
Modeling Design Knowledge on Structure∗

Benno Stein André Schulz

Dept. of Computer Science / Knowledge-Based Systems
University of Paderborn, 33095 Paderborn, Germany

Email: {stein,aschulz}@upb.de

Engels, Oberweis, Zündorf (Eds.): Modellierung 2001
LNI P-1, ISBN 3-88579-330-X, pp. 38-48, ©Springer 2001.

Abstract This paper is on the modeling of design knowledge. It introduces the con-
cept of design graph grammars, which is an advancement of classical graph grammar
approaches. Design graph grammars, as proposed here, provide an efficient concept to
create and to manipulate structure models of technical systems. This is interesting from
two points of view.
Firstly, within many existing tools for design support structural dependencies are rep-
resented and processed in a proprietary way. Here, design graph grammars possess the
flexibility to model even very specific kinds of domain knowledge while still providing
a broadly understood semantics.
Secondly, structure models are close to the mental model level of human designers.
Design graph grammars concentrate on this level, excludinginvolved underlying be-
havioral aspects. This may entail the risk of an oversimplification, but gives design
graph grammars the potential to be used within the creative parts of the human design
process.

1 Introduction

Design deals with the creation of new artifacts. Beyond doubt, most design processes
require a lot of domain knowledge, a lot of experience, or creativity, and the support of a
design process by means of a computer is a long standing wish (BC83; BC89; Ton87).

In this paper we present a new idea to realize design support within engineering do-
mains. Central element is a formalism, calleddesign graph grammar, which provides
powerful means to specify design knowledge for structure models: By applying graph
transformation rules
• a design—say, its underlying structure model—can be analyzed,
• an incompletely and coarsely defined design can be completed and refined, and
• even the reformulation of a design specification with respect to another paradigm is

possible.

The paper is organized as follows. The remainder of this section introduces the stan-
dard design cycle and motivates the use of graph grammars to solve complex design tasks.
Section 2 develops the concept of design graph grammars; in particular, theoretical con-
nections to the most important graph grammar approaches arediscussed. Section 3 and
4 then sketch out an application each, in order to demonstrate both the usability and the
expressiveness of our ideas.

∗Supported by DFG grants PA 276/23-1 and KL 529/10-1

38



1.1 On Design

Gero, renowned for his research in the field of design, definesthe term design as follows
(Ger90, pg. 28).

“The metagoal of design is to transform requirements, generally termed
function, which embody the expectations of the purpose of the resulting
artifact, into design descriptions.”

The purpose of a design process is the transformation of a complex set of functionali-
ties,D, (the demands) into a design description,M , (a model of the new system):

D −→ M

“−→” stands for some transformation, the modelM specifies the system’s entire set of
components with their relations. The transformation must guarantee that the system being
described is able to generate the setD of demands. Due to the complexity and the diversity
of a design process no universal theory of design can be stated, i. e., in the very most cases
no direct mapping between the elementsd ∈ D and the objectso ∈ M does exist.

Working on a design problem means to balance two behavior sets, the intended or
expected behavior,Be, and the model behavior,BM . Be can directly be derived from a
designer’s understanding forD, whereasBM is the result of an analysis ofM that may
enclose complex model formulation and simulation tasks.

BE M

B

D
Synthesis

Analysis

(simulation)Evaluation

Canonical

interpretation


Figure 1:An illustration of Gero’s widely-accepted model of the human design process.

Figure 1 illustrates the design process: The expected behavior Be controls the synthesis
of the modelM , which in turn yields the model behaviorBM . Within the evaluation phase
the two behavior sets are compared to each other; the resulting information serves as input
for a new synthesis step.

1.2 The Design Process Reviewed

According to Stein (Ste95), the most creative part of a design process is the definition of
the system structure in the form of a structure model. The selection and parameterization,
say, the configuration of the components is still demanding but less difficult than structure
design. Figure 2 illustrates this view. Here,MS and MB designate the structure and
behavior models, repectively, and togetherMS andMB make up the modelM .

Structure models are very close to the mental model of the human designer (Wal95).
Typical examples are circuit diagrams, piping flow charts, bond diagrams, block diagrams,
or signal flow graphs (Cel91).

39



BE MS

MB

BM

D
Structure synthesis

Configuration

Analysis

(simulation)

Evaluation

Canonical

interpretation


Figure 2: Within the design of complex systems two stages can be distinguished (Ste95): The
creation of a structure model,MS , and the concretization ofMS in the form of a behavior model
MB . The shaded area indicates the places that are predestined for the use of graph grammars.

Actually, the diverse structure models just mentioned represent special forms of labeled
graphs.

Definition 1 (Labeled Graph) A labeled graph is a tupleG = 〈VG, EG, σG〉 whereVG is
the set of nodes,EG ⊆ VG × VG is the set of directed edges, andσG is the label function,
σG : VG ∪ EG → Σ, whereΣ is a set of symbols, called the label alphabet.

Notation:(v1, v2, l) represents a directed edge with tailv1, headv2 and labell.

With respect to the generation, the modification, and the analysis of labeled graphs
the use of graph grammars has been a proven tool (Roz97; EEKR99; EKMR99; SWZ95;
RS95; vSP98). The following section dwells upon this subject.

2 Design Tasks and Graph Grammars

The design of a system involves a variety of tasks that pertain to its structure and behav-
ior (cf. Ste95). The solution of these tasks requires that operations of varying complexity
are executed. Speaking of manipulation within models represented by labeled graphs, the
operations required can be classified as follows:

• Manipulation of Attributes.Change of specific node and edge attributes. The transfor-
mation shown below changes the type of a node from “mixer” to “mixer with built-in
heat transfer unit”.

• Context-free Manipulation.Insertion and deletion of single nodes and edges in a model.
Transformations of this type change the overall structure,as in the following figure, but
do not exploit context information.

?

Tlow Thigh Thigh

Thigh
Thigh

Tlow

40



The transformation depicted below replaces an ideal voltage source by a resistive volt-
age source.

e+ e+

• Context-sensitive Manipulation.Insertion and deletion of sets of nodes and edges, e. g.,
for model optimization. The following figure shows a context-sensitive transformation
in the domain of hydraulics.

The operations delineated above represent transformations on graphs as performed by
graph grammars and can be seen as graph transformation rulesof the formtarget graph→
replacement graph. However, existing graph grammar concepts, although fitting for many
tasks, fail to provide the necessary expressiveness to copewith design tasks in general.

2.1 Inadequacy of Classical Graph Grammars

The world of graph grammars is divided into two inherently different approaches: The
connecting approachand thegluing approach(see Roz97, pp. 3–4). The connecting ap-
proach is a node-centered concept that has given rise to numerous graph grammars usually
callednode replacementgraph grammars. The gluing approach, on the other hand, is a
hyperedge-centered approach on which various hypergraph grammars are based.

The most prominent representative of the connecting approach is theneighborhood
controlled embedding (NCE) graph grammarfamily1 (Eng89). NCE graph grammars per-
form graph transformations on labeled graphs; a graph transformation step is based on
node and edge labels, which are used both to increase the discerning power and as some
sort of simple context, and does not require any applicationconditions to hold. Each graph
transformation rule also has a set of instructions that dictate the embedding of the transfor-
mation, which is done by creating new edges for connection purposes.

Hyperedge replacement (HR) grammarsrepresent the most popular grammar family
following the gluing approach. HR grammars replace hyperedges, which are identified
through labels, by hypergraphs. Unlike NCE grammars, they lack embedding instructions,
which are not necessary here: The embedding is done by mapping the attachment nodes of
hyperedges to external nodes of the host hypergraph, which are “glued” together.

Apart from the above described grammars there also exist hybrid approaches that try to
combine the features of the connecting and the gluing approach. A widely known approach
is thehandle hypergraph (HH) grammar(CER93; Roz97), which rewrites handles, e. g.,
hyperedges together with their attachment nodes. The embedding is performed according
to the connecting approach. Other hybrid approaches work similarly (cf. KJ96; KH96).

1In the literature it is often distinguished between NCE, eNCE, dNCE and edNCE graph grammars. For the
sake of simplicity, we refrain from doing so here.

41



The above described graph grammars are able to handle many tasks, yet they still lack
within the following aspects:
• Missing Requirements. The design of technical systems often requires that operations

be only applied if a certain context is present. The concept of context as an applica-
tion condition2 is a requirement for design tasks but is only partially supported by the
grammars listed above, which allow only a trivial context based on incident edges.

• Convenience. The classical grammars lack some needed features like deletion rules,
gap bridging, compact rule formulation etc. These capabilities are also necessary for
the solution of design tasks and can only be simulated with classical grammars by means
of complex and clumsy rules.

2.2 Design Graph Grammars

Due to the mentioned reasons (and other requirements discussed in (SS00)), the devel-
opment of a more fitting mechanism—the design graph grammar—becomes a worthwhile
undertaking. Since design tasks are usually device-oriented from a human point of view,
the design graph grammar should be node-centered. Furthermore, it should provide at least
the same descriptive power as the classical NCE grammars andsome features of HR gram-
mars, such as the handling of context. Additionally, designgraph grammars should come
along with further functionality, e. g., to allow for deletion operations. Figure 3 shows the
relation of design graph grammars to the classical grammarswith respect to the underlying
concepts.

NCE

HR

DGG

+ Context by context graph

+ Empty replacement graph

+ Links between cut nodes + Context by embedding rules


+ Connection by embedding

· Target graph

· Replacement graph

· Graph with labels

· Cut nodes

+ Context by target graph

+ Connection by gluing

+ Graph with hyperedges

Figure 3: Relation of design graph grammars to classical grammars with respect to underlying
concepts.

The following definition introduces our concept ofdesign graph grammarsformally. A
detailed presentation of design graph grammars and relatedterms can be found in (SS00).

2There is some confusion about the term “context-sensitive”in the literature. E. g., graph replacement gram-
mars, the natural extension to node replacement grammars, are often said to be context-sensitive, although there
is no context given as an application condition.

42



Definition 2 (Design Graph Grammar) A context-sensitive design graph grammar is a tu-
pleG = 〈Σ, P, s〉 where
• Σ is the label alphabet used for nodes and edges3,
• P is the finite set of graph transformation rules and
• s is the initial symbol.

The graph transformation rules of the setP have the form〈T, C〉 → 〈R, I〉, where
• T = 〈VT , ET , σT 〉 is the target graph to be replaced,
• C is a supergraph ofT called the context,
• R = 〈VR, ER, σR〉 is the possibly empty replacement graph, and
• I is the set of embedding instructions for the replacement graphR.

The semantics of a rule〈T, C〉 → 〈R, I〉 is as follows: Firstly, a matching of the context
C is searched within the host graph. Secondly, an occurrence of T within the matching
of C along with all incident edges is deleted. Thirdly, an isomorphic copy ofR is
connected to the host graph according to the semantics of theembedding instructions.

The setI of embedding instructions consists of tuples((h, t, e), (h, r, f)), where
–– h ∈ Σ is a node label ande ∈ Σ is an edge label in the host graph incident toT ,
–– t ∈ Σ is a label of a node inT , for which the current embedding is being specified,
–– f ∈ Σ is another edge label,
–– andr ∈ VR ∪ VC is a node, whereVC is the set of nodes adjacent to the target graph.

An embedding instruction((h, t, e), (h, r, f)) is interpreted as follows: If there is an edge with
labele connecting a node labeledh with the target nodet, then the embedding process will create
a new edge with labelf connecting the node labeledh with noder.

A context-free graph transformation rule may be written asT → 〈R, I〉.

Remarks.Design graph grammars are direction preserving grammars. Obviously, they are
closely related to NCE grammars of the connecting approach and possess similar theoret-
ical properties (cf. SS00). Figure 4 shows the relation between design graph grammars,
NCE and HR grammars in terms of their descriptive power.

DGG

Design graph


grammar
HR


Hyperedge replacement

graph grammar, (bipartite)

NCE

Neighborhood-controlled


embeddding


Figure 4:Descriptive power of the different graph grammar concepts.

3Labels are used to specify types and as variables for other labels. To avoid confusion, variable labels will be
denoted by capital letters, and all other labels with small letters.

43



2.3 Relationship to Programmed Graph Replacement Systems

Design graph grammars as proposed here shall enable domain experts to formulate
design expertise for various design tasks. Design graph grammars result from the combi-
nation of different features of the classical graph grammarapproaches, while special effort
has been spent to keep the underlying formalism as simple as possible.

When comparing design graph grammars to programmed graph replacement systems
(PGRS) one should keep in mind that the former is located at the conceptual level while
the latter emphasizes the tool character. PGRS are centeredaround a complex language
allowing for different programming approaches. PROGRES, for instance, offers declarative
and procedural elements (Sch89) for data flow oriented, object oriented, rule based and
imperative programming styles. A direct comparison between PROGRES to the concept of
design graph grammars is of restricted use only and must stayat the level of abstract graph
transformation mechanisms.

However, it is useful to relate the concepts of design graph grammars to PGRS under
the viewpoint of operationalization. PGRS are a means—say:one possibility—to realize a
design graph grammar by reproducing its concepts. In this connection PROGRES fulfills
the requirements of design graph grammars for the most part.However, PROGRES lacks
the design graph grammar facilities for the formulation of context, deletion operations,
and gap bridging, which have to be simulated by means of complex rules. Such a kind of
emulation may be useful as a prototypic implementation, butbasically, it misses a major
concern of design graph grammars: Their intended compactness, simplicity, and adaptivity
with respect to a concrete domain or task.

The following sections present two applications where design graph grammars have
been employed.

3 Application I. Conceptual Design in Chemical Engineering

In the domain of chemical engineering the design of a system may encompass various
tasks, of which many can be solved by means of structural manipulation. Synthesis of a
new design structure may be viewed as the derivation of a “word” of a graph language by
a design graph grammar that encodes engineering knowledge (SSK00; SS00). Similarly,
structural analysis of a given design may be performed by thesame design graph gram-
mar working reversely—this corresponds to solving the membership problem for graph
languages (see SS00).

Another design task that can be tackled by structural manipulation is the modification
of a given design, which is also a synthesis step. Modifications are necessary to repair or
optimize structures of design solutions. The following simplified rules perform optimiza-
tions on designs and belong to the rule base of a project that concentrates on modeling and
optimization in the food processing industry.

(R1) Relocation and splitting of a processing chain to achieve better processing properties
(reduction of processing time).

T = 〈VT , ET , σT 〉 = 〈{m, n, o}, {(m, n), (n, o)}, {(m, C), (n, B), (o, A)}〉

R = 〈VR, ER, σR〉 = 〈{t, u, v, w, x}, {(t, u), (u, x), (v, w), (w, x)},

{(t, A), (u, B), (v, A), (w, B), (x, C)}〉

I = {((H, C, L), (H, t, L)), ((H, C, L), (H, v, L)), ((H, A, L), (H, C, L))}

44



For illustrative reasons we now use the graphical representation of the above rule and
omit the formal version.

CC B A
A B

A B

(R2) Merging and relocation of processing chains to reduce plantcosts (reduction of num-
ber of devices).

C C B A
A B

A B

(R3) Replacement of a mixer and a heating chain by a mixer with built-in heat transfer
unit (reduction of costs).

warm
cold

cold

cold

cold

warm

(R4) Replacement of a mixer and a heating chain by a static mixer with built-in heat
transfer unit (reduction of energy consumption, improvement of hygienic properties).

warm
cold

cold

cold
warm

cold

Figure 5 shows how these rules are applied to a design. The first graph in the derivation
corresponds to the original state of the design.

R1

R4

Figure 5:Application of two graph transformation rules to a chemicalplant design.

Remarks.These rules have been simplified for presentation purposes here; they represent
an excerpt of our rule base that is necessary to build realistic plant designs for the food
processing industry. In fact, the final rule base will have between 60 and 80 rules, of
which about two thirds will be task-specific. The quality of automatically generated designs
can be expected to be acceptable for a human expert if the plant size does not exceed
considerably the number of 20 nodes.

4 Application II. Synthesis of Wave Digital Structures

Wave digital structures, abbreviated: WDS, form a particular class of signal flow graphs
where the signals are linear combinations of the electric current and flow. WDS establish a

45



concept to reformulate electrical circuits from the electricalu/i-domain into thea/b-wave-
domain. This reformulation is bound up with several advantages, which are not discussed
in this place but can be found in (Fet86).

When migrating from an electrical circuit towards a WDS, theunderlying model is
completely changed: The structure model of the electrical circuit, Mu/i

S , is interpreted as a
series-parallel graph with closely connected components and transformed into an adaptor
structure,Ma/b

S .

Figure 6 shows the reformulation of a series-parallel structure tree of an electrical cir-
cuit into a corresponding adaptor structure. The nodes labeled by “s” and “p” indicate
series and parallel connections in the circuit.

p

s

s

p1 2

3 4 5

6 7

8 9

1

2

8

9

3

4

5

6

7

p


s
 Series connection


Parallel connection


Series adaptor


Parallel adaptor


Figure 6:Overview of the mappingMu/i
S −→ M

a/b
S .

The mappingMu/i
S −→ M

a/b
S establishes a paradigm shift. Other examples of such

paradigm shifts are the migration from relational to object-oriented databases, or the migra-
tion from numeric processing to symbolic processing. In terms of models, such a translation
is calledmodel reformulation.

The following design graph grammar4 performs the model reformulation depicted in
Figure 6 for arbitrary structure modelsM

u/i
S .

G = 〈Σ, P, z〉with Σ = {z, p, s, i, X, Y }∪N, z is the initial symbol (can be neglected),
andP is the set of graph transformation rules, which are presented in the following.

(1) Splitting rule for nodes with more than three edges.

T = 〈VT , ET , σT 〉 = 〈{a}, ∅, {(a, X)}〉

R = 〈VR, ER, σR〉 = 〈{b, c}, {(b, c)}, {(b, X), (c, X), ({b, c}, i)}〉

I = {((H, X, A), (H, b, A)), ((H, X, B), (H, b, B)), ((H, X, C), (H, c, C)),

((H, X, D), (H, c, D))}

For illustrative reasons we resort to
the graphical representation5 from
now on and refrain from using the
formal version if appropriate.

X X
i

X

A
B

C
D

C
D

A

B

4Since the involved transformation is a translation rather than generation, it would be better to speak of graph
transformation systems instead of graph grammars.

46



(2) Marking rule for edges. X Y X Y
i

The above rules are sufficient to perform the structural transformation required. The
following rules belonging to an additional design graph grammar are necessary to change
the appearance of the final structure into an adaptor structure as depicted in Figure 6.

(1) Display of a parallel node. P

(2) Display of a serial node. S

(3) Display of a port node. XZ Z X

(4) Display of node connector. X X
i

5 Summary

The modeling of human design knowledge is a key problem when developing programs
that shall automate a given design task all or in part. Designgraph grammars, as proposed in
this paper, are a novel approach to encode design knowledge in complex engineering tasks:
They have been created as an instrument to formulate very different kinds of structure
knowledge while still providing a well-defined semantics.

In our working group there is a long tradition in solving design and configuration tasks
in engineering domains. The design graph grammar approach introduced here is a result of
the analysis of several projects involving structure modelmanipulation. Two projects, from
the domains of chemical and electrical engineering, have been delineated to exemplify the
use of design graph grammars.

The development of design graph grammars has just begun, andthis concept has yet
to be validated through heavy-weight applications from technical domains. Regardless
of the actual status, we are confident that design graph grammars will establish a useful
contribution for modeling and knowledge representation inthe field of engineering design.

References
[BC83] D. C. Brown and B. Chandrasekaran. An Approach to Expert Systems for Mechanical

Design. InTrends and Applications ’83. IEEE Computer Society, NBS, Gaithersburg,
MD, 1983.

[BC89] David C. Brown and B. Chandrasekaran.Design Problem Solving. Morgan Kaufmann
Publishers, 1989.

[Cel91] François E. Cellier.Continuous System Simulation. Springer, Berlin Heidelberg New
York, 1991.

[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting Hypergraph
Grammars.Journal of Computer and System Sciences, 46:218–270, 1993.

[EEKR99] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transformation, volume 2
Applications, Languages and Tools. World Scientific, 1999.

47



[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transformation, volume 3
Concurrency, Parallelism and Distribution. World Scientific, 1999.

[Eng89] J. Engelfriet. Context-free NCE Graph Grammars. InJ. Csirik, J. Demetrovics, and
F. Gécseg, editors,Proc. Fundamentals of Computation Theory, volume 380 ofLecture
Notes in Computer Science, pages 148–161. Springer-Verlag, 1989.

[Fet86] Alfred Fettweis. Wave Digital Filters: Theory and Practice.Proceedings of the IEEE,
74(2):270–327, February 1986.

[Ger90] John S. Gero. Design Prototypes: A Knowledge Representation Scheme for Design.AI
Magazine, 11:26–36, 1990.

[KH96] Renate Klempien-Hinrichs. Node Replacement in Hypergraphs: Simulation of
Hyperedge Replacement and Decidability of Confluence. In J.Cuny, H. Ehrig,
G. Engels, and G. Rozenberg, editors,Graph Grammars and Their Application to
Computer Science, number 1073 in Lecture Notes in Computer Science, pages
397–411, Berlin, 1996. Springer-Verlag.

[KJ96] Changwook Kim and Tae Eui Jeong. HRNCE Grammars – A Hypergraph Generating
System with an eNCE Way of Rewriting. In J. Cuny, H. Ehrig, G. Engels, and
G. Rozenberg, editors,Graph Grammars and Their Application to Computer Science,
number 1073 in Lecture Notes in Computer Science, pages 383–396, Berlin, 1996.
Springer-Verlag.

[Roz97] Grzegorz Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1 Foundations. World Scientific, 1997.

[RS95] J. Rekers and A. Schürr. A Graph Grammar Approach to Graphical Parsing. Technical
Report 95-15, Department of Computer Science, Leiden University, 1995.

[Sch89] Andy Schürr. Introduction to PROGRESS, an Attribute Graph Grammar Based
Specification Language. In M. Nagl, editor,Proc. 15th Intl. Workshop on
Graph-Theoretic Concepts in Computer Science, volume 411 ofLNCS, pages 151–165.
Springer-Verlag, 1989.

[SS00] André Schulz and Benno Stein. On Automated Design of Technical Systems.
Technical Report tr-ri-00-218, University of Paderborn, 2000.

[SSK00] André Schulz, Benno Stein, and Annett Kurzok. On Automated Design in Chemical
Engineering. In R. J. Howlett and L. C. Jain, editors,Proc. 4th Intl. Conference on
Knowledge-based Intelligent Engineering Systems & AlliedTechnologies, pages
261–266. IEEE, september 2000.

[Ste95] Benno Stein.Functional Models in Configuration Systems. PhD thesis, University of
Paderborn, 1995.

[SWZ95] A. Schürr, A. Winter, and A. Zündorf. Visual Programming with Graph Rewriting
Systems. InProc. 11th Intl. IEEE Symposium on Visual Languages. IEEE Computer
Society Press, 1995.

[Ton87] Christopher Tong. Towards an Engineering Science of Knowledge-based Design.
Artificial Intelligence in Engineering, 2(3):133–166, 1987.

[vSP98] Marko van Eekelen, Sjaak Smetsers, and Rinus Plasmeijer. Graph Rewriting Systems
for Functional Programming Languages. Technical report, Computing Science
Institute, University of Nijmegen, 1998.

[Wal95] J. Wallaschek. Modellierung und Simulation als Beitrag zur Verkürzung der
Entwicklungszeiten mechatronischer Produkte.VDI Berichte, Nr. 1215, pages 35–50,
1995.

48


	1 Introduction
	1.1 On Design
	1.2 The Design Process Reviewed

	2 Design Tasks and Graph Grammars
	2.1 Inadequacy of Classical Graph Grammars
	2.2 Design Graph Grammars
	2.3 Relationship to Programmed Graph Replacement Systems

	3 Application I. Conceptual Design in Chemical Engineering
	4 Application II. Synthesis of Wave Digital Structures
	5 Summary

