification . 3

2.2 Caramel Syrup Example—Structure . 4

2.3 Caramel Syrup Example—Behavior . 6

3 Graph Grammar Model for Design 7

3.1 Design Tasks and Graph Transformation Rules 7

3.2 Context-free Design Graph Grammar . 12

3.3 Context-Sensitive Design Graph Grammar . 15

3.4 On the Semantics of Labels . 17

3.5 Terminal and Nonterminal Labels . 17

4 Analyzing Systems 19

4.1 Structure Analysis by Graph Grammars . 20

∗Supported by DFG grant PA 276/23-1
†Dept. of Computer Science /
Knowledge-Based Systems,
University of Paderborn, 33095 Paderborn,
Germany
Email: {aschulz,stein}@upb.de

‡Dept. of Engineering / Chemical
Engineering,
University of Paderborn, 33095 Paderborn,
Germany,
email: annett.kurzok@vt.upb.de

i

4.2 Caramel Syrup Example . 22

4.3 Behavior Analysis by Simulation . 23

5 Synthesizing Systems 26

5.1 Structure Synthesis by Graph Grammars . 27

5.2 Caramel Syrup Example Reviewed . 28

5.3 Graph Topology Restrictions . 29

6 Design Language 30

6.1 Requirements . 30

6.2 Semantics of Graphical Representation . 32

6.3 Caramel Syrup Example Reviewed Again . 33

7 Theoretical Considerations of Design Graph Grammars 35

7.1 Classical Graph Grammars and Design Graph Grammars 35

7.2 Relationship to Programmed Graph Replacement Systems 42

7.3 The Problem of Matching . 43

7.4 Foundations of Derivations and Membership 46

7.5 Membership and Derivation in Design . 50

8 Summary 60

A Graph Grammar Applications Within Design 61

A.1 Structural Simplification: Hydraulic Plants . 61

A.2 Model Reformulation: Wave Digital Structures 65

A.3 Model Reformulation: Parallel-Series Graphs 66

ii

Abstract

At present design support of technical systems is typically connected with the configuration
of the technical devices that realize a technical process and does not properly address other tasks
such as structure definition or analysis. In fact, the configuration step is one of the last jobs within
the entire design process, and several hurdles have been taken by the designer before.

This paper outlines both an idea and a methodology to realize a design support right from the
start of the design process. Central element of the methodology is the abstraction of a technical
system as a graph along with the use of graph grammars for structural manipulation, which
encode an engineer’s design knowledge. By applying graph transformation rules, an incompletely
and coarsely defined design can be completed and refined towards a desired solution, and a given
design can be verified to determine its feasibility.

In order to illustrate the presented methodology, detailed examples from the chemical engi-
neering domain are presented, as well as short examples from other technical domains.

1 Introduction

The design of a system is a major challenge faced by designers at all times.

Many design processes contain the same principal tasks, such as analysis and optimiza-
tion: design does not mean configuration alone, as is the general perception. Clearly, the
complexity of a design process may vary with the domain.

When solving a design task, it is useful to look at a system from the viewpoints of struc-
ture and behavior [Stein, 2001], which, depending on the domain, are either loosely or tightly
connected to each other. Modern design tools focus on one of these facets, which, in most
cases, is behavior.

In contrast to these approaches, the purpose of the paper in hand is to provide founda-
tions for a holistic support of the design process. Given a set of parameterized system build-
ing blocks and a description of the demands, e. g. in the form of inputs and outputs, both
the selection and the connection of the necessary building blocks shall be derived. Moreover,
the analysis and improvement of structure and behavior of a given design is also addressed
in this paper.

The essence of our approach is: A technical system is viewed as a graph, the nodes of
the graph describe system building blocks, the edges of the graph specify the connections
between building blocks and enable information and energy exchange. Modifications of a
technical system are defined as node-insertion and node-deletion operations on the graph.
We use graph grammars as a proper means to precisely specify such modifications, say, to
encode an engineer’s design knowledge.

For illustrative purposes we will resort to the domain of chemical engineering through-
out this paper. As an aside, in this domain computer-based design support exists in
the form of configuration systems for particular devices such as mixers and agitators
[Brinkop and Laudwein, 1993, Knoch and Bottlinger, 1993]. Moreover, there are tools con-
centrating around simulation, and yet other tools were developed as tailored CAD programs
[Räumschüssel et al., 1993, Marquardt, 1992, Stephanopoulos et al., 1990, Piela et al., 1991,
Pantelides, 1988].

1

This paper is organized as follows. Section 2 gives a description of chemical design tasks,
which is exemplified by means of a realistic example. Section 3 examines the requirements
imposed by design tasks and introduces the concept of design graph grammars. Section 4
applies the design graph grammar approach to structure analysis and briefly discusses the
simulation of the underlying model. Section 5 applies the design graph grammar approach
to structure synthesis. Section 6 sheds some light on different topics: design evaluation, re-
pair, and optimization. Section 7 supplies a theoretical foundation related to the area of graph
grammars. The appendix contains practical examples of design graph grammars used within
different domains.

2 A Design Task from the Domain of Chemical Engineering

The approach presented in this paper may be suited to tackle various kinds of chemical
design problems. However, within our project as well as our research we concentrate only on
a particular part of chemical processes: The design of plants for the food processing industry.

A chemical plant can be viewed as a graph, where the nodes represent the devices, or
unit-operations, and the edges correspond to the pipes responsible for the material flow.
Typical unit-operations are mixing (homogenization, emulsification, suspension, aeration
etc.), heat transfer, and flow transport. Modifications of a chemical process include the inser-
tion of devices, rearrangement of chains, removal or substitution of redundant devices etc.
At the abstract level these modifications match the graph operations mentioned earlier.

The task of designing a chemical plant is defined, as in many other fields, by the given in-
put and the desired output. The goal is to mix or transform various input substances in such
a way that the resulting product meets the imposed requirements. In general, this process
may also yield some by-products, but this will be neglected in this paper—we will restrict
ourselves to the n : 1 case. Figure 1 illustrates the solution process followed in general prac-
tice.

Solution

Task
 Preliminary examination

Choice of unit-operations

Structure definition

Configuration of components

Optimization

Figure 1: Steps in the design process of a chemical plant.

The steps depicted on Figure 1 can be described in more detail as follows:

1. Preliminary examination. This step comprehends any preparatory measures that must
be taken prior to beginning with the design process. This includes examining the task

2

specification, i. e., the input substances and the desired output, from which possibly
implicit information can be extracted. For instance, the input substances may differ
in a certain essential property like “solubility in water”, and, if there are more than
two input substances, it might be necessary to process the ones belonging to the same
solubility type before dealing with all input substances together. This can be done by
grouping or clustering the substances according to prespecified properties.

2. Choice of unit-operations. After having examined the substances involved in the desired
chemical process, abstract building blocks, so-called unit-operations, are chosen in
compliance with certain rules. For example, if the output mixture should have a tem-
perature that is substantially different from the temperature of the input substances,
then the unit-operation heat transfer is needed. Moreover, using the example of the last
step, if at least two substances have different solubility properties, then the unit-oper-
ation emulgation is necessary. Similarly, any other conclusions concerning the choice of
unit-operations are drawn in a rule-based fashion.

In practice, engineers choose concrete devices at this stage—the use of abstract build-
ing blocks is done implicitly.

3. Structure definition. The previous step produces a set of unit-operations devoid of any
structure, i. e., the unit-operations are still "unconnected". To find an apt topology, dif-
ferent circuits are tried until one that meets the requirements is found. This well-known
propose-and-revise behavior has been also applied to the field of chemical engineering
Brinkop and Laudwein [1993].

4. Configuration of devices. The chosen devices, still represented by unit-operations, are
instantiated. Beginning with the first unit-operation in the process chain, concrete de-
vices are chosen from a database. Since different devices of the same class often pro-
duce outputs with slightly different properties, these changes must be propagated
throughout the chain, thus influencing the choice of later devices.

Alternatively, this step may also be performed before the structure is defined (but no
propagation takes place at this point).

5. Optimization. The plant’s functionality is tested whether it meets the imposed require-
ments. If the designed plant fails to fulfill any of these conditions, some changes have
to be applied either to the structure or to the set of chosen devices.

Even if the plant represents a solution to the problem, the engineer might still want
to refine it to reduce energy consumption or to decrease mixing time. These optimiza-
tions or modifications also require some changes to the plant, making the return to a
previous step obligatory.

2.1 Model Simplification

An automation of the steps listed in section 2 at the behavioral level would be very
expensive—present systems limit automation to human-unfriendly tasks like simulation,
and the effort involved there is high enough. Thus, we must apply some simplifications to

3

the design task in order to be able to provide some kind of automation for all steps. The
following model simplification1 steps lead to a more tractable problem:

• Approximation. Instead of using different functions and formulas that apply under dif-
ferent conditions, only one function or formula covering the widest range of restric-
tions is used in each case. For example, there are over 50 different formulas to calculate
the viscosity of a mixture, most of which are very specialized versions and only ap-
plicable under very rare circumstances—the formula ln(η) = ∑i ϕi · ln(ηi), however,
is very often applicable and delivers a good approximation, even in the complicated
cases.

• Numeric representation. Although the use of crisp values leads to exact results, fuzzy
sets are used to represent essential value ranges. This simplification diminishes the
combinatorial impact on our graph grammar approach, since substance properties are
coded into edge labels and the use of crisp values would lead to an excessive number
of rules.

• Aggregation of cycles. This structural simplification eliminates all cycles from the ab-
stract plant design, thereby avoiding feedback within the design. Without cycles—and
without feedback—simulation becomes simpler.

• Hierarchical aggregation by structure. The introduction of a component hierarchy within
which properties are shared and inherited is not only profitable from a software design
point of view, but also as far as calculations are concerned, since abstract devices and
families can be used therein.

• Derived relationships. Some fields of chemical engineering still remain unveiled and are
dealt with as black boxes. In such cases one has to resort to look-up tables and interpo-
lation, as far as sufficient information is available.

• Parameter elimination. Some model aspects of minor consequence are ignored, thereby
simplifying the model as a whole. One good example are pipes used to transport the
substances within the plant: In general, the length and the material of a pipe determine
the degree of thermal loss of a substance being conveyed. However, these factors play
a minor role and can therefore be neglected.

Another simplification that belongs to parameter elimination is the restriction of the
number of relevant substance properties at the design generation stage. During design
generation, decisions are taken based on the abstract values of a small set of substance
properties, such as temperature, viscosity, density, mass and state. Properties such as
heat capacity, heat conductivity or critical temperature and pressure are neglected at
this point.

2.2 Caramel Syrup Example—Structure

We now present a concrete example for the design process described in section 2. Here the
emphasis is laid on the structure of the design; section 2.3 will address the behavior of the

1A model construction theory was developed in [Stein, 2001], where model simplification plays an important
role.

4

design.

The following task specification excerpt shall help illustrate the usual design procedure
performed by an engineer.

Name State Mass Temperature Viscosity

sugar solid 47.62% 20°C –

water liquid 15.75% 20°C 0.0010012 Pas

starch syrup liquid 36.63% 20°C 0.2-1.6 Pas

caramel syrup liquid 100.00% 110°C ?

The goal is to produce caramel syrup, which is necessary for the production of caramel
bonbons, using water, starch syrup and sugar.

The following table containing viscosity values of sugar solution, a possible intermediate
product, is also available, although it does not belong to the task specification per se:

Temperature Viscosity (71% solution)

0°C 5000 Pas

10°C 1000 Pas

20°C 500 Pas

30°C 250 Pas

40°C 130 Pas

50°C 80 Pas

60°C 50 Pas

70°C 30 Pas

80°C 20 Pas

Based on this task specification, the following steps pertaining to the structure are per-
formed in compliance with the general procedure depicted in section 2:

1. Preliminary examination. The first observation made by the engineer is that one of the
substances, sugar, is a solid and must be dissolved within one of the other input liquids.
Since water has a lower viscosity than starch syrup, it will be better to mix sugar and
water first and then add the starch syrup to the solution. Depending on the mass ratios
the water may have to be heated beforehand to increase solubility.

2. Choice of unit-operations. The comparison of the mass ratios of sugar and water leads to
the conclusion that heating is necessary; thus, a heat transfer unit-operation is needed
to heat the water. The heated water and the sugar are then mixed—for this purpose a
mixing unit-operation for lower viscose substances is appropriate. To avoid recrystal-
lization, the starch syrup should also be heated, thereby making another heat transfer
unit-operation necessary. Finally, the heated sugar solution and the heated starch syrup
are mixed. In order to reach the required temperature of 110°C, another heat trans-
fer unit-operation will be needed. Furthermore, pump unit-operations are required to
transport the substances between devices.

5

3. Structure definition. The choice of unit-operations, although having no direct impact
on the structure, allows for certain conclusions pertaining to the ordering of the unit-
operations. In this case this ordering is relatively evident; Figure 2 shows the chosen
topology.

Starch
syrup

Water

Sugar

Caramel
syrup

Figure 2: The first design of the example process.

2.3 Caramel Syrup Example—Behavior

The example presented in the previous section shows how an abstract design can be gen-
erated, using a simplified task description. The result of the generation process is a feasible
structure complying with the simplified demands. This, however, does not represent a com-
plete design, since all devices remain abstract. Thus, this abstract model must be enhanced
with concrete device data—static and dynamic parameters.

The following steps determine the behavior of the design and make some corrections, if
applicable:

1. Configuration of devices. Based on the mass, the volume, and the other properties of
the involved substances, matching devices are chosen from databases or data sheets.
For the sake of simplicity we will refrain from a detailed description here and refer to
Figure 3, where the abstract design with additional data from the underlying model is
shown.

2. Optimization. The computed properties of the plant design usually represent feasible
values, but improvement may still be possible. With this goal in mind, the parameter-
ization process is repeated and parameters adjusted accordingly. In our case the last
heat transfer unit-operation of the process chain represents an overkill—the last mix-
ing unit-operation is then slightly changed so that only devices with a built-in heat
transfer unit are considered. This change shortens the process chain, thereby reducing
costs and mixing time. The final design is depicted by Figure 3.

Alternatively, another design with fewer devices is conceivable. For instance, water and
starch syrup could be mixed first, and the resulting solution used to dissolve sugar. This
structure choice would require one heat transfer unit-operation less than the proposed de-
sign because both water and the starch syrup have to be heated to the same temperature,
which is best done if both substances are mixed together beforehand. However, this alterna-
tive would cause a longer mixing time, since the sugar must be dissolved in a more viscose
solution (compared to pure water). Figure 4 shows this alternative solution.

6

Starch
syrup

Water

Sugar

Caramel
syrup

[0-50C]

[0-50C]
45l

40l

15kg

[0-0.5 m3/h]

[0-0.5 m3/h]

[0-0.5 m3/h]

20C

20C

70C

70C

70C, ≤
0.2Pas

70C, ≤
0.001Pas

Propeller
75% Solution
≈
 60-70C
≈
 30Pas

100l
≤
 110C
≈
 4Pas

Propeller
Range: [0-50C]
≤
 110C
≈
 4Pas

Figure 3: Design showing part of the underlying model.

Starch
syrup

Water

Sugar

Caramel
syrup

Figure 4: Alternative design of the example process.

3 Graph Grammar Model for Design

Each of the steps depicted in Figure 1 can be automated in an isolated fashion. However,
a separate processing may lead to loss of information, since the choice of a unit-operation
often affects the structure and vice versa. For example, the choice of a certain mixer might
influence the decision whether a heat transfer device is necessary or not, thereby possibly
causing a change to the topology. Likewise, a certain ordering of the devices within the plant
structure can make one of them superfluous.

Due to the intertwined nature of these steps, it is strongly desirable to combine the choice
of unit-operations and the structure definition to make use of all information available. One
way of tackling both tasks simultaneously is to use a graph grammar to generate feasible
designs in a controlled manner, thus allowing for an incremental execution of the mentioned
steps. The graph grammar will not only be used for controlled generation, but also for anal-
ysis tasks, optimization and repair tasks, and also for dynamic visualization purposes.

In the following we analyze the requirements imposed by the various design aspects and
introduce suitable graph grammar models to fulfill them. Finally, special issues concerning
the semantics of design graph grammars are addressed.

3.1 Design Tasks and Graph Transformation Rules

A technical system can be described by a labeled graph. The nodes of the graph designate
the system’s items, the graph’s edges define relations between the items, labels specify the

7

types of nodes and edges. The following definition introduces this concept formally.

Definition 1 (Labeled Graph)

A labeled graph is a tuple G = 〈VG , EG,σG〉 where VG is the set of nodes, EG ⊆ VG × VG is the
set of directed edges, and σG is the label function, σG : VG ∪ EG → Σ, where Σ is a set of symbols,
called the label alphabet.

Notation: (v1, v2, l) represents a directed edge with tail v1, head v2 and label l. {v1 , v2, l} denotes
an undirected edge with label l, which can be viewed as two directed edges, (v1, v2, l) and (v2, v1, l).
Edges without labels will be written as (v1, v2) or {v1 , v2}.

The design of a system encompasses a variety of different aspects or tasks and not only
the traditional construction process with which it is usually associated. For each of these
tasks different operations of varying complexity are required:

• Insertion and deletion of single items in a system

• Change of specific item and connection types

• Manipulation of sets of items, e. g., for repair or optimization

The operations delineated above can be viewed as transformations on graphs; they are of
the form target → replacement. A precise specification of such “graph transformation rules”
can be given with graph grammars, which are distinguished by the complexity of their rules’
left-hand sides. A central concept in this connection is bound up with the notions of match-
ing and context, which, in turn, build up on the concept of isomorphism (see, for example,
[Jungnickel, 1999]).

Definition 2 (Isomorphism, Isomorphism with labels)

Let G = 〈VG, EG〉 and H = 〈VH , EH〉 be two graphs. An isomorphism is a bijective mapping
ϕ : VG → VH for which holds: {a, b} ∈ EG ⇔ {ϕ(a),ϕ(b)} ∈ EH, for any a, b ∈ VG. If such a
mapping exists, G and H are called isomorphic.

G and H are called isomorphic with labels, if G and H are labeled graphs with labeling functions
σG and σH, and the following additional condition holds: σG(a) = σH(ϕ(a)) for each a ∈ VG, and
σG(e) = σH(ϕ(e)) for each e ∈ EG, where ϕ(e) = {ϕ(a),ϕ(b)} if e = {a, b}.

Figure 5 shows an example of isomorphic and non-isomorphic graphs.

a

b

c

d

e

ab

c d

e

a

b

c

d

e

G H1 H2

Figure 5: A graph G, a graph H1 that is isomorphic to G, and a graph H2 that is not isomor-
phic to G.

8

Definition 3 (Matching, Context)

Given are a labeled graph G = 〈V, E,σ〉 and another labeled graph, C. Each subgraph
〈VC, EC,σC〉 in G, which is isomorphic to C, is called a matching of C in G. If C consists of a single
node only, a matching of C in G is called node-based, otherwise it is called graph-based.

Moreover, let T be a subgraph of C, and let 〈VT , ET ,σT〉 denote a matching of T in C. A matching
of C in G can stand in one or more of the following relations to 〈VT , ET ,σT〉:

1. VT ⊂ VC, VT 6= ∅. Then the graph 〈VC, EC,σC〉 is called a context of T in G.

2. 〈VC, EC,σC〉 = 〈VT , ET ,σT〉. Then T is called context-free.

A matching of a graph T in G is denoted by T̃. In general, we will not differentiate between a
graph T and its isomorphic copy.

Figure 6 illustrates the notions of matching and context.

a) b) c)

ab

c d

b

c

Ga

b
c

d

T
C

ab

c d

b

c

T
ab

c d

b

c

T
ab

c d

b

c

T

Figure 6: Above, a context graph C including a target graph T, and a host graph G. Below:
a) strict degree matching of T in G; b) matching of T in G; and c) matching of C in G, but no
context of T.

Remarks. A matching T̃ of a graph T within another graph G represents a subgraph of G,

which means that potentially every node of T̃ may be connected to the remainder of G by
arbitrarily many edges. This matching concept may be sufficient for most purposes, but the
domain of technical systems requires more flexibility. Thus, the concept matching is refined
to allow the matching of nodes with a precise number of edges. This type of matching is
called strict degree matching; in practice, the use of this type of matching will be indicated by
an asterisk appended to a node instance, as in T = 〈{1∗, 2}, {(1, 2)}〉.

Existing graph grammar approaches are powerful, but lack within two respects. Firstly,
the notion of context is not used in a clear and consistent manner, which is also observed
in [Drewes et al., 1997], page 97. Secondly, graph grammars have not been applied seri-
ously in order to solve synthesis and analysis problems in the area of technical systems—
graph grammar solutions focus mainly on software engineering problems [Rozenberg, 1997,

9

Ehrig et al., 1999a,b, van Eekelen et al., 1998, Kaul, 1986, 1987, Korff, 1991, Lichtblau, 1991,
Rekers and Schürr, 1995, Schürr et al., 1995, Schürr, 1997a].

The systematics of design graph grammars introduced here addresses these shortcom-
ings. Figure 7 relates classical graph grammar terminology to typical design tasks; the fol-
lowing list presents examples for the differently powerful rule types. A precise analysis of
the relationship between classical graph grammar families and design graph grammars can
be found in chapter 7.

Node-based Graph-based

with
context

context-
free

NLC NCE

Insertion,
deletion

(synthesis)

Manipulation
of types

(synthesis,
analysis)

Typed structural
manipulation

(repair, optimization)

Structural
manipulation
(model trans-

formation)

NCE

with
context

context-
free

NCE without
edge labels

Target

Design

Tasks

Classical

Graph

Grammars

Figure 7: Graph grammar hierarchy for the various design tasks. The abbreviations NLC and
NCE denote classical graph grammar families.

• Node → node: Context-free transformation based on node labels. Graph grammars
with rules of this type are called node label controlled graph grammars (NLC grammars).
The following figure illustrates a type modification of a mixing unit, which can be
realized by this class of rules.

• Node → graph: Context-free transformation based on node labels (NLC grammars).
The following figure shows the replacement of an ideal voltage source by a resistive
voltage source (synthesis without context).

e
 e

+ +

• Node with context → node: Node-based transformation based on node labels and edge
labels. Graph grammars with rules of this type are called neighborhood controlled embed-
ding graph grammars (NCE grammars). The clustering of graphs (analysis and synthe-
sis with context) is an example for this type of transformation and is depicted in the
following figure.

10

A B

C

• Node with context → graph: Node-based transformation based on node labels and
edge labels (NCE grammars). The following figure shows the replacement of an un-
known unit by inserting heat transfer and pump units to fulfill the temperature con-
straints (synthesis with context):

Tlow
Thigh Tlow

Thigh?

The following figure illustrates the replacement of an unknown unit by inserting a heat
transfer unit, a pump unit, and a mixing unit (synthesis with context):

Tlow Thigh Thigh

Thigh
Thigh

Tlow?

• Graph → graph: Context-free transformation based on graphs without edge labels
(NCE grammars without edge labels). The replacement of two resistors in series with
one resistor, an example for structural manipulation, is depicted below.

Another example for a transformation of this type is given by the conversion of a struc-
ture description tree into a parallel-series graph (model transformation):

S

P

S

∆
 ∆ ∆
 ∆
 ∆

∆
∆

∆

∆
∆

• Graph with context → graph: Context-sensitive transformation based on graphs with
edge labels (NCE grammars). The following figure shows the insertion of a bypass
throttle (repair, optimization), which represents such a transformation.

11

3.2 Context-free Design Graph Grammar

What happens during a graph transformation is that a node, t—or a subgraph, T—in the
original graph G is replaced by a graph R. Put another way, R is embedded into G.

A graph grammar can be regarded as the equivalent of a Chomsky grammar for the area
of graphs, and as such it has similar properties. In the following we will provide a formal
basis for the illustrated graph transformations.

Definition 4 (Host Graph, Context Graph, Target Graph, Replacement Graph, Cut Node)

Within the graph transformation context a graph can play one of the following roles:

• Host graph G. A host graph represents the structure on which the graph transformations are
to be performed.

• Context graph C. A context graph represents a matching to be found in a host graph G. The
graph C is part of the left-hand side of graph transformation rules.

• Target graph T. A target graph represents a graph whose matching in a host graph G is to be
replaced. If T is a subgraph of a context graph C, then the occurrence of T within the matching
of C in G is to be replaced. The graph T is part of the left-hand side of graph transformation
rules. In case T consists of a single node, it is called target node and denoted by t.

• Replacement graph R. A replacement graph represents a graph of which an isomorphic copy
is used to replace a matching of the target graph T in the host graph. The graph R is part of the
right-hand side of graph transformation rules.

• The nodes of the host graph that are connected to the matching of T are called cut nodes.

Informally, a graph grammar is a collection of graph transformation rules, each of which
is equipped with a set of embedding instructions. The application of a graph transformation
rule to a host graph G yields a new graph G′. The following definition provides the necessary
syntax and semantics.

Definition 5 (Context-Free Design Graph Grammar)

A context-free design graph grammar is a tuple G = 〈Σ, P, s〉 with

12

• Σ is the label alphabet used for nodes and edges2,

• P is the finite set of graph transformation rules or productions,

• and s is the initial symbol.

The productions of the set P are graph transformation rules of the form T → 〈R, I〉 with

• T = 〈VT , ET ,σT〉 is the target graph to be replaced,

• R = 〈VR, ER,σR〉 is the possibly empty replacement graph,

• I is the set of embedding instructions for the replacement graph R.

The semantics of a context-free graph transformation rule T → 〈R, I〉 is as follows: Firstly, a
matching of the target graph T is searched within the host graph G. Secondly, this occurrence
of T along with all incident edges is deleted. Thirdly, an isomorphic copy of R is connected to
the host graph according to the semantics of the embedding instructions.

The set I of embedding instructions consists of tuples ((h, t, e), (h, r, f)), where

– h ∈ Σ is a label of a node v ∈ G \ T,

– t ∈ Σ is a label of a node w ∈ VT,

– e ∈ Σ is the label of the edge {v, w},

– f ∈ Σ is another edge label not necessarily unequal to e, and

– r ∈ VR is a node in R.

An embedding instruction ((h, t, e), (h, r, f)) is interpreted as follows: If there is an edge with
label e connecting a node labeled h with the target node t, then the embedding process will create
a new edge with label f connecting the node labeled h with node r. See section 3.4 for a detailed
discussion about the semantics of embedding instructions.

The execution of a graph transformation rule p on a host graph G yielding a new graph G′ is
called a derivation step and denoted by G ⇒p G′. A sequence of such derivation steps is called
derivation. The set of all graphs that can be generated with G is designated by L(G).

Example. In order to illustrate how a graph transformation rule works, let us view the trans-
formation of a graph G into a graph G′, as depicted in Figure 8.

A graph transformation rule T → 〈R, I〉 that performs the transformation shown in Fig-
ure 8 has the following components:

• Target graph T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, b), (2, c)}〉

• Replacement graph R = 〈VR, ER,σR〉 = 〈{3}, ∅, {(3, n)}〉

• Set I of embedding instructions with I = {((a, b, f), (a, n, f)), ((e, c, f), (e, n, f))}. Al-
ternatively, one can employ variable labels, which yields I = {((X, Y, f), (X, n, f))}.

2Labels are used to specify types and as variables for other labels. To avoid confusion, variable labels will be
denoted by capital letters, and all other labels with small letters.

13

G’
G

a

b c

d e

f g f

T
n

a d e

f f

R

Figure 8: Application of a context-free graph transformation rule on a host graph G showing
a target graph T and a replacement graph R.

In many cases one will not need the complete expressive power of the embedding in-
struction definition. In particular, if the target graph consists of a single node and edge
labels are left unchanged, then an embedding instruction may be written as (e, r) instead
of ((h, t, e), (h, r, e)); in the literature such graph grammars are called neighborhood uniform
graph grammars.

In the following we present the formal representation of a simple design graph grammar for
the rules shown in Figures 9 and 10.

Tlow
Thigh Tlow

Thigh?

Figure 9: Insertion of a heating chain.

Tlow Thigh Thigh

Thigh
Thigh

Tlow?

Figure 10: Insertion of a heating chain as a preprocessing step.

Example. Let G = 〈Σ, P, s〉 be a design graph grammar that specifies some transformations
described in section 3.1.

• Σ = {?, A, B, C, D, low, high, pump, heater, mixer},

• P = {r1, r2},

• s = ?

Rule r1 is defined as follows:

T = 〈{1, 2, 3}, {(1, 2), (2, 3)}, {(1, A), (2, ?), (3, B), ((1, 2), low), ((2, 3), high)}〉

R = 〈{4, 5, 6, 7}, {(4, 5), (5, 6), (6, 7)}, {(4, A), (5, pump), (6, heater), (7, B),

((4, 5), low), ((6, 7), high)}〉

I = {((D, A, E), (D, A, E)), ((D, B, E), (D, B, E))}

14

The formal representation of rule r2 is:

T = 〈{1, 2, 3, 4}, {(1, 3), (2, 3), (3, 4)}, {(1, A), (2, B), (3, ?), (4, C),

((1, 3), low), ((2, 3), high), ((3, 4), high)}〉

R = 〈{5, 6, 7, 8, 9, 10}, {(5, 7), (7, 8), (8, 9), (6, 9), (9, 10)},

{(5, A), (6, B), (7, heater), (8, pump), (9, mixer), (10, C),

((5, 7), low), ((6, 9), high), ((9, 10), high)}〉

I = {((D, A, E), (D, A, E)), ((D, B, E), (D, B, E)), ((D, C, E), (D, C, E))}

3.3 Context-Sensitive Design Graph Grammar

In section 3.2 the notion of context-free design graph grammars was introduced. However,
it is conceivable that context-sensitive rules may be necessary, which fact makes context-free
graph grammars inadequate. In the literature, the natural extension of context-free graph
grammars is called context-sensitive graph grammars. The following definition is based on
definition 5 of section 3.2.

Definition 6 (Context-sensitive Design Graph Grammar)

A context-sensitive design graph grammar is a tuple G = 〈Σ, P, s〉 as described in Definition 5,
whose productions in the set P are graph transformation rules of the form 〈T, C〉 → 〈R, I〉 with

• T = 〈VT , ET ,σT〉 is the target graph to be replaced,

• C is a supergraph of T, called the context,

• R = 〈VR, ER,σR〉 is the possibly empty replacement graph,

• I is the set of embedding instructions for the replacement graph R.

The semantics of a graph transformation rule 〈T, C〉 → 〈R, I〉 is as follows: Firstly, a matching
of the context C is searched within the host graph. Secondly, an occurrence of T within the
matching of C along with all incident edges is deleted. Thirdly, an isomorphic copy of R is
connected to the host graph according to the semantics of the embedding instructions.

The set I of embedding instructions consists of tuples ((h, t, e), (h, r, f)), where

– h ∈ Σ is a label of a node v ∈ G \ T,

– t ∈ Σ is a label of a node w ∈ VT,

– e ∈ Σ is the label of the edge {v, w},

– f ∈ Σ is another edge label not necessarily unequal to e, and

– r ∈ VR ∪ VC is a node in R, where VC is the set of cut nodes.

An embedding rule ((h, t, e), (h, r, f)) is interpreted as in the context-free case.

In the following we will not explicitly distinguish between both graph grammar types,
since the used variant is obvious from the context and rule form.

15

G

a

b
c

d

T

C

f

g

a

n

d

R

C

f

g

G’

Figure 11: A context-sensitive graph transformation rule showing a host graph G, a target
graph T, a context graph C and a replacement graph R.

Example. In order to illustrate how a context-sensitive graph transformation rule works, let
us view the transformation of a graph G into a graph G′, as depicted in figure 11.

A graph transformation rule 〈T, C〉 → 〈R, I〉 that performs the transformation shown in
figure 11 has the following components:

T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, b), (2, c)}〉

C = 〈VC, EC,σC〉

= 〈{3, 4, 5, 6, 7, 8}, {{3, 4}, {3, 7}, {7, 8}, {4, 8}, {3, 5}, {5, 6}, {6, 8}},

{(3, d), (5, b), (6, c), (8, d), ({3, 5}, f), ({6, 8}, g)}〉

R = 〈VR, ER,σR〉 = 〈{9}, ∅, {(9, n)}〉

I = {((a, b, f), (a, n, f)), ((d, c, g), (d, n, g))} or, alternatively, with variable labels

{((X, Y, Z), (X, n, Z))}

Remarks. Design graph grammars differ not only in matters of context, but also in the size of
the target graph. If all target graphs in the graph transformation rules consist of single nodes,
the graph grammar is called node-based, otherwise it is called graph-based. This distinction is of
relevance, since node-based and graph-based graph grammars fall into different complexity
classes due to the subgraph matching problem (see 7.3.2) connected to the latter.

Example. The following simple3 graph transformation rules depicted in Figures 12, 13 and
14 illustrate some cases where node-based graph transformation rules are insufficient. Note
that such rules are required for optimization and repair tasks.

Figure 12: Replacement of a partial chain consisting of a mixer, a pump, and a heat transfer
unit with a mixer device with built-in heat transfer.

3For the sake of simplicity edge labels have been omitted.

16

?

Figure 13: Removal of a superfluous nonterminal node.

Figure 14: Combination of two identical partial chains through relocation. Depending on the
properties of the substances involved, a different mixer device has to be used.

3.4 On the Semantics of Labels

Labels are of paramount importance for the graph transformation process, since all tasks
belonging to a transformation step—matching of target and context graphs, embedding of
replacement graphs—rely on them. Within this section we address some issues related to
labels: terminal and nonterminal labels, variable labels, ambiguities during embedding and
conflicting embedding instructions.

3.5 Terminal and Nonterminal Labels

Several approaches distinguish between terminal and nonterminal labels: terminal labels
may appear only within the right-hand sides of graph transformation rules; nonterminal
labels are used within the left-hand and right-hand sides.

Design graph grammars use the classic concept of graph matching and, therefore, there
is no syntactical distinction with respect to terminals and nonterminals in the set Σ. This
behavior reflects the modeling structure of the domain.

Furthermore, the above mentioned approaches also distinguish between terminal (or fi-
nal) and nonterminal graphs—a graph is final if it contains only terminal labels, otherwise it
is nonterminal. Design graph grammars do not make this distinction, since this is not always
possible or desirable in the technical domains focused.

3.5.1 Variable Labels

Variable labels are introduced for convenience purposes: They allow for the formulation of
generic rules, which match situations belonging to identical topologies using different labels;
without variable labels one rule for each such situation would have to be devised, leading to
a large rule set due to the combinatorial explosion.

The use of variable labels within rules and embedding instructions leads to the question
of “variable binding”. Firstly, variables used exclusively within embedding instructions are

17

used as placeholders for concrete labels of nodes or edges matching the described context;
such variables are unbound and used within every matching situation. Secondly, variables
may be used within rules, i. e., within target, context and replacement graphs, where they
represent a specific instance; such variables are bound and used uniformly throughout the
rule application, i. e., the variable retains its “value” during the replacement and embedding
processes.

Note that variable labels prevent a clear distinction between terminal and nonterminal
labels: The labels in Σ can no longer be easily classified into terminal or nonterminal by
analysis of the graph transformation rules in P.

3.5.2 Ambiguities

The design graph grammar approach, like the classical graph grammars, relies mainly on
node and edge labels to describe matchings and embeddings. Since nodes and edges may
share identical labels, ambiguities may occur, leading to possibly unwanted embeddings.
Ambiguities may stem from identical edge labels of edges connected to a node, from nodes
with identical labels in the target or replacement graph, as well as from a combination
thereof. Figure 15 shows an example of such a situation. A straightforward solution to this
problem is the unique numbering of identical labels.

a
e

e

b c
e

e

I = {((H,a,e),(H,b,e)),

 ((H,a,e),(H,c,e))}

a b c

Situation 1

Situation 2
b c

e

ee

e

Figure 15: Graph transformation rule and two possible outcomes due to ambiguity.

Furthermore, ambiguous situations may lead to more than two different embeddings. It
is conceivable that embeddings resulting from ambiguous situations are incomplete, i. e., not
every edge is drawn (in contrast to the situation depicted by Figure 15), making the outcome
even more unpredictable. Thus, we require that embeddings resulting from ambiguous sit-
uations are complete.

18

3.5.3 Conflicting Embedding Instructions

The introduction of variable labels leads to a further question pertaining to conflicts within
the embedding instructions. It is conceivable that two embedding instructions involving
non-variable and variable labels may apply for a given situation. For example, the embed-
ding instructions ((H, t, a), (H, r, b)) and ((H, T, a), (H, r, b)) both match the situation where
an edge (H, t, a) exists; if both embedding instructions are used, multiple edges may be pro-
duced.

A way to prevent this undesired effect is to avoid such embedding rules by making them
uniquely applicable. However, this problem may be unavoidable—in this case the principle of
the least commitment [Russel and Norvig, 1995] shall apply: The most specialized embedding
instruction will be used.

4 Analyzing Systems

In section 3 we introduced the concept of graph grammars and explained how a design can
be manipulated by means of a graph grammar. In this section we present an approach that
works reversely: A given design is analyzed by means of a suitable graph grammar (together
with domain knowledge) in order to determine its feasibility.

Analysis by
Graph Grammars

Analysis by
Simulation

Synthesis
(Repair/Optimization)

Synthesis by
Graph Grammars

Evaluation

Figure 16: The design cycle.

As depicted by Figure 16, the analysis of a system is part of the whole design process, and
it consists of two distinct steps that are dealt with separately. The design process elements
can be described as follows:

• Synthesis by Graph Grammars. Based on the specified inputs and outputs and any fur-
ther task requirements, a structure is built in compliance with the design graph gram-
mar used. The resulting structure is feasible by definition, but at an abstract level.

• Analysis by Graph Grammars. This step is mainly concerned with the analysis of the
structure of the system, for which task graph grammars have proven to be very ade-
quate. A given design is analyzed with respect to its structure and type information,
which represents traits from the underlying model at an abstract level. If a structure
outstands this analysis step, then it is found to be feasible, and analysis of the under-
lying model can be started.

• Analysis by Simulation. This step pertains to the underlying model, i. e., the behav-
ioral level, and takes the structure for granted. The feasible structure is now brought

19

to completion by taking the underlying model into consideration. Simulation is not
performed at the abstract level, but at a lower level that is closer to the physical repre-
sentation. A design that withstands this process is considered functional.

• Evaluation. A system design that has been found to be functional may or may not fulfill
the task demands properly. This step tries to decide, according to some prespecified
criteria, if the given design is acceptable or if it should be changed or improved.

• Synthesis (Repair, Optimization). If a design is incorrect or just not fulfills all require-
ments, then some sort of adjustment must take place. Here, constructive steps are per-
formed to produce an improved version of the original design. After completion, the
design is passed to the next stage, analysis by simulation, to check that the resulting
design is indeed functional.

4.1 Structure Analysis by Graph Grammars

Structural analysis aims at a preliminary statement concerning the feasibility of a given de-
sign of a technical system. This abstract feasibility check involves the design structure and
the chosen components, but refrains from delving into the details concerning the under-
lying model, which are examined within the behavior analysis step. A design’s structure
and choice of components can be derived by means of design graph grammars that encode
engineering knowledge. Thus, it is logical to use a design graph grammar to perform this
structural analysis.

In order to use a design graph grammar to check the structural feasibility of a given
design, it is necessary to determine if the design can be generated by the grammar—this
problem is known as the membership problem for graph languages and is addressed in section
7.5.1. Basically, the membership problem is solved by applying grammar rules in a backward
fashion in order to derive the initial symbol. The successful derivation of the initial symbol
means that the given design belongs to the graph language generated by the design graph
grammar, and the used graph transformation rules together with the application order yield
a valid inverse derivation.

The following steps summarize the process of structural analysis by design graph gram-
mars:

1. Invert the design graph grammar, i. e., change each graph transformation rule 〈T, C〉 →
〈R, I〉 into 〈R, I〉 → 〈T, C〉.

2. Choose an inverted graph transformation rule for application. If no graph transforma-
tion rule is applicable, then the design is not structurally feasible with respect to the
design graph grammar used.

3. Apply the chosen graph transformation rule to the design.

4. If the design consists of the initial symbol after application of the graph transformation
rule, then the given design is structurally feasible, otherwise continue at step 2.

20

This abstract algorithm assumes that the order of application of graph transformation
rules is irrelevant and does not take backtracking into account, but can be improved to do
so.

The following pseudo-code algorithm determines if a specific graph is derivable with a
given design graph grammar and corresponds to the above abstract algorithm.

boolean DERIVABLE(DESIGN graph, DESIGNGRAPHGRAMMAR G)
(1) {
(2) boolean step_taken;
(3) g := graph;
(4) while (Vg 6= {S}) do

(5) step_taken := false;
(6) for (r ∈ G .rules) do

(7) if (REVERSEDAPPLICABLE(r, g)) then

(8) step_taken := true;
(9) g := REVERSEDAPPLY(r, g);

(10) fi

(11) od
(12) if (not step_taken) then

(13) return false;
(14) fi

(15) od

(16) return true;
(17) }

In case this feasibility check fails, i. e., the initial symbol cannot be derived from the given
design, some adjustments must be made to the faulty context to make the design compliant
with the underlying design graph grammar. Note that at this point only adjustments per-
taining to node and edge labels are performed; any other changes involve structural trans-
formations, which belong to another step, design repair and optimization.

The requirements listed above lead to the following algorithm:

boolean ISFEASIBLE(DESIGN graph, DESIGNGRAPHGRAMMAR G)
(1) {
(2) while (not DERIVABLE(graph, G)) do

(3) graph′ := ADJUST(graph, G);
(4) if graph′ 6= graph then

(5) // Continue with adjusted graph
(6) graph := graph′ ;
(7) else

(8) // Adjustment is not possible
(9) return false;

(10) fi

(11) od

(12) return true;
(13) }

21

The function ADJUST asks the engineer or user to make some corrections to the given de-
sign in order to make it compliant with the encoded knowledge. This correction step must be
done manually, since an automatic correction would require graph rules for every conceiv-
able error, leading to a hardly manageable rule set and, consequently, to poor performance.

Without applying any restrictions to the design graph grammar and the generated graph
language, the membership problem remains NP-complete (see section 7.5.1) and the above
algorithm will require exponential time in the size of the design to determine if a given de-
sign belongs to the language generated by the design graph grammar. The NP-completeness
of this problem is partially due to the subgraph matching problem described in section 7.3.2.
The theoretical issues concerning the time complexity of this membership test and the pos-
sible restrictions that lead to a better performance are discussed in detail in section 7.5.

4.2 Caramel Syrup Example

We shall now simulate the functioning of the above procedures to try to determine if the
design is feasible with respect to the used design graph grammar, i. e., with respect to the
structure.

The design graph grammar we shall use reflects the transformations depicted in the
caramel syrup example of section 2.2. These transformations are performed by rules (R1)
through (R6). Furthermore, we introduce additional rules as illustrated by Figures 23 and
24.

p p p?A B A B

Figure 17: (R1) Deletion of nonterminal node.

?

s
n
s
3
...

s
1

s
2

A

B

?

s
n
s
3
...

s
1

s
2

A

B

Figure 18: (R2) Insertion of a mixing unit-op.

?

s
n
s
3
...

s
1

s
2

A

B

?

s
n
s
3
...

s
1

s
2

A

B

Figure 19: (R3) Insertion of mixing unit-op with built-in heat transfer unit.

22

?

sliquid

ssolid

sliquid

?

?

sliquid

sliquid

ssolid

A

B

C

A

B

C

Figure 20: (R4) Improvement of mixing properties by handling solid inputs separately.

tlow

thigh

thigh

tlow thigh

thigh

? ?

A

B

C
A

B

C

Figure 21: (R5) Improvement of dissolving properties by heating an input.

pt pt pt
? ?A A

Figure 22: (R6) Insertion of a pump unit-op.

thigh

tlow

thigh

tlow? ?

?

tlow

tlow

A

B

C

A

B

C

Figure 23: (R7) Improvement of mixing properties by handling inputs of different tempera-
tures separately.

thigh

tmed

tmed

tmed

thigh

?
?

A

B

A

B

Figure 24: (R8) Improvement of dissolving properties by cooling an input.

Now, rules (R1) through (R8) are used to derive the initial symbol, which process is
shown in Figure 25. The initial graph is the first graph in the derivation chain.

Note that at certain points creative steps, which correspond to the backward execution of
destructive rules (such as (R1)), have to be taken in order to be able to perform other reduction
steps.

4.3 Behavior Analysis by Simulation

In the previous section the feasibility of the design’s structure was checked. This fact, how-
ever, does not imply a functional design—it only means that the structure is feasible and that

23

tlow

tlow

thigh

tmedium

tmedium

tmedium

R1

tlow

?
tlow

thigh

tmedium

tmedium

tmedium tmedium

R2 ?

tlow

tlow

thigh

tmedium

tmedium

tmedium

R8 ?

tlow

tlow

thigh

tmedium

tmedium

R1

?tlow

tlow

thigh

tmedium

tmedium

R3 ?

?tlow

tlow

thigh

tmedium
R7 ?

thigh

tmedium

tlow

tlow

?

Figure 25: Derivation of the initial symbol.

it may belong to a functional design. It is not even guaranteed that this structure is suitable
to solve the task at hand.

Thus, another procedure that goes a step further is necessary to decide on a design’s
functionality: simulation. Now, the feasible structure is enriched with further information
pertaining to the chosen devices and involved substances, i. e., we move our focus to the
underlying model. At this level, a reliable statement concerning a design’s functionality can
be derived.

Before our simulation approach is presented, we shortly describe the traditional simula-
tion approaches followed by other systems and compare them to our situation.

24

4.3.1 Classical Simulation

Existing systems, as described in [Marquardt, 1996], have in common that they somehow
produce a mathematical model—the underlying model—of the system to be simulated.
Then, this mathematical model is transformed into input for a numerical algorithm, which
tries to solve the equations.

The generation of the mathematical model is done either manually, as in equation-
oriented systems, or partially automatically, as in block-oriented systems. In either way the
plant design is decomposed into its parts, for which mathematical relations are given, and
these mathematical relations are connected to each other, providing a model at which level
the plant is simulated. Figure 26 illustrates this process.

Analysis by

Graph Grammars

Analysis by

Simulation

Design

Evaluatio
n

Synthesi
s

(Repair/Optimization)

Synthesis by

Graph Grammars

Device

Decomposition

Model

Synthesi
s

Model

Simulatio
n

Figure 26: Steps belonging to simulation of a system.

These steps can be described in the following way:

• Device Decomposition. This step encompasses the retrieval of the mathematical relations
describing the physical properties belonging to the separate devices. At this stage these
mathematical relations are collected independently and not coupled in any manner.

• Model Synthesis. The mathematical relations collected in the previous step are coupled
to form a model describing the system at hand. This step corresponds to a nontrivial
process that requires, depending on the modeling depth, a large degree of domain
knowledge.

• Model Simulation. Within this phase the equation system derived in the last step is
solved, yielding results that have to be evaluated in order to decide on the plant’s
functionality or any necessary corrections.

4.3.2 Qualitative Simulation

The underlying model of our approach, in contrast to the structure generated by the graph
grammar, is not abstract, but closer to the physical level. This means that at this level we no
longer deal with simplified substance properties or abstract device families, but with crisp
substance values and concrete device parameters. However, we still restrain ourselves from

25

actually working at the physical level, which implies dealing with differential equations, nu-
merical algorithms etc. like the traditional approaches. For our approach the steps belonging
to the simulation phase could be described as follows:

• Device Decomposition. This step consists of the transition from the abstract level to the
concrete parameter level. Every abstract device representation is enriched with the con-
crete parameters, transforming it into a concrete device. As in the case of traditional
systems, this is an information retrieval step.

• Model Synthesis. In contrast to the model synthesis of traditional systems, we take the
design’s structure as a basis to combine the concrete devices.

• Model Simulation. Instead of solving complex mathematical equations, model simula-
tion here consists of the execution of functions representing the different transforma-
tions performed by the devices and the propagation of these results throughout the
structure.

Remarks. In contrast to most traditional approaches, we work solely at the device level. Put
in other words, we regard devices as atomic and do not perform any further decomposition,
i. e., devices are not broken down into components that do not represent or perform any
essential function.

Remarks. Note that within the domain of chemical engineering a mathematical model of
a plant design may not exist at all—some aspects still lack a mathematical model and are
regarded as black boxes. Since our simulation approach works at a higher level, usable results
may still be produced.

4.3.3 Complexity of Design Evaluation

As argued in section 5.3, the graphs generated by our approach are topologically restricted—
they lack cycles, are directed, and generated by means of mostly context-free rules. Thus, the
time complexity to simulate a generated design is linear in the number of nodes, since a
topological search is sufficient to visit all nodes in the appropriate order.

Taking the computational effort for the simulation of a device into account, the total com-
putational effort amounts to O(n · D), where D is the maximum effort necessary to simulate
a device.

5 Synthesizing Systems

In section 3 we presented a brief introduction to graph grammars, which, depending on their
type, provide the necessary mechanisms to solve various design tasks, which are depicted
in Figure 27. Now we give an overview of the synthesis approach, which pursues the goal
of generating a system from scratch.

Remarks. Note that by synthesis we mean the generation of designs, including structure def-
inition, choice of abstract devices and model synthesis. Due to model simplification, such a

26

Analysis by
Graph Grammars

Analysis by
Simulation

Synthesis
(Repair/Optimization)

Synthesis by
Graph Grammars

Evaluation

Figure 27: The design cycle.

generated design may not fulfill the demands properly, making some repair or optimization
steps necessary. Repair and optimization, although implying synthesis steps, are not dealt
with here, but in chapter 6. A more in-depth view on this topic can be found in [Stein, 2001].

5.1 Structure Synthesis by Graph Grammars

In section 2.2 we described the part of the design process that is responsible for structure
generation, and in section 2.3 the generation of the underlying model was addressed, to-
gether with some other topics such as optimization. Here we concentrate on the structure
synthesis, i. e., we care only for the graph grammar related part of the synthesis process.

The synthesis of a chemical plant structure is, as mentioned previously, based on the
given input and the desired output. Thus, the generation process begins with an abstract
design represented by a single nonterminal node to which edges describing the given inputs
and the desired output are connected. The simple algorithm described below reflects this
idea.

boolean GENERATE(DESIGN graph, DESIGNGRAPHGRAMMAR G)
(1) {
(2) DESIGN d;
(3) boolean done := false;
(4) boolean more_derivations := true;
(5) while (not done and more_derivations) do

(6) d := graph;
(7) more_derivations := APPLYNEWRULESEQUENCE(G , d);
(8) if (TASKSOLVED(d)) then
(9) done := true;

(10) fi

(11) od

(12) return done;
(13) }

The procedure APPLYNEWRULESEQUENCE applies graph transformation rules repeat-
edly to the given design until it reaches a terminal state. The design d then represents a chem-
ical plant proposal that has to be verified by means of the function TASKSOLVED. Besides
changing the design, the procedure APPLYNEWRULESEQUENCE returns a boolean value sig-

27

naling the existence of a further derivation. Each call to APPLYNEWRULESEQUENCE yields
a new derivation, if available.

5.2 Caramel Syrup Example Reviewed

In section 2 we described the design procedure for a caramel syrup process and presented
a solution to this problem from the point of view of an engineer. Now, we will use a graph
grammar to attain the same goal. For this purpose, the graph rules depicted by Figures 17 –
22 in section 4.2 are given. Finally, Figure 28 shows a derivation that produces a feasible
design.

?

Starch
syrup

Water

Sugar

Caramel
syrup

R4

Starch
syrup

Water

Sugar

?

?
Caramel

syrup

Starch
syrup

Water

Sugar

Caramel
syrup

Starch
syrup

Water

Sugar

?
Caramel

syrup

Starch
syrup

Water

Sugar

?
Caramel

syrup

Starch
syrup

Water

Sugar

?
Caramel
syrup

Starch
syrup

Water

Sugar

?

?
Caramel

syrup
R5

R2, R1

R6

R5

R3, R1

Figure 28: Derivation of the caramel plant design.

In general there will be a series of rules that apply for a given situation (i. e., sentential
form), leading to different solutions of varying quality and cost. Thus, the generation pro-
cess can be viewed as a tree containing derivations for all possible alternatives, as shown in
Figure 29. Note that the graph grammar derivation of Figure 28 corresponds to one branch
of this tree.

28

Cost: 120

Cost: 140

Cost: 90

...

...

...

?

Figure 29: Search tree for the optimization of the design generation process.

Finally, the structure generated is completed into a design by adding the information
from the underlying model to the abstract layer. At this point, the synthesis process is fin-
ished. Subsequent simulation and evaluation steps decide if the proposed design fulfills the
demands adequately or if it requires some adjustments to do so.

5.3 Graph Topology Restrictions

In practice, plants often combine various chemical processes within one single “chain” pro-
ducing one main product and a series of by-products. This means that the topology repre-
sents at least a directed acyclic graph, which can only be generated by a context-dependent
graph grammar. However, such grammars imply exponential time complexity, as rules may
have more than one nonterminal on the left-hand side (subgraph matching problem, see
[Garey and Johnson, 1997]). In order to avoid this drawback, we restrict—as far as possible—
the set of graph production rules to context-free rules, which generate a graph in polynomial
time [Brandenburg, 1994].

Another restriction that has already been discussed in section 2.1 is enforced by avoiding
cycles within a design. Cycles not only hinder an efficient graph grammar processing, but
also make simulation more complicated. Through aggregation of cycles the expected time
complexity can be substantially reduced.

These restrictions have far-reaching implications for both system synthesis steps. On the
one hand they guarantee a better performance due the simplifications imposed by the re-
strictions, and on the other hand they rule out certain complex structures and more exact
simulation results.

29

6 Design Language

Design repair or optimization is necessary in many cases: Design generation typically pro-
duces, due to the simplifications applied to the model, faulty designs requiring some adjust-
ments to become feasible; simulation of manually created designs often reveals deficiencies
that must be overcome by means of repair operations; and in some situations designs of
technical systems may be optimized to reach higher efficiency and lower costs. A design
language in which repair and optimization knowledge is formulated can easily tackle these
problems. Figure 30 shows the areas of the design cycle affected by repair and optimization
by means of a design language.

Analysis by
Graph Grammars

Analysis by
Simulation

Synthesis
(Repair/Optimization)

Synthesis by
Graph Grammars

Evaluation

Figure 30: The design cycle.

At this point we only show the requirements that a design language has to fulfill, and
refrain from presenting a concrete language specification. Additionally, we address some
enhancements to the graphical representation of the design graph grammar.

6.1 Requirements

In this section we address some issues that arise within the context of a design language
for repair and optimization of technical systems: the types of possible modifications that are
available and the search for appropriate modification application contexts.

6.1.1 Modification Types

As stated above, the design language shall provide means to formulate repair and optimiza-
tion transformations, which are only needed if some type of fault or insufficiency is detected.
Hence, the most important construct of the design language will be of the form observation
→ adjustment, or, put in other words, symptom → remedy, i. e., rules compose the main part
of the design language.

There are different types of modifications for different types of symptoms [Stein and Vier,
1998], which differ in their gravity and range of context:

• Local modifications. Local modifications are component-based, i. e., they apply changes
to a single component, modifying its behavior, and ignore the component’s neighbor-
hood. We differentiate between the following two local modification types:

30

– Parameter modification. This type of modification corresponds to a simple change
of a parameter setting, like increasing the power throughput or changing the di-
mensions of the vessel of a mixer.

– Characteristics modification. This type of modification is more radical in nature and
corresponds to a replacement of a device with another, more fitting device. This
modification is only necessary if a parameter modification fails to correct the prob-
lem.

• Global modifications. Global modifications are related to non-locatable symptoms, i. e.,
symptoms that are not bound to a specific component but to the system as a whole.
These modifications require changes to the system topology by means of addition,
deletion or reordering of components. Note that such a modification may correspond
to a change of characteristics (local modification due to a non-locatable fault).

6.1.2 Modification Location

The most important issue concerning design repair and optimization is, as observed in
[Stein and Vier, 1998], determining where a modification is to occur. Obviously, the diffi-
culty to find the modification location depends on the symptom detected—if the fault is
component-based, then the location is known; if the fault is non-locatable, then the location
for the modification must be searched.

Stein and Vier introduce the notion of location specifiers for their design language
[Stein and Vier, 1998]. A similar mechanism is also required for our design language, but,
instead of adding a new concept to our approach, we resort once again to graph grammars.
To this avail, we allow the formulation of repair rules as tuples of the form “(Fault Candidate,
Modification, Additional Actions)”, where

• fault candidate is the location description of a possible modification site and represents
the left-hand side of a rule,

• modification describes the change to be applied and represents the right-hand side of a
rule, or may be empty, i. e., nothing is changed,

• and additional actions are low level—or domain specific—actions to be performed to-
gether with the graph transformation and are required for parameter settings etc. This
mechanism is required to manipulate the underlying model of the design.

Now, instead of performing a search for the fault candidates within the faulty design, the
graph grammar’s rule-based behavior is exploited. For every symptom a set of remedy rules
is built and activated—the search is then performed by the rule processing engine. After one
rule has fired, the design has to be simulated once again in order to check if the problem has
been solved; if the fault persists or another fault emerges, then the process is reiterated.

31

6.2 Semantics of Graphical Representation

The graph grammar model introduced in chapter 3 is actually perfectly suited for any con-
ceivable transformation necessary within the scope of design generation, system analysis
or design repair and optimization. However, the classical graphical representation of graph
transformation rules is not able to reflect the use of some special features of design graph
grammars. Additionally, we introduce some graphical features that aim at a better under-
standing of the rules.

One such aspect pertains to the edges incident to a target node. In many cases only a
subset of the incident edges is of interest, the remaining edges are irrelevant. By means of the
embedding instructions one can ascertain that these irrelevant edges are restored; however,
this is not visible within the graphical representation used so far. Thus, we introduce a new
graphical representation for such cases: A dotted edge represents any number of edges that
may exist beyond the ones specified explicitly. For readability purposes, the rule designer
may also add labels to such edges, such as 0..n or s1, . . . , sm; these labels do not have any
further meaning.

Apart from the dotted edges described above, we also allow the graphical representation
of labeled “dangling edges” when appropriate. These edges do not interfere with the match-
ing process and are only relevant for the embedding step. The purpose of this “feature” is to
improve readability and stress the importance of these edges for the embedding process. In
most cases we will refrain from drawing labeled dangling edges.

Another aspect that has not been addressed yet is the edge label complexity allowed.
Within our approach, edge labels correspond to abstract substance properties, such as vhtl

which means “viscosity high and temperature low”. Depending on the number of properties
a label has to encompass, a large number of combinations may be the result. Thus, we allow
rule edges to match host graph edges whose labels are subsumed by the rule edge labels.

Figure 31 illustrates the use of template edges and label subsumption.

cold-solid

hot-liquid

warm-liquid

solid

liquid

liquid

liquid

solid

liquid

solid

liquid

Figure 31: Rule with two possible matches.

Finally, we allow the use of different node representations. In general, nodes are depicted
by circles, and their labels are placed outside the circle. Although this representation is suf-
ficient for our needs, the use of specific graphical symbols representing devices of a concrete
domain is acceptable; in fact, such graphical symbols correspond to a combined representa-

32

tion of nodes together with their type defining labels. Note that we also allow the mixed use
of graphical representations.

6.3 Caramel Syrup Example Reviewed Again

We now take a further look at the caramel syrup example, whereas emphasis is now laid on
the synthesis-simulation-evaluation cycle and not on one step alone. For the sake of simplicity,
we assume there is only a single fault that has to be corrected, limiting the number of cycle
iterations to one.

The design steps undertaken for the solution of the caramel syrup task are4:

1. Demands. Instead of using relative mass values, as in section 2.2, we now give concrete
amounts: 15kg sugar, 45l water and 40l starch syrup.

2. Synthesis. The synthesis consists of the generation of a structure, based on the given
demands, and the enhancement thereof with concrete device data, which represents
the underlying model.

(a) Structure generation.

Structure
Generation

Starch
syrup

Water

Sugar

Caramel
syrup

sstl

sftlvl

sftlvm

sfth

Starch
syrup

Water

Sugar

Caramel
syrupsstl

sftlvl

sftlvm

sfthvm

sfthvm sfthvm

sfthvl sfthvl sfthvm sfthvm

?

Figure 32: Generation of the caramel syrup design structure.

Figure 32 shows the structure resulting from the generation process. Note that
during the generation process label items may be appended to an existing label,
and that the opposite does not occur.

(b) Behavior model generation.

Figure 33 shows the generated structure together with an excerpt of the underly-
ing model.

3. Simulation. Now, substance and mixture values and the results of the functions per-
formed by the devices are propagated throughout the design structure, as shown in
Figure 34.

4The edge labels are: t for “temperature”, v for “viscosity”, and s for “state”. The subscripts are qualifiers and
mean: s for “solid”, f for “fluid”, g for “gas”, l for “low”, m for “medium”, and h for “high”.

33

Starch
syrup

Water

Sugar

Caramel
syrup

[0-50C]

[0-50C]

45l

40l

15kg

[0-0.5 m3/h]

[0-0.5 m3/h] Propeller

Propeller

[0-0.5 m3/h]

100l

Figure 33: Caramel syrup design structure with underlying model information.

Starch
syrup

Water

Sugar

Caramel
syrup

[0-50C]

[0-50C]

40l

15kg

[0-0.5 m3/h]

[0-0.5 m3/h]

[0-0.5 m3/h]

20C

20C

70C

70C

70C, ≤
0.2Pas

70C, ≤
0.001Pas

Propeller
≈
 65-70C
≈
 4Pas

Propeller
75% Solution
≈
 60-70C
≈
 30Pas

100l
≈
 65-70C
≈
 4Pas

45l

Figure 34: Simulation of the caramel syrup design: propagation of properties and values.

4. Evaluation. The results of the simulation and the task requirements are compared to
determine if the actual design fulfills the demands adequately. The first (and in our case
only) observation is that the output, as produced by our design, is not hot enough—the
required output temperate was 110°C, i. e., the output needs to be heated by at least
45°C. The following repair actions compose the actual choice list for this situation:

• Increase the power of one or more heat transfer units (parameter modification).

• Replace one or more heat transfer units with more powerful devices; alternatively,
replace an agitator with one containing a built-in heat transfer device (characteris-
tics modification).

• Insert an additional heat transfer unit to the design (global modification).

In the present case a parameter modification is not possible, since the heat transfer
units are already working at maximum power (∆t =50°C). The next simplest change
would be the replacement of a device—we choose to use an agitator with a built-in
heat transfer unit, as shown in Figure 35.

If a repair step was necessary, then the process continues with the simulation step,
otherwise the design is considered feasible and the design cycle is interrupted here.

34

Starch
syrup

Water

Sugar

Caramel
syrup

[0-50C]

[0-50C]
45l

40l

15kg

[0-0.5 m3/h]

[0-0.5 m3/h]

[0-0.5 m3/h]

20C

20C

70C

70C

70C, ≤
0.2Pas

70C, ≤
0.001Pas

Propeller
75% Solution
≈
 60-70C
≈
 30Pas

100l
≤
 110C
≈
 4Pas

Propeller
Range: [0-50C]
≤
 110C
≈
 4Pas

Figure 35: Repaired caramel syrup design showing values after simulation.

7 Theoretical Considerations of Design Graph Grammars

The development and use of design graph grammars (DGGs) is connected to various the-
oretical issues, which are addressed in this section. Firstly, the relationship of design graph
grammars to the classical graph grammars is examined. Secondly, graph-theoretical issues
concerning both graph grammars in general and the application to technical systems design
are presented.

7.1 Relationship Between Classical Graph Grammars and Design Graph Gram-
mars

An important question pertains to the justification of the development of design graph gram-
mars, which represent a further graph transformation formalism amidst other existing graph
grammar concepts. In the following we describe the two general approaches to graph trans-
formation along with their most prominent graph grammar representants and point out
their advantages and disadvantages. Some attention is also paid to hybrid concepts, which
try to combine the aforementioned approaches. We then compare design graph grammars
with the classical graph grammars and establish their relationship.

7.1.1 The Connecting Approach

The connecting approach is a node-centered concept that aims at the replacement of nodes
or subgraphs by graphs. The item to be replaced is deleted along with all incident edges,
and the replacement graph is embedded into the host graph by connecting both with new
edges. These new edges are constructed by means of some mechanism that specifies the
embedding.

In the literature graph grammars are often distinguished by the size of the left-hand sides
of rules, leading to two approaches of inherently different complexity: node replacement

35

and graph replacement graph grammars, called node-based and graph-based, respectively.
Additionally, each of these two approaches is divided into context-free and context-sensitive
subclasses.

Several graph grammars follow the connecting approach. According to
[Engelfriet and Rozenberg, 1997], the most well-known node replacement graph gram-
mar families are the node label controlled (NLC) and the neighborhood controlled embedding
(NCE) graph grammars, whose node-based versions we describe in the following.

NLC Graph Grammars

Node label controlled graph grammars represent a very simple node replacement mecha-
nism used to perform graph transformations on undirected node-labeled graphs. A graph
transformation step is based merely on node labels, i. e., there are no application conditions
or contexts to be matched. The embedding is determined by a set of embedding instructions
shared by all graph transformation rules. The following definition resembling the one of
[Engelfriet and Rozenberg, 1997] introduces NLC grammars formally5.

Definition 7 (NLC Graph Grammar)

A NLC graph grammar is a tuple G = 〈Σ, P, I, s〉 with

• Σ is the set of nonterminal and terminal labels,

• P is the finite set of graph transformation rules or productions of the form t → R, where t ∈ Σ

and R is a labeled graph,

• I is an embedding relation, and

• s is the initial symbol.

The embedding relation is a binary relation over Σ. Each embedding instruction (h, r) states that
the embedding process should create an edge connecting each node of the replacement graph labeled r
with each node of the host graph labeled h that is a neighbor of the target node.

Remarks. The domain of technical systems imposes a series of requirements, of which some
cannot be met by NLC grammars due to weaknesses of this mechanism:

1. There is no way to specify a context. Therefore, it is not possible to distinguish between
different situations related to one single item.

2. There is no way to distinguish between individual nodes in the replacement graph,
since the embedding mechanism relies solely on labels.

5In the literature it is usually distinguished between different label alphabets. For the sake of simplicity, we
use one single alphabet including all necessary label types.

36

NCE Graph Grammars

Neighborhood controlled embedding graph grammars represent a more sophisticated node
replacement mechanism6 used to perform graph transformations on directed or undirected
labeled graphs7. A graph transformation step is based on node labels and edge labels,
thus providing further discerning power. The embedding is determined by a set of em-
bedding instructions belonging to each graph transformation rule. The following definition
[Engelfriet and Rozenberg, 1997] introduces NCE grammars formally.

Definition 8 (NCE Graph Grammar)

An NCE graph grammar is a tuple G = 〈Σ, P, s〉 with

• Σ is the alphabet of node and edge labels, and includes terminal and nonterminal labels,

• P is the finite set of productions, and

• s is the initial symbol.

The productions of the set P are tuples of the form t → 〈R, I〉 with

• t ∈ Σ is the label belonging to a node v in the host graph,

• R = 〈VR, ER,σR〉 is the non-empty replacement graph,

• I is the set of embedding instructions for the replacement graph R and consists of tuples
(h, e/ f , r), where

– h ∈ Σ is a node label and e ∈ Σ is an edge label in the host graph,

– f ∈ Σ is another edge label,

– and r ∈ VR is a node of the replacement graph.

An embedding rule (h, e/ f , r) has the same meaning as in definition 5, where it is written as
((h, t, e), (h, r, f)).

Despite their superiority over NLC graph grammars, NCE graph grammars do not cope
either with the requirements of the tasks of the domain of technical systems:

1. The mechanism for context specification is weak, since a context is restricted to incident
edges.

2. Contexts cannot be specified explicitly; they are formulated within the embedding in-
structions. Such contexts cannot provide any means of rule application control.

Again, these drawbacks of the NCE graph grammar mechanism lead to the conclusion
that this concept is not powerful enough to tackle design tasks in the domain of technical
systems. Compared to the NLC approach, though, the NCE approach is more powerful.

6NCE grammars are an extension of NLC grammars.
7In the literature on the subject, NCE grammars with and without edge labels and edge directions are distin-

guished by the prefixes “e” (for edge labels) and “d”(for directed edges) added to the NCE acronym. Thus, there
are NCE, eNCE, dNCE and edNCE graph grammars. For the sake of simplicity, we omit these prefixes.

37

7.1.2 The Gluing Approach

The gluing approach is an edge-centered concept that aims at the replacement of hyper-
edges or hypergraphs by hypergraphs. Each hyperedge or hypergraph possesses a series of
attachment nodes which represent the interfaces to the outer world. Within a replacement
step, the item to be replaced is deleted from the host hypergraph with exception of the at-
tachment nodes, which are at the same time external nodes of the host hypergraph, and the
new hypergraph is embedded in its place by unifying (gluing) its attachment nodes with the
external nodes.

As in the connecting approach case, there also exist several hypergraph grammar types
following the gluing approach. The most well-known family is called hyperedge replacement
(HR) grammar.

HR Grammars

Similarly to the connecting approach case, where node-based and graph-based grammars
are distinguished, we distinguish between hyperedge-based and hypergraph-based HR
grammars. Hyperedge-based HR grammars are defined as in [Drewes et al., 1997].

Definition 9 (Hyperedge Replacement Grammar)

A hyperedge replacement grammar is a tuple G = 〈Σ, P, s〉 where

• Σ is the set of terminal and nonterminal labels8,

• P is a finite set of productions over Σ, each of which has the form T → R, where T is a hyperedge
label and R is the replacement hypergraph,

• and s ∈ Σ is the initial symbol.

Remarks. HR grammars are intrinsically context-free, since the item of the left-hand side of
a rule is completely deleted and replaced by the hypergraph of the right-hand side. In order
to introduce matching-level context—a context that serves as an application condition—into
this concept one would have either to extend HR grammars or to integrate the context into
the target hyperedge or hypergraph. This means that the context would have to be deleted
and restored by means of the replacement hypergraph.

Hyperedge replacement grammars are not powerful enough for the design tasks envi-
sioned. The following weaknesses hinder the use of this concept:

• HR grammars lack the concept of matching-level context. This fact implies that a re-
quired context has to be integrated within the target and replacement hypergraphs.

• HR grammars are weaker than the NCE grammars of the connecting approach in their
expressiveness (see [Engelfriet and Rozenberg, 1997], page 4).

8Only the hyperedges are labeled in HR grammars.

38

7.1.3 Hybrid Approaches

Apart from design graph grammars there exist other hybrid approaches in the literature. In
[Courcelle et al., 1993] the authors present another hybrid graph grammar, the handle hyper-
graph grammar. This hybrid graph grammar, as the name already implies, is based on the hy-
peredge replacement approach and has some node replacement features. A similar approach
that has a simpler rewriting mechanism is the HR grammar with eNCE rewriting, presented
in [Kim and Jeong, 1996]. Another hybrid approach, the hypergraph NCE graph grammar, is
introduced in [Klempien-Hinrichs, 1996]. This concept is based on the node replacement ap-
proach. In the following we briefly describe these approaches and address their usability for
design purposes.

Handle Hypergraph Grammars

Handle hypergraph (HH) grammars rewrite handles. A handle is an edge (or hyper-
edge) together with all of its nodes. Within a hypergraph transformation step a handle is
deleted, including all incident edges; the replacement hypergraph is then embedded into
the host hypergraph by means of embedding instructions based on the connecting approach
[Courcelle et al., 1993, Engelfriet and Rozenberg, 1997].

HH grammars have a simpler embedding mechanism than traditional node replacement
graph grammars, since the deleted edges incident to the handle do not have to be distin-
guished but only restored; therefore, there is no edge relabeling. On the other hand, a handle
is the smallest item that can be replaced; this means that rules have to match and delete at
least one edge and two nodes (excluding incident edges from the host hypergraph), whereas
in the design graph grammar approach the smallest item is a single node, which seems more
flexible. Since the domain of technical systems requires a node centered mechanism and due
to the above disadvantages, we conclude that this concept does not meet our requirements.

Hypergraph Replacement with eNCE Rewriting

Hypergraph replacement grammars with an eNCE way of rewriting (HRNCE) are handle-
rewriting grammars like the HH grammars described above. HRNCE grammars possess a
simple structure and are as easy to use as NLC grammars, but are still powerful in terms of
expressiveness [Kim and Jeong, 1996].

Again, the design tasks imposed by the domain of technical systems require a node cen-
tered concept, and, although HRNCE grammars represent a powerful manipulation mecha-
nism, they share the same disadvantages with the HH grammars. Thus, HRNCE grammars
are not fitting for our purposes.

Hyperedge Neighborhood Controlled Embedding Graph Grammars

Hyperedge NCE (hNCE) graph grammars generalize classical NCE grammars by extending
the traditional approach to handle hyperedges instead of ordinary edges. The necessity for

39

this enhanced NCE grammar arises from the need to perform special hypergraph transfor-
mations, which cannot be expressed by hyperedge or handle rewriting in hypergraphs or by
node replacement in bipartite graphs, on Petri nets [Klempien-Hinrichs, 1996].

Basically, an hNCE grammar works exactly like an NCE grammar: A nonterminal target
node, together with all incident hyperedges, is deleted. Then, the replacement hypergraph
is embedded into the host graph by adding hyperedges that are created in compliance with
the embedding instructions. hNCE grammars can generate the same graph languages gen-
erated by HR grammars, and, according to the author of [Klempien-Hinrichs, 1996], hNCE
grammars are assumed to have at least the same generative power as S-HH grammars9.

hNCE grammars, although apparently versatile and powerful in terms of expressiveness,
only extend the NCE concept to hyperedges and hypergraphs. This additional functionality
is not required for the tasks of the domain of technical systems, and only adds further over-
head, since the use of hyperedges and hypergraphs make the formulation of graph transfor-
mation rules cumbersome. Thus, this concept is not adequate for our needs.

7.1.4 Design Graph Grammars

As seen in the previous sections, neither classical node replacement graph grammars nor hy-
peredge replacement grammars provide sufficient expressive power for design tasks in the
domain of technical systems; even the powerful hybrid approaches proved to be inadequate
for our needs. Design graph grammars, on the other hand, encompass the benefits of the
connecting and gluing approaches:

• Context/Matching. Precise matching through explicit context (HR)

• Replacement paradigm. Concise formulation of node-based graph transformation rules
(NLC/NCE)

• Embedding. Access to individual nodes of the replacement graph (NCE)

Furthermore, design graph grammars add some features of their own:

• Embedding.

– Extended replacement graph formulation

– Enhanced embedding instructions

– Flexible rule formulation by means of variable labels

• Matching. Distinction between classical and strict degree matchings

Remarks. Design graph grammars represent a hybrid approach combining the strengths
of node replacement and hyperedge replacement grammars while overcoming their weak-
nesses. The core of the design graph grammar approach is node replacement based, though.

40

NCE

HR

DGG

+ Context by context graph

+ Empty replacement graph

+ Links between cut nodes + Context by embedding rules

+ Connection by embedding

· Target graph

· Replacement graph

· Graph with labels

· Cut nodes

+ Context by target graph

+ Connection by gluing

+ Graph with hyperedges

Figure 36: Features of the different graph grammar concepts.

Figure 36 shows the relationship of design graph grammars to the classical grammars with
respect to their features.

In the following we present some formal results that establish the relationship between
design graph grammars and the classical graph and hypergraph grammars. Let LClass denote
the set of graph languages L(G) that can be generated by some graph grammar G ∈ Class.

Theorem 1 (LNLC ⊆ LDGG)

Every NLC graph language generated by a node-based NLC graph grammar can be generated by
a node-based, context-free design graph grammar.

Proof. Let an arbitrary NLC grammar G = 〈Σ, P, I, s〉 for an NLC graph language L be given. We
construct a node-based, context-free DGG G ′ = 〈Σ′, P′, s′〉 based on G such that L(G ′) = L.

Obviously, s′ = s and Σ′ = Σ. The set of graph transformation rules P′ is defined as follows. P′

contains a graph transformation rule r′ : t → 〈R, I ′〉 for each r ∈ P with r : t → R. The embedding
instruction set I ′ of each r′ ∈ P′ contains the same embedding instructions as the set I; therefore, the
embedding instruction set of each rule in P′ is identical (in order to simulate the global set I of G).
For each embedding instruction i ∈ I with i = (h, r) there is an embedding instruction i′ ∈ I ′ with
i′ = ((h, t,⊥), (h, v,⊥)), where σR(v) = r. It is clear that L(G ′) = L. ⋄

Theorem 2 (LNCE ⊆ LDGG)

Every NCE graph language generated by a node-based NCE graph grammar can be generated by
a node-based, context-free design graph grammar.

Proof.

Taking an arbitrary NCE grammar G = 〈Σ, P, s〉 for an NCE graph language L as a starting
point, we construct a node-based, context-free DGG G ′ = 〈Σ′, P′, s′〉 whose generated language
L(G ′) = L.

9S-HH grammars are separated HH grammars, i. e., no two nonterminal hyperedges are adjacent in the right-
hand side of hypergraph transformation rules or in the initial symbol or hypergraph.

41

Due to the strong similarity between both concepts, the construction is straightforward. We set
Σ′ = Σ, P′ = P and s′ = s. The graph transformation rules are identical in syntax and semantics
for both concepts; only the syntax of the embedding instructions differ: For each NCE embedding
instruction i ∈ I with i = (h, e/ f , r) there is a DGG embedding instruction i′ ∈ I ′ with i′ =
((h, t, e), (h, r, f)). Obviously, L(G ′) = L ⋄.

Theorem 3 (LHR ⊆ LDGG)

Every HR language generated by a hyperedge-based HR grammar can be generated by a node-
based, context-free design graph grammar, if hypergraphs are interpreted as bipartite graphs.

Proof. According to [Engelfriet and Rozenberg, 1990] and [Engelfriet and Rozenberg, 1997], page
57pp., LBnd−edNCE = LHR. Hence, HR languages generated by HR grammars can be generated by
nonterminal neighbor deterministic boundary edNCE grammars, which in turn can be simulated
by DGGs, since LBnd−edNCE ⊆ LB−edNCE ⊆ LedNCE. Thus, DGGs can generate HR languages and
it follows that LHR ⊆ LDGG. ⋄

Figure 37 summarizes the above statements by illustrating the expressive power of de-
sign graph grammars.

DGG

Design graph

grammar
HR

Hyperedge replacement

graph grammar, (bipartite)

NCE

Neighborhood-controlled

embeddding

Power wrt. languages

that can be generated

Figure 37: The expressive power of design graph grammmars.

7.2 Relationship to Programmed Graph Replacement Systems

Design graph grammars as proposed here shall enable domain experts to formulate design
expertise for various design tasks. Design graph grammars result from the combination of
different features of the classical graph grammar approaches, while special effort has been
spent to keep the underlying formalism as simple as possible.

When comparing design graph grammars to programmed graph replacement systems
(PGRS) one should keep in mind that the former is located at the conceptual level while the

42

latter emphasizes the tool character. PGRS are centered around a complex language allow-
ing for different programming approaches. PROGRES10, for instance, offers declarative and
procedural elements [Schürr, 1989, 1991] for data flow oriented, object oriented, rule-based,
and imperative programming styles. A direct comparison between PROGRES to the concept
of design graph grammars is of restricted use only and must stay at the level of abstract
graph transformation mechanisms.

However, it is useful to relate the concepts of design graph grammars to PGRS under
the viewpoint of operationalization. PGRS are a means—say: one possibility—to realize a
design graph grammar by reproducing its concepts. In this connection PROGRES fulfills
the requirements of design graph grammars for the most part. However, PROGRES lacks
the design graph grammar facilities for the formulation of context, deletion operations, and
matching control, which have to be simulated by means of complex rules. Such a kind of
emulation may be useful as a prototypic implementation, but basically, it misses a major
concern of design graph grammars: Their intended compactness, simplicity, and adaptivity
with respect to a concrete domain or task.

7.3 The Problem of Matching

Matching is a vital part of any rule-based concept. In order for a graph transformation rule to
fire it is necessary that a matching of the left-hand side be found within the host graph. Ad-
ditionally, the embedding process requires that individual nodes be matched so that edges
can be drawn between them.

Matching is already a nontrivial issue in the context-free, graph-based case, as implied
by the subgraph matching problem described in section 7.3.2. The inclusion of context adds
to the complexity of matching, because node-based matchings with context are then compa-
rable to graph-based matchings. With context even the simplest case becomes nontrivial.

The specification of context as a means to restrict the application of a graph transforma-
tion rule to a certain situation is an essential requirement for design purposes. In the follow-
ing the different types of context are examined and the resulting consequences identified.
Then, the subgraph matching problem, a problem also related with context, is described as
well as a measure to diminish its effect. Finally, we address the problem of context within
backward execution of graph transformation rules.

7.3.1 Context and Its Consequences

As stated above, we differentiate between matchings with context and without context. This
leads to the following classification:

1. Node-based matching without context. This type of matching pertains to a single node and
disregards its context completely. Within a graph, a matching of a certain node takes at
the most linear time in the size of the graph.

10We chose PROGRES for illustration purposes only; the line of argument applies to other tools such as PAGG
(see [Schürr, 1997b] for a brief description and further pointers) or Fujaba [Nickel et al., 2000] as well.

43

2. Node-based matching with incident edges. This type of matching yields a single node to-
gether with incident edges, which represent a very small and restricted context. The
search for such a node requires linear time in the size of the graph, if it can be assumed
that node degree is bounded by a constant, which is usually the case.

3. Node-based matching with context graph. A matching of this type includes a node and a
nontrivial context, which size is only bounded by the host graph itself. Thus, the most
expensive matching can be achieved in the node-based case.

4. Graph-based matching without context. Graph-based matchings without context share the
same worst-case complexity as the previous case. In average, though, one can expect
this type of matching to be of a larger scope, and therefore more expensive.

5. Graph-based matching with context graph. This type of matching represents the most dif-
ficult case and shares the same worst-case complexity as the previous matching type.
However, since context has to be matched as well, it is to be expected that this type of
matching behaves worse than the graph-based matching without context in the aver-
age case.

For obvious reasons one should avoid formulating graph transformation rules more com-
plex than case 2. However, in many cases, especially with respect to repair and optimization,
graph transformation rules with nontrivial matchings are required.

7.3.2 The Subgraph Matching Problem

Subgraph matching11 is a widely known NP-complete problem [Garey and Johnson, 1997,
Köbler et al., 1993], and therefore no algorithm implementing a solution to this problem will
run in polynomial time, assuming that NP 6= P.

One can make use of additional information to accelerate the subgraph matching step,
whereas the problem and its complexity remain unchanged. In [Bunke et al., 1991a,b] the
authors describe an efficient graph grammar implementation based on the Rete algorithm
[Forgy, 1982, Forgy and Shepard, 1987] that achieves considerable speedups in the best case.
This same approach can be adapted for our design graph grammar.

Example. Let the following graph rules (actually only the left-hand sides) be given12 as in
Figure 38.

The corresponding Rete network including the activations is depicted by Figure 39.

Remarks. The above example uses context-sensitive rules to illustrate how the Rete network
is compiled. Although the rules of our design graph grammars are primarily context-free,
this approach remains fully applicable within the design analysis context, since graph rules
are to be executed in a backward fashion.

11In the field of graph theory this problem is known as the subgraph isomorphism problem. It should not be
mistaken with the graph isomorphism problem, which lies in NP, but for which it is still open if it is NP-complete
[Garey and Johnson, 1997, Arvind et al., 1998, Köbler et al., 1993, Mehlhorn, 1984].

12This example is a slightly modified version of the example found in [Bunke et al., 1991a].

44

A B

C

A ::= ...R1:

BA ::= ...R2:

CBA ::= ...R3:

CBA ::= ...R4:

1 2

3

Figure 38: Graph rule left-hand sides and a sample graph.

A B C

Root

A B B C C A

A B C

A B C

R1 R2 R3 R4

(1)

(1,2) (3,1)(2,3)

(1,2), (2,3)

(1,2) (1,2), (2,3)

(1,2), (2,3),
(3,1)

(1,2), (2,3),
(3,1)

Figure 39: The compiled Rete network for the example of Figure 38.

Remarks. Figure 39 clearly shows that the Rete network is a compact structure considering
all partial and total matches. The ability to combine partial matches to handle multiple rule
activations is the decisive factor here and accounts for the performance gain reached through
the use of this concept, which trades space for time.

7.3.3 Context within Backward Execution

As seen in section 4, the structural analysis of designs is done by means of graph transfor-
mation rules executed in a backward fashion. A graph transformation rule 〈T, C〉 → 〈R, I〉
is interpreted as 〈R, I〉 → 〈T, C〉, i. e., the replacement graph R represents the new target
graph, the target graph T represents the new replacement graph, and the context graph C
specifies the embedding explicitly. The embedding instructions I play the role of the new
context—this fact gives rise to some issues that are addressed here.

Firstly, a context may be omitted, i. e., the graph transformation rule is context-free. A
backward execution of such a graph transformation rule leads to the question of how to
deal with the embedding instructions: Either they are used solely for connection purposes

45

and not as a context specification (context-free backward execution), or they are used for
connection and context purposes (context-sensitive backward execution).

Secondly, embedding instructions lack the exactness of a true context graph, since they
only represent rules that specify embeddings—if there is no applicable situation, then an
embedding instruction is ignored. Thus, different “contexts” may be matched by the em-
bedding instructions.

7.4 Foundations of Derivations and Membership

This section is dedicated to the basic properties of design graph grammars, which allow
a classification of design graph grammars into different subclasses with certain properties.
Furthermore, special restrictions that lead to interesting and promising results related to the
membership problem are addressed.

7.4.1 Basic Properties

There are a series of basic properties of graph grammars that can be examined, but the prob-
ably most important property is confluence. Confluence has far-reaching consequences, since
many NP- or PSPACE-complete problems related to graph grammars that have this prop-
erty, such as the membership problem, can be solved in (nondeterministic) polynomial time
(depending on other properties as well). However, before we proceed with the definition of
confluence, we provide some other basic notions.

Lemma 1 (Associativity of Design Graph Grammars)

Let G = 〈Σ, P, s〉 be a design graph grammar, with T1 → 〈R1, I1〉 and T2 → 〈R2, I2〉 graph
transformation rules thereof, and H a host graph. Let R1 have a matching of T2. Then

H[T1|R1][T2|R2] = H[T1|R1[T2|R2]]

.

The following definition of confluence is based on [Engelfriet and Rozenberg, 1997].

Definition 10 (Confluence)

A context-free design graph grammar G = 〈Σ, P, s〉 is confluent, if for every pair of rules T1 →
〈R1, I1〉 and T2 → 〈R2, I2〉 with Ri contains a matching of T3−i for i ∈ {1, 2}, and for any arbitrary
host graph H containing matchings of T1 and T2, the following equality holds:

H[T1|R1][T2|R2] = H[T2|R2][T1|R1]

Put in other words, a design graph grammar is confluent if the order of rule application is irrele-
vant.

The following definition of confluence (based on the definition of confluence for edNCE
grammars in [Engelfriet and Rozenberg, 1997]) is more detailed and makes an a-priori state-
ment possible.

46

Definition 11 (Confluence 2)

A context-free design graph grammar G = 〈Σ, P, s〉 is confluent, if for all graph transformation
rules T1 → 〈R1, I1〉 and T2 → 〈R2, I2〉 in P, all nodes x1 ∈ VR1

, x2 ∈ VR2
, and all edges labels

α, δ ∈ Σ, the following equivalence holds:

∃β ∈ Σ : ((t2, t1,α), (t2, x1, β)) ∈ I1 and ((σ(x1), t2, β), (σ(x1), x2, δ)) ∈ I2

⇔

∃γ ∈ Σ : ((t1, t2,α), (t1, x2, γ)) ∈ I2 and ((σ(x2), t1, γ), (σ(x2), x1, δ)) ∈ I1

Remarks. The above definition allows for an algorithmic confluence test of context-free de-
sign graph grammars. Furthermore, confluence can only be guaranteed for constructive
transformations; thus, the presence of destructive graph transformation rules makes a con-
fluence statement improbable.

Theorem 4 (Context-free Design Graph Grammars and Confluence)

Context-free design graph grammars are not inherently confluent.

Proof. Let G = 〈Σ, P, s〉 be a context-free design graph grammar and H = 〈{v}, ∅, {(v, t1)}〉 a host
graph. Let r1, r2 ∈ P be two graph transformation rules as follows:

r1: t1 → 〈R1, I1〉 with R1 = ∅ and I1 = ∅

r2: t1 → 〈R2, I2〉 with R2 = 〈{v1, v2}, {(v1, v2)}, {(v1 , t1), (v2, t2), ({v1, v2}, e)}〉 and I2 = ∅

With these two rules the following derivations are possible:

1. H ⇒r1
H1 = ∅

2. H ⇒r2
H2 ⇒r1

H21 = 〈{v2}, ∅, {(v2 , t2)}〉

Since H1 6= H21, G is not confluent. ⋄

7.4.2 Special Restrictions for Membership Test

As hinted previously, the confluence property leads to positive results and is therefore de-
sirable. In this section two possible restrictions to general design graph grammars are pre-
sented, each of which implies confluence or even stronger properties.

Leftmost Derivation

Leftmost derivations of design graph grammars are achieved by imposing a linear order
on the nodes of the right-hand sides of the graph rules—this is necessary since there is no
natural linear order as in the case of string grammars. The following definitions and results
are based on [Engelfriet and Rozenberg, 1997].

47

Definition 12 (Ordered Graph)

A graph G = 〈VG, EG,σG〉 is an ordered graph, if there is a linear order (v1, . . . , vn) with vi ∈
VG for 1 ≤ i ≤ n and |VG| = n.

The embedding of graphs preserves the imposed order: Let G and H be disjoint ordered
graphs and linear orders (v1, . . . , vG) and (w1, . . . , wH), respectively. Let v = vi be the node
of the host graph G that is to be substituted; then, the order of the substitution G[v/H] is ob-
tained by replacing vi in the order of G with the order of H, i. e., the order of the substitution
is (v1, . . . , vi−1, w1, . . . , wH, vi+1, . . . , vG).

Definition 13 (Leftmost Derivation)

Let G be a design graph grammar. For an ordered graph H, a derivation step H ⇒v,p H′ of G is
a leftmost derivation step if v is the first nonterminal node in the order of H (p represents here the
graph transformation rule used). A derivation is leftmost if all its steps are leftmost.

The graph language leftmost generated by G is denoted by Llm(G).

Remarks. The ordering of the sentential forms has no influence on the language L(G) gener-
ated by a graph grammar G.

Lemma 2 (Expressiveness of Leftmost Generated Languages)

For every confluent design graph grammar G it holds that Llm(G) = L(G).

Proof. See [Engelfriet and Rozenberg, 1997], page 39, where a proof for confluent NCE grammars is
given. Due to the strong similarity between design graph grammars and NCE grammars, the proof
for design graph grammars is analogous. ⋄

Theorem 5 (Characterization of Leftmost Generated Languages)

The class of languages leftmost generated by design graph grammars is equal to the class of lan-
guages generated by confluent design graph grammars.

Proof. See [Engelfriet and Rozenberg, 1997], page 41pp., where a proof for confluent NCE grammars
is given. Due to the strong similarity between design graph grammars and NCE grammars, the proof
for design graph grammars is analogous. ⋄

Boundary Restriction

Since design graph grammars are NCE graph grammars, various properties valid for NCE
grammars also hold for design graph grammars. However, important properties such as
confluence, decidability of the membership problem etc. do not necessarily hold for the
whole class. For certain subclasses, on the other hand, it can be shown that these prop-
erties hold. In the following we introduce one such class, whose definition stems from
[Engelfriet and Rozenberg, 1997].

Definition 14 (Boundary Design Graph Grammar)

48

A design graph grammar G = 〈Σ, P, s〉 with directed edges and edge labels is boundary, or a
boundary design graph grammar, if for every production T → 〈R, I〉,

(B1) R does not contain edges between nonterminal nodes, and

(B2) I does not contain embedding instructions ((σ , t, β), (σ , x, γ)) where σ is nonterminal.

In [Engelfriet and Rozenberg, 1997] it is also shown that only one of the conditions (B1)
or (B2) is actually necessary, since each condition implies the other one.

Design graph grammars are not boundary by definition, since both (B1) and (B2) do
not hold. However, design graph grammars can be easily adjusted to have property (B1),
by introducing additional terminal nodes between adjacent nonterminal nodes, or property
(B2), by restricting the embedding instructions to only take into account terminal node labels
in the host graph, making design graph grammars boundary.

Lemma 3 (Expressiveness of Boundary Design Graph Grammars)

Every boundary design graph grammar is confluent.

Proof. Boundary graph grammars are confluent by definition [Engelfriet and Rozenberg, 1997], page
56. This follows from condition (B2) of definition 14.

Consequences of the Restrictions

In the previous sections we introduced two possible restrictions to design graph grammars
that are easy to perform. The application of these restrictions has various interesting conse-
quences [Engelfriet and Rozenberg, 1997]:

• Design graph grammars do need not to be structurally restricted in order to have con-
fluence. The use of leftmost derivations suffices in order to produce confluent graph
languages. Thus, the restriction of design graph grammars to some confluent subclass,
such as boundary design graph grammars, is not necessary.

• Confluent context-free (design) graph grammars are associative.

• The membership problem for confluent design graph grammars is in NPTIME
([Engelfriet and Rozenberg, 1997], page 82).

• The membership problem for boundary design graph grammars is in PTIME, if, due
to labeling restrictions, the subgraph matching problem can be solved in polynomial
time ([Slisenko, 1982, Rozenberg and Welzl, 1986, Schuster, 1987]).

Boundary Design Graph Grammars

We presented two restrictions which yield statements concerning the time complexity of the
membership problem. We now apply the boundary restriction, as described in definition 14,
to design graph grammars to guarantee that the membership problem is in PTIME.

49

In order to make design graph grammars boundary, we choose to fulfill condition (B1)
of Definition 14 and introduce additional terminal nodes called junctions (also called “T-
connections”). The nodes are inserted into rules having at least two adjacent nonterminals
on the right-hand side. As an example, we apply this restriction to a design graph rule of
section 5.2, of which only rule (R4) is actually changed, as depicted by Figure 40.

p
?

s
liqui
d

s
solid

s
liqui
d
 ?

?
 p

s
liqui
d

s
liqui
d

s
solid

p
?

s
liqui
d

s
solid

s
liqui
d

?
 p

s
liqui
d

?
s
liqui
d

s
solid

Figure 40: Change of rule (R4) resulting from the boundary restriction.

Remarks. The additional nodes (and edges) resulting from the boundary restriction can be
easily removed by means of a post-processing routine. Since this post-processing step only
consists of removing additional nodes of degree 2, the required effort amounts to linear time
in the size of the graph. Thus, the complete process remains polynomial.

7.5 Membership and Derivation in Design

This section is dedicated to the problems of membership and derivation as applied to design
tasks. In particular, the membership problem is examined and statements about its com-
plexity made, whereas special attention is given to the polynomial case and the graph class
restrictions needed to make this possible. Furthermore, the problems of shortest derivations
and distance between graphs, which are closely related to the synthesis task, are addressed.

7.5.1 The Membership Problem for Graph Languages

To solve the membership problem for graph languages a method is required with which
a graph can be parsed and a derivation tree based on the design graph grammar can be
constructed. It suffices, however, to know that the given graph was generated from the initial
symbol of the design graph grammar, i. e., a derivation tree is not absolutely necessary.

In the area of string languages there are some algorithms that were devised to solve
exactly the same problem. One of these is the Cocke-Younger-Kasami algorithm (CYK al-
gorithm) described in [Hopcroft, 1979]. The basic idea is to start from the given sentential
form and apply the grammar productions backwards, taking all possible combinations in

50

consideration. If the word belongs to the language generated by the string grammar, then
the initial symbol will be derived. The CYK algorithm is a dynamic programming procedure
taking O(n3) time in the length of the input word. In order to guarantee this runtime com-
plexity, the grammar must be in Chomsky normal form, i. e., rules may only have either one
terminal or two nonterminal symbols on the right-hand side.

Example. In the following we illustrate how the CYK algorithm works. For this purpose, let
the following simple string grammar in Chomsky normal form be given:

S → C11X | C12X (1)

C11 → T1X (2)

C12 → T1X (3)

T1 → C21X | C22X (4)

C21 → T2X (5)

C22 → T2X (6)

T2 → t (7)

X → x (8)

Figure 41 shows how the CYK algorithm works on the input txxxx; Figure 42 shows a
parse tree for the word txxxx. Note that the parsing tree is a binary tree (due to the Chomsky
normal form), and that the table generated by the CYK algorithm has the same structure.

1

2

3

4

5 S

T2

T1

C11, C12

C21, C22

t

X

x

X

x

X

x

X

x

Ø

Ø

Ø

Ø Ø

Ø

Figure 41: Recognition of the word txxxx by the CYK algorithm.

In contrast to graph grammars, string grammars possess a linear ordering that specifies
the context—or relevant neighborhood—of a symbol, namely the symbols located to the
left and right. The CYK algorithm (and most parsing algorithm for string languages) makes
use of this trivial property, as well as of the normal form used for the string grammar, as
can be seen in Figures 41 and 42, and of the intrinsic freedom of rule application order.
Graphs, unlike string words, do not have this linear ordering property, which fact makes the
search for a rule with matching right-hand side a toilsome job due to the subgraph matching
problem (see section 7.3.2 for further details). Figure 43 shows a graph and a string graph
together with their relevant contexts.

51

S

T2

T1

C21

C11

t x

X

x x x

X

X

X

Figure 42: A parse tree derived by the CYK algorithm for the word txxxx.

v
s

Figure 43: Relevant contexts in graphs and strings.

Indeed, in [Brandenburg, 1983] it is shown that the membership problem is NP- or
PSPACE-complete for a variety of graph languages, including restricted context-free lan-
guages such as the ones generated by NLC grammars, which are a special case of NCE
grammars13. Furthermore, it is argued in [Brandenburg, 1983] that the finite Church Rosser
property14 is of crucial importance for the existence of a polynomial time recognition algo-
rithm.

7.5.2 Solving the Membership Problem in Polynomial Time

As seen in the previous section, the membership problem for graph languages imposes ex-
ponential time complexity on any algorithm attempting to solve it. This statement applies
to the general case of arbitrary graph languages, which is far more than is required for our
purposes. Indeed, by restricting the graph language class under consideration and using
additional information, polynomial time complexity can be achieved.

In the literature one can find some approaches that solve the membership problem in
polynomial time, two of which are precendence graph grammars [Kaul, 1986] and rooted context-
free flowgraph languages [Lichtblau, 1991]. In the following we give a brief description of these
two approaches and reflect on the consequences for our problem.

13NLC grammars do not have edge directions or labels. See section 7.1 or [Engelfriet and Rozenberg, 1997] for
details on NLC and NCE grammars.

14This property states that non-overlapping rewriting steps can be performed in any order. This property is
also known as confluence.

52

Rooted Context-Free Flowgraph Languages

Flowgraph languages are context-free graph languages that supply a suitable mechanism to
represent the control flow of source programs15; they have a strong resemblance to series-
parallel graphs, to which the graphs generated by our design graph grammars for the do-
main of chemical engineering are also similar.

Rooted flowgraphs are graphs containing nodes (roots) that are connected to all other
nodes by means of paths. They are of vital importance for the polynomial time recognition
algorithm, since the nodes have to be ordered somehow and these roots provide the ideal
starting points.

In order to test if a given graph belongs to the language of rooted context-free flowgraphs,
the given graph and the flowgraph grammar have to be ordered. This is done by imposing
ordered spanning trees on the graph as well as on the graph grammar. This spanning tree
is then used to guide the reduction process, which acts in accordance with the given order.
The recognition algorithm based on these prerequisites requires polynomial time in the size
of the input graph—further details can be found in [Lichtblau, 1991] and [Lichtblau, 1990].

Whether a similar algorithm for the membership problem for non-rooted flowgraph
grammars exists still remains an open problem [Lichtblau, 1991].

Precedence Graph Grammars

Precedence graph grammars are context-free graph grammars with additional precedence
relations16. In the general case, the membership problem is PSPACE-complete; however, if
certain conditions are met, the membership problem is decidable in O(n2) time, where n is
the number of nodes of the input graph.

In the field of string languages, only fast parsing algorithms taking linear time in the
length of the input have become widespread. There, linear complexity can be attained by
means of the introduction of additional precedence relations, the requirement of the LL(k)
or LR(k) property [Hopcroft, 1979] etc. Apart from the use of precedence relations, all other
approaches rely on the linear order of strings—the efficiency of LR(k) methods, for example,
is based on the fact that the set of all valid prefixes can be formulated as a regular language.
Precedence relations, on the other hand, allow for processing in any order or even in parallel.

Every pair of adjacent symbols is assigned a precedence determining which symbol is to
be processed first. Precedences always refer to a node pair (v, w), and each precedence may
be of one of the following types:

1. Node v is to be processed before node w.

2. Node v is to be processed after node w.

3. Nodes v and w are to be processed simultaneously.

15The information and results presented in this section stem primarily from [Lichtblau, 1991].
16The information and results presented in this section stem primarily from [Kaul, 1986].

53

4. Nodes v and w can be processed in any order.

In order to achieve the time complexity of O(n2) claimed above, the following conditions
must hold:

• The graph grammar is confluent. Confluence is essential here, since there are cases where
the order of reduction steps is arbitrary or not specified. If the graph grammar is not
confluent, then the reduction process may not be able to reach the initial symbol, al-
though it is derivable.

• The precedence relations are disjoint. This feature ensures that every node pair is assigned
a unique precedence relation, thus preventing any ambiguity in the reduction process.

• The graph productions are uniquely reversible. This requirement arises from the fact that
every reduction step, i. e., backward execution of a rule, must be deterministic and
achievable without backups. Again, ambiguity is to be avoided.

In [Kaul, 1986], precedence graph grammars do not have edge labels in the usual sense;
the precedences are edge attributes. The edge label alphabet of design graph grammars can
be enhanced to include “precedence labels”, increasing the size of the edge label alphabet by
a factor of at most four17.

Remarks. Please note that the precedence graph grammar approach is not only applicable
for special context-free graph classes such as outerplanar or series-parallel graphs, but for
any context-free graph language for which a precedence graph grammar with the above
properties can be given.

For more details concerning precedence graph grammars, refer to [Kaul, 1986] and [Kaul,
1987], where practical applications for precedence graph grammars are presented.

Remarks. The approaches presented above require additional information or mechanisms
in order to reach polynomial time complexity. Thus, design graph grammars have to be
extended to encompass and make use of these approaches. As mentioned above, this can be
done by adding special symbols to the edge label alphabet or by imposing some order on
the nodes of the graph to be tested and on the nodes of the graph grammar rules.

In section 7.4.2 we present some theoretical results found in the literature, among which
is the statement that the membership problem for boundary NCE grammars is in PTIME.
This result is, as stated earlier, theoretical in nature and does supply neither any concrete
parsing or recognition algorithm nor any statement regarding a precise time complexity.

7.5.3 Shortest Derivation

The length of a derivation is an adequate measure for the complexity of a generated design.
Depending on the design graph grammar used and on the order of graph transformation
rules applied, a derivation will take at least linear time with respect to the size of the graph,

17Actually, every edge label should only be assigned one precendence, therefore only making the existing
labels longer and not increasing their number at all.

54

assuming that each rule application will generate a finite number of terminal nodes only; on
the other hand, the worst case runtime complexity for a derivation is unbounded if cyclic
partial derivations exist and destructive graph transformation rules are applied. Thus, only
a statement concerning the lower bound for the time required for the derivation process is
possible, i. e., a prediction can only be ventured for the shortest derivation.

The design graph grammar concept, as presented in section 3, does not impose any re-
striction upon the transformational behavior of rules. In fact, the example of section 5.2 con-
tains three different types of rules: rules that fire only once, e. g. R1, rules that fire linearly in
the number of inputs, e. g. R4, and rules that can fire arbitrarily often, e. g. R6. The existence
of the last rule type implies that the graph rule system may not terminate. In fact, within a
concrete technical domain such as the domain of chemical engineering one can distinguish
between the following types of rules:

• Chain rules. Rules may only produce a single output, and rules may not split nontermi-
nal nodes into further nonterminal nodes, such as in rule R4. Furthermore, we forbid
cycles within the generated design, thus avoiding the repeated execution of rule se-
quences.

Due to these restrictions, the size of chemical plant designs generated by these rules
is linearly related to the number of inputs available. Therefore, the computational
effort—in terms of the number of rules applied—to produce a feasible design using
rules of this type is of the order O(n).

• Splitting rules. Now we drop the splitting restriction on rules, i. e., splitting rules such
as R4 are allowed. Depending on the number of inputs, further nonterminal nodes may
be produced. This results in O(n2) rule applications.

• Unrestricted rules. Lastly, rules that multiply the number of outputs are also allowed.
Since with these rules arbitrarily many new “inputs” can be generated, the computa-
tional effort is unbounded.

Accordingly, the overall complexity is unbounded, if all rule types are allowed. However,
the design graph grammar for chemical plants presented in section 5.1 does not contain rules
of the last type, thereby limiting the overall computational effort for the generation of one
chemical plant design to O(n2) rule applications.

The termination drawback mentioned above can be avoided by forbidding the repeated
use of the same rule within the same context—in fact, graph grammar implementations do
include facilities to specify forbidden and allowed rules (see programmed graph replacement
systems in [Schürr, 1997b]).

As hinted above, the presence of cycles containing destructive transformations within a
derivation may lead to an unbounded complexity. However, by means of restrictions on the
rule structures that prevent such cycles, one may avoid this drawback. Before we address
this issue we shall introduce some necessary notions.

Definition 15 (Derivation)

A derivation is a sequence of graphs π = (G1, . . . , Gn) for which the simple derivation Gi ⇒
Gi+1, i ∈ {1, . . . , n − 1}, has been achieved by applying a graph transformation rule. πG denotes a

55

derivation based on graph transformation rules of a design graph grammar G = 〈Σ, P, s〉, and πG(G)
denotes a derivation (s, . . . , G).

The shortest derivation is denoted by π∗.

Remarks. A derivation π = (G1, . . . , Gn) may also be written as G1 ⇒∗ Gn. Although the
latter form is widely used, we choose to use the first form for convenience, since statements
such as “G ∈ (G1, . . . , Gn)” are more intuitive than “G ∈ G1 ⇒∗ Gn”.

Definition 16 (Derivation Rule Sequence)

Let π = (G1, . . . , Gn) be a derivation. We define the derivation rule sequence belonging to π

as ρπ = (r1, . . . , rn−1), where Gi ⇒ Gi+1 is done by means of a graph transformation rule ri,
1 ≤ i ≤ n − 1.

Typically, the human understanding of the design of technical systems bears a mono-
tonic character. This means that the design process is constructive, deletion operations are
avoided where possible, leading to a system with the smallest number of steps possible. The
following definitions shed some light on this matter.

Definition 17 (Deletion Operation)

A deletion operation is a graph transformation step G ⇒ G′ such that

• |VT | > |VR| or

• |ET | > |ER|

whereby 〈VT , ET ,σT〉 and 〈VR, ER,σR〉 represent the target and replacement graphs, respectively.

Remarks. Definition 17 implies that constructive graph transformation steps may perform
partial deletions, as long as there are more insertions.

Figure 44 illustrates the consequence of the presence of deletion operations within a
derivation.

GGA

Constructive derivation

Destructive
derivation

...
?

Figure 44: A derivation containing deletion operations. Due to the cycle the derivation length
is unbounded.

With the aid of the above notions the aforementioned restriction to rule structures, which
represents a special property, can be introduced formally.

56

Definition 18 (Monotonicity, Shortcut-Free)

Let G, G′ be graphs and G a design graph grammar. A derivation π = (G, . . . , G′) is called
monotonic, if and only if ρπ does not involve deletion operations.

G is monotonic, if and only if for every G ∈ L(G) there exists a monotonic derivation πG(G).

G is called shortcut-free, if for every G ∈ L(G) the shortest derivation is a monotonic derivation.

Remarks. Shortcut-freedom means that there is no shortest derivation containing deletion
operations.

Figure 45 shows a monotonic derivation.

? ?

?

?

Figure 45: A monotonic derivation of a chemical plant.

7.5.4 Distance between Graphs

Another issue that is closely related to the shortest derivation problem addressed in the
previous section is the distance between graphs. But, instead of providing some means to
predict the effort necessary to generate a design fulfilling the given constraints, the focus
now lies in supplying a statement concerning the quality of the design.

The quality of a design G is measured by the distance to the ideal design G∗, as provided
by an expert. In practice, this is done by determining the necessary graph transformation
steps required for the derivation G ⇒∗ G∗ and calculating the involved effort.

Since our approach is bound to a concrete design graph grammar within a given domain,
we have to determine the distance between a design G and the ideal design G∗ by means
of the graph transformations supplied by the design graph grammar. Hereby we assume
that the ideal design G∗ is also derivable with the given design graph grammar. Hence,
we distinguish between the direct distance between two graphs as well as the derivational
distance between two graphs. Figure 46 depicts both situations.

Talking about Figure 46, it is clear that the derivational distance between the two designs
is equivalent to the effort necessary for the “derivation” G ⇒∗ GA ⇒∗ G∗. Put in other
words, the distance between G and G∗ is bounded by the effort required to transform G
back into an ancestor GA and the effort required to derive G∗ from this common ancestor GA

(in the following let GA denote an ancestor sentential form).

Remarks. In some favorable cases it may happen that a design G is an ancestor of the ideal

57

Common
ancestor GA

G*

G

Derivation A1

Derivation A2

Direct
transformation

Derivational
transformation

?

Figure 46: Distance between a design G and the ideal design G∗ with respect to the design
graph grammar derivation.

design G∗.

Determining the Graph Transformation Sequence

The effort required to solve the task of determining the graph transformation sequence nec-
essary for the derivation G ⇒∗ G∗ depends on two factors: the degree of information given
and the desired granularity of the distance statement.

In order to determine the derivational distance between a design G and the ideal design
G∗ one needs the derivations belonging to these two graphs. Four different cases can be
distinguished, representing the degree of information supplied:

1. Derivations of G and G∗ are unknown.

2. Derivation of G is unknown, derivation of G∗ is known.

3. Derivation of G is known, derivation of G∗ is unknown.

4. Derivations of G and G∗ are known.

The first two cases can be ruled out, since the design G has been automatically
generated—its derivation is therefore known. Thus, only the last two cases remain as possi-
ble starting points. A derivation of G∗, if not available, can be determined by means of the
methodology presented in section 4.

As far as the desired granularity of the distance statement is concerned, one has to decide
how much effort to invest in calculating the derivational distance described above. On the
one hand, a naive approach consisting of a simple comparison of derivations is conceivable.
This approach implies comparing π(G) and π(G∗) element-wise, i. e., searching for a graph
GA ∈ π(G) ∩ π(G∗). This approach leads to a gross upper bound for the derivational dis-
tance between G and G∗. On the other hand, a more elaborate approach involving finding
the “largest” common ancestor results in a lower upper bound for the derivational distance.

58

The search for a common ancestor is a nontrivial task involving solving the graph match-
ing problem mentioned in section 7.3.2. The search for the “largest” common ancestor is
even more toilsome, since there may exist more than one derivation for a given graph. This
means that the comparison of alternative derivations may be necessary. Please note that this
problem does not correspond to the NP-hard maximal common subgraph problem [Koch, 2001],
although the algorithms described there could be used to find a maximal common subgraph,
which in turn represents at least an approximation of the largest common ancestor.

Again, the monotonicity property proves to be a valuable feature of a design graph gram-
mar because it makes the search for a common ancestor much easier. In fact, the absence of
deletion operations reduces the search space considerably, since monotonicity implies there
is an upper bound for the derivation length, whereas with deletion operations a derivation
may be arbitrarily long. Thus, some way to determine if a design graph grammar is mono-
tonic is mandatory.

Lemma 4 (Monotonicity Requirements)

Let a design graph grammar G = 〈Σ, P, s〉 be given. G is monotonic, if the following holds for
every graph transformation rule r = 〈T, C〉 → 〈R, I〉 of P: R encompasses a matching of T.

Put in other words, the target graph is a subgraph of the replacement graph.

Determining the Effort of the Transformation

After determining the graph transformation rules required for the derivation G ⇒∗ G∗,
the effort necessary for this transformation can be calculated from both the domain and the
graph-theoretical point of view.

In order to take the domain into account, we introduce a function cdom : P → R+
0 that

yields for a graph grammar G = 〈Σ, P, s〉 the effort for the application of a given rule r ∈ P
within the domain dom. Now, the overall domain effort when transforming a design accord-
ing to a derivation π can be computed as follows:

effort(π) = ∑
r∈ρπ

cdom(r)

If a function cdom cannot be stated, a function cgg : P → R+
0 that computes the graph-

theoretical effort, which includes aspects such as context and matching, must be used in-
stead:

effort(π) = ∑
r∈ρπ

cgg(r)

59

8 Summary

The paper in hand introduced a methodology to solve structure related design tasks, pro-
viding the foundations for an automation of the design process as a whole at the level of
parameterized building blocks.

Through simplification and by means of graph grammars, the tasks associated with a de-
sign problem—structure generation, behavioral model synthesis, structural and behavioral
analysis, design evaluation, design repair and design optimization—become tractable. The
concepts introduced are uniformly applicable throughout the design cycle and allow for au-
tomation in areas that have been as yet left untouched by traditional approaches, of which
structural synthesis and analysis benefitted the most.

The presented concepts were applied to the domain of chemical engineering, where a
chemical process is modeled as a graph whose nodes describe the unit-operations and whose
edges specify the properties of the processed substance at a simplified level. Modifications
of a chemical process are defined as node-insertion and node-deletion operations, which in
turn are formalized by means of graph grammars.

Thus, design solutions for a chemical processing problem can be produced and verified
automatically by applying graph production rules that encode an engineer’s design knowl-
edge. However, drawbacks to this approach do exist: design generation has a theoretically
unbounded runtime behavior, and the verification of a design solution does not work for
arbitrary structures—it must comply with the encoded design knowledge and the structural
restrictions imposed by the graph grammar model. Given a properly encoding of the de-
sign knowledge, a large set of feasible designs can be generated or verified at an acceptable
computational effort.

All in all, our approach provides insights and evaluation of the methodologies necessary
for an entire automation of the design process within technical domains. In particular, the
use of model simplification and structural manipulation by graph grammars proves to be
advantageous within this context.

60

A Graph Grammar Applications Within Design

Within this paper we have concentrated on important tasks related to the design of techni-
cal systems: analysis, synthesis and optimization of structures. These are tasks located at a
global level with respect to the overall design of a system. However, there are a series of
other tasks that play a minor role within the design process but that are nonetheless neces-
sary within certain contexts. Some of these special tasks can be tackled by means of design
graph grammars.

As hinted in section 3.1, there are various conceivable operations on structures, and some
of the examples presented there belong to special tasks as mentioned above. The following
examples stem from work on projects dealing with design aspects in different domains; more
details and further examples can be found in [Stein, 2001].

A.1 Structural Simplification: Hydraulic Plants

The maintenance of hydraulic plants is a challenging job for present day engineers. The size
and complexity of hydraulic plants exceed the human capacity to manage them efficiently,
thus making additional support a necessity. In special, the design task “analysis” for diag-
nosis purposes is of importance.

In [Schulz, 1997, Stein and Schulz, 1998] the concept of hydraulic axes plays a major role
within the analysis of a hydraulic plant. Hydraulic axes represent substructures within a
hydraulic plant that perform a function; the recognition of all hydraulic axes of a hydraulic
plant yields the set of all functions present within the plant—in a certain sense one could say
the recognition of hydraulic axes is the recognition of the building blocks that compose the
global plant. Figure 47 shows a hydraulic plant and its hydraulic axes.

Figure 47: A hydraulic circuit containing three hydraulic axes. The unshaded area is shared
by all three axes.

The recognition of the hydraulic axes of a plant does not suffice to fully analyze a hy-
draulic plant. Within the diagnosis context the knowledge about the relationships between
the individual axes is essential for a precise statement concerning a faulty component, since
a defect within a hydraulic axis often influences the behavior of other axes, spreading the

61

faulty behavior throughout the hydraulic plant. Thus, the relationship between each pair of
hydraulic axes within a hydraulic plant must be considered. Figure 48 shows the couplings
between the hydraulic axes depicted in Figure 47.

sequential

serial

Figure 48: Coupling of hydraulic axes.

The tasks described above—the recognition of hydraulic axes and of their relationship
to each other—are efficiently solved by means of path search algorithms. This is due to the
inherent structure of hydraulic axes; each hydraulic axis possesses a pump, representing
a pressure source, some valves for control together with additional auxiliary components,
and cylinders and motors, representing the working devices responsible for the output.
However, hydraulic axes often possess substructures that hinder a full recognition: circuit
loops, dead branches etc. Thus, a hydraulic circuit has to be simplified prior to applying
path searching methods; Figure 49 illustrates the simplification process.

The following simple design graph grammar suffices to perform the transformation de-
scribed by Figure 49.

First, let the following assumptions be made:

• Supply elements, i. e., pumps and tanks, are designated by the label “p”,

• Working elements, i. e., cylinders and motors, are represented by the label “w”,

• Control elements, i. e., valves, are designated by the label “v”,

• Junction nodes, also called Tri-Connections, are represented by the label “j”,

• and all other auxiliary elements are designated by the label “a”.

Let G = 〈Σ, P, s〉 be a design graph grammar for the structural simplification of hydraulic
circuits where Σ = {p, w, v, j, a, s, H, I, J, K, L, M, N}, s is the initial symbol (unused here)
and P = Pcompression ∪ Pmerging is the set of graph transformation rules.

Now, we first provide the compression related graph transformation rules Pcompression:

62

Figure 49: Simplification of a hydraulic circuit by structural compression and merging.

1. Compression of dead branches

T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, L), (2, K)}〉

R = 〈VR, ER,σR〉 = 〈{3}, ∅, {(3, L)}〉

I = {((J, K, H), (J, L, H))}

The graphical representation of this rule is as shown below.

L K L

2. Compression of chains

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3}, {{1, 2}, {2, 3}}, {(1, H), (2, a), (3, K)}〉

R = 〈VR, ER,σR〉 = 〈{4, 5}, {{4, 5}}, {(4, H), (5, K)}〉

I = {((I, H, M), (I, H, M)), ((J, K, M), (J, K, M))}

The graphical representation of this rule is depicted below.

a KH KH

63

3. Compression of loops

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3, 4}, {{1, 2}, {1, 3}, {2, 4}, {3, 4}},

{(1, j), (2, a), (3, a), (4, j)}〉

R = 〈VR, ER,σR〉 = 〈{5}, ∅, {(5, j)}〉

I = {((H, j, I), (H, j, I))}

The graphical representation of this rule is illustrated below.

a

a

jj j

The set of graph transformation rules Pmerging is defined as follows:

1. Merging with working elements

T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, w), (2, K)}〉

R = 〈VR, ER,σR〉 = 〈{3}, ∅, {(3, w)}〉

I = {((H, w, L), (H, w, L)), ((J, K, M), (J, w, M))}

The above formal representation is equivalent to the following graphical notation:

w K w

2. Merging with supply elements

T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, p), (2, K)}〉

R = 〈VR, ER,σR〉 = 〈{3}, ∅, {(3, p)}〉

I = {((J, K, M), (J, p, M))}

The graphical representation of the above graph transformation rule is as follows:

p K p

3. Merging with control elements

T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, v), (2, K)}〉

R = 〈VR, ER,σR〉 = 〈{3}, ∅, {(3, v)}〉

I = {((H, v, M), (H, v, M)), ((J, K, N), (J, v, N))}

Again, the corresponding graphical representation is depicted below:

v K v

64

Remarks. Some of the above graph transformation rules possess identical structures and
differ only with respect to node and edge labels. In such cases one could argue that label
classes would reduce the number of graph transformation rules noticeably. For example, all
merging rules could be written as a single rule using label classes; however, the embedding
instructions would have to be adapted to match the most general case.

A.2 Model Reformulation: Wave Digital Structures

Wave digital structures (WDS) form a particular class of signal flow graphs where the signals
are linear combinations of the electric current and flow. WDS represent a concept to trans-
late electrical circuits from the electrical u/i-domain into the a/b-wave-domain; this transla-
tion establishes a paradigm shift and is called, in terms of models, model reformulation. With
respect to this concrete example, this reformulation is bound up with several advantages,
which are addressed in [Fettweis, 1986].

When migrating from an electrical circuit towards a WDS, the underlying model is com-

pletely changed: The structure model of the electrical circuit, M
u/i
S , is interpreted as a series-

parallel graph with closely connected components and transformed into an adaptor struc-

ture, M
a/b
S .

Figure 50 shows the reformulation of a series-parallel structure tree of an electrical circuit
into a corresponding adaptor structure. The nodes labeled by “s” and “p” indicate series and
parallel connections in the circuit.

p

s

s

p1 2

3 4 5

6 7

8 9

1

2

8

9

3

4

5

6

7

p

s Series connection

Parallel connection

Series adaptor

Parallel adaptor

Figure 50: Overview of the mapping M
u/i
S −→ M

a/b
S .

The following design graph grammar18 performs the model reformulation depicted in

Figure 50 for arbitrary structure models M
u/i
S .

G = 〈Σ, P, z〉 with Σ = {z, p, s, i, X, Y, A, B, C, D, E, F, G, H, I, J}, z is the initial symbol
(can be neglected), and P is the set of graph transformation rules, which are presented in the
following.

1. Splitting rule for nodes with more than three edges.

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3, 4, 5}, {{1, 5}, {2, 5}, {3, 5},

18Since the involved transformation is a translation rather than generation, it would be better to speak of graph
transformation systems instead of graph grammars.

65

{4, 5}}, {(1, E), (2, F), (3, G), (4, H), (5, X),

({1, 5}, B), ({2, 5}, A), ({3, 5}, C), ({4, 5}, D)}〉

R = 〈VR, ER,σR〉 = 〈{6, 7, 8, 9, 10, 11}, {{6, 7}, {7, 8}, {7, 9}, {9, 10}, {9, 11}},

{(6, F), (7, X), (8, E), (9, X), (10, G), (11, H),

({6, 7}, A), ({7, 8}, B), ({7, 9}, i), ({9, 10}, C), ({9, 11}, D)}〉

I = {((F, X, A), (F, 7, A)), ((E, X, B), (E, 7, B)), ((G, X, C), (G, 9, C)),

((H, X, D), (H, 9, D)), ((I, E, J), (I, E, J)), ((I, F, J), (I, F, J)),

((I, G, J), (I, G, J)), ((I, H, J), (I, H, J))}

For illustrative reasons we resort to the graphical representation from now on and
refrain from using the formal version if appropriate.

X X
iX

A

B
C

D
C

D

A

B

E

F

G

H

E

F

G

H

2. Marking rule for edges connecting inner nodes.

X
 Y
 Y
X

i

A
 B A
 B

The above rules are sufficient to perform the structural transformation required. The fol-
lowing rules belonging to an additional design graph grammar are necessary to change the
appearance of the final structure into an adaptor structure as depicted in Figure 50.

1. Display of a parallel node.
P

2. Display of a serial node.
S

3. Display of a port node.
X

X

Z

Z

4. Display of node connector.
X

X

i

A
 A

A.3 Model Reformulation: Parallel-Series Graphs

Model reformulation, as motivated in section A.2, occurs in various forms and within differ-
ent contexts; however, many of them share the same basic prerequisites and goals. The model

66

reformulation task of translating a structure description tree, such as the one depicted by Fig-
ure 50, into a parallel-series graph represents an adequate abstraction of the corresponding
tasks within concrete technical domains.

In a certain sense the goal of this model reformulation task is to translate the structural
view of the system of interest into its topological view. The initial structure is a structure de-
scription tree: Inner nodes represent either parallel or serial parts of the described struc-
ture, leaves represent edge labels. Figure 51 shows a structure description tree and the cor-
responding parallel-series graph.

pR

p

s
s

∆
∆
 ∆

∆
 ∆

∆

∆

∆

∆

∆

Figure 51: A structure description tree and its corresponding parallel-series graph.

The following design graph grammar performs the transformation required by the
model reformulation task.

G = 〈Σ, P, z〉 with Σ = {z, pR , sR, p0, s0, p′, s′ , e, l, r, ∆, A, B, H, I, J, K, L, M}, z is the ini-
tial symbol (can be neglected), and P is the set of graph transformation rules, which are
presented in the following.

1. Initial rule for parallel rooted description tree

T = 〈VT , ET ,σT〉 = 〈{1}, ∅, {(1, pR)}〉

R = 〈VR, ER,σR〉

= 〈{2, 3, 4}, {{2, 3}, {3, 4}}, {(2, p0), (3, p′), (4, p0), ({2, 3}, l), ({3, 4}, r)}〉

I = {((H, pR , I), (H, p′, I))}

The rule formally described above corresponds to the following graphical representa-
tion:

pR p'p0 p0
l r

2. Initial rule for serial rooted description tree

T = 〈VT , ET ,σT〉 = 〈{1}, ∅, {(1, sR)}〉

R = 〈VR, ER,σR〉

= 〈{2, 3, 4}, {{2, 3{, {3, 4}}, {(2, s0), (3, s′), (4, s0), ({2, 3}, l), ({3, 4}, r)}〉

I = {((H, sR, I), (H, s′, I))}

The graphical representation of the above rule is as follows:

67

sR s's0 s0
l r

3. Creation of parallel threads

T = 〈VT , ET ,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, p′), (2, s)}〉

R = 〈VR, ER,σR〉 = 〈{3, 4}, ∅, {(3, p′), (4, s′)}〉

I = {((H, p′, l), (H, p′ , l)), ((H, p′, r), (H, p′ , r)), ((H, p′, l), (H, s′ , l)),

((H, p′, r), (H, s′ , r)), ((H, p′, I), (H, p′, I)), ((H, s, I), (H, s′, I))}

The above rule corresponds to the following graphically:

p'

s

p'

s'

l r
l r

l r

A
 B

A
 B

Creation of parallel threads containing a leaf node

T = 〈VT , ET,σT〉 = 〈{1, 2}, {{1, 2}}, {(1, p′), (2, ∆)}〉

R = 〈VR, ER,σR〉 = 〈{3, 4}, ∅, {(3, p′), (4, ∆)}〉

I = {((H, p′ , l), (H, p′, l)), ((H, p′ , r), (H, p′, r)), ((H, p′ , l), (H, ∆, l)),

((H, p′ , r), (H, ∆, r)), ((H, p′ , I), (H, p′, I))}

The graphical representation is:

p'

p'l r

l r

l r
∆

∆

A
 B

A
 B

4. Removal of empty parallel node

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3}, {{1, 2}, {2, 3}}, {(1, A), (2, p′), (3, B),

({1, 2}, l), ({2, 3}, r)}〉

R = 〈VR, ER,σR〉 = 〈{4, 5}, ∅, {(4, A), (5, B)}〉

I = {((H, A, L), (H, A, L)), ((H, B, L), (H, B, L))}

The formal definition of the above rule conforms with the following graphical repre-
sentation:

p'
l r

A B A B

68

5. Creation of serial thread

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3, 4}, {{1, 2}, {2, 3}, {2, 4}},

{(1, A), (2, s′), (3, B), (4, p), ({1, 2}, l), ({2, 3}, r)}〉

R = 〈VR, ER,σR〉 = 〈{5, 6, 7, 8, 9}, {{5, 6}, {6, 7}, {7, 8}, {8, 9}},

{(5, A), (6, p′), (7, e), (8, s′), (9, B), ({5, 6}, l), ({6, 7}, r), ({7, 8}, l), ({8, 9}, r)}〉

I = {((H, s′ , I), (H, s′, I)), ((H, p, I), (H, p′, I)), ((H, A, I), (H, A, I)),

((H, B, I), (H, B, I))}

The graphical rule depicted below reflects the above formal definition:

p

s'

l
 r

A
 B

p'
 s'

l
 r

A
 B

l
 r

e

Creation of a serial thread containing a leaf node

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3, 4}, {{1, 2}, {2, 3}, {2, 4}},

{(1, A), (2, s′), (3, B), (4, ∆), ({1, 2}, l), ({2, 3}, r)}〉

R = 〈VR, ER,σR〉 = 〈{5, 6, 7, 8, 9}, {{5, 6}, {6, 7}, {7, 8}, {8, 9}},

{(5, A), (6, ∆), (7, e), (8, s′), (9, B), ({5, 6}, l), ({6, 7}, r), ({7, 8}, l), ({8, 9}, r)}〉

I = {((H, s′, I), (H, s′, I)), ((H, A, I), (H, A, I)), ((H, B, I), (H, B, I))}

Again, the rule described above corresponds to the following graphical representation:

s'

l
 r

∆

A
 B

s'

l
 r

∆
A
 B
e

r
 l

6. Removal of empty serial node

T = 〈VT , ET ,σT〉 = 〈{1, 2∗ , 3}, {{1, 2}, {2, 3}},

{(1, A), (2, s′), (3, B), ({1, 2}, l), ({2, 3}, r)}〉

R = 〈VR, ER,σR〉 = 〈{4}, ∅, {(4, A)}〉

I = {((H, A, I), (H, A, I)), ((H, B, I), (H, A, I))}

Once again, the above formal description corresponds to the following graphical rep-
resentation:

l
 r

s'
A
 B
 A

69

7. Creation of a labeled edge

T = 〈VT , ET ,σT〉 = 〈{1, 2, 3}, {{1, 2}, {2, 3}}, {(1, A), (2, ∆), (3, B),

({1, 2}, l), ({2, 3}, r)}〉

R = 〈VR, ER,σR〉 = 〈{4, 5}, {{4, 5}}, {(4, A), (5, B), ({4, 5}, ∆)}〉

I = {((H, A, I), (H, A, I)), ((H, B, I), (H, B, I))}

l r
∆

∆
A B A B

Remarks. As with the rules presented in section A.1, the use of label classes would result in
a smaller rule set by combining all graph transformation rules with identical oder nearly
identical structures. Again, the embedding instructions would have to be adapted to match
the most general case.

Example. Figure 52 illustrates the usage of the design graph grammar described above. This
design graph grammar allows for parallelism, which was implicitly used in the derivation
shown in Figure 52.

70

pR

p

s
s

∆
∆
 ∆

∆
 ∆

p

s
s

∆
∆
 ∆

∆
 ∆

p'
p0
 p0
l
 r

p

s

s'

∆

∆
 ∆

∆
 ∆

p'

p0
 p0

l
 r

l
 r

p

s'

s'

∆

∆

∆

∆
 ∆

p'

p0
 p0

l
 r

l
 r

l
 r

∆
∆

∆

∆

p0
 p0

l

r

e

∆

e

∆
∆

∆

∆

p0
 p0

e

∆

e

p'
 s'

s'

∆
∆

∆
 ∆

p0
 p0

l

r

l
 r

e

l

r

∆

e

l

r

p'

∆
∆

∆

∆

p0
 p0

l

r

l

r

e

∆

e

l

r

l

r

Figure 52: Transformation of a structure description tree into a parallel-series graph.

References

V. Arvind, R. Beigel, and A. Lozano. The Complexity of Modular Graph Automorphism. In
Proc. 15th Annual Symp. on Theoretical Aspects of Computer Science, volume 1373 of LNCS,
pages 172–182, 1998.

F. Brandenburg. On the Complexity of the Membership Problem of Graph Grammars. In
M. Nagl and J. Perl, editors, Graphtheoretic Concepts in Computer Science, pages 40–49,
Linz, 1983. Trauner Verlag.

F. Brandenburg. Designing Graph Drawings by Layout Graph Grammars. In R. Tamassia
and I. G. Tollis, editors, Proc. DIMACS Int. Work. Graph Drawing, GD, number 894 in
Lecture Notes in Computer Science, LNCS, pages 416–427, Berlin, Germany, 1994.
Springer-Verlag.

71

A. Brinkop and N. Laudwein. Konfigurieren von industriellen Rührwerken. KI, 2:54–59,
1993.

H. Bunke, T. Glauser, and T.-H. Tran. An Efficient Implementation of Graph Grammars
based on the RETE Matching Algorithm. In H. Ehrig, H.-J. Kreowski, and G. Rozenberg,
editors, Proc. 4th. Int. Workshop on Graph Grammars and their Application to Computer
Science, volume 532 of Lecture Notes in Computer Science, pages 174–189. Springer-Verlag,
1991a.

H. Bunke, T. Glauser, and T.-H. Tran. Efficient Matching of Dynamically Changing Graphs.
In Selected Papers from 7th Scandinavian Conf. Theory and Applications of Image Analysis,
pages 110–124. World Scientific, 1991b.

B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting Hypergraph Grammars.
Journal of Computer and System Sciences, 46:218–270, 1993.

F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge Replacement Graph Grammars. In
G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph Transformation,
pages 95–162. World Scientific, Singapore, 1997.

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 2 Applications, Languages and Tools.
World Scientific, 1999a.

H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation, volume 3 Concurrency, Parallelism and
Distribution. World Scientific, 1999b.

J. Engelfriet and G. Rozenberg. A Comparison of Boundary Graph Grammars and
Context-Free Hypergraph Grammars. Inform. and Comput., 84:163–206, 1990.

J. Engelfriet and G. Rozenberg. Node Replacement Graph Grammars. In G. Rozenberg,
editor, Handbook of Graph Grammars and Computing by Graph Transformation, pages 1–94.
World Scientific, Singapore, 1997.

A. Fettweis. Wave Digital Filters: Theory and Practice. Proceedings of the IEEE, 74(2):
270–327, Feb. 1986.

C. L. Forgy. Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match
Problem. Artificial Intelligence, 19:17–37, 1982.

C. L. Forgy and S. J. Shepard. Rete: A Fast Match Algorithm. AI Expert, 2(1):34–40, Jan. 1987.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1997.

J. E. Hopcroft. Introduction to Automata Theory, Languages and Computation. Addison-Wesley,
1979.

D. Jungnickel. Graphs, Networks and Algorithms, volume 5 of Algorithms and Computation in
Mathematics. Springer, 1999.

72

M. Kaul. Syntaxanalyse von Graphen bei Präzedenz-Graph-Grammatiken. PhD thesis, Fakultät
für Mathematik und Informatik, Universität Passau, Passau, Germany, 1986.

M. Kaul. Practical Applications of Precedence Graph Grammars. In H. Ehrig, M. Nagl,
G. Rozenberg, and A. Rosenfeld, editors, Graph Grammars and Their Application to
Computer Science, number 291 in Lecture Notes in Computer Science, pages 326–342,
Berlin, 1987. Springer-Verlag.

C. Kim and T. Jeong. HRNCE Grammars – A Hypergraph Generating System with an
eNCE Way of Rewriting. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors,
Graph Grammars and Their Application to Computer Science, number 1073 in Lecture Notes
in Computer Science, pages 383–396, Berlin, 1996. Springer-Verlag.

R. Klempien-Hinrichs. Node Replacement in Hypergraphs: Simulation of Hyperedge
Replacement and Decidability of Confluence. In J. Cuny, H. Ehrig, G. Engels, and
G. Rozenberg, editors, Graph Grammars and Their Application to Computer Science, number
1073 in Lecture Notes in Computer Science, pages 397–411, Berlin, 1996. Springer-Verlag.

A. Knoch and M. Bottlinger. Expertensysteme in der Verfahrenstechnik – Konfiguration
von Rührapparaten. Chem.-Ing.-Tech., 65(7):802–809, 1993.

J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Structural
Complexity. Birkhäuser, 1993.

I. Koch. Enumerating All Connected Maximal Common Subgraphs in Two Graphs.
Theoretical Computer Science, 250(1–2):1–30, 2001.

M. Korff. Application of Graph Grammars to Rule-based Systems. In H. Ehrig, editor,
Graph Grammars and Their Application to Computer Science, number 532 in Lecture Notes in
Computer Science, pages 505–519, Berlin, 1991. Springer-Verlag.

U. Lichtblau. Flußgrapggrammatiken. PhD thesis, Universität Oldenburg, Oldenburg,
Germany, 1990.

U. Lichtblau. Recognizing Rooted Context-Free Flowgraph Languages in Polynomial Time.
In H. Ehrig, editor, Graph Grammars and Their Application to Computer Science, number 532
in Lecture Notes in Computer Science, pages 538–548, Berlin, Germany, 1991.
Springer-Verlag.

W. Marquardt. Rechnergestützte Erstellung verfahrenstechnischer Prozeßmodelle.
Chem.-Ing.-Tech., 64(1):25–40, 1992.

W. Marquardt. Trends in Computer-Aided Process Modeling. Computers chem. Engng., 20
(6/7):591–609, 1996.

K. Mehlhorn. Data Structures and Algorithms, volume 2 Graph Algorithms and
NP-Completeness. Springer, Berlin, 1984.

U. Nickel, J. Niere, and A. Zündorf. Tool demonstration: The Fujaba Environment. In Proc.
22nd Intl. Conference on Software Engineering, pages 742–745. ACM Press, 2000.

73

C. C. Pantelides. Speedup – Recent Advances in Process Simulation. Comput. chem. Engng.,
12(7):745–755, 1988.

P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. Westerberg. ASCEND: An
Object-Oriented Computer Environment for Modeling and Analysis: The Modeling
Language. Computers chem. Engng., 15(1):53–72, 1991.

S. Räumschüssel, A. Gerstlauer, E. D. Gilles, B. Raichle, M. Zeitz, and W. Marquardt. An
Architecture of a Knowledge-Based Process Modeling and Simulation Tool. In Proc.
IMACS/IFAC 2nd Intl. Symposium on Mathematical and Intelligent Models in System
Simulation, volume 2, pages 242–247, 1993.

J. Rekers and A. Schürr. A Graph Grammar Approach to Graphical Parsing. Technical
Report 95-15, Department of Computer Science, Leiden University, 1995.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transformation,
volume 1 Foundations. World Scientific, 1997.

G. Rozenberg and E. Welzl. Boundary NLC Graph Grammars—Basic Definitions, Normal
Forms, and Complexity. Information and Control, 69:136–167, 1986.

S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood
Cliffs, N.J., 1995.

A. Schulz. Graphenanalyse hydraulischer Schaltkreise zur Erkennung von hydraulischen
Achsen und deren Kopplung. Master’s thesis, University of Paderborn, Department of
Mathematics and Computer Science, 1997.

A. Schürr. Introduction to PROGRESS, an Attribute Graph Grammar Based Specification
Language. In M. Nagl, editor, Proc. 15th Intl. Workshop on Graph-Theoretic Concepts in
Computer Science, volume 411 of LNCS, pages 151–165. Springer-Verlag, 1989.

A. Schürr. PROGRES: A VHL-Language Based on Graph Grammars. In H. Ehrig,
H. Kreowski, and G. Rozenberg, editors, Proc. 4th Intl. Workshop on Graph Grammars and
zheir Application to Computer Science, volume 532 of LNCS, pages 641–659. Springer, 1991.

A. Schürr. Developing Graphical (Software Engineering) Tools with PROGRES. In Proc.
ICSE, pages 618–619. IEEE Computer Society Press, 1997a.

A. Schürr. Programmed Graph Replacement Systems. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformation, pages 479–546. World Scientific,
Singapore, 1997b.

A. Schürr, A. Winter, and A. Zündorf. Visual Programming with Graph Rewriting Systems.
In Proc. 11th Intl. IEEE Symposium on Visual Languages. IEEE Computer Society Press, 1995.

R. Schuster. Graphgrammatiken und Grapheinbettungen: Algorithmen und Komplexität. PhD
thesis, Universität Passau, 1987.

A. Slisenko. Context-Free Grammars as a Tool for Describing Polynomial-Time Subclasses
of Hard Problems. Inf. Proc. Letters, 14:52–56, 1982.

74

B. Stein. Model Construction in Analysis and Synthesis Tasks. Professorial dissertation (to
appear), University of Paderborn, Department of Mathematics and Computer Science,
2001.

B. Stein and A. Schulz. Topological Analysis of Hydraulic Systems. Technical Report
tr-ri-98-197, University of Paderborn, 1998.

B. Stein and E. Vier. An Approach to Formulate and to Process Design Knowledge in
Fluidics. In N. E. Mastorakis, editor, Recent Advances in Information Science and Technology,
pages 237–242. World Scientific Publishing, 1998.

G. Stephanopoulos, G. Henning, and H. Leone. Model.la. A Modeling Language for Process
Engineering - I. The Formal Framework. Computers chem. Engng., 14(1):813–846, 1990.

M. van Eekelen, S. Smetsers, and R. Plasmeijer. Graph Rewriting Systems for Functional
Programming Languages. Technical report, Computing Science Institute, University of
Nijmegen, 1998.

75

	1 Introduction
	2 A Design Task from the Domain of Chemical Engineering
	2.1 Model Simplification
	2.2 Caramel Syrup Example---Structure
	2.3 Caramel Syrup Example---Behavior

	3 Graph Grammar Model for Design
	3.1 Design Tasks and Graph Transformation Rules
	3.2 Context-free Design Graph Grammar
	3.3 Context-Sensitive Design Graph Grammar
	3.4 On the Semantics of Labels
	3.5 Terminal and Nonterminal Labels

	4 Analyzing Systems
	4.1 Structure Analysis by Graph Grammars
	4.2 Caramel Syrup Example
	4.3 Behavior Analysis by Simulation

	5 Synthesizing Systems
	5.1 Structure Synthesis by Graph Grammars
	5.2 Caramel Syrup Example Reviewed
	5.3 Graph Topology Restrictions

	6 Design Language
	6.1 Requirements
	6.2 Semantics of Graphical Representation
	6.3 Caramel Syrup Example Reviewed Again

	7 Theoretical Considerations of Design Graph Grammars
	7.1 Classical Graph Grammars and Design Graph Grammars
	7.2 Relationship to Programmed Graph Replacement Systems
	7.3 The Problem of Matching
	7.4 Foundations of Derivations and Membership
	7.5 Membership and Derivation in Design

	8 Summary
	A Graph Grammar Applications Within Design
	A.1 Structural Simplification: Hydraulic Plants
	A.2 Model Reformulation: Wave Digital Structures
	A.3 Model Reformulation: Parallel-Series Graphs

