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Abstract
Word embedding models reflect bias towards gen-
ders, ethnicities, and other social groups present in
the underlying training data. Metrics such as ECT,
RNSB, and WEAT quantify bias in these models
based on predefined word lists representing social
groups and bias-conveying concepts. How suitable
these lists actually are to reveal bias—let alone the
bias metrics in general—remains unclear, though.
In this paper, we study how to assess the quality of
bias metrics for word embedding models. In partic-
ular, we present a generic method, Bias Silhouette
Analysis (BSA), that quantifies the accuracy and
robustness of such a metric and of the word lists
used. Given a biased and an unbiased reference
embedding model, BSA applies the metric system-
atically for several subsets of the lists to the models.
The variance and rate of convergence of the bias
values of each model then entail the robustness
of the word lists, whereas the distance between
the models’ values gives indications of the general
accuracy of the metric with the word lists. We
demonstrate the behavior of BSA on two standard
embedding models for the three mentioned metrics
with several word lists from existing research.

1 Introduction
Social bias refers to implicit or explicit prejudices against
social groups such as ethnicities, genders or persons with
disabilities [Hutchinson et al., 2020]. Studies have demon-
strated that such bias is often manifested in pretrained lan-
guage models [Sun et al., 2019]. These models further tend
to exaggerate patterns of stereotypes in the underlying train-
ing data and thus amplify existing biases [Zhao et al., 2017;
Shwartz and Choi, 2020]. This is particularly problematic if
they are used as a starting point for other models, which likely
adopt the biases. With increasing applications of language
models to real-world scenarios, potential consequences for the
affected social groups grow as well [Raji et al., 2020].

A prominent example is given by word embedding models
[Mikolov et al., 2013]. As most word embedding algorithms
encode patterns of word usage, they are also susceptible to in-
herit social biases from the training data. Such inherited biases

can then lead to negative consequences when the word embed-
dings are used in real-world applications like creditworthiness
assessment or crime prediction [Dev and Phillips, 2019]. To
quantify the biases in pretrained models, different metrics
have been proposed, such as the Embedding Coherence Test
(ECT) [Dev and Phillips, 2019], the Relative Negative Sen-
timent Bias (RNSB) [Sweeney and Najafian, 2019], and the
Word Embedding Association Test (WEAT) [Caliskan et al.,
2017]. To the best of our knowledge, all such bias metrics
follow the general intuition that bias is reflected by overpropor-
tional associations between certain social groups (e.g., some
ethnicity) and bias-conveying concepts (e.g., a specific senti-
ment). This is also the notion of social bias that we adopt in
this work.1

Different factors influence the results of bias metrics. Be-
sides the chosen embedding algorithm (e.g., Skip-Gram or
CBOW), its hyperparameters (e.g., window sizes), and dis-
tance measures applied by the metrics (e.g., cosine), a critical
aspect is that the metrics rely on predefined word lists to repre-
sent the social groups and bias-conveying concepts. These lists
are delicate for two main reasons: First, words that cannot be
embedded (i.e., out-of-vocabulary tokens) may influence the
results of a metric. Especially for models trained on smaller or
specialized text corpora, this is important, since the probability
that words from the lists are out-of-vocabulary is higher there.
Second, it often remains unclear how representative the used
word lists are. If the exact source is not stated, it is impos-
sible to assess the biases already encoded in the choice of
words, for example, caused by a specific cultural background
or experience of the authors [Greenwald and Banaji, 1995].

Even though some bias metrics are widely utilized already,
they themselves have hardly been evaluated, except for gen-
eral evidence that they reveal biases known from psychology
[Caliskan et al., 2017]. We argue that a methodological assess-
ment of the metrics’ quality and of the impact of the outlined
factors on their results is needed. In this paper, we focus on
the word lists, seeking to answer the following questions:

1. How robust are the word lists to capture a certain social
bias across bias metrics and embedding models?

2. What is the most accurate combination of metric and
word lists to measure a certain social bias?

1For brevity, the terms bias and social bias are used interchange-
ably in this work, unless indicated otherwise.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

552



Bias

# Words

Bias silhouette of
unbiased reference model Mmin

Bias silhouette of
biased reference model Mmax

Area between mean values
~ Accuracy of bias metric

k

Area of silhouette
~ Robustness of word lists on Mmax

mean values

mean values

Figure 1: Sketch of Bias Silhouette Analysis: The silhouettes of the
embedding models show the values of a bias metric on several subsets
of size k of the used word lists. Their area reflects the robustness of
the lists, the area between them accuracy of the metric with the lists.

To this end, we present Bias Silhouette Analysis (BSA), a
method to assess the quality of any combination of bias met-
ric and word lists in terms of their accuracy and robustness.
The core idea of BSA is to quantify how much the bias val-
ues of a metric vary depending on what words from the lists
are actually observed. In particular, given a biased and an
unbiased reference embedding model, BSA systematically
computes bias values for each model using word list subsets
of increasing length. This leads to a bias silhouette for each
model, which represents the range of computed values for all
evaluated lengths, as illustrated in Figure 1. The area of each
silhouette reflects variance and rate of convergence, entail-
ing the robustness of the word lists against failures to embed
words. Assuming the given models represent extreme points,
a metric should put the two silhouettes as far apart from each
other as possible. The area between the silhouettes’ mean
values gives indications of the metrics’ general accuracy.

We apply BSA to ECT, RNSB, and WEAT and word lists
for three types of social bias (ethnicity, gender, and religion),
using GloVe and Numberbatch as biased and unbiased em-
bedding model, respectively. Our analysis reveals how the
selected metrics differ from each other, contributing towards
a general evaluation of embedding-based bias metrics. Con-
cretely, we find that ECT provides the most robust results over
all word lists. That said, our results also suggests that ECT is
the least accurate metric compared to RNSB and WEAT. In
general, though, all metrics fail to meaningfully separate the
two models along their respective bias quantification range.

With BSA, we contribute a first method to systematically
assess the quality of bias metrics for word embedding models.
Its underlying assumption that models exist for which the
level of bias is known a priori may be questioned. For our
experiments, we chose GloVe and Numberbatch, as they were
found to be comparably biased and unbiased, respectively, in
prior intrinsic and extrinsic evaluations [Speer et al., 2017;
Caliskan et al., 2017; Sweeney and Najafian, 2019; Gonen
and Goldberg, 2019]. We point out, though, that BSA is
generic and applies to any word embedding model and word
list-based metric. Future work may construct explicitly biased
and unbiased datasets, train reference models on them, and

then repeat our evaluation. For this purpose, we also publish
the code alongside the paper.2

2 Related Work
Stereotypes of different nature give rise to prejudices against
social groups identified by gender, ethnicity, (dis)ability, re-
ligion, or similar attributes of their members [Sweeney and
Najafian, 2019]. Such prejudices are also referred to as so-
cial bias. Social bias can induce discriminatory behavior that
manifests in social disadvantage or exclusion [Fiske, 1993].

However, social bias is not always expressed explicitly, but
may also be visible implicitly only in actions and decisions
[Greenwald and Banaji, 1995]. As an example, the trust in
a person to do a job well might be affected, consciously or
unconsciously, by the person’s gender. With the increasing
application of AI systems to real-world applications, this is-
sue of implicit bias also becomes relevant for the underlying
methods [Barocas and Selbst, 2016]. An evaluation of bias in
these methods is thus indispensable to ensure fair decisions
and the ability to correctly put their outputs into context.

In natural language processing in particular, many methods
nowadays rely on black-box word embeddings that aim to
model word usage patterns from large text corpora as a vector
space [Mikolov et al., 2013]. By nature, text corpora are
prone to inherit historical and contemporary social biases or
to even amplify them [Papakyriakopoulos et al., 2020]. To
evaluate biases in embedding models, different approaches
have been proposed; both extrinsic approaches that check the
output of a model for biases [Dev et al., 2020] and intrinsic
ones that analyze the vector space [Bolukbasi et al., 2016;
Ethayarajh et al., 2019]. We focus on the latter in this paper.

Intrinsic methods include metrics that aim to quantify bi-
ases. Most of them measure how related or unrelated certain
concepts are, where the concepts are described by lists of
words. For social biases, in particular, they measure how an
embedding model associates a certain target group (referred to
as social group henceforth) to some semantic category (hence-
forth, bias-conveying concept) and how that differs for another
group. Effectively, however, the metrics are unsupervised
and thus require manual quality assessment. The method we
present below supports researchers on this task.

For our experiments, we select three common bias metrics,
ECT [Dev and Phillips, 2019], RNSB [Sweeney and Najafian,
2019], and WEAT [Caliskan et al., 2017]. ECT and WEAT
evaluate directional bias in a range of [−1, 1] and [−2, 2], re-
spectively, based on vector-distance measures, whereas RNSB
quantifies bias in [0, 1] based on probability predictions of a
logistic regression classifier. For further details, we refer the
reader to the original publications. Other proposed metrics in-
clude the Mean Average Cosine Similarity (MAC) [Manzini et
al., 2019] as well as the Relational Inner Product Association
(RIPA) [Ethayarajh et al., 2019]. The latter resulted from the
observation that WEAT seems to overstate biases, even if its
general tendencies correlate with results of the well-known
Implicit Association Test [Caliskan et al., 2017].

Hardly any work exists yet that aims to assess the quality of
bias metrics systematically, a gap that we fill with this paper.

2https://github.com/webis-de/IJCAI-21
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With a somewhat similar idea, Zhang et al. [2020] recently
examined the stability of bias metrics, looking at the results
of small changes to word pairs, such as capitalizing their first
letters or replacing them with others that should have a similar
association. According to their findings, none of the evaluated
metrics is reliable in identifying biases in word embeddings.
In contrast, we present a more general method to evaluate
the metrics against assumed levels of social bias (referred to
as accuracy below). Moreover, we generally investigate the
robustness of the word lists underlying the metrics.

3 Bias Silhouette Analysis
We now present the Bias Silhouette Analysis (BSA), a generic
method to assess the quality of any metric that measures social
bias in word embedding models based on word lists represent-
ing social groups and bias-conveying concepts.

In a nutshell, BSA quantifies how much the outputs of a
given metric vary depending on what words from the used lists
are actually observed (implying the lists’ robustness under the
metric) as well as how clearly it reveals differences between
a biased and an unbiased reference embedding model (the
metric’s accuracy). BSA has a visual intuition, as sketched in
Figure 1, but it relies on a precise mathematical foundation.
In the following, we discuss the notions of robustness and
accuracy, before we detail how to assess quality using BSA.

3.1 Quality of Bias Metrics
The metrics we consider all share that they quantify a specific
social bias captured in a word embedding model by a bias
value on a predefined scale (such as [−2, 2] in case of WEAT).
This value is derived from the embeddings of words in two or
more word lists. Each list represents, on the one hand, a social
group of interest and, on the other hand, a bias-conveying
concept. Ideally, the bias value should precisely locate the
model within the bias value distribution, i.e., the value should
allow for an absolute interpretation of the model’s respective
bias as well as a relative comparison to the bias of other models.
We informally capture this notion in the following definition:

Accuracy. A bias metric B based on word lists W1, . . . ,Wl,
l ≥ 2, is more accurate for a word embedding model M , the
better the value b that B assigns to M reflects the real-world
social bias of M represented by W1, . . . ,Wl.

Practically, however, a real assessment of accuracy is diffi-
cult, since ground-truth bias values of word embedding models
are, at the time of writing, not accessible. Below, we will dis-
cuss how to alleviate this problem when given embedding
models that can be assumed to approximate extreme cases.

The definition of accuracy could easily be extended to a set
of models, given that the comparability of different models
implies the natural requirement that a bias metric should be
applicable to any word embedding model. In this regard, the
dependency of a bias metric on its associated word lists calls
for a second quality criterion to consider. In particular, a bias
metric should ideally still be accurate for a word embedding
model, even if the model does not cover all the words from
the word lists. We define this property as follows:

Robustness. The word lists W1, . . . ,Wl, l ≥ 2, are more
robust under a given bias metric B, the less the value assigned
by B to a word embedding modelM varies depending on what
words from W1, . . . ,Wl are covered by M .

Unlike accuracy, robustness can be assessed intrinsically
for any model and any given combination of bias metric and
word lists, by looking at the subsets of the lists. For a specific
bias, it may be expected that some words are more central to
the computation of bias values (e.g., “he” and “she” in case
of binary gender groups). In general, however, we argue that
no assumption should be made about the existence of specific
words in an embedding model, in order not to reduce the
applicability of bias metrics to models derived from general-
purpose corpora. As detailed in the following, we therefore
consider arbitrary subsets of word lists in the BSA method.

3.2 Computation of Bias Silhouettes
BSA analyzes what we call bias silhouettes, that is, areas in
a two-dimensional plot that represent how much the value
of a given bias metric B varies on a given word embedding
model M , depending on what words from the associated word
lists are actually observed. We now present how to compute
silhouettes; their analysis follows in the next section.

In particular, BSA evaluates either of the two types of word
lists (i.e., social group words or bias-conveying concept words)
at a time, not both simultaneously. Hence, there are one
or more word lists W1, . . . ,Wl, l ≥ 1, to be evaluated (all
metrics reviewed in Section 2 have l ∈ {1, 2}). Based on these
lists, BSA iteratively creates random subsets Wk ⊆ W∪ =⋃l

i=1Wi of increasing size k. New subsets are created by
extending previous ones. The size k iterates from some small
value kmin ≥ l to the size of the complete union of all lists,
kmax = |W∪|. In each step, k increases by some ∆k > 0 (in
the experiments in Section 4, we set ∆k = 2 for social groups
and ∆k = 6 for bias-conveying concepts). BSA then applies
the metric B once using each subset list Wk to compute a bias
value bk on the model M . The idea behind evaluating subsets
of word lists is to simulate that not all words from the lists
might occur in a text corpus of interest.

The outlined process results in a sequence of bias values
s = (b(1), . . . , b(m)), where m equals the number of values
of k considered. This process is now repeated n times, so
we obtain a set of sequences {s1, . . . , sn} of bias values (in
Section 4, we use n = 100, but we also evaluate this param-
eter afterwards). Based on the sequences, we define the bias
silhouette of B on M as:

SBM = 〈 (b
(1)
min, b

(1)
max), . . . , (b

(m)
min, b

(m)
max) 〉

where ∀i, 1 ≤ i ≤ m:

(b
(i)
min, b

(i)
max) = ( min

1≤j≤n
s
(i)
j , max

1≤j≤n
s
(i)
j )

In other words, a bias silhouette is defined by two interpo-
lated curves that represent the minimum and maximum bias
values observed for each considered size of the used word lists
respectively. Figure 1 sketches the silhouettes of two models.
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3.3 Analysis of Bias Silhouettes
The computation of a bias silhouette can be done for any com-
bination of word embedding model, bias metric and associated
word lists. These silhouettes can be directly interpreted, visu-
ally and mathematically, in terms of the accuracy of the given
bias metric and the robustness of the given word lists.

By definition, the boundaries of a silhouette converge to-
wards the maximum number of words included. The implicit
working hypothesis underlying this behavior is that the most
precise bias value results from using all words. As a matter
of fact, a robust set of word lists should make the metric stay
close to this value, even if only some subset of the contained
words is actually observed. The larger the area of a bias sil-
houette, the higher the variance from the value. Thus, the
robustness of the word lists is reflected visually by the pro-
portion of the entire area not covered by the bias silhouette.
Mathematically, we operationalize this notion as follows.

Robustness Score. Let W1, . . . ,Wl, l ≥ 1, be the word lists
(of either social groups or bias-conveying concepts) utilized by
a bias metric B, letW∪ =

⋃l
i=1Wi, and let bmin and bmax be

the lowest and highest value of B respectively, bmin < bmax.
Now, let S(B)

M be the bias silhouette of a word embedding
model M under B. Then the robustness score of B on M is

r
(B)
M = 1−

∫
S
(B)
M

(bmax − bmin) · |W∪|
∈ [0, 1],

where
∫
S
(B)
M denotes the area of S(B)

M .

Since the silhouettes are defined by interpolated curves, we
can technically compute this area using the trapezoidal rule.
Theoretically, a score of 1.0 is given to a silhouette without
area, and a score of 0.0 to a silhouette that covers the entire
area possible.

The robustness score can be computed with any word em-
bedding model. In contrast, the accuracy of a bias metric re-
quires word embedding models for which a ground-truth bias
is known. Since such models are not available at present, we
resort to the comparison of two reference models instead—one
each that can be assumed to be unbiased and biased respec-
tively. In Section 4, we make this choice based on current
literature, but our method applies to any such models.

Now, under the assumption made, an accurate bias metric
should assign a low value to the unbiased and a high value to
the biased model, the larger the difference the better. Moreover,
in line with the idea of the bias silhouettes, we argue that the
values should remain stable, even if not all words used by the
metric are actually observed. By this, we simulate the accuracy
of the metric beyond the reference models: If a combination
of metric and word lists robustly compute bias values on the
reference models irrespective of the words actually observed, it
will likely also be accurate for other models. Visually speaking,
this means that the mean values should be as low as possible
for the silhouette of the unbiased reference model and as high
as possible for the biased reference model. Hence, the area
between the mean values reflects the metric’s accuracy (see
Figure 1). We capture this notion in the accuracy score.

Accuracy Score. LetW∪, B, bmax be defined as before, and
let b0 be the value of B that represents the absence of bias,
b0 < bmax. Let µ(B)

M (k) be the mean value of a bias silhouette
S
(B)
M of a word embedding model M over all subsets of W∪

of size k. Now, let Mmin and Mmax be an unbiased and a
biased reference word embedding model. Then the accuracy
score of B with respect to Mmin and Mmax is

a(B) = 0.5 + 0.5 ·
∫
k
|µ(B)

max(k)| − |µ(B)
min(k)|

(bmax − b0) · |W∪|
∈ [0, 1],

where
∫
k
|µ(B)

max(k)|− |µ(B)
min(k)| denotes the area between the

mean values, as depicted in Figure 1.

The use of absolute values is necessary here, since some
bias metrics (e.g., WEAT) have b0 = 0 while negative bias
values indicate bias in the direction opposite to bmax, with
bmax = −bmin. The area may even be negative, in case more
bias is observed forMmin than forMmax. The included factor
0.5 normalizes the computed value to the range [0, 1] such that
a(B) = 0.5 means that no bias difference is observed for the
two models, i.e., a(B) should hence be larger than 0.5, ifMmin

and Mmax are chosen at least somewhat properly.
The two defined scores allow us to assess the quality of

any combination of bias metric and word lists for measuring
a certain social bias. We demonstrate the insights that can be
gained from our method in the following experiments.

4 Experiments
To study the two research questions from Section 1 empirically,
we applied the presented Bias Silhouette Analysis (BSA) to
two standard word embedding models using word lists repre-
senting three types of social bias and three bias metrics. This
section reports on the details and findings of this study.

4.1 Experimental Setup
We conducted our experiments with the following setup.

Word Embedding Models. As biased and unbiased mod-
els, we use GloVe CommonCrawl [Pennington et al., 2014]
trained on 840 billion English tokens and the English Concept-
Net Numberbatch 19.08 [Speer et al., 2017] (referred to as
NBatch below), respectively. While GloVe has surfaced multi-
ple social biases [Caliskan et al., 2017; Sweeney and Najafian,
2019], NBatch was explicitly debiased [Speer, 2017] and its
lower bias has later been confirmed empirically [Sweeney and
Najafian, 2019]. Both thus seem to be a viable choice for
this kind of task. We acknowledge, however, that the selec-
tion is not optimal, as we do not know the exact level of bias
the model inherited from their training data and parameter
choices.

Word Lists. Working with longer word lists allows us to
create a test environment and to evaluate bias metrics system-
atically with lists of varying sizes and contents. In order to
include as many words as possible, we combine word lists for
social groups and bias-conveying concepts from prior work:
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• Ethnicity. Social groups: African-American and
European-American names of Caliskan et al. [2017] and
Garg et al. [2018]. Bias-conveying concepts: Positive
and negative sentiment words of Hu and Liu [2004].

• Gender. Social groups: Male and female terms and first
names of Bolukbasi et al. [2016], Caliskan et al. [2017],
Dev and Phillips [2019], and Garg et al. [2018]. Bias-
conveying concepts: Male and female professions of
Bolukbasi et al. [2016].

• Religion. Social groups: Christian and Islamic terms
of Garg et al. [2018] and Manzini et al. [2019]. Bias-
conveying concepts: Same words as for ethnicity.

To control for failed encodings, we remove every word
from the lists for which any of the used embeddings models
was not able to return a vector. In doing so, we ensure that
both models can be evaluated under the exact same conditions.
Another important parameter of BSA is the step size, ∆k, by
which we increase the word lists iteratively. We set ∆k = 2
for the social group word lists, adding one word from each
group per step (for uniformly distributed lists). As the word
lists for bias-conveying concepts contain consistently more
words, we found ∆k = 6 to work well. Subsets of the lists
were created pseudo-randomly to ensure reproducible results.

Bias Metrics. We selected three common metrics recently
proposed to indicate the presence of bias in word embed-
ding models, namely, ECT [Dev and Phillips, 2019], RNSB
[Sweeney and Najafian, 2019] and WEAT [Caliskan et al.,
2017]. These metrics represent the diversity of approaches to
evaluate bias in word embedding models well.3 For ECT, we
use the implementation published by the authors.4 Since the
authors of WEAT and RNSB did, to the best of our knowledge,
not publish their code, we re-implemented them. For WEAT,
we managed to reproduce the original results almost perfectly
and attribute smaller differences to implementation details.
We were not able to do the same for RNSB, though, as we did
not find the word lists used in the original publication.

Runs. A major influencing factor of the final silhouette size
is the number of runs n in which random subsets of the word
list are created and stepwise increased. Due to the exponential
number of possible combinations, it is practically infeasible
to evaluate all subsets. We thus approximated the silhouette
with fewer runs. In a pilot study, we evaluated changes in
the silhouette size for up to n = 100 shuffled word lists.
The results can be found in Appendix A.5 In short, we found
that, as of n = 80, the resulting robustness and accuracy
scores change by less than 0.003 on average with a maximum
observed difference of 0.010. When time is scarce, even n =
40 may provide a sufficient approximation. For exactness,
the analysis presented below is based on the evaluation with
n = 100.

3We decided against other metrics for different reasons. For
example, while the MAC metric is strictly meant for a multi-class
setting, the code for the RIPA metric was, at the time of writing,
neither published nor trivial to re-implement.

4https://github.com/sunipa/Attenuating-Bias-in-Word-Vec
5The supplementary material is published alongside our code.

4.2 Robustness Results
Table 1 presents the robustness scores for all combinations of
bias type, word lists, and metric. For ethnicity bias, Figure 2
plots the bias silhouettes. All other plots are in the appendix.

In general, we observe both high and lower scores. While
WEAT obtains the highest score in 50% of the cases, in doubt
ECT seems most robust, never having the lowest score. In
contrast, the scores of WEAT show strong variance, ranging
from 0.57 (for religious bias on GloVe) to 1.00 (for ethnic-
ity and gender bias on NBatch). Especially on GloVe, the
low robustness scores suggest that the computed bias values
strongly depend on specific words. For example, this is the
case for RNSB and its corresponding bias silhouettes, shown
in Figure 2(c–d).

Further, word lists’ sizes do not necessarily imply their ro-
bustness. For example, scores for the bias-conveying concept
lists of ethnicity and religious bias with 6484 words do gener-
ally not exceed the ones of gender bias (290 words) by a big
margin. As depicted for ethnicity in Figure 2(d), the respective
bias silhouette on the GloVe model still shows a large variance
towards the end, suggesting that small changes can influence
the bias values. To some degree, this counters the intuition
that single words lose importance in larger lists, especially for
mean-based metrics such as ECT and WEAT.

However, the size of word lists still influences the results.
Especially very short lists, seem susceptible to changes. Con-
sequently, the variance is always higher when only a small
portion of the full word lists is utilized, visually indicated by
the larger height of the bias silhouettes in those ranges. These
results suggest that failures to embed single words can have
a notable impact on the metrics’ output. For ECT and WEAT,
variance is often observed for short lists only; in cases such
as Figure 2(b) and (f), rather few words seem to suffice. For
RNSB, though, some results suggest that small portions of the
lists can have a larger impact on the score. The number of
embedding failures should thus be considered when evaluating
embedding models for social biases with such metrics.

Another finding is that the robustness scores of word list de-
pend on the given embedding model. The most obvious exam-
ple in Table 1 is ethnicity bias with RNSB. While the word list
receives a perfect score of 1.0 (rounded) with NBatch, its score
on GloVe is only 0.59. Even though the difference is lower for
other cases, it is still visible. A possible explanation is that the
two models were trained with different algorithms, which may
affect the results. Such influence might, for example, manifest
in the ability of the metric to utilize the algorithm-specific
vector space or the quality of the model itself. With the results
at hand, however, it is not possible to draw a final conclusion
and identify a single factor.

4.3 Accuracy Results
The accuracy scores of each combination are given in Table 2,
the scores for ethnicity bias are also shown in Figure 2.

Overall, BSA suggests that the least accurate metric is
ECT. It received the lowest score in all six cases, even below
0.5 for gender bias (i.e., the silhouette of NBatch lies above
GloVe on average). Findings from related work make such a
result in which NBatch conveys more gender bias than GloVe
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Ethnicity Bias Gender Bias Religious Bias

Social Group Bias Concept Social Group Bias Concept Social Group Bias Concept

Metric GloVe NBatch GloVe NBatch GloVe NBatch GloVe NBatch GloVe NBatch GloVe NBatch

ECT 0.74 0.87 0.98 0.97 0.93 0.86 0.87 0.90 0.69 0.89 0.96 0.95
RNSB 0.73 0.99 0.59 1.00 0.85 0.96 0.78 1.00 0.61 0.86 0.57 0.95
WEAT 0.79 0.74 0.98 0.92 0.95 0.74 0.95 0.88 0.70 0.67 0.97 0.93

Table 1: Robustness scores of the three given bias metrics evaluated on the biased and unbiased reference word embedding models (GloVe and
NBatch) using the word lists for social groups and bias-conveying concepts respectively. The best score for each combination is marked bold.

(f) WEAT: Ethnicity, bias-conveying concepts(e) WEAT: Ethnicity, social groups
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Figure 2: The bias silhouettes and the resulting robustness and accuracy scores on the two reference word embedding models for the social
group word lists (left) and bias-conveying concepts (right) representing ethnicity bias under the three considered bias metric (top to bottom).
Exemplarily, we show all n = 100 interpolated bias curves for the bias silhouettes of the ECT social group word lists at the top left.

somewhat unlikely, even if the two reference models may not
actually be extreme points. In general, RNSB seems most
accurate according to our results. That said, no metric can be
judged best across all bias types and word lists: While RNSB
increases upon the scores of the other metrics by > 0.06 for

gender and religion word lists, the WEAT metric achieves the
highest scores for ethnicity bias (0.60 and 0.61).

However, our results also indicate that either all metrics
fail to clearly distinguish the two models, or the models are
actually less different than assumed: Except for the high ac-
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Ethnicity bias Gender Bias Religious Bias

Metric Group Concept Group Concept Group Concept

ECT 0.54 0.54 0.49 0.48 0.54 0.54
RNSB 0.58 0.61 0.79 0.72 0.60 0.61
WEAT 0.60 0.61 0.60 0.61 0.54 0.54

Table 2: Accuracy scores of the three given bias metrics evaluated on
the social group and bias-conveying concept word lists respectively.
The best score for each combination is marked bold.

curacy of RNSB for gender bias (0.79 and 0.71), the scores in
Table 2 imply few room to differentiate meaningfully between
their levels of bias. In the first case, the metrics may not be
capable of revealing the presence of social bias to the expected
degree. This may be due to imperfect word lists or internal
calculations; the main cause cannot be assessed though, due
to the black-box character of the word embedding models. In
the second case, we see in Figure 2 that RNSB and WEAT
correctly quantify the bias of NBatch to be low, whereas rarely
a very high value is assigned to GloVe. This could mean that
GloVe is not an optimal reference model for high bias, but we
leave the search for better models in this regard to future work.

Finally, we observe that, in contrast to the results on robust-
ness, the accuracy scores go hand in hand for the two types
of word lists across metrics. This supports the idea that the
accuracy measure of BSA is able to isolate the metrics’ quality
from the word lists and can thus be evaluated across metrics,
as long as the same word lists and models are compared.

5 Conclusion
We have presented Bias Silhouette Analysis (BSA), a method
to assess the quality of metrics that measure bias in word
embedding models based on word lists. BSA provides a math-
ematical approach, along with a visual intuition, to quantify
the general robustness of the word lists as well as the accuracy
with respect to an unbiased and a biased reference model.

We have applied BSA to multiple metrics and word lists,
observing that both robustness and accuracy vary depending
on the combination used. While the ECT metric shows the
most stable robustness results across word lists, it seems less
accurate, most notably compared to RNSB. Our results suggest
that BSA is able to isolate a metrics’ accuracy from the specific
word lists used. We also found that longer word lists are not
always better and that metrics may depend strongly on specific
words included. The latter is particularly critical for smaller
word embedding models. In general, no metric convincingly
distinguished the reference models in terms of bias in all cases.

With respect to accuracy, a limitation of BSA lies in the
dependence on reference models. Our literature-based choice
of models might not really represent extreme points of bias. We
point out, though, that BSA is generic and can be applied again
as soon as better reference models are available. Furthermore,
we emphasize that a method such as BSA is important, even if
a truly unbiased reference model already exists. In particular,
embedding models are often generated for domain-specific
purposes and problems, where the data may vary strongly from
general-purpose data. This makes the existence of a one-size-

fits-all unbiased word embedding model unlikely. Thus, there
is still a need for good bias metrics and, hence, a method to
assess the metrics’ quality.

A factor left unevaluated is the impact of the embedding al-
gorithm, as we do not know the bias of the underlying training
data. Also, the word lists used in our evaluation have not been
examined for completeness and correctness, but relied solely
on prior work. In this regard, we further note that the lists are
geared towards direct bias rather than indirect bias [Swinger
et al., 2019] and assume western-centric views of issues for
the evaluated social groups. While not strictly a problem, it is
definitely worth considering the applicability of the lists when
employing them in different contexts.

Ultimately, the goal of this work is to contribute towards a
better understanding of bias metrics for word embedding mod-
els and, with that, towards generally fairer NLP applications.

References
[Barocas and Selbst, 2016] Solon Barocas and Andrew D.

Selbst. Big Data’s Disparate Impact. California Law Re-
view, 104(3):671–732, 2016.

[Bolukbasi et al., 2016] Tolga Bolukbasi, Kai-Wei Chang,
James Y Zou, Venkatesh Saligrama, and Adam T Kalai.
Man is to Computer Programmer as Woman is to Home-
maker? Debiasing Word Embeddings. In Advances in NIPS,
pages 4349–4357, 2016.

[Caliskan et al., 2017] Aylin Caliskan, Joanna J. Bryson, and
Arvind Narayanan. Semantics derived automatically from
language corpora contain human-like biases. Science,
356(6334):183–186, 2017.

[Dev and Phillips, 2019] Sunipa Dev and Jeff Phillips. Atten-
uating Bias in Word vectors. In Procs. of the 22nd Interna-
tional Conference on AISTATS, pages 879–887, 2019.

[Dev et al., 2020] Sunipa Dev, Tao Li, Jeff M. Phillips, and
Vivek Srikumar. On Measuring and Mitigating Biased
Inferences of Word Embeddings. In Procs. of the AAAI
Conference on Artificial Intelligence, pages 7659–7666,
2020.

[Ethayarajh et al., 2019] Kawin Ethayarajh, David Duve-
naud, and Graeme Hirst. Understanding Undesirable Word
Embedding Associations. In Procs. of the 57th Annual
Meeting of the ACL, pages 1696–1705, 2019.

[Fiske, 1993] Susan T. Fiske. Controlling other people: The
impact of power on stereotyping. American Psychologist,
48(6):621–628, 1993.

[Garg et al., 2018] Nikhil Garg, Londa Schiebinger, Dan Ju-
rafsky, and James Zou. Word embeddings quantify 100
years of gender and ethnic stereotypes. Procs. of the Na-
tional Academy of Sciences, 115(16):E3635–E3644, 2018.

[Gonen and Goldberg, 2019] Hila Gonen and Yoav Goldberg.
Lipstick on a Pig: Debiasing Methods Cover up Systematic
Gender Biases in Word Embeddings But do not Remove
Them. In Procs. of the 2019 Conference of the NAACL:
Human Language Technologies, pages 609–614, 2019.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

558



[Greenwald and Banaji, 1995] Anthony G. Greenwald and
Mahzarin R. Banaji. Implicit social cognition: Atti-
tudes, self-esteem, and stereotypes. Psychological Review,
102(1):4–27, 1995.

[Hu and Liu, 2004] Minqing Hu and Bing Liu. Mining and
summarizing customer reviews. In Procs. of the tenth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 168–177, 2004.

[Hutchinson et al., 2020] Ben Hutchinson, Vinodkumar Prab-
hakaran, Emily Denton, Kellie Webster, Yu Zhong, and
Stephen Denuyl. Social Biases in NLP Models as Barriers
for Persons with Disabilities. In Procs. of the 58th Annual
Meeting of the ACL, pages 5491–5501, 2020.

[Manzini et al., 2019] Thomas Manzini, Lim Yao Chong,
Alan W Black, and Yulia Tsvetkov. Black is to Crimi-
nal as Caucasian is to Police: Detecting and Removing
Multiclass Bias in Word Embeddings. In Procs. of the 2019
Conference of the NAACL: Human Language Technologies,
pages 615–621, 2019.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. Distributed Repre-
sentations of Words and Phrases and their Compositionality.
In Advances in NIPS, pages 3111–3119, 2013.

[Papakyriakopoulos et al., 2020] Orestis Papakyriakopoulos,
Simon Hegelich, Juan Carlos Medina Serrano, and Fabi-
enne Marco. Bias in word embeddings. In Procs. of the
2020 Conference on Fairness, Accountability, and Trans-
parency, pages 446–457, 2020.

[Pennington et al., 2014] Jeffrey Pennington, Richard Socher,
and Christopher Manning. GloVe: Global Vectors for
Word Representation. In Procs. of the 2014 Conference on
EMNLP, pages 1532–1543, 2014.

[Raji et al., 2020] Inioluwa Deborah Raji, Timnit Gebru, Mar-
garet Mitchell, Joy Buolamwini, Joonseok Lee, and Emily
Denton. Saving Face: Investigating the Ethical Concerns of
Facial Recognition Auditing. In Procs. of the AAAI/ACM
Conference on AI, Ethics, and Society, pages 145–151,
February 2020.

[Shwartz and Choi, 2020] Vered Shwartz and Yejin Choi. Do
Neural Language Models Overcome Reporting Bias? In
Procs. of the 28th International Conference on Compu-
tational Linguistics, pages 6863–6870, Barcelona, Spain
(Online), December 2020.

[Speer et al., 2017] Robyn Speer, Joshua Chin, and Catherine
Havasi. ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[Speer, 2017] Robyn Speer. ConceptNet Numberbatch 17.04:
Better, less-stereotyped word vectors. blog.conceptnet.io/
posts/2017/conceptnet-numberbatch-17-04-better-less-
stereotyped-word-vectors, 2017. Last accessed: 2020-09-
03.

[Sun et al., 2019] Tony Sun, Andrew Gaut, Shirlyn Tang,
Yuxin Huang, Mai ElSherief, Jieyu Zhao, Diba Mirza, Eliz-
abeth Belding, Kai-Wei Chang, and William Yang Wang.

Mitigating Gender Bias in Natural Language Processing:
Literature Review. In Procs. of the 57th Annual Meeting of
the ACL, pages 1630–1640, 2019.

[Sweeney and Najafian, 2019] Chris Sweeney and Maryam
Najafian. A Transparent Framework for Evaluating Unin-
tended Demographic Bias in Word Embeddings. In Procs.
of the 57th Annual Meeting of the ACL, pages 1662–1667,
2019.

[Swinger et al., 2019] Nathaniel Swinger, Maria De-Arteaga,
Neil Thomas Heffernan IV, Mark DM Leiserson, and
Adam Tauman Kalai. What are the Biases in My Word
Embedding? In Procs. of the 2019 AAAI/ACM Conference
on AIES, pages 305–311, 2019.

[Zhang et al., 2020] Haiyang Zhang, Alison Sneyd, and Mark
Stevenson. Robustness and Reliability of Gender Bias
Assessment in Word Embeddings: The Role of Base Pairs.
In Procs. of the 1st Conference of the AACL, pages 759–769,
2020.

[Zhao et al., 2017] Jieyu Zhao, Tianlu Wang, Mark Yatskar,
Vicente Ordonez, and Kai-Wei Chang. Men Also Like
Shopping: Reducing Gender Bias Amplification using
Corpus-level Constraints. In Procs. of the 2017 Confer-
ence on EMNLP, pages 2979–2989, 2017.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

559

https://blog.conceptnet.io/posts/2017/conceptnet-numberbatch-17-04-better-less-stereotyped-word-vectors/
https://blog.conceptnet.io/posts/2017/conceptnet-numberbatch-17-04-better-less-stereotyped-word-vectors/
https://blog.conceptnet.io/posts/2017/conceptnet-numberbatch-17-04-better-less-stereotyped-word-vectors/

	Introduction
	Related Work
	Bias Silhouette Analysis
	Quality of Bias Metrics
	Computation of Bias Silhouettes
	Analysis of Bias Silhouettes

	Experiments
	Experimental Setup
	Robustness Results
	Accuracy Results

	Conclusion

