
Selection of Numerical Methods
in Specific Simulation Applications

Benno Stein and Daniel Curatolo

Department of Mathematics and Computer Science--Knowledge-based Systems
University of Paderborn, D-33095 Paderborn, Germany

stein@uni-paderborn.de

Abs t rac t . When designing a technical system, simulation is an impor-
tant concept to study the behavior of the planned system. Often a cycle
of parameter variation and simulation is necessary to analyze the system
behavior in detail or to improve the design of the system. Thus, the effi-
ciency by which simulation can be carried out plays a role with respect
to time, quality, and cost of the design process.
The paper in hand shows in which way the simulation of technical sys-
tems can be speeded up. Starting point is the observation that for the
different mathematical problems, which must be solved when simulating
a system, several numerical methods are at hand. For instance, a system
of ordinary differential equations can be solved by means of an explicit
or an implicit Runge Kutta procedure.
Since the different numerical methods are designed with respect to dif-
ferent qualities of a mathematical problem, there exists among the set of
competing methods usually one suited best to do the required job. I.e.,
the qualities of a concrete mathematical problem can be used to select
the best method. A central contribution of this paper is to show how this
selection process can be operationalized.

1 Introduction

During the design phase of a technical system, simulation is an important con-
cept to study the behavior of the planned system. E.g., in our working group
we have been developing concepts and tools to support the design of fluidic sys-
tems, and we learned about the role of simulation especially within the hydraulic
and pneumatic domain. Here, but also in other domains, a cycle of parameter
variation and simulation is necessary to analyze the system behavior in detail
or to improve the design of the system [4], [13]. Hence the efficiency by which
simulation can be carried out plays a role with respect to time, quality, and cost
of the design process.

Of course there are other jobs in the course of the design phase that may be
much more time-consuming such as the model validation or, in particular, the
model formation of a technical system [5]. However, in this place we will focus

919

on the time factor "simulation efficiency" ; the paper in hand shows in which way
the simulation of a technical system can be speeded up.

Starting point is the observation that for the different mathematical prob-
lems, which must be solved when simulating a system, several numerical meth-
ods are at hand. For instance, a system of ordinary differential equations can be
solved by means of an explicit or an implicit Runge Kut ta procedure.

Clearly, among each set of competing numerical methods, there is usually
one method suited best to do the required job. This results from the fact that
different numerical methods are designed with respect to different qualities of
a concrete mathematical problem. For example, when given a linear equation
system in the form A x = b, then the character of the primary diagonal of A
along with some convergence criterion decides if to whether a direct method is
superior to an iterative method or vice versa.

The simulation of a system, i.e., the processing of its underlying mathemat-
ical model, must be performed in a smart manner to gain maximum simulation
efficiency. The term "smart" means, that a thorough comparison of a mathemat-
icai problem's qualities to the strengths of the existing methods must precede
the application of a method to that problem.

Such a postulation raises several questions--among others the following:

1. Which are suited properties to evaluate a particular class of mathematical
problems?

2. Given a mathematical problem, which numerical method copes best with
this problem?

3. How can the process of selecting a numerical method be automated?

Note that the last question is of interest within two respects. First, tackling
the method selection job cannot be expected of the designer of a system, who is
challenged getting the knack of the model forrnation problem at all.

Second, especially in connection with fluidic engineering there exist design
tools that automate the model formation s tep--more precisely--that automati-
cally generate and process a mathematical description when given a CAD draw-
ing as input [7], [9], [14]. Such an automation concept would lose a lot of its
charm and productivity if it left the numerical method selection up to the user
of the tool.

This paper is organized as follows. The next section conveys an idea of simu-
lation in the fluidic domain: Mathematical problems that occur when simulating
a fluidic system are listed along with the necessary numerical methods to solve
them.

Given an instance of a mathematical problem p we would like to know which
method shall be selected to solve p. Answering this question is the purpose
of section 3, which shows how a mapping from mathematical problems onto
numerical methods can be operationalized. Section 4 presents an example.

Note that the concepts presented here should not be seen as a generic "method
selection recipe". Rather, the particular constraints of both the fluidic domain
and our objective provide the prerequisites for such a procedure.

920

2 S i m u l a t i o n in t h e F l u i d i c D o m a i n

Fluidic systems consist of valves, pipes, cylinders, pumps, etc. The behavior
of these components can be described at different levels of detail. Aside from
quMitative descriptions, which play a major role in diagnosis tasks, component
behavior is quantitatively defined, by equations for the most part.

In order to simulate a fluidic system, which is specified as a mental model e. g.
in the form of a drawing, a related mathematical model must be constructed. 1
This mathematical model is comprised of linear, nonlinear, and differential equa-
tion systems. Simulating a fluidic system means to solve the underlying mathe-
matical subproblems, so to speak, the equation systems.

Since we deal with a particular domain, our mathematical subproblems may
be of a particular structure as well, and there is the question whether knowledge
about this structure can be exploited when processing the subproblems.

To answer this question, knowledge about the structure of the mathematical
models must be quantified. In the following, the interesting mathematical prob-
lems along with both selected characterizing properties and methods solving the
problems are itemized (cf. e.g. [6], [12]).

- Linear Equation Systems.
Properties: matrix density, size, strength of the primary diagonal, amount
of the elements in the primary diagonal, quality of the start vector
Methods: GauB elimination, Gaut3-Seidel iteration

- Nonlinear Equation Systems.
Properties: size, average amount of coefficients, proportion of linear terms,
proportion of higher order terms, quality of the start vector
Methods: Newton, fast interpolation

Remarks. Due to domain-specific constraints respecting behavior equations
and parameter ranges, many nonlinear equation systems are of a particu-
lar structure. Thus, an interpolation method for the solution of nonlinear
equation systems can be employed. This method is faster than the Newton
procedure in many cases but does not always converge.

- Differential Equation Systems.
Properties: modeling deepness, estimated natural frequencies, basis step width,
method order, desired precision
Methods: polygon line procedure, explicit Runge Kutta, implicit Runge Kutta

Remarks. The property "modeling deepness" quantifies the complexity of
the components' behavior descriptions. The deeper a component model is
the more physical effects does it consider during simulation. Examples for
such effects are pressure rises, leakages, or friction.

1 The construction of a mathematical model for a fluidic system is a demanding prob-
lem on its own. In this place we do not engage in model formation details but start
at the point where the model is readily set up.

921

The above list is not complete with respect to the properties of mathemat-
ical problems or methods. Moreover, some of the above properties should be
discussed in greater detail, respecting fluid-engineering background, of course. 2
Anyway, the list quantifies the idea of what we are looking for: A selection pro-
cedure for mathematical methods.

3 A u t o m a t e d Met hod Select ion

Automating method selection means to operationalize a mapping from mathe-
matical problems onto numerical methods. Clearly, properties that characterize
a mathematical problem can be identified and computed in a straightforward
manner. However, the realization of a mapping from these qualities onto a suited
numerical method is difficult for the following reasons:

1. Often, a property's effect on a method cannot exactly be quantified.
2. Many properties interact with respect to their effects.

A way out provides the concept of learning [10]: Given are a set of examples
each of which defining both an instance of a mathematical problem and the
most efficient method for solving that problem. Objective is the identification of
knowledge implicitly encoded within the examples---knowledge, which describes
the searched mapping. It is possible to pursue such a learning strategy here since
important prerequisites are fulfilled:

- In the fluidic domain, large sets of realistic examples can be generated au-
tomatically.

- The learning process can be performed off-line.
- Properties which characterize our mathematical problems are available.

The following example illustrates the outlined situation. Let the mathemati-
cal problem be the solution of linear equation systems; one of its characterizing
properties is the strength of the primary diagonal. Moreover, two numerical pro-
cedures that solve the problem, the GauB-Seidel iteration and the direct Gaug
elimination, stand to reason. The strength of a matrix 's primary diagonal is
given by the minimum quotient qmin of the diagonal coefficients ai,i and the sum
of the other elements ai,j,j#i of the corresponding line:

qmin = min ,~lai'il

Figure 1 shows two diagrams each of which containing a plot relating the so-
lution of a set of 1000 linear equation systems. The rank of the equation sytems'
matrices is n = 100, their occupation density is 25%, and the coefficients have
been generated randomly. The left (right) diagram characterizes the runtime be-
havior of the Gaug-Seidel (Gaug elimination) method dependent on the quotient

qmin-

2 Additional information can be found in [3].

922

0.8 f
0.6

o.4[~ :

0.2 ~ ° ~ . . :. °

0

0 0.1 0,2 0.3 0.4 0.5 0,6

0.8

0.6

0.4

0.2

0
03

1 ,

¢ O ¢ o

0A 0.2 0.3 0A 0.5 0.6 0.7
Figure 1. The solution time depends on the strength of the primary diagonal. Left
diagram: Gaufl-Seidel iteration, right diagram: Gaul3 elimination

Clearly, the diagonal strength has a strong impact on the GauB-Seidel method,
and the diagrams show that equation systems with qmin <~(0.1 should not be
solved iteratively. Herewith we got a simple rule that realizes a mapping from a
particular mathematical problem onto two numerical methods. It is important
to mention that the saved computational effort when choosing the more efficient
numerical method exceeds the effort respecting the computation of the decision
criterion qmin.

The previous example is of a rather simple structure. Of course, many ex-
periments are conceivable where no direct correlation between solution time and
problem property can be observed. Instead, a weighted combination of prob-
lem properties will be necessary to obtain a meaningful characterization of a
mathematical problem.

3.1 A S p e c i a l i z e d N e u r a l N e t w o r k fo r M e t h o d S e l e c t i o n

Having compared different learning approaches in the context of our prerequi-
sites, we propose a specialized neural network to realize the learning concept [3].
Here we will not engage into neural network details; foundations and advanced
backgrounds may be found in [1], [8], [11], and [2].

The input of the network is formed by numerical values, which define par-
ticular properties of a mathematical problem. The network provides as many
outputs as there are numerical methods coping with that problem. The network
itself is of a rather simple structure, but it comes along with the property that
its perceptron neurons can be trained individually. Figure 2 shows the princi-
pal structure of the network, which takes values of 4 properties as input and
discriminates between three numerical methods.

The network's hidden layer is formed of perceptron neurons, which sum their
inputs and compute a value Methi/j to differentiate between two methods i and
j . Put another way, the hidden layer's output can be regarded as the runtime
benefit of one method over the other. The output layer sums up a method's t ime
benefits. As a result Ui specifies for each method i its appropriateness respecting

923

Prop 1
Prop 2

Pr°P3 ~ k ~ i.ZT_lJ f Methl/3~ / Meth2 " U2

e r ° P 4 ~ i ~ (~ ~ ~ U3

~ Meth2/3 Meth3 x ,

Figure 2. Neural network that realizes a mapping for method selection.

the current input vector. The larger the value of Ui the bet ter method i is able
in coping with the mathemat ica l problem.

Each perceptron of the network defines a sigmoide transfer function of the
following form

1
f (z) = 1 + eC~+E k,=l ~,~:i

where k + 1 parameters w l , . . . , w k and a must be determined by means of a
learning procedure. The wi are called synapses weights.

The structure of the neural network was designed having a particular learn-
ing procedure in mind. Let us assume that the training da ta is of the form
(x l , . . . , am, y), where the xi define the properties of the mathemat ica l problem,
while y defines the runtime difference of method i over method j . Given both
samples of that type and an approximation of the samples in the form of a
function f (x l , . . . , x~), then f can be used to classify a concrete property vec-
tor (a l , . . . , a ,~) with respect to the two methods i and j: If f (a l , . . . , a ,~) > O,
method i is superior method j , otherwise method j is superior method i.

If n > 2 methods for the solution of a mathemat ica l problem stand to reason,
the runtime behavior of each method has to be compared to the other n - 1
methods, resulting in (i) comparisons. The absolute runtime benefit for a method
can be computed by summing up its runtime benefits from the n - 1 comparisons
to a total value.

Simplifying matters , this procedure is encoded within the topology of the
neural network above. There exist several propositions and strategies e laborat ing
on how the topology of a neural network is to be designed and which learning
procedures are adequate. Note that in our case we have a clear idea of how the

924

net works when it is trained with data of the previously discussed form. Instead
of pursuing a global learning strategy, we can make use of this knowledge by
training each perceptron of the network individually, by means of regression.

Note that the following important premise must be fulfilled, if a perceptron
shall be used for the classification job: There must exist a monotonous connection
between the property vector characterizing the mathematical problem and the
time difference between the two methods solving that problem.

3.2 D e t e r m i n a t i o n of t h e Synapses Weights

By training the perceptrons of our network, the values of the synapses weights
w are determined. As just outlined, the training can be realized individually for
each perceptron here. Aside fi'om efficiency issues or the problem of a learning
progress evaluation, the problem of getting stuck in local minima is also avoided
by such an approach.

Let us assume that we are given a set of vectors (a t , . . . , xn, y) forming the
training da ta (examples) for a particular pereeptron. Then the regression pro-
cedure works as follows.

1

1-{-e z..~i= 1

2. A y = y - ~
3. Az = f lAy(f - l) ' (~) , where f-1),(~) = ~ 1 and 0 </3 < 1.

4. w} t+l) = w} t) - Azal , i = 1 , . . . , k

5 . Ol (t + l) : O~ (t) - - A Z

Remarks. (i) Since the properties of the interesting mathematical problems are
of different orders of magnitude, the examples are normalized on an amount < 1.
(ii) Within the first iteration, randomized values are used for the w~. (iii) To
avoid oscillation,/3 defines a damping factor, which decreases in the course of the
iteration. (iv) The adaptation of the weights wi is realized proportionally to the
property values xi; the coefficient of a can be set to 1 because of the properties'
normalization.

4 A n I l l u s t r a t i n g E x a m p l e

The presented concepts for the automation of the numerical method selection
have been applied to several mathematical problems [3]. This section describes
exemplary the case "solution of nonlinear equation systems".

As mentioned in section 2, during the simulation of fluidic systems we fall
back onto two competing methods to solve nonlinear equation systems: the New-
ton method and a fast interpolation method. Each of these methods has its pros
and cons, and, given a concrete nonlinear equation system, one method must be
chosen.

925

The following properties of a nonlinear equation system are

size Pl =
average amount of coefficients P2 =

number of already known signs of the solution p3 =
proportion of linear terms/)4 =

proportion of higher order terms P5 =
proportion of " 'm ixed" ' terms p6 =

quality of the cached best inverse P7 =
quality of the s tar t vector Ps =

The examples are composed out of n functions of the form

:~ (t, z~, . . . , z~) = ~ k~,~r~,~
j = l

quantified:

n

]~i,j
k_~

n

IAA-1 _ E l
1 n
n ~i=I f i (z)

where the ki,j are real coefficients, and the Ti,j are terms of the following poly-
nomial and exponential form respectively, which are typical for real-world appli-
cations:

T = x ; ~ - - . x : ~ p e { 1 , 2 , 3 , 4 } , sE [0 .5 ;4]

Z -~ e rnxÈ+b 7n, b G R

Figure 3 shows a diagram depicting several clusters with points and the graph
of the regression function f (z) = 1 This diagram is the result of the training l + e z •
process. The points mark the normalized runtime benefit of the Newton method

s (x-axis). (y-axis) over the weighted property vector z = c~ + ~ i = 1 ~ i X i

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

~ ,3&

'~, o i

*2" *
! . o k

O@ \ ~ k O
x

0
-8 -6 -4 -2 0 2 4 6 8 10

Figure 8. Combination of problem properties along with regression function.

The points at the lower right corner characterize large and mid-sized equa-
tion systems; here the interpolation method is superior the Newton method.

926

The cluster of points in the middle characterizes small equation systems; in
these cases both methods behave equally efficient. The points in the upper left
corner characterize mid-sized equation systems where a good approximation is
given because of the existence of the inverse functional matrix from previous
computations.

The neural network here has 8 nodes in the input layer (one for each prop-
erty), a single node in the hidden layer that computes the time benefit between
the two methods, and two output nodes. The set of examples consisted of sev-
eral thousand nonlinear equation systems, which have been derived from 200
hydraulic circuits. Half of the examples were used for training and validation
purposes respectively.

The quality of the decision process of the trained neural network is comprised
in the following table.

Optimum

decision

550

210

340

Newton

method only

3755

515

3240

Interpolation

method only

686

283

403

Neural network % Example set

decision

593 8 all

229 9 small

364 7 large

The first column shows the computation time for the example set, if for
each example the best fitting numerical method is chosen. The second and third
column show the total computation times when the Newton or the interpolation
method are used exclusively. The fourth column shows the computation time if
the method selection is controlled by the trained neural network, while the fifth
column contains the deviation between the network decision and the optimum
decision.

The validation experiments were performed with respect to a differentiation
of the examples into three sets, containing small, large, and both types of non-
linear equation systems. The rightmost column reflects this characteristic of the
underlying examples.

5 S u m m a r y

When designing technical systems, aside from model formulation and validation
tasks, also the efficiency by which simulation is carried out plays a role with
respect to time and quality of the design process.

The paper in hand showed in which way the simulation of technical systems
can be speeded up by means of a smart selection of numerical methods for
mathematical problems. This selection process was operationalized by means of
a neural network.

An interesting particularity here is the topology of the employed neural net-
work, which allows the realization of a local training strategy--more precisely:
The training process corresponds to the solution of a regression problem within n

927

dimensions, n denoting the number of qualities investigated for a mathematical
problem.

The developed methodology has been applied for simulation problems in the
field of fluidic engineering. For the different types of mathematical problems
occurring in this field (solution of linear, nonlinear, and differential equation
systems, multiplication of matrices) the related network has been instantiated
and trained.

Tests with large sets of examples demonstrated the high quality of the deci-
sion process that can be realized by our approach.

References

[1] R. Beale and T. Jackson. Neural Computing. Institute of Physics, Bristol
and Philadelphia, 1994.

[2] M. E. Cohen and D. L. Hudson. Approaches to the Handling of Fuzzy
Input Data in Neural Networks. IEEE International Conference on Fuzzy
Systems, 1992.

[3] D. Curatolo. Wissensbasierte Methoden zur effizienten Simulation fluidtech-
nischer Systeme. Dissertation, University of Paderborn, Department of
Mathematics and Computer Science, 1996.

[4] J. S. Gero. Design Prototypes: A Knowledge Representation Scheme ibr
Design. AI Magazine, 11:26-36, 1990.

[5] T. R. Gruber. Model Formulation as a Problem Solving Task: Computer-
assisted Engineering Modeling. International Journal of Intelligent Sys-
terns, 8(1):105-127, 1992.

[6] J. D. Lambert. Numerical Methods for Ordinary Differential Equation Sys-
terns. John Wiley, New York, 1991.

[7] R. Lemmen. Checking the Static and Dynamic Behaviour of a ttydraulic
System. In Proceedings of the lth Asian Control Conference, Tokyo, 1994.

[8] M. Minsky and S. Papert. Perceptrons. The MIT Press, Cambridge. Massa-
chusetts, 1969.

[9] Y. Nakashima and T. Baba. OHCS: Hydraulic Circuit Design Assistant.
In First Annual Conference on Innovative Applications of Artificial Intelli-
gence, pages 225-236, Stanford, 1989.

[10] J. Quinlan. Induction of Decision Trees. Machine Learing, 1:81-106, 1986.
[11] R. Rojas. Theorie der neuronalen Netze. Springer Lehrmittel Verlag, 1993.
[12] H. R. Schwarz. Numerisehe Mathematik. B. G. Teubner, Stuttgart, 1986.
[13] B. Stein. Functional Models in Configuration Systems. Dissertation, Uni-

versity of Paderborn, Department of Mathematics and Computer Science,
1995.

[14] B. Stein and D. Curatolo. Model Formulation and Configuration of Techni-
cal Systems. In J. Sauer, A. Giinter, and J. Hertzberg, editors, 10. Workshop
"Planen und Konfigurieren", Bonn, volume 3 of Proceedings in Artificial In-
telligence, ISBN 3-92037-97-1, 1996.

