Design Problem Solving by Functional Abstraction

Benno Stein

Paderborn University
Dept. of Computer Science
D-33095 Paderborn, stein@upb.de

Abstract The paper introduces the Functional Abstraction
paradigm as a concept to solve complex design problems.

Design problem solving can be considered as selecting an
appropriate model from a space of possible modéls By
Functional Abstraction a simplified view!, M < M,
onto the design spac#1 is constructed. I.e., Functional
Abstraction follows a model simplification strategy in orde
to make a synthesis problem tractable.

Aside from a description of the paradigm the paper out-
lines two design problems where the paradigm of Functional
Abstraction has been applied.

1

In order to make this paper self-contained to a certain dggre
the introductory section presents the definitions that aeelu
later on.

I ntroduction

1.1 Systemsand Models

A system,S, can be considered as a clipping of the world
and has, as its salient property, a boundary. On account of
this boundary, it can be stated for each object of the world
whether or not it is part of5.! Models are the essential
element within the human ability to reason about systems.
Numerous definitions, explanations, and introductionsehav
been formulated about the term model—my favorite defini-
tion stems from Minsky:

“To an observer B, an object* is a model of an
objectA to the extent thaB can useA* to answer
guestions that interest him aboAt”

Minsky, 1965, pg. 45
Here,

¢ the interesting objects}, are technical systems,

e the observerp, is a domain expert who works on a
problem solving task from the field synthesis, such as a
configuration or design task,

1This characterization of the term system is derived frormésis def-
inition [5], which, like other definitions, can be found inetlwell written
introduction of Cellier's book on continuous system moai@lj2].

e the questions are embedded in a ternary way; they relate
to the technical system, to the problem solving task, and
to the domain expert,

e the models, A*, are exactly that what Minsky has
pointed out above.

1.2 Synthesis Tasksand Model Spaces

Our starting point when solving a synthesis task is characte
ized as follows. We are given a set of systesiscalled the
system space, along with an open quesfibnThe question

D may ask whether a system with a desired functionality (=
demands) exists, say, is membeSor how much a system
with a desired functionality at least costs. Answers to such
guestions can be found by constructing the desired system
and analyzing its functionality.

Clearly, constructing a system solely for answering an
open question cannot be accepted in the very most cases. A
way out is the creation of a bijective functiop, that maps
each systent € S onto a modelM in a model spaceM
(see Figure 1). Usually the model space is described inten-
sionally, by means of a finite number of combinable objects
along with operations that prescribe how objects can be con-
nected to each other.

+ fomond]— i) [5en]
J

—~—

Model
formation
odel M

Figure 1:Synthesis problems are solved by means of a systematic
search in the model space—provided that a bijective magdpimy
the system space onto the model space can be stated.

System
space S

A\

Model
space M

A computer program for automated design or configura-
tion realizes a functio® : D — M that maps a set of
demandsD onto a modelM, ®(D) — M. Putin a nut-
shell, synthesis problems are solved by developing a system
atic search strategy that turns a model space into a search
space [12].

1.3 Structure Models and Behavior Models

Our view to models and model construction is bivalent: it is
oriented at structure and behavior (see Figure 2).

System of
5, the real world

Model
construction

| ’J*

t

| Behavior model |

| Structure model |

Figure 2:Basically, model construction divides into structural and
behavioral considerations.

A structure model renders the structural or topological
setup of a system. A behavior model reproduces, in extracts,
a system’s behavior. In this connection, model formation
relates to both structural composition and behavior specifi
cation.

Structure models are a powerful means to define a model’'s
composition space—without committing the level of abstrac
tion at which a technical system is described. Note that a
structure model says nothing about the models type or pur-
pose, whether it establishes a qualitative model, a dynamic
behavior model, or some other model. Typically, an infinite
number of behavior models can be associated with the same
structure modet.

In the following, let Mg define the structure model of
some model\/ in question.

2 Functional Abstraction

The term model simplification speaks for itself: By reduc-
ing a model's complexity a problem solving task in question
shall become tractable. Functional Abstraction is a model
simplification paradigm that aims at a substantial reductio
of the number of models that have to be synthesized and an-
alyzed in order to solve a configuration or design problem.
The two case studies sketched out in Section 3 present ap-

Two possibilities to counter this situations are “compe-
tence partitioning” and “expert critiquing”. The idea ofrne
petence partitioning is to separate the creative parts efa d
sign process from the routine jobs, and to provide a higH leve
of automation regarding the latter (see [15, pg. 93]). Exper
critiquing, on the other hand, employs expert system tech-
nology to assist the human expert rather than to automate a
design problem in its entirety [6, 4].

Level of
function Abstracteg\

demands D

Structure
/N
Model Mg

—o—

c
8
g
:‘_g_
E
2
) Demands Raw
Behavior S —@—» Solution
Level D Design M

Figure 3:The paradigm of Functional Abstraction in design prob-
lem solving.

The paradigm of “Design by Functional Abstraction”,
illustrated in Figure 3, can be regarded as a special ex-
pert critiquing representative. We have chosen this name
for the problem solving method to reveal its similarity
with the problem solving method BURISTIC DIAGNOSIS,
which became popular as the diagnosis approach underlying
MYCIN [3].

The key idea of Design by Functional Abstrac-
tion is a systematic construction of candidate so-
lutions within a very simplified design spa@@,

M < M, which typically is some structure model
space: The structure model of a solution candidate,
J/VTS € M, is transformed into a preliminary raw
design,]\?, by locally attaching behavior model
parts toJ\?s. The hope is thab/ can be repaired
with reasonable effort, yielding an acceptable so-
lution for D.

Design by Functional Abstraction makes heuristic simpli-
fications at least at two places: The original demand specifi-
cation, D, is simplified towards a functional specificatidfh
(Step 1in Figure 4), andﬁs is transformed locally intd/
(Step 3 in Figure 4). Both, the synthesis step and the adap-
tation step may be operationalized with complete algorithm
(Step 2 and 4 in the figure).

Putting it overstated the paradigm says: At first, we con-
struct a poor solution of a design problem, which then must

proaches to solve complex design tasks. Both tasks comprise be repaired.

creative aspects, and for neither a design recipe is at hand:
The acquisition effort for the design knowledge exceeds by
far the expected pay back [10], and, moreover, the synthesis

search spaces are extremely large and scarcely to control—

despite the use of knowledge-based techniques.

2|n this place a precise and formal definition of structure el@dind
behavior models should be given [16]. However, | continuthetit doing
so since (1) most readers may have a more or less clear weutdirgy of
these terms, and (2) a formal definition would go beyond tlopsof this
paper.

The solutions in the following case studies were developed
after this paradigm.

PaN
~ Structure model Mg
Abstracted demands D

AL Az

A v.4

W el EEQCDJ

e = H

]
(S

1

F

L=

X(t)

1®

x1(0)

¢
K
o

1 2 3 4 5 t

N\
Demands D Raw design M Solution

Figure 4:The Functional Abstraction paradigm applied to fluidic gitalesign.

3 Case Studies (2) Atthis functional level a structure models according
. o] to the coupling of the fluidic functions iV is gener-
This section introduces two design problems where the ated.

paradigm of Functional Abstraction has been applied. The - _ _ e
background of the respective domains, the related con- (3) Mg is completed towards a tentative behavior madel

straints, and an in-depth description of the solutions ey by plugging together locally optimized fluidic axes; in
in [16]. Here we content ourselves with a short introduction [7] this step is realized by a tailored case-based reason-
to the ideas. ing approach.

. - (4) The tentative behavior modal is repaired, adapted,
3.1 Case-Based Design in Fluidics and optimized globally. In this connection scaling rules
Fluidic drives are used to realize a variety of productiod an and heuristic repair rules come into operation.

manipulation tasks. Even for an experienced engineer, the
design of a fluidic system is a complex and time-consuming
task, that, at the moment, cannot be automated completely.
Designing a system means to transform demardesto-
wards an explicit system description, which is a behavior
model of the desired system in most cases.

Taken the view of configuration, the designer of a fluidic
system selects, parameterizes, and connects comporkents li
pumps, valves, and cylinders such tliais fulfilled by the
emerging circuif Solving a fluidic design problem at the LA) , :)
component level is pretty hopeless, and model simplificatio ~ Within @ design assistahand linked to EuIDSIM, a drawing
must be applied to reach tractability. Key idea is to perform and simulation environment for fluidic systems [17]. The de-

a configuration process at the level of functions (instead of S9N assistant enables a user to formulate his design eequir
components), which in turn requires that fluidic functions MeNtSD by specifying both a set of fluidic functions and a
possess constructional equivalents that can be treated in a COUPIing hierarchy. For each fluidic functions a sequence of
building-block-manner. This requirement is fairly good-fu ~ Phases can be defined, where for each phase a set of charac-
filled in the fluidic domain—the respective building blocks ~ eristic parameters, such as duration, precision, or maxim

are called “fluidic axes”. values can be stated.

Th Il desi h ined h foll h Clearly, a direct evaluation of generated design solutions
e overall design approach outlined here follows the ¢t he limited within several respects since
paradigm depicted in Figure 3 and is illustrated in Figure 4:

Remarks. A human designer is capable of working at the
component levelimplicitly creating and combining fluidic
axes towards an entire system. His ability to automatically
derive function from structure—and vice versa: strucfore
function—allows him to construct a fluidic system without
the idea of high-level building blocks in the form of fluidic
axes.

Operationalization The concepts have been embedded

(1) an absolute measure that captures the quality of a design

(1) The original dgmand spgcifigaAtioB,, is abstracted to- does not exist, and
wards a functional specificatiab.
(2) the number of properties that characterizes a design is

°The ideas presented in section have been verified in the ificito- large and their quantification often requires a high ef-
main in first place; however, they can be applied in the pnéigndamain f
in a similar way, suggesting us to use preferably the moremgemvord ort.

“fluidic”.

4The design assistant has been realized and evaluated asGf fie
doctoral thesis of Hoffmann [7].

Axes Reuse, Correct ;
repair (ato > 0.9) Quality
1 0.10s 80% 60% (+) 35% (0) 5% (-)
2 0.63s 75% 50% (+) 45% (0) 5% (-)
3 0.91s 70% 40% (+) 50% (0) 10% (-)
4 1.43s 60% 20% (+) 65% (0) 15% (-)
5 2.00s 20% 5% (+) 80% (0) 15% (-)

Table 1:Runtime results and modification effort for automatically
generated designs. Test environment was a Pentium |l syatem
450 MHz with 128 MB main memory.

However, the quality of a generated design can also be
ratedindirectly, by quantifying its “distance” to a design so-
lution created by a human expert. In this connection, the
term “distance” stands for the real modification effort that
is necessary to transform the computer solution into the hu-
man solution. The experimental results presented in Table 1
describe such a competition; a more detailed discussion of

special simulation or configuration tasks, and the effort in
volved there is high enough [1, 8].

However, the Functional Abstraction paradigm can be ap-
plied to develop an overall design approach (cf. Figure 5):

(1) The properties of the input and output substanégs,
are abstracted towards linguistic variablBs,

(2) Atthe functional level a structure modely is synthe-
sized that fulfillsD and that is used as a solution can-
didate for D; this step is realized by so-called design
graph grammars [14].

€)) 1\75 is completed towards a behavior modél
4) Mis repaired, adapted, or improved.

Both Step 2 and Step 4 rely on a knowledge base with
domain-specifc and task-specific design rules. These rules
have been formulated as graph grammar rules by a domain

evaluation concepts as well as related problems can be found expert.

in [7]. Description of the table columns:

e Axes numberNumber of axes of each test set; a test set
contains 20 queries.

e Reuse, Repair.Average time of the reuse and repair
effort in seconds.

e Correct.Number of generated designs with a similarity
>0.9.

e Quality. Evaluation of a human expert. In this con-
nection a (+), an (0), and a (-) designate a small, an
acceptable, and a large modification effort necessary to
transform the machine solution into a solution accepted
by the human expert.

3.2 Designin Chemical Engineering®

A chemical plant can be viewed as a graph where the nodes
represent the devices, or unit-operations, while the edges
respond to the pipes responsible for the material flow. Typi-
cal unit-operations are mixing (homogenization, emulaific
tion, suspension, aeration, etc.), heat transfer, and fwst
port. The task of designing a chemical plant is defined by
the given demand® in the form of properties of various in-
put substances, along with the desired output substanee. Th
goal is to mix or to transform the input substances in such

a way that the resulting output substance meets the imposed

requirements.

Operationalization The concepts described above are im-
plemented within a prototypical tool, called¥@ob (domain
independent modeler). Figure 6 shows a screen snapshot.
The core of the system consists of a generic graph grammar
engine, used for modeling and application of knowledge, and
a domain-specific module used to guide the search process.

Ol

e (S}

[restapi =

Domane

flrest-20 Graph not modfieg
[ltest-2 1 Graph not modifie]
firest-22 Graph not modified
firest-23 Graph not modified
fitest-24 Graph not modifiel
ffrest-25 Graph net medifig
fitest-26 Graph not modifie

Projekt testdpi small.rdf

|GG bereit / 5iM bereit I

Figure 6: The DimoD system. Upper left window represents the
abstracted demands, the windows to the right and center show
generated structure models.

Within DiMoD the simulation is realized as follows. A

The design happens by passing through (and possibly re- generated structure model is completed towards a tentative

peating) the following five steps: Preliminary examinatdn

behavior model by attaching behavior model descriptions to

the demands, choice of unit-operations, structure defmiti the components of the structure model (Step 3 in Figure 5).
component conflguran_on, and optimization. An automation - The behavior model is then validated by a simulation. For
of the steps at a behavioral level would be very expensive—if this purpose, the ACEND IV simulator is used [13]; the at-

possible at all. Present systems limit design support to iso tached model descriptions stem from the@eND IV model
lated subjobs; such systems relieve the human designer from library and from custom models.

5This work developed from a cooperative project with the CicahEn-
gineering Group at Paderborn University that focused odésgn of plants
for the food processing industry [9].

VAN
Abstracted demands D

Inputy | Viscosi

Input2

Input3

Output

Demands D

N\
Structure model Mg

"\’*Lwlfl
)
exoi

Dt Chi e -

.
Re

T
T

.. oIk

~
Raw design M Solution

Figure 5:The Functional Abstraction paradigm applied to the desfgoad processing plants.

References

[1] Axel Brinkop, Norbert Laudwein, and Ridiger Maassen.

(2]

Routine Design for Mechanical Engineering.Rroceedings
of the Sixth Annual Conference on Innovative Applicatidns o
Al (IAAI 94), Seattle, August 1994.

Francois E. CellierContinuous System SimulatioBpringer,
Berlin Heidelberg New York, 1991.

[3] William J. Clancey. Heuristic Classificatiofrtificial

(4]

(5]

(6]

(7]

Intelligence 27:289-350, 1985.

Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald| an
Gerry Stahl. Embedding Critics in Design Environments.
The Knowledge Engineering Revied(4):285-307,
December 1993.

Brian Gaines. General Systems Research: Quo Vadis. In
General Systems Yearbgalolume 24, pages 1-9, 1994.

Sture Hagglund. Introducing Expert Critiquing Systerfibe
Knowledge Engineering Revig®(4):281-284, December
1993.

Marcus Hoffmann.Zur Automatisierung des
Designprozesses fluidischer Systel@issertation,
Department of Mathematics and Computer Science,
University of Paderborn, Germany, 1999.

[8] Achim Knoch and Michael Bottlinger. Expertensysteme in

der Verfahrenstechnik — Konfiguration von Rihrapparaten.
Chem.-Ing.-Tech65(7):802—-809, 1993.

[9] Annett Kurzok, Manfred H. Pahl, and André Schulz.

[10]

[11]

Software zur wissensbasierten Proze3modellierung — WIP.
Chemie Ingenieur Technik3(9), 2001.

Mary Lou Maher and Andres Gomez de Silva Garza. The
Adaptation of Structural System Designs Using Genetic
Algorithms. InProceedings of the International Conference
on Information Technology in Civil and Structural
Engineering Design: Taking Stock and Future Directions
Glasgow, Scotland, August 1996.

Marvin Minsky. Models, Minds, Machines. IRroceedings
of the IFIP Congresspages 45-49, 1965.

[12] Judea PearHeuristics Addison-Wesley, Massachusetts,
1984.

[13] P.C. Piela, T. G. Epperly, K. M. Westerberg, and A. W.
Westerberg. ACEND An Object-Oriented Computer
Environment for Modeling and Analysis: The Modeling
Language Computers Chemical Engineerings(1):53-72,
1991.

[14] André Schulz and Benno Stein. On Automated Design of
Technical Systems. Notes in Computer Science tr-ri-00-218
Department of Mathematics and Computer Science,
University of Paderborn, Germany, December 2000.

[15] Benno SteinFunctional Models in Configuration Systems
Dissertation, Department of Mathematics and Computer
Science, University of Paderborn, Germany, June 1995.

[16] Benno SteinModel Construction in Analysis and Synthesis
Tasks Habilitation thesis, University of Paderborn,
Department of Mathematics and Computer Science, 2001.

[17] Benno Stein, Daniel Curatolo, and Marcus Hoffmann.
Simulation in FRuIDSIM. In Helena Szczerbicka, editor,
Workshop on Simulation in Knowledge-Based Systems
(SIWIS 98)number 61 in ASIM Notes, Bremen, Germany,
April 1998. Technical committee 4.5 ASIM of the GI.

