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Abstract This paper is on the modeling of design knowledge. It intoaduthe con-
cept of design graph grammars, which is an advancement sick graph grammar
approaches. Design graph grammars, as proposed hered@eovefficient concept to
create and to manipulate structure models of technicaésystThis is interesting from
two points of view.

Firstly, within many existing tools for design support stiural dependencies are rep-
resented and processed in a proprietary way. Here, desigih grammars possess the
flexibility to model even very specific kinds of domain knoddge while still providing

a broadly understood semantics.

Secondly, structure models are close to the mental model tfvhuman designers.
Design graph grammars concentrate on this level, excluidivgved underlying be-
havioral aspects. This may entail the risk of an oversingaitfon, but gives design
graph grammars the potential to be used within the creativis jpf the human design
process.

1 Introduction

Design deals with the creation of new artifacts. Beyond domlost design processes
require a lot of domain knowledge, a lot of experience, oativity, and the support of a
design process by means of a computer is a long standing B€83%;|BC89| Tong7).

In this paper we present a new idea to realize design suppthinvengineering do-
mains. Central element is a formalism, calléelsign graph grammarwhich provides
powerful means to specify design knowledge for structurel@s By applying graph
transformation rules
* adesign—say, its underlying structure model—can be aedly
« anincompletely and coarsely defined design can be conaéete refined, and

» even the reformulation of a design specification with respe another paradigm is
possible.

The paper is organized as follows. The remainder of this@eattroduces the stan-
dard design cycle and motivates the use of graph grammaobs® complex design tasks.
Section® develops the concept of design graph grammarsrticplar, theoretical con-
nections to the most important graph grammar approachediszessed. Sectidd 3 and
@ then sketch out an application each, in order to demoesi@th the usability and the
expressiveness of our ideas.

*Supported by DFG grants PA 276/23-1 and KL 529/10-1
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1.1 On Design

Gero, renowned for his research in the field of design, defiveeterm design as follows
(Ger90, pg. 28).

“The metagoal of design is to transform requirements, galhetermed
function, which embody the expectations of the purposesaktbulting
artifact, into design descriptions.”

The purpose of a design process is the transformation of plexrset of functionali-
ties, D, (the demands) into a design descriptiéh, (a model of the new system):

D—M

“—" stands for some transformation, the modél specifies the system’s entire set of
components with their relations. The transformation musirgntee that the system being
described is able to generate the Bedf demands. Due to the complexity and the diversity
of a design process no universal theory of design can bealstate, in the very most cases
no direct mapping between the elemedits D and the objects € M does exist.

Working on a design problem means to balance two behavisr #e intended or
expected behaviof3., and the model behaviof3y;. B. can directly be derived from a
designer’s understanding f@?, whereasB,, is the result of an analysis df/ that may
enclose complex model formulation and simulation tasks.

Synthesis
D----- > B > M
Analysis
S simulation
0 ( )
»
/0/7
---- Canonical
interpretation B

Figure 1:An illustration of Gero's widely-accepted model of the humtiesign process.

Figure[d illustrates the design process: The expected lmhay controls the synthesis
of the modelM, which in turn yields the model behavid,;. Within the evaluation phase
the two behavior sets are compared to each other; the regirformation serves as input
for a new synthesis step.

1.2 The Design Process Reviewed

According to Steinl(Ste95), the most creative part of a degigcess is the definition of
the system structure in the form of a structure model. Thectieh and parameterization,
say, the configuration of the components is still demandiriddss difficult than structure
design. Figurd]2 illustrates this view. Her&{s and Mg designate the structure and
behavior models, repectively, and togethiés and Mz make up the model/.

Structure models are very close to the mental model of theanusesigner_ (Wal95).
Typical examples are circuit diagrams, piping flow charts)dbdiagrams, block diagrams,
or signal flow graphg (Cel91).
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Figure 2: Within the design of complex systems two stages can be disished |(Ste95): The
creation of a structure model/s, and the concretization d¥/s in the form of a behavior model
Mg. The shaded area indicates the places that are predestinibe fuse of graph grammars.

Actually, the diverse structure models just mentionedasent special forms of labeled
graphs.

Definition 1 (Labeled Graph) A labeled graph is a tuplé = (Vi, Eq,oc) whereVyg is
the set of nodedy C Vi x Vg is the set of directed edges, and is the label function,
oc : Vo UEg — X, whereX is a set of symbols, called the label alphabet.

Notation:(v1,v2,1) represents a directed edge with tgil headvs and label.

With respect to the generation, the modification, and thdyaisaof labeled graphs
the use of graph grammars has been a provenitool (Rbz97; E®HRAMR99;ISWZ95;
RS95] vSP98). The following section dwells upon this subjec

2 Design Tasks and Graph Grammars

The design of a system involves a variety of tasks that pettets structure and behav-
ior (cf.ISte9b). The solution of these tasks requires thatatons of varying complexity
are executed. Speaking of manipulation within models sgreed by labeled graphs, the
operations required can be classified as follows:

* Manipulation of AttributesChange of specific node and edge attributes. The transfor-
mation shown below changes the type of a node from “mixer’nbixér with built-in

heat transfer unit”.
& = [

« Context-free Manipulatiorinsertion and deletion of single nodes and edges in a model.
Transformations of this type change the overall structasen the following figure, but
do not exploit context information.

Tow Tow
Thigh E @ Thigh
— &

T
Thigh high
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The transformation depicted below replaces an ideal velsagirce by a resistive volt-

age source.
Y Y
—_

» Context-sensitive Manipulatiomsertion and deletion of sets of nodes and edges, e. g.,
for model optimization. The following figure shows a contegnsitive transformation
in the domain of hydraulics.
==

N2

X

The operations delineated above represent transfornsatioigraphs as performed by
graph grammars and can be seen as graph transformationfttesformtarget graph—
replacement graphHowever, existing graph grammar concepts, althoughditiom many
tasks, fail to provide the necessary expressiveness towitpeesign tasks in general.

—

2.1 Inadequacy of Classical Graph Grammars

The world of graph grammars is divided into two inherentlffedent approaches: The
connecting approachnd thegluing approach(see Roz97, pp. 3—-4). The connecting ap-
proach is a node-centered concept that has given rise torousmgraph grammars usually
called node replacemergraph grammars. The gluing approach, on the other hand, is a
hyperedge-centered approach on which various hypergraphmgars are based.

The most prominent representative of the connecting appreatheneighborhood
controlled embedding (NCE) graph gramnfamilyfl (Eng89). NCE graph grammars per-
form graph transformations on labeled graphs; a graph foemation step is based on
node and edge labels, which are used both to increase thermisg power and as some
sort of simple context, and does not require any applicatorditions to hold. Each graph
transformation rule also has a set of instructions thaatidhe embedding of the transfor-
mation, which is done by creating new edges for connectiopgses.

Hyperedge replacement (HR) grammaepresent the most popular grammar family
following the gluing approach. HR grammars replace hypgesdwhich are identified
through labels, by hypergraphs. Unlike NCE grammars, thely Embedding instructions,
which are not necessary here: The embedding is done by naft@Erattachment nodes of
hyperedges to external nodes of the host hypergraph, whiclyled” together.

Apart from the above described grammars there also existdhgpproaches that try to
combine the features of the connecting and the gluing aphrdawidely known approach
is thehandle hypergraph (HH) grammdCER93;| Roz97), which rewrites handles, e. g.,
hyperedges together with their attachment nodes. The atfiieis performed according
to the connecting approach. Other hybrid approaches wonkesly (cf.|KJ96; KH9I6).

1In the literature it is often distinguished between NCE, @&\@NCE and edNCE graph grammars. For the
sake of simplicity, we refrain from doing so here.
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The above described graph grammars are able to handle nsksy yet they still lack
within the following aspects:

* Missing RequirementsThe design of technical systems often requires that opesat
be only applied if a certain context is present. The concépbatext as an applica-
tion conditioffl is a requirement for design tasks but is only partially sutgzbby the
grammars listed above, which allow only a trivial contex¢d&é on incident edges.

» Convenience The classical grammars lack some needed features likéiafelales,
gap bridging, compact rule formulation etc. These capasliare also necessary for
the solution of design tasks and can only be simulated watbsital grammars by means
of complex and clumsy rules.

2.2 Design Graph Grammars

Due to the mentioned reasons (and other requirements detirs(SS@0)), the devel-
opment of a more fitting mechanism—the design graph gramrbacemes a worthwhile
undertaking. Since design tasks are usually device-@ikinbm a human point of view,
the design graph grammar should be node-centered. Furdherinshould provide at least
the same descriptive power as the classical NCE grammarsoanel features of HR gram-
mars, such as the handling of context. Additionally, degjgaph grammars should come
along with further functionality, e. g., to allow for deleti operations. Figuifd 3 shows the
relation of design graph grammars to the classical grammistigespect to the underlying
concepts.

+ Context by target graph
+ Connection by gluing
+ Graph with hyperedges

* Target graph
* Replacement graph
* Graph with labels
* Cut nodes

+ Context by embedding rules
+ Connection by embedding

Figure 3: Relation of design graph grammars to classical grammais repect to underlying
concepts.

The following definition introduces our conceptadsign graph grammarfermally. A
detailed presentation of design graph grammars and rekted can be found i 00).

2There is some confusion about the term “context-sensiiivehe literature. E. g., graph replacement gram-
mars, the natural extension to node replacement gramnrarsftan said to be context-sensitive, although there
is no context given as an application condition.
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Definition 2 (Design Graph Grammar) A context-sensitive design grapimgrar is a tu-
pleG = (X, P, s) where

Y is the label alphabet used for nodes and dliges

e P is the finite set of graph transformation rules and

e s s the initial symbol.

The graph transformation rules of the sehave the form(T, C) — (R, I), where
e« T =(Vp,Ep,or) is the target graph to be replaced,

e (is asupergraph df called the context,

* R = (Vg, Eg,or) is the possibly empty replacement graph, and

« [ is the set of embedding instructions for the replacemeittgia

The semantics ofa ruld’, C') — (R, I) is as follows: Firstly, a matching of the context
C' is searched within the host graph. Secondly, an occurrefiifensthin the matching
of C along with all incident edges is deleted. Thirdly, an isoptoc copy ofR is
connected to the host graph according to the semantics eftibedding instructions.

The setl of embedding instructions consists of tup{és, t,e), (h,r, f)), where

— h € X isanode label and € ¥ is an edge label in the host graph incidentto

— t € X isalabel of a node iff, for which the current embedding is being specified,

— f € X is another edge label,

— andr € Vg U Ve is a node, wher® is the set of nodes adjacent to the target graph.

An embedding instructiofi(h, t, e), (h,r, f)) is interpreted as follows: If there is an edge with
labele connecting a node labelédwith the target node, then the embedding process will create
a new edge with labdl connecting the node labelédwith noder.

A context-free graph transformation rule may be writtelas> (R, I).

RemarksDesign graph grammars are direction preserving grammdngoQsly, they are
closely related to NCE grammars of the connecting approadtpassess similar theoret-
ical properties (cf._SS00). Figufd 4 shows the relation betwdesign graph grammars,
NCE and HR grammars in terms of their descriptive power.

NCE
Neighborhood-controlled
embeddding

DGG
Design graph
grammar

HR
Hyperedge replacement
graph grammar, (bipartite)

Figure 4:Descriptive power of the different graph grammar concepts.

SLabels are used to specify types and as variables for othelslaTo avoid confusion, variable labels will be
denoted by capital letters, and all other labels with snedtiéfs.
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2.3 Relationship to Programmed Graph Replacement Systems

Design graph grammars as proposed here shall enable dompenteto formulate
design expertise for various design tasks. Design graphmeas result from the combi-
nation of different features of the classical graph gramapgroaches, while special effort
has been spent to keep the underlying formalism as simplesssiye.

When comparing design graph grammars to programmed grapdcesnent systems
(PGRS) one should keep in mind that the former is locatedeattimceptual level while
the latter emphasizes the tool character. PGRS are cerdevadd a complex language
allowing for different programming approaches. PROGREBEstance, offers declarative
and procedural elements_(Sch89) for data flow oriented,colojgented, rule based and
imperative programming styles. A direct comparison betWRROGRES to the concept of
design graph grammars is of restricted use only and muststag level of abstract graph
transformation mechanisms.

However, it is useful to relate the concepts of design grapmgars to PGRS under
the viewpoint of operationalization. PGRS are a means—aag possibility—to realize a
design graph grammar by reproducing its concepts. In tmsiection PROGRES fulfills
the requirements of design graph grammars for the most Haktiever, PROGRES lacks
the design graph grammar facilities for the formulation ohtext, deletion operations,
and gap bridging, which have to be simulated by means of cewxmples. Such a kind of
emulation may be useful as a prototypic implementation bagically, it misses a major
concern of design graph grammars: Their intended compsstaenplicity, and adaptivity
with respect to a concrete domain or task.

The following sections present two applications where gtegiraph grammars have
been employed.

3 Application I. Conceptual Design in Chemical Engineering

In the domain of chemical engineering the design of a systayencompass various
tasks, of which many can be solved by means of structural pogation. Synthesis of a
new design structure may be viewed as the derivation of adimaira graph language by
a design graph grammar that encodes engineering knowlSg#€00;. SSC0). Similarly,
structural analysis of a given design may be performed bys#ime design graph gram-
mar working reversely—this corresponds to solving the mensitip problem for graph
languages (see SS$00).

Another design task that can be tackled by structural méatipn is the modification
of a given design, which is also a synthesis step. Modifioatare necessary to repair or
optimize structures of design solutions. The following giified rules perform optimiza-
tions on designs and belong to the rule base of a project timaentrates on modeling and
optimization in the food processing industry.

(R;) Relocation and splitting of a processing chain to achievebprocessing properties
(reduction of processing time).

T = (Vr,Er,or)=({m,n,o},{(m,n),(n, o)} {(m,C),(n,B),(0,A)})

R = (Vg,Egr,or) = {t,u,v,w,z},{(t,u), (u,z), (v,w), (w,z)},
{(t, A), (v, B), (v, A), (w, B), (z, C)})

I = {((#,C L), (H,tL)),((HCL)(HwL)),(HAL),HCL)}
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For illustrative reasons we now use the graphical repratientof the above rule and
omit the formal version.

oAl —~

(R2) Merging and relocation of processing chains to reduce glasts (reduction of num-

ber of devices).
8]
-
8]

(R3) Replacement of a mixer and a heating chain by a mixer witht-buiheat transfer
unit (reduction of costs).

cold cold

warm warm
o~ (® e

cold cold

(R4) Replacement of a mixer and a heating chain by a static mix#r built-in heat
transfer unit (reduction of energy consumption, improveteéhygienic properties).

cold cold
warm warm
o) —
cold cold

Figure[® shows how these rules are applied to a design. Thgrfish in the derivation
corresponds to the original state of the design.

o= 0a-

Figure 5:Application of two graph transformation rules to a chemjglaht design.

Remarks.These rules have been simplified for presentation purpases they represent

an excerpt of our rule base that is necessary to build rigafifnt designs for the food

processing industry. In fact, the final rule base will havésMeen 60 and 80 rules, of
which about two thirds will be task-specific. The quality of@matically generated designs
can be expected to be acceptable for a human expert if thé gile does not exceed
considerably the number of 20 nodes.

4 Application Il. Synthesis of Wave Digital Structures

Wave digital structures, abbreviated: WDS, form a paréicalass of signal flow graphs
where the signals are linear combinations of the electniecit and flow. WDS establish a

45



concept to reformulate electrical circuits from the elieetiru /i-domain into the:/b-wave-
domain. This reformulation is bound up with several advgesawhich are not discussed
in this place but can be found in (Fet86).

When migrating from an electrical circuit towards a WDS, threlerlying model is

completely changed: The structure model of the electricalit, M;f/i, is interpreted as a
series-parallel graph with closely connected componemddr@nsformed into an adaptor

structure M &/",

Figurel® shows the reformulation of a series-parallel stmgctree of an electrical cir-
cuit into a corresponding adaptor structure. The nodedddbsy “s” and “p” indicate
series and parallel connections in the circuit.

@ Series connection

@ Parallel connection

II' Series adaptor
IE Parallel adaptor

Figure 6:0verview of the mapping/&/* — M2/".

The mappingMg/i — Mg/b establishes a paradigm shift. Other examples of such
paradigm shifts are the migration from relational to objegéented databases, or the migra-
tion from numeric processing to symbolic processing. Imteof models, such a translation
is calledmodel reformulation

The following design graph gramnflaperforms the model reformulation depicted in

Figurel® for arbitrary structure moder;/i.

G={(3,Pz)ywithE ={z,p,s,i, X, Y}UN, z is the initial symbol (can be neglected),
andP is the set of graph transformation rules, which are preséntthe following.

(1) Splitting rule for nodes with more than three edges.

T = (Vr,Er,or)=({a},0,{(a, X)})

R = (Vr,Er,or) = ({b;c},{(b,0)},{(b, X), (¢, X), ({b, c},7)})

I = {((H,X,A),(H,b,A)),((H,X,B),(H,b,B)),((H,X,C),(H,¢c,C)),
((H,X,D),(H,¢,D))}

For illustrative reasons we resort to

the graphical representatfbfrom B

now on and refrain from using the
formal version if appropriate.

4Since the involved transformation is a translation rathantgeneration, it would be better to speak of graph
transformation systems instead of graph grammars.
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(2) Marking rule for edges. —

The above rules are sufficient to perform the structuralsfiaimation required. The
following rules belonging to an additional design graphngmaar are necessary to change
the appearance of the final structure into an adaptor steiaidepicted in Figufé 6.

(1) Display of a parallel node. E — E

(2) Display of a serial node. —

(3) Display of a port node. — z
(4) Display of node connector. —

5 Summary

The modeling of human design knowledge is a key problem wiegaldping programs
that shall automate a given design task all or in part. Degigph grammars, as proposed in
this paper, are a novel approach to encode design knowladgariplex engineering tasks:
They have been created as an instrument to formulate vefgretit kinds of structure
knowledge while still providing a well-defined semantics.

In our working group there is a long tradition in solving dgsand configuration tasks
in engineering domains. The design graph grammar appra&cidiced here is a result of
the analysis of several projects involving structure madahipulation. Two projects, from
the domains of chemical and electrical engineering, haea delineated to exemplify the
use of design graph grammars.

The development of design graph grammars has just begurthendoncept has yet
to be validated through heavy-weight applications fromhtécal domains. Regardless
of the actual status, we are confident that design graph geaswill establish a useful
contribution for modeling and knowledge representatich&field of engineering design.
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