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Abstract

The concept of a hydraulic axis plays a central role within the design and
analysis of hydraulic systems. A hydraulic axis comprises working, control,
and supply elements that realize a subfunction of a hydraulic system.

Analyzing a system’s functional structure means to identify the hydraulic
axes along with their couplings. The paper in hand addresses this problem; it
presents concepts and algorithms that tackle a sophisticated analysis task: the
automatic identification of hydraulic axes and their related coupling types.

Aside from the theoretical elaboration of the analysis problem, a large part of
the described concepts has been operationalized. The algorithms were eval-
uated with an extensive circuit library, and more than 95% of the hydraulic
axes in these circuits have been identified correctly.
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1 Introduction

The concept of a hydraulic axis plays a central role within the design and analysis of hy-
draulic systems. A hydraulic axis comprises working, control, and supply elements that
realize a subfunction of a hydraulic system (cf. [11, 10]). Figure 1 gives a few examples for
hydraulic axes. To realize complex driving processes, hydraulic axes are coupled. Together
the hydraulic axes form the functional structure of a hydraulic system.

5
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Figure 1: Examples for hydraulic axes.

Analyzing a system’s functional structure means to identify the hydraulic axes along
with their couplings. The paper in hand addresses this problem; it presents concepts and
algorithms that tackle a sophisticated analysis task: the automatic identification of hy-
draulic axes and their related coupling types.

The paper is organized as follows. Section 2 discusses the hydraulic-axes-analysis-
problem from an algorithmic point of view. It then outlines the analysis strategy for the
detection of hydraulic axes and presents graph-theoretical as well as engineering founda-
tions. To realize the identification of hydraulic axes, the complexity of the hydraulic graph
must be reduced; section 3 develops the appropriate concepts. Section 4 presents an al-
gorithm for the identification of hydraulic axes by means of path search, while section 5
outlines an alternative strategy: the identification of hydraulic axes by means of template
embedding. Given a preprocessed graph, section 6 describes how the coupling level be-
tween hydraulic axes can be determined.

1.1 Operationalization

The main matter of this paper relates to graph theory rather than to hydraulic engineer-
ing. In this sense, theory and concepts from the field of graph theory have been outlined
in the appropriate places. They form the base for our developments, that is, the selection,
the adaptation, and the combination of graph theoretical algorithms which tackle the au-
tomatic identification of hydraulic axes and coupling types.

Aside from the theoretical elaboration of the analysis problem, a large part of the de-
scribed concepts has been operationalized. In particular, the substances of the sections 3, 4,
and 6 have been a matter of implementation.

The algorithms were evaluated with our circuit library, which contains more than 150
circuits at the moment. More than 95% of the hydraulic axes in these circuits are identified
correctly by the algorithms. The solutions of the remaining cases are not completely off the
track but contain a small number of incorrectly assigned components.



1 INTRODUCTION 2

1.2 The Rationale of a Topological Analysis
Why is a topological analysis—especially respecting hydraulic axes—useful?

The view to hydraulic axes reveals basic design decisions. With respect to a well-
founded analysis of hydraulic systems, their identification and classification plays a role
regarding the following engineering tasks [9]:

O Structure Envision.
O Demand Formulation and Interpretation.
O Smart Simulation.

0 Optimization.

O

Control Concept Selection and Evaluation.

O

Diagnosis.

0O Didactics.

Within the normal design process, hydraulic axes are not used as explicit building
blocks. The reasons for this are twofold: (i) It is not always possible to design a hydraulic
system in a top-down manner, starting with hydraulic axes, which are refined within sub-
sequent steps; (ii) both the experience and the ability of human designers to automatically
derive function from structure enable them to construct a hydraulic system at the compo-
nent level.

Note that the main working document for a designer is the technical drawing, and there
is no tradition or standardized method to additionally specify the functional structure of
a hydraulic system. This situation emphasizes the need for an automatic identification of
the desired structural information.
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2 Foundations

This section discusses the hydraulic axes analysis problem from an algorithmic point of
view. It then outlines the analysis strategy for the detection of hydraulic axes and presents
graph-theoretical as well as engineering foundations.

2.1 The Analysis Problem

When working with hydraulic engineering experts it becomes clear that a definition for
the term “hydraulic axis” must stay imprecise up to a certain degree: The informal defi-
nition “A hydraulic axis realizes a subfunction of a hydraulic system.” leaves a scope of
interpretation—e.g., regarding the components which actually must be count to an axis
and which not. Thus a precise definition of the hydraulic axes analysis problem cannot be
stated.

The consequences are: (i) A human expert has the final say whether or not the result
of an analysis algorithm is correct. (ii) The result of an analysis algorithm might not be
absolutely correct or wrong, but it might be correct up to a certain degree.

We overcame the problems that result from this situation by acquiring (and encoding)
analysis knowledge direct from domain experts, and by creating a library to prove the
quality of our algorithms. This library contains a large range of hydraulic circuits from

various engineering applicationsl.

While the analysis problem cannot be defined exactly, the result of an analysis algo-
rithm can:

O Result of a Hydraulic Axes Analysis. Starting point of each hydraulic axes analysis
is a hydraulic circuit C. The result of the analysis are a set of numbers {1,...,n},
denoting the n hydraulic axes found, a mapping from the components of C onto
P({1,...,n}), the power set? of {1,...,n}, and a tree which defines the coupling
hierarchy between the n axes.

2.2 Analysis Strategy

The analysis procedure that we have developed is comprised of the following three steps:

1. Preprocessing. The preprocessing step starts with an abstraction from a circuit C
onto its related hydraulic graph G}, (G}, is defined in the next subsection). To reduce
G}1,’s complexity—but, in first place, to make axes identification possible at all, G}, is
simplified by means of merging, deletion, and condensation rules. Figure 2 illustrates
the application of such rules. Section 3 develops the techniques that are necessary to
tackle preprocessing.

2. Axes Identification. Identifying a hydraulic axis means to search for a set of nodes
in the hydraulic graph whose counterpart in the circuit realizes a particular function.
Each such set must contain at least one working element and one supply element.
Moreover, all components that also belong to the hydraulic axis must lie on some
path between the working and the supply element. This consideration forms the

'The internal report “Hydraulic Circuit Library” gives an overview of the current state of this library. It
gives an idea of rather simple as well as of complex hydraulic circuits.
2A component can belong to several hydraulic axes.
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Figure 2: Example for the abstraction and simplification of a hydraulic circuit.

basis of our first identification approach, which relies on shortest-path-algorithms
for the main part, and which is described in section 4.

Another approach founds on the idea of graph embedding: Given is a template of a
hydraulic axis, that is to say, a graph of a particular topology. The task is to embed
this graph within the original hydraulic graph. If such an embedding can be found,
all nodes that are covered by the embedding belong to an instantiation of the template
axis. Section 5 elaborates on the embedding strategy.

Coupling Type Determination. The type of coupling between hydraulic axes can only
be determined, if all components of a circuit have been assigned to at least one axis.
In most cases, coupling type determination requires the comparison of supply paths
between the working elements of the axes. The last part of this section defines the
different coupling types; section 6 shows how the coupling type can be determined
when given two axes.

Graph-theoretical Foundations

The following definitions from [1], [2], and [4] are of importance with respect to the subse-
quent sections:

()

A multigraph G is a triple (V, E, g) where V, E # () are finite sets, V N E = (), and
g : E — 2V is a mapping with 2" = {U|U C V, |U| = 2}. V is called the set of
points, E is called the set of edges, and g is called the incidence map.

To work with a hydraulic circuit C' as an ordinary multigraph G(V, E, g) a mapping
rule is required. The related hydraulic graph G}, (C') defines such a mapping for C.

A related hydraulic graph G1,(C) of a circuit C' is a multigraph (V¢, Ec, gc) whose
elements are defined as follows. (i) V- is a set of points, and there is a bijective map-
ping from the set of non-pipe components in C onto V¢. (i) Ec is a set of edges,
and there is a bijective mapping from the set of pipe components in C onto E¢.
(iii) g : Ec — 2V¢ is a function that maps an e € E¢ onto (v;,v;) € 2V¢, if and only
if there is a pipe between the components associated with v;, v;, and if e is associated
with this pipe.

We need multigraphs instead of graphs since components of a hydraulic system may
be connected in parallel. Figure 3 depicts a circuit and its related hydraulic graph.
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Figure 3: Circuit and its related hydraulic graph.

Remarks. For each circuit C' there exists exactly one hydraulic graph G},(C). Notice
the following topological simplifications of C: (i) Substructures within (directional)
valves are comprised to one single point v, hence making all connected pipes incident
to v. (if) Variations of the topology coming along with valve switchings are neglected.
(iii) Directional information that results from the behavior of particular hydraulic
components is dropped.

These simplifications have no effect on the classification of hydraulic axes couplings.

A graph H = (Vy, Ey,gn) will be called subgraph of G = (V,E,g), if Vg C V,
Ex C E, and gp is the restriction of g to Ex. A subgraph will be called an induced
subgraph on Vi, if Ey C E contains exactly those edges incident to the points in V.
ForT ¢ V, G\ T denotes the subgraph induced on V' \ T'. Figure 4 gives an example.

Figure 4: Graph and induced subgraph on the points {4, ..., 8}.

A tuple (eq,...,e,) will be called a walk from vy to vy, if g(e;) = {vi—1,vi}, vi € V,
i =1,...,n. A walk will be called a path, if the v; are mutually distinct. Instead of
using a tuple of edges, a path may also be specified by a tuple of points, (vo, ..., v,).
Figure 5 gives an example.

Figure 5: Paths in a graph.

G will be called connected, if for each two points v;,v; € V there is a walk from v; to
vj. If G is connected and G \ v is not connected, v establishes an articulation point. The
maximum connected subgraphs of G are called connected components.
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A graph without an articulation point is called biconnected. A biconnected subgraph
of a graph is called a block. Figure 6 and 7 illustrate the definition.

Figure 6: A graph consisting of two connected components.

Figure 7: A graph and its blocks.

2.4 Graph-theoretical Formulations of Hydraulic Concepts

For the topological investigation of hydraulic circuits the variety of hydraulic components
can be reduced to a small number of classes. We will agree upon the following classes:

O Working Elements. Components that act as output elements; all kinds of cylinders
and motors belong to this class.

0 Control Elements. Components that control the working elements; all directional
valves belong to this class.

O Supply Elements. Components that provide the necessary energy in the form of pres-
sure at flow; pumps are the only elements of this class.

0 Auxiliary Elements. All elements which do not fall in one of the above classes make
up the class of auxiliary elements; examples are tanks, pipes, hoses, or filters.

A hydraulic axis A both represents and fulfills a subfunction f of an entire hydraulic
plant. A defines the connections and the interplay among those working, control, and
supply elements that realize f. A consists of the element types listed above, while at least
one working element and one control element is part of an axis.

Several hydraulic axes may share particular components. Figure 8 depicts a circuit
consisting of two axes that share some components.

To accomplish complex manufacturing, control, or manipulation tasks, several hy-
draulic axes are coupled and play together. It is in the nature of things that the level of
such a coupling can vary, from rather loosely coupled axes to axes that strongly depend
on each other. In order to determine those components of a hydraulic system that belong
to a particular axis A, couplings between A and other axes must be identified as such. A
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Figure 8: Two hydraulic axes that share some components.

prerequisite for the identification step thus is a classification of possible coupling types. We
distinguish five different levels of couplings, which are defined in following.

Given is a hydraulic circuit C' containing two sub-circuits A, B, which realize two dif-
ferent hydraulic axes. Moreover let G, (C) = (Vo, Ec,g9c), Gh(A) := (Va, Ea, ga), and
Gn(B) := (Vp, Ep, gp) denote the related hydraulic graphs of C, A, and B respectively.

0 Level 0—No Coupling. If G;,(C') is not connected, and if G (A) and G},(B) are sub-
graphs of different connected components in G, then the hydraulic axes A and B are

not coupled.
A and B don’t have any physical connection, and thus they can be investigated inde-

pendently.

0 Level 1—Informational Coupling. Let {e, ..., e, } bein E and each e; associated with

a control line within C. If G}y := (Vo, Ec \ {e1, ..., en}, gc) is not connected, and if

Gnr(A) and G, (B) are subgraphs of different connected components in G}/, then the
hydraulic axes A and B are informationally coupled (cf. Figure 9).

Figure 9: Circuit with informationally coupled hydraulic axes.

Control lines can be realized by means of electrical, hydraulic, or pneumatic connec-
tions.

O Level 2—Parallel Coupling. Let P, s be the set of all paths from a working element
w to a supply element s that use no edge associated with a control line. Then A and
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B are coupled in parallel if there exist two nodes, v, € V4, v, € Vg, such that the
following conditions hold:

(1) wq,vp are associated with a control element.

(i1) Vpep,.,: va €pNVa U v, €pNVp.

Figure 10 gives an example.

AL Al

1

l L
Figure 10: Circuit containing hydraulic axes coupled in parallel.

From an engineering viewpoint this definition states that each of the axes A and B is
controlled by its own control element.

0 Level 3—Series Coupling. Let P, ; be the set of all paths from a working element w
to a supply element s that have no edge associated with a control line. Then A and
B are coupled in series, if an axis X € {4, B} and a path p € P, s exist such that the
following conditions hold:

(i) pisasubgraph of X.
(i) JvepnW,Y € {A, B} AY # X: vis associated with a control element.

Figure 11 gives an example.

1 1

I [ T
| |

SXNE SXHE

. |

Figure 11: Circuit containing hydraulic axes coupled in series.

If several axes are coupled in series, at least one axis controls the flow of all other
axes.

O Level 4—Sequential Coupling. A and B are sequentially coupled if the following
conditions hold:
(i) Aand B have no coupling of type 0, ..., 3.
(if) A and B establish no equal subcircuits of C'.
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Figure 12: Circuit containing sequentially coupled hydraulic axes.

Figure 12 gives an example.

If A and B were equal subcircuits, their behavior would always be equal and they
would together form one single hydraulic axis.
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3 Preprocessing of Hydraulic Graphs

To realize the identification of hydraulic axes, it is necessary to reduce the complexity of
the hydraulic graph. Rules that define the allowed simplification steps can be defined
by means of graph grammars. Following some necessary definitions this section presents
those graph simplification rules as well as auxiliary algorithms that are applied before the
actual axes identification algorithm can be started.

3.1

Graph Grammars

The following definitions are necessary to introduce the concept of graph grammars. Back-
grounds and related concepts can be found in [12], [6], and [7].

()

(1)

Graph Embedding. An embedding of a graph G; = (V1, E1) into a graph Gy =
(Va, Ea) is given by an injective mapping ¢, ¢ : Vi — V2. In most cases, adjacent
nodes in G; will not become adjacent nodes in G again. Then, for each edge {u,v} €
E; also a path P,(u,v) must specified, which connects th nodes ¢ (u) and ¢(v) in Gb.
Note that this path must not be the shortest path between ¢(u) and ¢(v).

Labeled Graph. A labeled graph, also called I-graph, is a graph whose nodes v € V
and edges e € E are labeled. According to [5], an I-graph on the alphabets 3y and
Y isatriple G; = (V, (pa)acs, B) where

— V denotes a finite set of nodes.

— pq defines a relation on V' for arbitrary a € Xg;ie., p, C V x V. Here we assume
that V(u,v) € p, = (v,u) € pg, i.e., p, is reflexive, and G; is a non-directed
graph.

- (3 denotes a node labeling function.

Remarks. The alphabets ¥y and X i merely serve for labeling purposes. Note that the
definition states that between two nodes several edges are allowed, if they are labeled
differently. Also note that the node labels must no be unique. Thus it is possible to
assign different nodes additional but equal information. Figure 13 shows an example
for an l-graph.

Figure 13: Example for an l-graph.

Graph grammars are a generalization of Chomsky-systems defined on strings. Similar
to grammars that are defined over an alphabet, graphs grammars employ production rules
to define transformation prescriptions.

(iif) Graph Grammar. A graph grammar is a set of rules. The left-hand side of a rule de-

fines what is to be replaced, while the right-hand side defines the substitution. With
respect to l-graphs such a rule specifies how a subgraph is substituted for another
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subgraph. The rule does also specify in which way the subgraph of the right-hand
side is embedded into the graph that shall be modified.

Consequently, a graph production (graph rule) is of the form (d;, d,, ), d; and d,
denote the left-hand side and the right-hand side respectively, and ¢ defines the em-
bedding function. Figure 14 shows a graph production, ¢ is realized by means of the
labeling.

Figure 14: Example for a graph production.

Remarks. Our objective is not the derivation of new graphs starting with some initial
graph (the start symbol) and applying the production rules. Instead the subsequent
given graph grammar is for contraction and simplification purposes with respect to
existing graphs.

3.2 A Graph Grammar for Hydraulic Graph Abstraction

The following graph grammar provides us with a collection of graph transformation rules
for hydraulic graphs. The application of a rule is only allowed within a particular context.

Deletion of Non-essential Components

An obvious concept to reduce a hydraulic graph’s complexity is the deletion of non-
essential components [3]. Whether a component is non-essential depends on its context
of use in many cases: A valve, for instance, which has been defined as control element (cf.
section 2.4, page 6) may be used in an auxiliary position.

The identification and deletion of non-essential components is a special case of “Iden-
tification and Deletion of Sequences” treated below.

Substitution of Aggregate Components

Some components complicate the identification of hydraulic axes because they come along
with a complex—but compilated—substructure. The power supply unit shown in Figure
15 is an example for such a component.

Such components do not comply with the path search strategies for the identification of
hydraulic axes. A way out is the substitution of such a component by a new substructure
with several simple components. In the case of the power supply unit the related graph
grammar rule is depicted in Figure 16.
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;0

Figure 15: Power supply unit providing two tank connections.

1,2, 3 1 2 3
F = Flow meter
P = Pump
- T =Tank

Figure 16: Substitution of an aggregate by other components.

Deletion of Control Edges

Control edges do not contribute to the detection of hydraulic axes: They are used to control
the switching position of valves. Since the information on switching positions is lost in the
abstracted hydraulic graph at all, control edges can be deleted in any case.

A large part of control edges can be identified and deleted easily, since the connections
incident to control edges are explicitly labeled as control connections.

Comprising Tanks

Hydraulic circuits may contain a large number of tanks, leading to an overhead during
the path search algorithms (cf. section 4). Thus we comprise all tanks of a circuit within a
single new meta-tank.

If tanks have been used in different connected components, this transformation will
connect the related subgraphs. Thus this transformation must be performed for each con-
nected component on its own.

Identification and Deletion of Sequences

A sequence is a connected subgraph whose nodes have a degree of at most two. Sequences
do not affect the topological structures that form the basis of our hydraulic axis definition.
To cope with different contexts we distinguish between different types of sequences and
deployed the following transformation rules:

O Dead Branches. Dead branches are sequences that contain one node of degree one.
Usually dead branches provide no information regarding the identification of hy-
draulic axes. They can be deleted, if they don’t contain a tank, a pump, or a work-
ing element, otherwise they can be shortened. Figure 17 gives examples of dead
branches; Figure 18 shows the related production rules.

O Sequences which Non-essential Components. Sequences consist of non-essential
components for the most part, but they may contain elements whose deletion is not
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Figure 17: A circuit with dead branches.

- _ X, Y arbitrary
M = Meta node
@7[ ]4@__ ., @__ X1, ..., X, arbitrary
M = Meta node

Figure 18: Rules for the deletion of dead branches.

allowed, such as tanks or working elements. The related production rules are shown
in Figure 19.

- - o _ X, Y arbitrary
M = Meta node
X1, ..., X arbitrary
o [] o o "7 M= Meta node

Figure 19: Rules for the deletion of non-essential components.

O Consecutive Working Elements. Consecutive working elements in sequences can be
comprised to a single meta working element without affecting axes identification.
Figure 20 gives an example for such a sequence.

Identification and Deletion of Cycles

Cycles that neither contain nor control working elements can be deleted without compro-
mising the identification algorithms for hydraulic axes. Hydraulic circuits always contain
cycles, and these cycles may contain many components. Figure 21 depicts some examples.

However, the detection of cycles can be restricted to the following cases:
0 Two Components are Connected in Parallel. The restriction to this case is admissible,

if the hydraulic graph does not contain sequences with more than one component,
i.e., if the previously described steps have been performed.
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AL
[1

Figure 20: Consecutive working elements in a single axis.
H_’;:; Loop to be deleted
[ / Loop that cannot be deleted

Al — Ii ___________________

Figure 21: Cycles in a hydraulic circuit.

O Two Edges are Connected in Parallel. The application of this rules is possible, if
sequences of the length one have been deleted.

Figure 22 shows the rules for circuit deletion. Note that cycles can be nested. To resolve
nested cycles, the rules for sequence and cycle deletion must applied in a repetitive manner.

M “G : W, X, Y, Z arbitrary
° M = Meta node

Figure 22: Rules for the deletion of cycles.

Merging T-junctions

Nodes in the hydraulic graph whose counterpart are T-junctions can be merged. Merging
two such nodes results in a new meta node of the degree four. Figure 23 shows the rule.
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More general, when merging two nodes u and v of the degrees j and h respectively, the
resulting node will be of degree j + h — 2 if v and v were connected by a single edge.

T arbitrary
M = Meta node

Figure 23: Rules for the merger of two T-connection nodes.

Figure 24 shows how this rule will also resolve cycles that consists of Tjunction nodes
only. Such cycles are the result of the application of the sequence and cycle deletion rules
previously introduced.

Tl e

Figure 24: Deleting cycles of T-connection nodes.

Note that the application of the rule in Figure 23 can lead to difficulties during hydraulic
axes identification. Section 3.3 will elaborate on that problem.

Order of Rule Application

An arbitrary application of the above rules would lead to a simplification of the hydraulic
graph, but this simplification must not be optimum in any case. Examples where two
different orders of rule application result in differently comprised graphs can be easily
constructed.

A possible way out is a rule application based on a priority control: In a first step, each
rule is tested if it can be fired; then among these rules that one with the highest priority is
selected and executed.

Since the test whether or not a rule can fire is expensive, we decided to realize a fixed
order of rule application. Of course such an order must consider the possible dependencies
between the rules. A useful order is the following:

1. substitute aggregate components

delete control edges

comprise tanks

comprise consecutive working elements
delete dead branches

delete sequences of non-essential components

delete nodes of degree less then two

® N o @ o= LW D

merge t-junctions
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9. delete cycles
If this rule has been fired, return to step 5.

3.3 Node Expansion

Note that the result of a hydraulic axes analysis is an assignment of each component to a
hydraulic axis. Since also the deleted nodes must be assigned to some axis, each such node
is associated with an anchor node, and the anchor node’s axis will become the axis of the
deleted node.

When deleting nodes of a degree more than one, there is the question which of the
neighbored nodes will become the anchor node. A wrong choice will lead to an incorrect
axis assignment of the component.

This indeterminism can be resolved by defining different levels of attraction for the differ-
ent component types. The attraction level ¢ of the neighbored nodes then defines which of
them will become the anchor node. This concept is powerful enough to model the analysis
process of hydraulic experts in most cases. The order of attraction levels that we actually
use is the following:

¢(auxiliary element) < ¢(control element) < ¢(supply element) < ¢(working element)

If a node to be deleted is between two nodes of the same attraction level, it will not
become resolved.

3.4 Auxiliary Routines

This subsection provides auxiliary routines that are necessary to operationalize the produc-
tion rules of our graph grammar. These routines will not perform structural modifications
of the graph.

Identification of Blocks

The identification of cycles in a hydraulic circuit (cf. page 13) can be realized with a graph
algorithm for the detection of strongly connected components or blocks.

Usually, a hydraulic graph will contain a lot of cycles from which only a subset shall
be deleted. We can restrict the block identification algorithm to this subset by deleting the
essential components (e.g. working elements) along with their incident edges in a first step.

The runtime complexity of an efficient block detection algorithm is O(|E|) (cf. [4], [8]).

Edge Sorting

An important part of the algorithm for the hydraulic axes identification requires the detec-
tion of identical subgraphs during the application of the graph grammar rules. Note that
the order of rule application depends on the order of a node’s incident edges, and only a
sorting of the edges of each node will ensure the same order of rule application for equal
subcircuits.

Since each node is incident with at most four edges, the total sorting effort can be esti-
mated by O(|V]).
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Adequate Data Structures

We use adjacency lists instead of adjacency matrices here, since the degree of the nodes in
our graphs is rather small (< 5). A related adjacency matrix would have a small numbers
of entries only.

A drawback of ordinary adjacency lists is that a direct access to their elements is not
possible. We compensate this drawback by organizing these lists in the form of hash tables.
Moreover, hash tables are also used to organize the nodes of a hydraulic graph.
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4 Identifying Hydraulic Axes by Means of Path Search

In this place an algorithm for the identification of hydraulic axes is presented. This al-
gorithm relies on path search strategies for the main part. The next but one subsection
investigates the question how identical axes can be detected as such.

4.1 Path Search in the Hydraulic Graph

As mentioned earlier, each hydraulic axis must contain at least one working element and
one supply element. Moreover, all components that also belong to the hydraulic axis must
lie on some path between the working and the supply element. This consideration suggests
to employ shortest-path algorithms to tackle the identification problem.

Efficient algorithms to solve shortest-path problems are given in [4] and [8]. Important
representatives are the following;:

O Dijkstra’s Algorithm. Determines the shortest path from a designated node to all
other nodes in a weighted graph. Its runtime complexity is O(|V?|) and O(|E]| -
log(|V'])) when using a linear list and a heap data structure respectively.

O Floyd’s Algorithm. This algorithm determines the distance between any pair of
nodes of a graph. It follows the idea of dynamic programming and has a time com-
plexity of O(]V3|) and a space complexity of O(|V2)).

To identify hydraulic axes, all paths between the supply elements and the working
elements of a circuit must be investigated. Hence a shortest-path problem must be solved
for each supply element. Each run of a shortest-path algorithm labels the edges in the form
of a directed tree, encoding the successor relationship between two nodes (cf. Figure 25).
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Figure 25: Circuit with successor information after a shortest-path run.

Note that all components that lie on the same path in the directed tree belong to the
same hydraulic axis. Since hydraulic graphs are multigraphs there must exist two different
paths from a working element to a supply element. A second path can be found by simply
deleting one edge incident to the working element and then applying the shortest-path
algorithm again.
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Each hydraulic axis is also connected with a tank, and the components lying on the path
between the tank and the working element are also count to the hydraulic axis. Hence
we apply the path search algorithm in the same way for tanks as we did for the supply
elements. These considerations lead to the following algorithm for the detection of all
hydraulic axes. Given is a hydraulic graph G, (C) = (V¢, Ec, g¢) of a circuit C.

1. For each supply element s € V> do:

(a) Compute the shortest paths from s to the working elements.

(b) Assign all nodes of the same path the same hydraulic axis number.
(c) Remove one edge incident to each working element.

(d) Compute the shortest paths from s to the working elements.

(e) Assign all nodes of the same path the same hydraulic axis number.
2. For each tank t € V> do:

(a) Compute the shortest paths from ¢ to the working elements.

(b) Assign all nodes of the same path the same hydraulic axis number.
(c) Remove one edge incident to each working element.

(d) Compute the shortest paths from ¢ to the working elements.

(e) Assign all nodes of the same path the same hydraulic axis number.

The worst case complexity for this algorithm is O(|V |2 - | E|).

4.2 Checking for Identical Axes

It is necessary to detect identical axes as such since they must be comprised to one single
axis when analyzing the circuit. Identical axes are composed from the same components,
they have an equivalent structure, and they are controlled by a single control element.
Figure 26 gives an example for identical axes.

= = =
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23
Figure 26: Subcircuit with three identical axes.

The above characterization of identical axes shows that we have to compare both two
axes’ components and their structures to check whether they are identical. However, with
respect to T-junctions and pipes we must be flexible: These components are allowed to
occur in different numbers and positions.—Putting it all together:

O The comparison between two axes must happen within the original, i.e., within the
uncompressed hydraulic graph.



4 IDENTIFYING HYDRAULIC AXES BY MEANS OF PATH SEARCH 20

O Two axes can be identical without having the same number of components.

O The comparison of structures must cope with structures whose topology is different,
but which produce the same behavior.

Checking for Candidate Pairs

Having passed the preprocessing phase, identical axes are still identical and, moreover,
they are simplified. Thus we can restrict the identical axes investigation to a subset of all
axes. As well as that, when working on the compressed axes we can exploit the succes-
sor relationship between the nodes, which has been established during the shortest-path
search.

If the interesting circuit has k axes, then we have to compare (g) € O(k?) possible pairs
of axes. The comparison of a pair will take linear time since we simply walk along the
paths that are defined by the successor relationship. Thus we have a total time complexity
of O(|[V|? - |E]) for this step.

Checking by Means of Step-wise Expansion

Among the candidate pairs we continue our investigation as follows. Nodes that have
been deleted during preprocessing are stepwisely inserted and compared. This strategy
presumes that the deletion of nodes has been happened in a definite manner—a require-
ment that is fulfilled since the preprocessing algorithms work on sorted data structures.
Consequently, nodes of equal structures are deleted in the same succession, and the deleted
nodes are pushed on a stack.

This strategy must be refined to cope with several exceptions since nodes may become
incomparable: E. g., the type of a node can be changed when deleting one of its neighbors,
or an axis contains components of the same type.
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5 ldentifying Hydraulic Axes by Means of Embedding

An alternative strategy for the detection of hydraulic axes is template embedding. This
section introduces the concepts and points out related difficulties.

5.1 Structure Mapping in the Hydraulic Graph

As introduced in section 3.1, an embedding defines a mapping from the nodes of a graph
G onto the nodes of a graph G'y; the edges of (1 are mapped onto paths in Go. A template
embedding is defined as follows.

0 Template Embedding. A template embedding is an embedding of an abstract graph
T, called the template, into another graph G. ¢(v) = w,v € T,w € G, if and only if
Y(v) = 1 (w) for some suitability function 1.

I.e., a template embedding is an embedding that has to fulfill some given constraints.
In connection with hydraulic graphs a typical constraint is the following: “A node v of
the template can only be mapped onto a node w in the hydraulic graph, if v and w are of
the same type.” Figure 27 shows a template and a graph, and Figure 28 again shows this
template along with its embedding.
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Figure 27: A template and a graph.

Figure 28: A template along with an embedding in a graph.

Figure 28 shows that the hydraulic graph must be compressed (preprocessed) to make
an embedding possible: Dead branches or cycles complicate or may inhibit an embedding.

It becomes clear that template embedding is of another nature than the production rules
of a graph grammar. The latter have been used to find small subgraphs, so to speak, “local
embeddings”. Template embeddings, on the other hand, aim at the entire graph. Note that
by each template embedding in the comprised graph exactly one hydraulic axis is detected.
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5.2 Developing a Suitability Function for Hydraulic Axes

In the following we develop step by step a method for the identification of hydraulic axes
by means of template embedding.

We start with the task to embed a graph G; = (V1, E4) in a graph Go = (Va, E2) without
imposing any embedding constraints. To achieve a valid embedding, it must be ensured
that all nodes and edges of G are correctly mapped on G5. While a node mapping can be
determined immediately, the edge mapping requires some particular search effort. Hence
the necessary steps for a primitive embedding are as follows.

1. Connected Components. Determination of the connected components of G2. Note
that all images ¢(v) of the nodes in V; must lie in the same connected component of
(2. The runtime complexity for this step is O(|E»|).

2. Node Mapping. Within this step merely the node lists of G; and G must be trav-
eled until all nodes in V) are assigned. The runtime complexity without mapping
constraints is O(|V1]).

3. Path Search. A path search has to be performed for each pair of nodes that is con-
nected by an edge in GG;. The search can be realized by a depth-first search or a
breadth-first search. The runtime complexity is O(|Vz|-log(|V2|) +|E2|) if a minimum-
spanning-tree algorithm along with a Fibonacci-heap is employed (cf. [4]).

Figure 29 shows a primitive embedding.

i

Figure 29: A primitive embedding.
Within a next step we claim that all nodes of G; must be mapped onto nodes of the

same degree in G2. Such a mapping (the step 2) can also be realized in O(max{|V1[, |V2|}),
if the nodes of G are sorted relating their degree. Figure 30 shows an example for such an

embedding.

Figure 30: Embedding that is compliant with the node degree constraint.

The node degree constraint does not imply that actually all edges of an image node
in G are used when mapping the edges. Thus we further constrain the embedding by
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claiming this restriction. Now the paths between the nodes cannot be determined by the
minimum-spanning-tree algorithm—we will use the shortest-path algorithm of Dijkstra
instead instead. We force the shortest-path algorithm to use all edges of a start node v by
temporarily removing the first edge incident to v after each shortest-path run. The total
runtime complexity then is O(|Vz| - log(|Va|) + |Ea| + k2 - (| E2| - log(|V2]))), k < |V4|. Figure
31 shows a possible embedding.

K

Figure 31: Embedding that is compliant with the edge mapping constraint.

In a last step we further tighten up the node embedding restriction: A node v € V; is
only allowed to be mapped onto a node w € Vj, if v and w are of the same component
type. The consideration of this restriction does not worsen the runtime complexity; it can
be checked along with the node degree constraint. Figure 32 shows how the component
type restriction for nodes comes to effect.

K

Figure 32: Embedding that is compliant with the component type restriction.
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6 Couplings Between Hydraulic Axes

This section describes how the coupling level between hydraulic axes can be determined.
Basically, methods similar to those for the identification of hydraulic axes are employed.

6.1 Coupling Between Two Adjacent Hydraulic Axes

The coupling levels as introduced in subsection 2.4 have very different properties, and
different efforts are needed for their identification. The following paragraphs investigate
this effort, whereas it is assumed that exactly two axes are given.

Couplings of Level 0 and Level 1

The identification of these coupling types is based on the concept of connected components.
Axes “connected” by coupling level 0 lie in different connected components in the original

graph.
Axes connected by coupling level of 1 lie in different connected components after all
control edges have been deleted, which can be achieved within O(|E|) steps.

Couplings of Level 2 and Level 3

Given a coupling of level 2, i.e. a parallel coupling, both the supply element and the tank
is used for all axes, whereas each axis’s control element has a direct access to them. When
given a coupling of level 3 only the control element of one axis has a direct to access to the
supply element and the tank. Figure 33 illustrates the latter case.
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Figure 33: Three hydraulic axes coupled in series..

To identify both cases we follow up the paths that connect the working elements with
the same pump and tank respectively. In the case of a level 2 coupling each such path
contains only control elements of one axis; in the case of a level 3 coupling all but one path
does contain control elements of at least two axis. Since we don’t need the shortest paths
between the components, the search effort can be estimated with Q(|E|).

Level 4 Coupling

The identification of this coupling level is similar to the identification of identical hydraulic
axes. In both cases (two axes are identical and two axes coupled by level 4) there is only
one control element. In the latter case one of the axes does contain an additional behavior-
modifying component, such as a hydraulic resistor (cf. Figure 34).
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Figure 34: Sequentially coupled axes..

We compare all paths from the working elements to the supply element til we find a
shared component. Up to that point no control element must be encountered, otherwise the
axes are not coupled sequentially. If no control element has been encountered, the elements
of the path are checked if they contain at least one behavior-modifying component (cf.
Figure 35). If so, the axes are sequentially coupled.
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Figure 35: Examples for behavior-modifying components..

6.2 Transitivity of Couplings

Given a circuit with n axes, normally the couplings between all axes need to be determined.
Using a naive approach for this job, the above search effort is carried out () € O(n?) times.
If, for example, a circuit contains a lot of axes of only one coupling type, a linear number
of comparisons is sufficient.

In this connection some kind of transitivity property for coupling types would be use-
ful. Figure 36 shows a circuit where three axes are coupled, and having classified two of
the three couplings, the third coupling type can be inferred.

Figure 37 shows that, in generality, such a transitivity cannot exist.

However, given three axes and information on two coupling types, we are able to re-
strict the third coupling to a subset of all types: Let the known coupling types be a and b,
a,b € {0,...,4}. Then for the third coupling ¢ the following holds: ¢ > min{a, b}. Stated
another way, a weaker coupling cannot be possible since the axes are coupled indirectly
via the third axis. This property can be exploited to reduce the complexity of the coupling
type determination.

6.3 Hierarchy of Couplings
Hydraulic axes in complex circuits are often organized hierarchically (cf. Figure 38).

The identification of the hierarchical organization of the axes will also save comparison
effort for the coupling type determination. The leafs of the coupling tree correspond to the
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Figure 36: Equally coupled axes..
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Figure 37: Sequentially coupled axes..
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actual axes, inner nodes correspond to so-called meta axes (cf. Figure 39). The coupling
between two meta axes defines the coupling between all those axes that do not stem from

the same meta axis.
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Figure 38: Circuit with abstracted coupling tree..

Meta axes
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Figure 39: Abstracted coupling tree with meta axes..
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