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Abs t rac t .  When designing a technical system, simulation is an impor- 
tant concept to study the behavior of the planned system. Often a cycle 
of parameter variation and simulation is necessary to analyze the system 
behavior in detail or to improve the design of the system. Thus, the effi- 
ciency by which simulation can be carried out plays a role with respect 
to time, quality, and cost of the design process. 
The paper in hand shows in which way the simulation of technical sys- 
tems can be speeded up. Starting point is the observation that for the 
different mathematical problems, which must be solved when simulating 
a system, several numerical methods are at hand. For instance, a system 
of ordinary differential equations can be solved by means of an explicit 
or an implicit Runge Kutta procedure. 
Since the different numerical methods are designed with respect to dif- 
ferent qualities of a mathematical problem, there exists among the set of 
competing methods usually one suited best to do the required job. I.e., 
the qualities of a concrete mathematical problem can be used to select 
the best method. A central contribution of this paper is to show how this 
selection process can be operationalized. 

1 Introduction 

During the design phase of a technical system, simulation is an important con- 
cept to study the behavior of the planned system. E.g., in our working group 
we have been developing concepts and tools to support the design of fluidic sys- 
tems, and we learned about the role of simulation especially within the hydraulic 
and pneumatic domain. Here, but also in other domains, a cycle of parameter 
variation and simulation is necessary to analyze the system behavior in detail 
or to improve the design of the system [4], [13]. Hence the efficiency by which 
simulation can be carried out plays a role with respect to time, quality, and cost 
of the design process. 

Of course there are other jobs in the course of the design phase that may be 
much more time-consuming such as the model validation or, in particular, the 
model formation of a technical system [5]. However, in this place we will focus 
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on the time factor "simulation efficiency" ; the paper in hand shows in which way 
the simulation of a technical system can be speeded up. 

Starting point is the observation that  for the different mathematical  prob- 
lems, which must be solved when simulating a system, several numerical meth- 
ods are at hand. For instance, a system of ordinary differential equations can be 
solved by means of an explicit or an implicit Runge Kut ta  procedure. 

Clearly, among each set of competing numerical methods, there is usually 
one method suited best to do the required job. This results from the fact that  
different numerical methods are designed with respect to different qualities of 
a concrete mathematical  problem. For example, when given a linear equation 
system in the form A x  = b, then the character of the primary diagonal of A 
along with some convergence criterion decides if to whether a direct method is 
superior to an iterative method or vice versa. 

The simulation of a system, i.e., the processing of its underlying mathemat-  
ical model, must be performed in a smart  manner to gain maximum simulation 
efficiency. The term "smart" means, that a thorough comparison of a mathemat-  
icai problem's qualities to the strengths of the existing methods must precede 
the application of a method to that problem. 

Such a postulation raises several questions--among others the following: 

1. Which are suited properties to evaluate a particular class of mathematical  
problems? 

2. Given a mathematical  problem, which numerical method copes best with 
this problem? 

3. How can the process of selecting a numerical method be automated? 

Note that the last question is of interest within two respects. First, tackling 
the method selection job cannot be expected of the designer of a system, who is 
challenged getting the knack of the model forrnation problem at all. 

Second, especially in connection with fluidic engineering there exist design 
tools that  automate the model formation s tep--more  precisely--that  automati-  
cally generate and process a mathematical  description when given a CAD draw- 
ing as input [7], [9], [14]. Such an automation concept would lose a lot of its 
charm and productivity if it left the numerical method selection up to the user 
of the tool. 

This paper is organized as follows. The next section conveys an idea of simu- 
lation in the fluidic domain: Mathematical problems that  occur when simulating 
a fluidic system are listed along with the necessary numerical methods to solve 
them. 

Given an instance of a mathematical  problem p we would like to know which 
method shall be selected to solve p. Answering this question is the purpose 
of section 3, which shows how a mapping from mathematical  problems onto 
numerical methods can be operationalized. Section 4 presents an example. 

Note that the concepts presented here should not be seen as a generic "method 
selection recipe". Rather, the particular constraints of both the fluidic domain 
and our objective provide the prerequisites for such a procedure. 
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2 S i m u l a t i o n  in  t h e  F l u i d i c  D o m a i n  

Fluidic systems consist of valves, pipes, cylinders, pumps, etc. The behavior 
of these components can be described at different levels of detail. Aside from 
quMitative descriptions, which play a major role in diagnosis tasks, component 
behavior is quantitatively defined, by equations for the most part. 

In order to simulate a fluidic system, which is specified as a mental model e. g. 
in the form of a drawing, a related mathematical model must be constructed. 1 
This mathematical model is comprised of linear, nonlinear, and differential equa- 
tion systems. Simulating a fluidic system means to solve the underlying mathe- 
matical subproblems, so to speak, the equation systems. 

Since we deal with a particular domain, our mathematical subproblems may 
be of a particular structure as well, and there is the question whether knowledge 
about this structure can be exploited when processing the subproblems. 

To answer this question, knowledge about the structure of the mathematical 
models must be quantified. In the following, the interesting mathematical prob- 
lems along with both selected characterizing properties and methods solving the 
problems are itemized (cf. e.g. [6], [12]). 

- Linear Equation Systems. 
Properties: matrix density, size, strength of the primary diagonal, amount 
of the elements in the primary diagonal, quality of the start vector 
Methods: GauB elimination, Gaut3-Seidel iteration 

- Nonlinear Equation Systems. 
Properties: size, average amount of coefficients, proportion of linear terms, 
proportion of higher order terms, quality of the start vector 
Methods: Newton, fast interpolation 

Remarks. Due to domain-specific constraints respecting behavior equations 
and parameter ranges, many nonlinear equation systems are of a particu- 
lar structure. Thus, an interpolation method for the solution of nonlinear 
equation systems can be employed. This method is faster than the Newton 
procedure in many cases but does not always converge. 

- Differential Equation Systems. 
Properties: modeling deepness, estimated natural frequencies, basis step width, 
method order, desired precision 
Methods: polygon line procedure, explicit Runge Kutta, implicit Runge Kutta 

Remarks. The property "modeling deepness" quantifies the complexity of 
the components' behavior descriptions. The deeper a component model is 
the more physical effects does it consider during simulation. Examples for 
such effects are pressure rises, leakages, or friction. 

1 The construction of a mathematical model for a fluidic system is a demanding prob- 
lem on its own. In this place we do not engage in model formation details but start 
at the point where the model is readily set up. 
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The above list is not complete with respect to the properties of mathemat-  
ical problems or methods. Moreover, some of the above properties should be 
discussed in greater detail, respecting fluid-engineering background, of course. 2 
Anyway, the list quantifies the idea of what we are looking for: A selection pro- 
cedure for mathematical  methods. 

3 A u t o m a t e d  Met hod  Select ion 

Automating method selection means to operationalize a mapping from mathe- 
matical problems onto numerical methods. Clearly, properties that  characterize 
a mathematical  problem can be identified and computed in a straightforward 
manner. However, the realization of a mapping from these qualities onto a suited 
numerical method is difficult for the following reasons: 

1. Often, a property's effect on a method cannot exactly be quantified. 
2. Many properties interact with respect to their effects. 

A way out provides the concept of learning [10]: Given are a set of examples 
each of which defining both an instance of a mathematical  problem and the 
most efficient method for solving that problem. Objective is the identification of 
knowledge implicitly encoded within the examples---knowledge, which describes 
the searched mapping. It is possible to pursue such a learning strategy here since 
important  prerequisites are fulfilled: 

- In the fluidic domain, large sets of realistic examples can be generated au- 
tomatically. 

- The learning process can be performed off-line. 
- Properties which characterize our mathematical  problems are available. 

The following example illustrates the outlined situation. Let the mathemati-  
cal problem be the solution of linear equation systems; one of its characterizing 
properties is the strength of the primary diagonal. Moreover, two numerical pro- 
cedures that  solve the problem, the GauB-Seidel iteration and the direct Gaug 
elimination, stand to reason. The strength of a matrix 's  primary diagonal is 
given by the minimum quotient qmin of the diagonal coefficients ai,i and the sum 
of the other elements ai,j,j#i of the corresponding line: 

qmin  = min ,~lai'il 

Figure 1 shows two diagrams each of which containing a plot relating the so- 
lution of a set of 1000 linear equation systems. The rank of the equation sytems' 
matrices is n = 100, their occupation density is 25%, and the coefficients have 
been generated randomly. The left (right) diagram characterizes the runtime be- 
havior of the Gaug-Seidel (Gaug elimination) method dependent on the quotient 

qmin- 

2 Additional information can be found in [3]. 
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Figure  1. The solution time depends on the strength of the primary diagonal. Left 
diagram: Gaufl-Seidel iteration, right diagram: Gaul3 elimination 

Clearly, the diagonal strength has a strong impact on the GauB-Seidel method, 
and the diagrams show that  equation systems with qmin <~( 0.1 should not be 
solved iteratively. Herewith we got a simple rule that  realizes a mapping from a 
particular mathematical  problem onto two numerical methods. It  is important  
to mention that  the saved computational effort when choosing the more efficient 
numerical method exceeds the effort respecting the computation of the decision 
criterion qmin. 

The previous example is of a rather simple structure. Of course, many ex- 
periments are conceivable where no direct correlation between solution time and 
problem property can be observed. Instead, a weighted combination of prob- 
lem properties will be necessary to obtain a meaningful characterization of a 
mathematical  problem. 

3.1 A S p e c i a l i z e d  N e u r a l  N e t w o r k  fo r  M e t h o d  S e l e c t i o n  

Having compared different learning approaches in the context of our prerequi- 
sites, we propose a specialized neural network to realize the learning concept [3]. 
Here we will not engage into neural network details; foundations and advanced 
backgrounds may be found in [1], [8], [11], and [2]. 

The input of the network is formed by numerical values, which define par- 
ticular properties of a mathematical  problem. The network provides as many 
outputs as there are numerical methods coping with that problem. The network 
itself is of a rather simple structure, but it comes along with the property that  
its perceptron neurons can be trained individually. Figure 2 shows the princi- 
pal structure of the network, which takes values of 4 properties as input and 
discriminates between three numerical methods. 

The network's hidden layer is formed of perceptron neurons, which sum their 
inputs and compute a value Methi/j to differentiate between two methods i and 
j .  Put  another way, the hidden layer's output  can be regarded as the runtime 
benefit of one method over the other. The output  layer sums up a method's  t ime 
benefits. As a result Ui specifies for each method i its appropriateness respecting 
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Figure  2. Neural network that realizes a mapping for method selection. 

the current input  vector. The larger the value of Ui the bet ter  method i is able 
in coping with the mathemat ica l  problem. 

Each perceptron of the network defines a sigmoide transfer function of the 
following form 

1 
f (z)  = 1 + eC~+E k,=l ~,~:i 

where k + 1 parameters  w l , . . . , w k  and a must  be determined by means of a 
learning procedure. The  wi are called synapses weights. 

The structure of the neural network was designed having a particular learn- 
ing procedure in mind. Let us assume that  the training da ta  is of the form 
( x l , . . . ,  am, y), where the xi define the properties of the mathemat ica l  problem, 
while y defines the runtime difference of method i over method j .  Given both 
samples of that  type and an approximation of the samples in the form of a 
function f ( x l , . . . ,  x~), then f can be used to classify a concrete property vec- 
tor ( a l , . . . , a ,~ )  with respect to the two methods i and j:  If  f (a l , . . . , a ,~ )  > O, 
method i is superior method j ,  otherwise method j is superior method i. 

If  n > 2 methods for the solution of a mathemat ica l  problem stand to reason, 
the runtime behavior of each method has to be compared to the other n - 1 
methods,  resulting in (i)  comparisons. The absolute runtime benefit for a method  
can be computed by summing up its runtime benefits from the n -  1 comparisons 
to a total  value. 

Simplifying matters ,  this procedure is encoded within the topology of the 
neural network above. There exist several propositions and strategies e laborat ing 
on how the topology of a neural network is to be designed and which learning 
procedures are adequate. Note that  in our case we have a clear idea of how the 
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net works when it is trained with data of the previously discussed form. Instead 
of pursuing a global learning strategy, we can make use of this knowledge by 
training each perceptron of the network individually, by means of regression. 

Note that  the following important premise must be fulfilled, if a perceptron 
shall be used for the classification job: There must exist a monotonous connection 
between the property vector characterizing the mathematical problem and the 
time difference between the two methods solving that  problem. 

3.2 D e t e r m i n a t i o n  of  t h e  Synapses  Weights 

By training the perceptrons of our network, the values of the synapses weights 
w are determined. As just outlined, the training can be realized individually for 
each perceptron here. Aside fi'om efficiency issues or the problem of a learning 
progress evaluation, the problem of getting stuck in local minima is also avoided 
by such an approach. 

Let us assume that  we are given a set of vectors ( a t , . . . ,  xn, y) forming the 
training da ta  (examples) for a particular pereeptron. Then the regression pro- 
cedure works as follows. 

1 

1-{-e z..~i= 1 

2. A y = y - ~  
3. Az = f lAy( f - l ) ' (~ ) ,  where f-1),(~) = ~ 1  and 0 </3  < 1. 

4. w} t+l) = w} t) - Azal , i  = 1 , . . . , k  

5 .  Ol ( t + l )  : O~ ( t )  - -  A Z  

Remarks. (i) Since the properties of the interesting mathematical problems are 
of different orders of magnitude, the examples are normalized on an amount < 1. 
(ii) Within the first iteration, randomized values are used for the w~. (iii) To 
avoid oscillation,/3 defines a damping factor, which decreases in the course of the 
iteration. (iv) The adaptation of the weights wi is realized proportionally to the 
property values xi; the coefficient of a can be set to 1 because of the properties' 
normalization. 

4 A n  I l l u s t r a t i n g  E x a m p l e  

The presented concepts for the automation of the numerical method selection 
have been applied to several mathematical problems [3]. This section describes 
exemplary the case "solution of nonlinear equation systems". 

As mentioned in section 2, during the simulation of fluidic systems we fall 
back onto two competing methods to solve nonlinear equation systems: the New- 
ton method and a fast interpolation method. Each of these methods has its pros 
and cons, and, given a concrete nonlinear equation system, one method must be 
chosen. 
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The following properties of a nonlinear equation system are 

size Pl = 
average amount  of coefficients P2 = 

number  of already known signs of the solution p3 = 
proportion of linear terms/)4 = 

proportion of higher order terms P5 = 
proportion of " 'm ixed" '  terms p6 = 

quality of the cached best inverse P7 = 
quality of the s tar t  vector Ps = 

The examples are composed out of n functions of the form 

:~ (t, z~, . . . ,  z~) = ~ k~,~r~,~ 
j = l  

quantified: 

n 

]~i,j 
k_~ 

n 

IAA-1  _ E l 
1 n 
n ~i=I f i ( z )  

where the ki,j are real coefficients, and the Ti,j are terms of the following poly- 
nomial  and exponential form respectively, which are typical for real-world appli- 
cations: 

T = x ; ~ - - . x : ~  p e { 1 , 2 , 3 , 4 } ,  sE [0 .5 ;4 ]  

Z -~ e rnxÈ+b 7n, b G R 

Figure 3 shows a diagram depicting several clusters with points and the graph 
of the regression function f ( z )  = 1 This diagram is the result of the training l + e z  • 
process. The points mark  the normalized runtime benefit of the Newton method 
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Figure  8. Combination of problem properties along with regression function. 

The points at the lower right corner characterize large and mid-sized equa- 
tion systems; here the interpolation method is superior the Newton method.  
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The cluster of points in the middle characterizes small equation systems; in 
these cases both methods behave equally efficient. The points in the upper left 
corner characterize mid-sized equation systems where a good approximation is 
given because of the existence of the inverse functional matrix from previous 
computations. 

The neural network here has 8 nodes in the input layer (one for each prop- 
erty), a single node in the hidden layer that computes the time benefit between 
the two methods, and two output nodes. The set of examples consisted of sev- 
eral thousand nonlinear equation systems, which have been derived from 200 
hydraulic circuits. Half of the examples were used for training and validation 
purposes respectively. 

The quality of the decision process of the trained neural network is comprised 
in the following table. 

Optimum 

decision 

550 

210 

340 

Newton 

method only 

3755 

515 

3240 

Interpolation 

method only 

686 

283 

403 

Neural network % Example set 

decision 

593 8 all 

229 9 small 

364 7 large 

The first column shows the computation time for the example set, if for 
each example the best fitting numerical method is chosen. The second and third 
column show the total computation times when the Newton or the interpolation 
method are used exclusively. The fourth column shows the computation time if 
the method selection is controlled by the trained neural network, while the fifth 
column contains the deviation between the network decision and the optimum 
decision. 

The validation experiments were performed with respect to a differentiation 
of the examples into three sets, containing small, large, and both types of non- 
linear equation systems. The rightmost column reflects this characteristic of the 
underlying examples. 

5 S u m m a r y  

When designing technical systems, aside from model formulation and validation 
tasks, also the efficiency by which simulation is carried out plays a role with 
respect to time and quality of the design process. 

The paper in hand showed in which way the simulation of technical systems 
can be speeded up by means of a smart selection of numerical methods for 
mathematical problems. This selection process was operationalized by means of 
a neural network. 

An interesting particularity here is the topology of the employed neural net- 
work, which allows the realization of a local training strategy--more precisely: 
The training process corresponds to the solution of a regression problem within n 
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dimensions, n denoting the number of qualities investigated for a mathematical 
problem. 

The developed methodology has been applied for simulation problems in the 
field of fluidic engineering. For the different types of mathematical problems 
occurring in this field (solution of linear, nonlinear, and differential equation 
systems, multiplication of matrices) the related network has been instantiated 
and trained. 

Tests with large sets of examples demonstrated the high quality of the deci- 
sion process that can be realized by our approach. 
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