
On the Nature of Structure and Its Identification

Benno Stein and Oliver Niggemann

Dept. of Mathematics and Computer Science—Knowledge-based Systems,
University of Paderborn, D–33095 Paderborn, Germany

{stein,murray}@uni-paderborn.de

Abstract. When working on systems of the real world, abstractions in
the form of graphs have proven a superior modeling and representation
approach. This paper is on the analysis of such graphs. Based on the
paradigm that a graph of a system contains information about the sys-
tem’s structure, the paper contributes within the following respects:

1. It introduces a new and lucid structure measure, the so-called
weighted partial connectivity, Λ, whose maximization defines a
graph’s structure (Section 2).

2. It presents a fast algorithm that approximates a graph’s optimum
Λ-value (Section 3).

Moreover, the proposed structure definition is compared to existing clus-
tering approaches (Section 4), resulting in a new splitting theorem con-
cerning the well-known minimum cut splitting measure. A key concept
of the proposed structure definition is its implicit determination of an
optimum number of clusters.

Different applications, which illustrate the usability of the measure and
the algorithm, round off the paper (Section 5).

1 What Is Structure?

“Structure defines the organization of parts as dominated by the general
character of the whole.”

This informal definition reflects the common sense understanding of the no-
tion “structure”. Structure information is some kind of meta information and
may take different shapes. However, the nature of structure can often be captured
by a graph. Figure 1, for example, shows a gantry crane, its graph representation
in the form of the component graph G, and two abstractions, say contractions
of G, that can be interpreted as the crane’s structure. The paper in hand is on
the automatic detection of such structure information.

To allow of a more formal definition of the term structure, the following
abstraction is useful.

1. The system, the “whole”, is mapped onto a graph, G = 〈V, E〉. The system’s
elements form the set of nodes, V ; the relations between the elements are
represented by the set of (weighted) edges, E.

Widmayer et al. (Eds.): WG’99, LNCS 1665, pp. 122–134, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

On the Nature of Structure and Its Identification 123

Gantry crane

Hoist motor

Security
 break

Overload
 sensor

Axis 1a

Axis 1b

Platform
 motor 1

Platform
 motor 2

Axis 2b

Axis 2a
Carrier 1

Carrier 2Girder

Controller
 unit

Under−
carriage 2

Under−
carriage 1

Frame

Carriage 1

Carriage 2

Trolley

Automotive

Trolley

Two structural abstractions

Component graph

Fig. 1. Gantry crane with component graph and two structural abstractions.

2. The system’s structure, its “general character”, is reflected by the distribu-
tion of G’s edges.

This understanding of a system’s structure relies on the following paradigms.

1. Modular Character. The system (say, the graph G = 〈V, E〉) can be decom-
posed into several modules or functions such that each element of the system
(say, each node v ∈ V) belongs to exactly one module.

2. Connectivity. Modules are defined implicitly, merely exploiting the graph-
theoretical concept of connectivity: The connectivity between nodes assigned
to the same module is assumed to be higher than the connectivity between
any two nodes from two different modules.

3. Contraction. The system’s structure is the contraction of G where a single
node is substituted for all nodes belonging to the same module.

Remarks. Point 1 reflects hierarchy or decentralization aspects of a system or
an organization. Point 2 is based on the observation, that the elements within
a module are closely related; the modules themselves, however, are coupled by
narrow interfaces only. A similar observation can be made respecting organiza-
tional or biological structures. Point 3 states that structure information can be
derived by a simple abstraction.

These structuring paradigms may not apply to all kinds of systems—but, for
a broad class of (technical) systems they form a useful set of assumptions.

124 Benno Stein and Oliver Niggemann

1λ = 2

2λ = 1

3λ = 2

Λ = 3∗2+2∗1+3∗2 = 14Λ = 5∗1+3∗2 = 11

λ = 11
2λ = 2

1λ = 2

2λ = 3

Λ =Λ∗= 4∗2+4∗3 = 20

Fig. 2. Graph decompositions and related Λ values.

2 Quantifying a Graph’s Structure

The structure of a system G has been introduced as some contraction of G.
This descriptive definition can be quantified by means of a new measure called
“weighted partial connectivity”, Λ, which is introduced now. The weighted par-
tial connectivity is defined for a decomposition of a graph G, and it is based on
the graph-theoretical concept of edge connectivity.
Let G = 〈V, E〉 be the graph abstraction of the interesting system.1

1. C(G) = (C1, . . . , Cn) is a decomposition of G into n subgraphs induced on
the Ci, if

⋃
Ci∈C = V and Ci ∩ Cj,j 6=i = ∅. The induced subgraphs G(Ci)

are called cluster. EC ⊆ E consists of the set of edges between the clusters.
2. The edge connectivity λ(G) of a graph G denotes the minimum number of

edges that must be removed to make G a not-connected graph: λ(G) =
min{|E′ | : E

′ ⊂ E and G
′
= 〈V, E \E′〉 is not connected}.

Definition 2.1 (Λ). Let G be a graph, and let C = (C1, . . . , Cn) be a decom-
position of G. The weighted partial connectivity of C, Λ(C), is defined as

Λ(C) :=
∑n

i=1 |Ci| · λi, where

λ(Ci) ≡ λi designates the edge connectivity of G(Ci).
Figure 2 illustrates the weighted partial connectivity Λ.
Definition 2.2 (Connectivity Structure). Let G be a graph, and let C∗ be
a decomposition of G that maximizes Λ:

Λ(C∗)≡Λ∗ := max{Λ(C) | C is a decomposition of G}
Then the contraction H = 〈C∗(G), EC∗〉 is called connectivity structure (or

simply: structure) of the system represented by G.
Figure 3 shows that Λ-maximization means structure identification.
1 Concepts and definitions of graph theory are used in their standard way; they are

adopted from [10,7].

On the Nature of Structure and Its Identification 125

Unstructured graph Structure

Λ∗ =12

Λ∗ = 46

ΛOptimum structured graph wrt.

Fig. 3. Examples for decomposing a graph according to our structure definition.

Remarks. A key feature of the above structure measure is its implicit definition
of a structure’s number of clusters.

Two rules of decomposition, which are implied in our structure definition,
are worth to be noted.

(i) If for a (sub)graph G = 〈V, E〉 and a decomposition (C1, . . . , Cn) the
strong splitting condition

λ(G) < min{λ1, . . . , λn}
is fulfilled, G will be decomposed. Note that the strong splitting condition

is commensurate for decomposition, and its application lessens the mean value
of the standard deviations of the clusters’ connectivity values λi. Obviously
this splitting rule follows the human sense when identifying clusters in a graph,
and there is a relation to the Min-Cut-splitting approach, which is derived in
Section 4.

(ii) If for no decomposition C the strong splitting condition holds, G will be
decomposed only, if for some C the condition |V | · λ(G) < Λ(C) is fulfilled. This
inequality forms a necessary condition for decomposition—it is equivalent to the
following special case of the structure definition: max{Λ({V }), Λ(C)} = Λ(C),
because Λ({V }) ≡ |V | · λ(G).

The weighted partial connectivity, Λ, can be made independent of the graph
size by dividing it by the graph’s node number |V |. The resulting normalized Λ
value is designated by Λ̄ ≡ 1

|V | · Λ.

3 Operationalizing Structure Identification

In this section a fast clustering algorithm optimizing the weighted partial con-
nectivity Λ is presented. This algorithm implements a local heuristic and is
suboptimal.

Initially, the algorithm assigns each node of a graph its own cluster. Within
the following re-clustering steps, a node adopts the same cluster as the majority

126 Benno Stein and Oliver Niggemann

Fig. 4. A definite majority clustering situation (left) and an undecided majority
clustering situation (right).

of its neighbors belong to. If there exist several such clusters, one of them is
chosen randomly. If re-clustering comes to an end, the algorithm terminates.

The left hand side of Figure 4 shows the definite case: most of the neighbors
of the central node belong to the left cluster, and the central node becomes a
member of that cluster. In the situation depicted on the right hand side, the
central node has the choice between the left and the right cluster.

We now write down this algorithm formally.

Majorclust.
Input. A graph G = 〈V, E〉.
Output. A function c : V 7→ N, which assigns a cluster number to each node.

(1) n = 0, t = false
(2) ∀v ∈ V do n = n + 1, c(v) = n end
(3) while t = false do
(4) t = true
(5) ∀v ∈ V do
(6) c∗ = i if

∣
∣{u : {u, v} ∈ E ∧ c(u) = i

}∣
∣ is max.

(7) if c(v) 6= c∗ then c(v) = c∗, t = false
(8) end
(9) end

The runtime complexity of Majorclust is Θ(|E| · |Cmax|), where Cmax ⊆ V
designates a maximum cluster. In the While-loop (line 3 to 8) each edge of
G is investigated twice; within each pass, a growing cluster is enlarged by at
least one node; if no node changes its cluster Majorclust terminates. Note
that this evaluation neglects “pathological” cases, where the algorithm oscillates
between two (or more) decompositions. However, such a situation constitutes
neither a clustering nor a runtime problem: It can be detected easily since all
nodes are either stable or in an undecided constellation. This advisements and
experimental results (see Section 5) show the usability of the algorithm for large
graphs with several thousand nodes.

The algorithm’s greatest strength, its restriction to local decisions, is bound
up with its sub-optimality. In every step only a node’s neighbors are considered,
resulting in an excellent runtime behavior. On the other hand, by disregard-

On the Nature of Structure and Its Identification 127

(a)
MAJORCLUST
resembles
 −maximizationΛ

(b)

v1

MAJORCLUST
clustering

Λ−value maximization

Fig. 5. The local behavior of Majorclust may lead to sub-optimum Λ values.

ing global criteria like the connectivity, Majorclust cannot always find the
optimum solution. Figure 5 illustrates this.

The optimum solution for graph (a) is one cluster, which is also the solution
as found by Majorclust. For graph (b), a splitting into the two clusters {v1}
and V \{v1} is optimum. Majorclust cannot find this decomposition—working
strictly locally, it behaves exactly as on graph (a) and creates only one cluster.

3.1 Extension for Weighted Graphs

It is both useful and obvious to extend our structure identification approach by
introducing edge weights. The amount of the weight w(e) models the importance
of an edge e. A prerequisite for this is a generalization of Λ(C) by introducing
the weighted edge connectivity λ̄ of a graph as follows:
λ̃(G) = min{∑e∈E′ w(e) : E

′ ⊂ E and G
′
= 〈V, E \E′〉 is not connected}. Using

this definition all results from Section 2 can be directly extended to graphs with
edge weights.

In the same way the algorithm Majorclust is altered: Every node v now
adapts the same cluster as the weighted majority of its neighbors, i. e. every
neighbor counts according to the weight (i.e. importance) of the edge connecting
it to v.

4 Existing Clustering Approaches

Clustering data given as graphs has been a focus of research for years. The
existing approaches can be classified as follows.

Hierarchical versus Non-hierarchical Algorithms. Hierarchical algorithms create
a tree of node subsets by successively subdividing or merging the graph’s nodes.
In order to obtain a unique clustering, a second step is necessary that prunes
this tree at adequate places.

Hierarchical algorithms can be further classified into divisive and agglom-
erative approaches. Divisive algorithms start with each vertex being its own
cluster and union clusters iteratively. For agglomerative algorithms on the other
hand, the entire graph initially forms one single cluster which is successively
subdivided. Examples for divisive algorithms are Min-cut-clustering [10,20] or

128 Benno Stein and Oliver Niggemann

dissimilarity-based algorithms e. g. [11]. Typical agglomerative algorithms are
k-nearest-neighbor or linkage methods [4,16,6].

Non-Hierarchical algorithms subdivide the graph into clusters within one
step. Examples are clustering techniques based on Minimal-Spanning-Trees [22],
self-organizing Kohonen networks [9] or approaches which optimize a given goal
criterion [1,13,14,13].

Exclusive versus Non-exclusive Algorithms. Exclusive clustering algorithms as-
sign every node to exactly one cluster, while non-exclusive algorithms assign to
a node a membership value respecting each cluster. The algorithms mentioned
above are of exclusive type; an example for a non-exclusive algorithm is Fuzzy
clustering [21].

Clustering versus Partitioning. The clustering algorithms described above do
not impose any constraint on cluster sizes. Partitioning algorithms as used in
the fields of parallel computing or VLSI design typically demand homogeneous
cluster sizes. Examples for partitioning algorithms can be found in [10,8].

Λ-maximization and Majorclust can be classified as non-hierarchical and
exclusive. Majorclust finds a fast, but possibly suboptimal solution for the
problem of Λ-maximization. I. e., unlike most optimization approaches, Λ-maxi-
mization as performed by Majorclust does not rely on slow optimization tech-
niques and can be used for large graphs.

The clustering quality of the Λ criterion and the Majorclust algorithm
will be illustrated by the following two comparisons with well-known clustering
techniques as well as by different applications in Section 5.

4.1 Clustering Based on the Minimum Cut

Majorclust is a divisive approach, that recursively subdivides a graph at its
smallest cut. The following theorem relates Min-cut-clustering to clustering by
means of Λ-maximization.

Theorem4.1 (Strong Splitting Condition). Applying the strong splitting
condition (see Section 2) results in a decomposition at minimum cuts.

To proof this theorem we first show that λ(G) equals the cardinality of the
minimum cut of G.

Proof of Lemma. Let µ(G) denote the minimum cut of G. λ(G) ≤ |µ(G)| because
the removal of all edges belonging to the cut splits G into two components.
λ(G) ≥ |µ(G)| because in G there exists v1, v2 ∈ V so that exactly λ(G) edge
disjoint paths connect them. By removing one edge from each path, v1 will not
be connected to v2 anymore, therefore exists a cut with λ(G) edges.

Proof of Theorem. Let cut(Vi, Vj) denote the edges between G(Vi) and G(Vj).
From λ(G) ≤ min{λ1, . . . , λr} follows |µ(G)| ≤ min{|µ(G(V1))|, . . . , |µ(G(Vr))|},
i.e. no cut in G(Vi), i = 1, . . . , r is smaller than µ(G). Since every cut µ′(G)
except of cut(V1, . . . Vr) decomposes at least one G(Vi), µ′(G) must consist of
more than |µ(G)| edges. It follows that cut(V1, . . . Vr) must be minimum.

On the Nature of Structure and Its Identification 129

Cx Clustering according to Min−CutClustering according toΛ

2v

3v

4v

1v

Fig. 6. Weighted partial connectivity (Λ-) maximization versus Min-Cut-
clustering.

When the strong splitting condition does not hold, an optimum decomposi-
tion according to the structuring value need not be the same decomposition as
found using the minimum cut. This is because of the latter’s disregard for cluster
sizes. Figure 6 is such an example. Here Cx refers to a clique with x ≥ 3 nodes.
An optimum solution according to the weighted partial connectivity Λ (which
is also closer to human sense of esthetics) consists of one cluster {v1, v2, v3, v4}
and a second cluster Cx. An algorithm using the minimum cut would only sep-
arate v1.

The reader may also notice that, as mentioned before, maximizing the
weighted partial connectivity implies an optimum number of clusters, while the
minimum cut approach lacks any criterion for the number of necessary division
steps.

4.2 Clustering Based on Nearest-Neighbor Strategies

Nearest-Neighbor clustering is an agglomerative approach that iteratively merges
the two closest clusters. Its widespread use results in several variations [3,4,16,6].
The following qualitative comparison to Majorclust does not take all existing
variations into consideration, but we claim that Λ-maximization and Major-
clust respectively can indeed overcome typical problems inherent to Nearest-
Neighbor clustering concepts.

1. Nearest-Neighbor clustering, like all hierarchical algorithms, does not define
the (optimal) number of clusters. Λ-maximization (as well as Majorclust)
implicitly defines both number and sizes of the clusters.

2. The greedy nature of Nearest-Neighbor methods (unlike as in Majorclust,
nodes are never reassigned to another cluster) leads to the so-called chaining
effect [3], as illustrated in Figure 7.

3. The step of transforming the tree as created by a Nearest-Neighbor algorithm
into a unique clustering often depends on extra parameters such as the min-
imum cluster or vertex distance. This results in difficulties if clusters have
strongly varying point densities or inter-cluster distances. Λ-maximization
and Majorclust do not depend on additional parameters and behave more
sensible in such clustering situations.

130 Benno Stein and Oliver Niggemann

Fig. 7. The (undesired) chaining behavior of Nearest-Neighbor methods.

4. Nearest-Neighbor methods rely on distance information only. They thus dis-
regard connectivity information. For weighted graphs this may lead to clus-
ters which lack the human sense of esthetics, for unweighted graphs this
behavior may result in a failure to find any clusters.

5 Application

This section outlines three applications for structure identifications.2

5.1 Monitoring Computer Networks

Monitoring traffic, i. e. recording inter-computer communications, is substantial
for administrating and analyzing computer networks. The amount of traffic be-
tween all pairs of computers in the network is recorded in the so-called traffic
matrix. By interpreting the traffic matrix as the adjacency matrix of a weighted
graph, cluster identification techniques can be applied to the problem of traffic
analysis. Figure 8 illustrates the procedure.

Being faced with rather large traffic matrices (> 400 nodes, > 800 edges),
human experts need to fall back upon computer support for cluster identification.
However, this clustering problem is difficult to solve since no features about
communication structures are known beforehand, which makes this problem an
ideal testbed for Majorclust.

Cooperations with network experts allowed the application of Majorclust
under realistic conditions. Majorclust revealed several interesting structures
in traffic matrixes: (i) subnets were subdivided according to main applications,
(ii) project member in different subnets were identified, and (iii) computer serv-
ing similar purposes were clustered together.

These insights are helpful in several ways. Firstly, they render a general
understanding of traffic structure possible, e. g. clusters combining computers
in different subnets mean high traffic on the backbone. Secondly, they provide
additional information for planning tasks in the form of modification hints for
the network architecture.
2 Aside from the presented applications, structure identification has been investigated

for the preprocessing of configuration knowledge bases and the topological analysis
of fluidic systems [5,18].

On the Nature of Structure and Its Identification 131

...

...

...

Packet 10:
eth: 170, 0:90:27:10:e7:68 −−> 0:90:27:12:26:d2
ip: 152, 131.220.6.35 −−> 131.220.6.51
tcp: 132, 22 −−> 1022

Packet 11:
eth: 60, 8:0:20:12:cd:83 −−> ff:ff:ff:ff:ff:ff

Packet 12:
eth: 54, 0:90:27:12:26:d2 −−> 0:90:27:10:e7:68
ip: 36, 131.220.6.51 −−> 131.220.6.35
tcp: 16, 1022 −−> 22

Packet 13:
eth: 170, 0:90:27:12:26:d2 −−> 0:10:2f:e:0:0
ip: 152, 131.220.6.51 −−> 194.64.183.62
tcp: 132, 22 −−> 1021

Packet 14:
eth: 60, 0:a0:c9:a6:dc:18 −−> 1:0:5e:7f:73:7d
ip: 42, 131.220.5.203 −−> 239.255.115.125
udp: 22, 1031 −−> 17076

Packet 15:
eth: 60, 0:10:2f:e:0:0 −−> 0:90:27:12:26:d2
ip: 42, 194.64.183.62 −−> 131.220.6.51
tcp: 22, 1021 −−> 22

Packet 16:
eth: 60, 0:a0:c9:8a:3:ea −−> ff:ff:ff:ff:ff:ff

Packet 17:
eth: 60, 0:10:2f:e:0:0 −−> 1:0:5e:0:0:2
ip: 42, 131.220.4.3 −−> 224.0.0.2

Packet 17:
eth: 60, 0:10:2f:e:0:0 −−> 1:0:5e:0:0:2
ip: 42, 131.220.4.3 −−> 224.0.0.2

Packet 18:
eth: 60, 0:60:83:9:cd:76 −−> 1:80:c2:0:0:0

Packet 19:
eth: 60, 0:a0:24:ea:39:4a −−> 0:90:27:2d:2:71

Packet 0:
eth: 60, 8:0:20:82:ce:e5 −−> ff:ff:ff:ff:ff:ff

Packet 1:
eth: 60, 0:60:83:9:cd:76 −−> 1:80:c2:0:0:0

Packet 2:
eth: 118, 0:90:27:12:3b:43 −−> 0:10:2f:e:0:0
ip: 100, 131.220.6.52 −−> 131.220.4.4
udp: 80, 967 −−> 664

Packet 3:
eth: 70, 8:0:20:12:cd:83 −−> 0:90:27:12:3b:43
ip: 52, 131.220.4.4 −−> 131.220.6.52
udp: 32, 664 −−> 967

Packet 4:
eth: 60, 0:a0:c9:a6:dc:18 −−> 1:0:5e:7f:73:7d
ip: 42, 131.220.5.203 −−> 239.255.115.125
udp: 22, 1031 −−> 17076

Packet 5:
eth: 60, 8:0:20:82:ce:e5 −−> ff:ff:ff:ff:ff:ff

Packet 6:
eth: 74, 0:10:2f:e:0:0 −−> 0:90:27:12:26:d2
ip: 56, 194.64.183.62 −−> 131.220.6.51
tcp: 36, 1021 −−> 22

Packet 7:
eth: 74, 0:90:27:12:26:d2 −−> 0:90:27:10:e7:68
ip: 56, 131.220.6.51 −−> 131.220.6.35
tcp: 36, 1022 −−> 22

Packet 8:
eth: 54, 0:90:27:12:26:d2 −−> 0:10:2f:e:0:0
ip: 36, 131.220.6.51 −−> 194.64.183.62
tcp: 16, 22 −−> 1021

Packet 9:
eth: 60, 0:90:27:10:e7:68 −−> 0:90:27:12:26:d2
ip: 42, 131.220.6.35 −−> 131.220.6.51
tcp: 22, 22 −−> 1022

Records with traffic information

...

...

...

Fig. 8. Communication clusters can be identified in the traffic matrix of a net-
work.

5.2 Visualizing Knowledge Bases

Automatic graph visualization is a key problem when supporting human under-
standing of complex data structures. To reduce the complexity of the visualiza-
tion problem, one strategy is to apply a Divide-and-Conquer approach [2,14].

The role of clustering in this connection is to tackle the divide task, i. e., to
break down a large graph into useful subgraphs. By a second step the resulting
clusters are arranged on a grid, and by a third step the nodes within each cluster
are positioned.

We have operationalized and applied this concept for the analysis and vi-
sualization of resource-based configuration knowledge bases. A resource-based
knowledge base textually describes the configuration objects by tuples compris-
ing an object’s supplied and demanded functions. From such a description a
global overview can be created that envisions the closely connected modules and
their functional interplay. Figure 9 shows a part of a visualized knowledge-base
for the resource-based configuration of telecommunication system. Details and
related information can be found in [12,17,19,15,2].

5.3 Clustering Metric Data

Data for clustering is often given as positions in a metric space, which can canon-
ically be transfered into a graph. Based on this graph, the structure measure Λ,
operationalized in the form of Majorclust, can be applied for clustering. Figure
10 shows a set of points and the identified clusters. Recall that Majorclust did
not need meta information about the number and the size of the clusters. Input
for Majorclust was the totally connected graph of points. However, instead
of connecting all pairs of vertices, connecting a vertex solely to its nth closest

132 Benno Stein and Oliver Niggemann

Digitale_Teilnehmer_S0 CUSTOMER_DEMAND
Digitale_Teilnehmer_S0 DEMANDS S0_Anschluß 1
Digitale_Teilnehmer_S0 MAX NIL
Digitale_Teilnehmer_UK0 CUSTOMER_DEMAND
Digitale_Teilnehmer_UK0 DEMANDS UK0_Anschluß 1
Digitale_Teilnehmer_UK0 MAX NIL
Digitale_Teilnehmer_UP0 CUSTOMER_DEMAND
Digitale_Teilnehmer_UP0 DEMANDS UP0_Anschluß 1
Digitale_Teilnehmer_UP0 MAX NIL
Doppelung_Steuerung CUSTOMER_DEMAND
Doppelung_Steuerung DEMANDS Möglichkeit_zur_DST 1
Doppelung_Steuerung MAX 1
Doppelung_Stromversorgung CUSTOMER_DEMAND
Doppelung_Stromversorgung DEMANDS Möglichkeit_zur_DSV 1
Doppelung_Stromversorgung DEMANDS Vorhandensein_von_Notstrom 1
Doppelung_Stromversorgung MAX 1
EOC MAX 2
Extern_Signalisierung DEMANDS STPL_ES 1
Extern_Signalisierung PRESUMES Kabel_2_24x2_für_ES_EES1
Extern_Signalisierung SUPPLIES AS_ES 1
Extern_Signalisierung MAX NIL
Externe_Signalisierung CUSTOMER_DEMAND
Externe_Signalisierung DEMANDS AS_ES 1
Externe_Signalisierung MAX NIL
Festverbindung_EM4 DEMANDS Steckplatz_für_Querverbindung 1
Festverbindung_EM4 SUPPLIES Anschlu_für_EM4 1
Festverbindung_EM4 MAX NIL
Festverbindung_Gruppe_1_analog DEMANDS Steckplatz 1
Festverbindung_Gruppe_1_analog PRESUMES Kabeladapter_1
Festverbindung_Gruppe_1_analog SUPPLIES Steckplatz_für_Querverbindung 8
Festverbindung_Gruppe_1_analog MAX NIL
Festverbindung_QMF DEMANDS Steckplatz_für_Querverbindung 1

Amtsanschluß_S0 DEMANDS Steckplatz 1
Amtsanschluß_S0 PRESUMES Kabeladapter_1
Amtsanschluß_S0 SUPPLIES S0_Amtsanschluß 8
Amtsanschluß_S0 MAX NIL
Amtsanschluß_S2M DEMANDS Steckplatz 1
Amtsanschluß_S2M PRESUMES Kabeladapter_1
Amtsanschluß_S2M SUPPLIES S2M_Amtsanschluß 1
Amtsanschluß_S2M MAX NIL
Amtsanschluß_S2MCoax DEMANDS Steckplatz 1
Amtsanschluß_S2MCoax PRESUMES Kabeladapter_4
Amtsanschluß_S2MCoax SUPPLIES S2M_Amtsanschluß_Coax 1
Amtsanschluß_S2MCoax MAX NIL
Amtsanschluß_analog_mit_DuWa DEMANDS Steckplatz 1
Amtsanschluß_analog_mit_DuWa PRESUMES Kabeladapter_1
Amtsanschluß_analog_mit_DuWa SUPPLIES DuWa_Anschluß 8
Amtsanschluß_analog_mit_DuWa MAX NIL
Amtsanschluß_analog_ohne_DuWa DEMANDS Steckplatz 1
Amtsanschluß_analog_ohne_DuWa PRESUMES Kabeladapter_1
Amtsanschluß_analog_ohne_DuWa SUPPLIES Amtsanschluß 8
Amtsanschluß_analog_ohne_DuWa SUPPLIES Steckplatz_für_SIGA 4
Amtsanschluß_analog_ohne_DuWa MAX NIL
Analoge_Querverbindung_QUW CUSTOMER_DEMAND
Analoge_Querverbindung_QUW DEMANDS Anschluß_für_QUW 1
Analoge_Querverbindung_QUW MAX NIL
Analoge_Querverbindung_EM4 CUSTOMER_DEMAND
Analoge_Querverbindung_EM4 DEMANDS Anschlu_für_EM4 1
Analoge_Querverbindung_EM4 MAX NIL
Analoge_Querverbindung_QMF CUSTOMER_DEMAND
Analoge_Querverbindung_QMF DEMANDS Anschluß_für_QMF 1
Analoge_Querverbindung_QMF MAX NIL
...
...

Configuration knowledge base

Fig. 9. Part of a configuration knowledge base with analyzed and visualized
structure.

neighbors improves the performance. Both the quality of the clusters found and
the runtime needed by Majorclust have been examined using our VisioDat
tool.

6 Summary

The paper presented a new approach to quantify the structure of graphs. Fol-
lowing this approach, a domain, a problem, or a system can syntactically be
analyzed regarding its structure—provided that a graph constitutes the ade-
quate modeling paradigm.

The proposed structure measure, the weighted partial connectivity Λ, relies
on subgraph connectivity, which is weighted with the subgraphs’ sizes. The sub-
graphs in turn are determined by that decomposition of a graph that maximizes
Λ. Hence, cluster number as well as cluster size of the structure are defined
implicitly by the optimization—a characteristic which makes this approach su-
perior to other clustering concepts. Λ-maximization resembles the human sense
when trying to identify a graph’s structure: Rather than searching for a given
number of clusters, the density distribution of a graph’s edges is analyzed.

Aside from the mathematical definition, the fast algorithm Majorclust op-
erationalizing Λ-maximization has been developed. Applications from the fields

Fig. 10. Clusters in a set of points in a metric space.

On the Nature of Structure and Its Identification 133

of monitoring, visualization, and configuration revealed both usability (the de-
tected structures are reasonable) and applicability (efficient runtime behavior).
Structure processing as proposed here thus provides a powerful knowledge pre-
processing concept.

References

1. T. Bailey and J. Cowles. Cluster definition by the optimization of simple measures.
IEEE Transactions on Pattern Analysis and Machine Intelligence, September 1983.
128

2. L. A. R. Eli, B. Messinger and R. R. Henry. A divide-and-conquer algorithm for
the automatic layout of large directed graphs. IEEE Transactions on Systems,
Man, and Cybernetics, January/February 1991. 131, 131

3. B. S. Everitt. Cluster analysis. Edward Arnold, a division of Hodder & Stoughton,
1992. 129, 129

4. K. Florek, J. Lukaszewiez, J. Perkal, H. Steinhaus and S. Zubrzchi. Sur la liason
et la division des points d’un ensemble fini. Colloqium Mathematicum, 1951. 128,
129

5. T. Hesse and B. Stein. Hybrid Diagnosis in the Fluidic Domain. Proc. EIS 98,
International ICSC Symposium on Engineering of Intelligent Systems, University
of La Laguna, Tenerife, Spain, Feb. 1998. 130

6. S. C. Johnson. Hierarchical clustering schemes. Psychometrika 32, 1967. 128, 129
7. D. Jungnickel. Graphen, Netzwerke und Algorithmen. BI Wissenschaftsverlag,

1990. 124
8. B. Kernighan and S. Lin. Partitioning graphs. Bell Laboratories Record, January

1970. 128
9. T. Kohonen. Self Organizing and Associate Memory. Springer-Verlag, 1990. 128

10. T. Lengauer. Combinatorical algorithms for integrated circuit layout. Applicable
Theory in Computer Science. Teubner-Wiley, 1990. 124, 127, 128

11. P. MacNaughton-Smith, W.T. Williams, M.B. Dale and L.G. Mockett. Dissimilar-
ity analysis. Nature 202, 1964. 128

12. O. Niggemann, B. Stein, and M. Suermann. On Resource-based Configuration—
Rendering Component-Property Graphs. In J. Sauer and B. Stein, editors, 12.
Workshop “Planen und Konfigurieren”, tr-ri-98-193, Paderborn, Apr. 1998. Uni-
versity of Paderborn, Department of Mathematics and Computer Science. 131

13. T. Roxborough and Arunabha. Graph Clustering using Multiway Ratio Cut. In
S. North, editor, Graph Drawing, Lecture Notes in Computer Science, Springer
Verlag, 1996. 128, 128

14. R. Sablowski and A. Frick. Automatic Graph Clustering. In S. North, editor,
Graph Drawing, Lecture Notes in Computer Science, Springer Verlag, 1996. 128,
131

15. G. Sander. Graph Layout through the VCG Tool. Technical Report A/03/94,
1994. 131

16. P. H. A. Sneath. The application of computers to taxonomy. J. Gen. Microbiol.
17, 1957. 128, 129

17. B. Stein. Functional Models in Configuration Systems. Dissertation, University of
Paderborn, Department of Mathematics and Computer Science, 1995. 131

18. B. Stein and E. Vier. Computer-aided Control Systems Design for Hydraulic
Drives. Proc. CACSD 97, Gent, Apr. 1997. 130

19. K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual Understandig of Hierar-
chical System Structures. IEEE Transactions on Systems, Man, and Cybernectics,
Vol. SMC-11, No. 2, 1981. 131

134 Benno Stein and Oliver Niggemann

20. Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, November 1993. 127

21. J.-T. Yan and P.-Y. Hsiao. A fuzzy clustering algorithm for graph bisection. In-
formation Processing Letters 52, 1994. 128

22. C. T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt
Clusters. IEEE Transactions on computers Vol. C-20, No. 1, 1971. 128

	What Is Structure?
	Quantifying a Graph's Structure
	Operationalizing Structure Identification
	Extension for Weighted Graphs

	Existing Clustering Approaches
	Clustering Based on the Minimum Cut
	Clustering Based on Nearest-Neighbor Strategies

	Application
	Monitoring Computer Networks
	Visualizing Knowledge Bases
	Clustering Metric Data

	Summary

