
Design Problem Solving by Functional Abstraction

Benno Stein

Paderborn University
Dept. of Computer Science

D-33095 Paderborn, stein@upb.de

Abstract The paper introduces the Functional Abstraction
paradigm as a concept to solve complex design problems.

Design problem solving can be considered as selecting an
appropriate model from a space of possible modelsM. By
Functional Abstraction a simplified vieŵM, M̂ ≪ M,
onto the design spaceM is constructed. I. e., Functional
Abstraction follows a model simplification strategy in order
to make a synthesis problem tractable.

Aside from a description of the paradigm the paper out-
lines two design problems where the paradigm of Functional
Abstraction has been applied.

1 Introduction

In order to make this paper self-contained to a certain degree,
the introductory section presents the definitions that are used
later on.

1.1 Systems and Models

A system,S, can be considered as a clipping of the world
and has, as its salient property, a boundary. On account of
this boundary, it can be stated for each object of the world
whether or not it is part ofS.1 Models are the essential
element within the human ability to reason about systems.
Numerous definitions, explanations, and introductions have
been formulated about the term model—my favorite defini-
tion stems from Minsky:

“To an observer B, an objectA∗ is a model of an
objectA to the extent thatB can useA∗ to answer
questions that interest him aboutA.”

Minsky, 1965, pg. 45

Here,

• the interesting objects,A, are technical systems,

• the observer,B, is a domain expert who works on a
problem solving task from the field synthesis, such as a
configuration or design task,

1This characterization of the term system is derived from Gaines’s def-
inition [5], which, like other definitions, can be found in the well written
introduction of Cellier’s book on continuous system modeling [2].

• the questions are embedded in a ternary way; they relate
to the technical system, to the problem solving task, and
to the domain expert,

• the models,A∗, are exactly that what Minsky has
pointed out above.

1.2 Synthesis Tasks and Model Spaces

Our starting point when solving a synthesis task is character-
ized as follows. We are given a set of systems,S, called the
system space, along with an open questionD. The question
D may ask whether a system with a desired functionality (=
demands) exists, say, is member ofS, or how much a system
with a desired functionality at least costs. Answers to such
questions can be found by constructing the desired system
and analyzing its functionality.

Clearly, constructing a system solely for answering an
open question cannot be accepted in the very most cases. A
way out is the creation of a bijective function,ϕ, that maps
each systemS ∈ S onto a modelM in a model spaceM
(see Figure 1). Usually the model space is described inten-
sionally, by means of a finite number of combinable objects
along with operations that prescribe how objects can be con-
nected to each other.

Question D+

Model

formation

Model

space M

Design System S

Search Model M

System

space S

Figure 1:Synthesis problems are solved by means of a systematic
search in the model space—provided that a bijective mappingfrom
the system space onto the model space can be stated.

A computer program for automated design or configura-
tion realizes a functionΦ : D −→ M that maps a set of
demandsD onto a modelM , Φ(D) 7→ M . Put in a nut-
shell, synthesis problems are solved by developing a system-
atic search strategy that turns a model space into a search
space [12].

1.3 Structure Models and Behavior Models

Our view to models and model construction is bivalent: it is
oriented at structure and behavior (see Figure 2).

Model

construction

Model

Structure model Behavior model

System of

the real world

Figure 2:Basically, model construction divides into structural and
behavioral considerations.

A structure model renders the structural or topological
setup of a system. A behavior model reproduces, in extracts,
a system’s behavior. In this connection, model formation
relates to both structural composition and behavior specifi-
cation.

Structure models are a powerful means to define a model’s
composition space—without committing the level of abstrac-
tion at which a technical system is described. Note that a
structure model says nothing about the models type or pur-
pose, whether it establishes a qualitative model, a dynamic
behavior model, or some other model. Typically, an infinite
number of behavior models can be associated with the same
structure model.2

In the following, let MS define the structure model of
some modelM in question.

2 Functional Abstraction

The term model simplification speaks for itself: By reduc-
ing a model’s complexity a problem solving task in question
shall become tractable. Functional Abstraction is a model
simplification paradigm that aims at a substantial reduction
of the number of models that have to be synthesized and an-
alyzed in order to solve a configuration or design problem.

The two case studies sketched out in Section 3 present ap-
proaches to solve complex design tasks. Both tasks comprise
creative aspects, and for neither a design recipe is at hand:
The acquisition effort for the design knowledge exceeds by
far the expected pay back [10], and, moreover, the synthesis
search spaces are extremely large and scarcely to control—
despite the use of knowledge-based techniques.

2In this place a precise and formal definition of structure models and
behavior models should be given [16]. However, I continue without doing
so since (1) most readers may have a more or less clear understanding of
these terms, and (2) a formal definition would go beyond the scope of this
paper.

Two possibilities to counter this situations are “compe-
tence partitioning” and “expert critiquing”. The idea of com-
petence partitioning is to separate the creative parts of a de-
sign process from the routine jobs, and to provide a high level
of automation regarding the latter (see [15, pg. 93]). Expert
critiquing, on the other hand, employs expert system tech-
nology to assist the human expert rather than to automate a
design problem in its entirety [6, 4].

S
im

pl
ifi

ca
tio

n

Behavior

Level

Level of

function

Demands

D Solution

Abstracted

demands D̂

1

2

3

4
Raw

Design M
^

Structure

Model MS

^

Figure 3:The paradigm of Functional Abstraction in design prob-
lem solving.

The paradigm of “Design by Functional Abstraction”,
illustrated in Figure 3, can be regarded as a special ex-
pert critiquing representative. We have chosen this name
for the problem solving method to reveal its similarity
with the problem solving method HEURISTIC DIAGNOSIS,
which became popular as the diagnosis approach underlying
MYCIN [3].

The key idea of Design by Functional Abstrac-
tion is a systematic construction of candidate so-
lutions within a very simplified design spacêM,
M̂ ≪ M, which typically is some structure model
space: The structure model of a solution candidate,
M̂S ∈ M̂, is transformed into a preliminary raw
design,M̂ , by locally attaching behavior model
parts toM̂S . The hope is that̂M can be repaired
with reasonable effort, yielding an acceptable so-
lution for D.

Design by Functional Abstraction makes heuristic simpli-
fications at least at two places: The original demand specifi-
cation,D, is simplified towards a functional specification̂D

(Step 1 in Figure 4), and,̂MS is transformed locally intôM
(Step 3 in Figure 4). Both, the synthesis step and the adap-
tation step may be operationalized with complete algorithms
(Step 2 and 4 in the figure).

Putting it overstated the paradigm says: At first, we con-
struct a poor solution of a design problem, which then must
be repaired.

The solutions in the following case studies were developed
after this paradigm.

2

A1
 A2

C

Demands D
 Solution

x2(t)

x1(t)

t
5
1
 2
 3
 4

F(t)

Hold pressure

p1
 p2

p1
 p2

f2

f1

Raw design M

^

Abstracted demands D

^
 Structure model MS

^

1

2

3

4

Figure 4:The Functional Abstraction paradigm applied to fluidic circuit design.

3 Case Studies

This section introduces two design problems where the
paradigm of Functional Abstraction has been applied. The
background of the respective domains, the related con-
straints, and an in-depth description of the solutions are given
in [16]. Here we content ourselves with a short introduction
to the ideas.

3.1 Case-Based Design in Fluidics

Fluidic drives are used to realize a variety of production and
manipulation tasks. Even for an experienced engineer, the
design of a fluidic system is a complex and time-consuming
task, that, at the moment, cannot be automated completely.
Designing a system means to transform demands,D, to-
wards an explicit system description, which is a behavior
model of the desired system in most cases.

Taken the view of configuration, the designer of a fluidic
system selects, parameterizes, and connects components like
pumps, valves, and cylinders such thatD is fulfilled by the
emerging circuit.3 Solving a fluidic design problem at the
component level is pretty hopeless, and model simplification
must be applied to reach tractability. Key idea is to perform
a configuration process at the level of functions (instead of
components), which in turn requires that fluidic functions
possess constructional equivalents that can be treated in a
building-block-manner. This requirement is fairly good ful-
filled in the fluidic domain—the respective building blocks
are called “fluidic axes”.

The overall design approach outlined here follows the
paradigm depicted in Figure 3 and is illustrated in Figure 4:

(1) The original demand specification,D, is abstracted to-
wards a functional specification̂D.

3The ideas presented in section have been verified in the hydraulic do-
main in first place; however, they can be applied in the pneumatic domain
in a similar way, suggesting us to use preferably the more generic word
“fluidic”.

(2) At this functional level a structure model̂MS according
to the coupling of the fluidic functions in̂D is gener-
ated.

(3) M̂S is completed towards a tentative behavior modelM̂
by plugging together locally optimized fluidic axes; in
[7] this step is realized by a tailored case-based reason-
ing approach.

(4) The tentative behavior model̂M is repaired, adapted,
and optimized globally. In this connection scaling rules
and heuristic repair rules come into operation.

Remarks. A human designer is capable of working at the
component level,implicitly creating and combining fluidic
axes towards an entire system. His ability to automatically
derive function from structure—and vice versa: structurefor
function—allows him to construct a fluidic system without
the idea of high-level building blocks in the form of fluidic
axes.

Operationalization The concepts have been embedded
within a design assistant4 and linked to FLUIDSIM , a drawing
and simulation environment for fluidic systems [17]. The de-
sign assistant enables a user to formulate his design require-
mentsD by specifying both a set of fluidic functions and a
coupling hierarchy. For each fluidic functions a sequence of
phases can be defined, where for each phase a set of charac-
teristic parameters, such as duration, precision, or maximum
values can be stated.

Clearly, a direct evaluation of generated design solutions
must be limited within several respects since

(1) an absolute measure that captures the quality of a design
does not exist, and

(2) the number of properties that characterizes a design is
large and their quantification often requires a high ef-
fort.

4The design assistant has been realized and evaluated as a part of the
doctoral thesis of Hoffmann [7].

3

Axes Reuse, Correct Quality
repair (atσ > 0.9)

1 0.10s 80% 60% (+) 35% (o) 5% (–)
2 0.63s 75% 50% (+) 45% (o) 5% (–)
3 0.91s 70% 40% (+) 50% (o) 10% (–)
4 1.43s 60% 20% (+) 65% (o) 15% (–)
5 2.00s 20% 5% (+) 80% (o) 15% (–)

Table 1:Runtime results and modification effort for automatically
generated designs. Test environment was a Pentium II systemat
450 MHz with 128 MB main memory.

However, the quality of a generated design can also be
ratedindirectly, by quantifying its “distance” to a design so-
lution created by a human expert. In this connection, the
term “distance” stands for the real modification effort that
is necessary to transform the computer solution into the hu-
man solution. The experimental results presented in Table 1
describe such a competition; a more detailed discussion of
evaluation concepts as well as related problems can be found
in [7]. Description of the table columns:

• Axes number.Number of axes of each test set; a test set
contains 20 queries.

• Reuse, Repair.Average time of the reuse and repair
effort in seconds.

• Correct.Number of generated designs with a similarity
≥ 0.9.

• Quality. Evaluation of a human expert. In this con-
nection a (+), an (o), and a (–) designate a small, an
acceptable, and a large modification effort necessary to
transform the machine solution into a solution accepted
by the human expert.

3.2 Design in Chemical Engineering5

A chemical plant can be viewed as a graph where the nodes
represent the devices, or unit-operations, while the edgescor-
respond to the pipes responsible for the material flow. Typi-
cal unit-operations are mixing (homogenization, emulsifica-
tion, suspension, aeration, etc.), heat transfer, and flow trans-
port. The task of designing a chemical plant is defined by
the given demandsD in the form of properties of various in-
put substances, along with the desired output substance. The
goal is to mix or to transform the input substances in such
a way that the resulting output substance meets the imposed
requirements.

The design happens by passing through (and possibly re-
peating) the following five steps: Preliminary examinationof
the demands, choice of unit-operations, structure definition,
component configuration, and optimization. An automation
of the steps at a behavioral level would be very expensive—if
possible at all. Present systems limit design support to iso-
lated subjobs; such systems relieve the human designer from

5This work developed from a cooperative project with the Chemical En-
gineering Group at Paderborn University that focused on thedesign of plants
for the food processing industry [9].

special simulation or configuration tasks, and the effort in-
volved there is high enough [1, 8].

However, the Functional Abstraction paradigm can be ap-
plied to develop an overall design approach (cf. Figure 5):

(1) The properties of the input and output substances,D,
are abstracted towards linguistic variables,D̂.

(2) At the functional level a structure model̂MS is synthe-
sized that fulfillsD̂ and that is used as a solution can-
didate forD; this step is realized by so-called design
graph grammars [14].

(3) M̂S is completed towards a behavior model̂M .

(4) M̂ is repaired, adapted, or improved.

Both Step 2 and Step 4 rely on a knowledge base with
domain-specifc and task-specific design rules. These rules
have been formulated as graph grammar rules by a domain
expert.

Operationalization The concepts described above are im-
plemented within a prototypical tool, called DIMOD (domain
independent modeler). Figure 6 shows a screen snapshot.
The core of the system consists of a generic graph grammar
engine, used for modeling and application of knowledge, and
a domain-specific module used to guide the search process.

Figure 6:The DIMOD system. Upper left window represents the
abstracted demands, the windows to the right and center showtwo
generated structure models.

Within DIMOD the simulation is realized as follows. A
generated structure model is completed towards a tentative
behavior model by attaching behavior model descriptions to
the components of the structure model (Step 3 in Figure 5).
The behavior model is then validated by a simulation. For
this purpose, the ASCEND IV simulator is used [13]; the at-
tached model descriptions stem from the ASCEND IV model
library and from custom models.

4

?

sltl

ssth

i1

i2

i3

o

slth
sltl

Input1

Viscosity: 1.2 mPas

Temperature: 20˚C

State: liquid

Heat cap.: 2.3 kJ/kgKInput2

Viscosity: 3.0 mPas

Temperature: 25˚C

State: liquid

Heat cap.: 1.7 kJ/kgK

Agitator MIG

Type: disc

Blades: 4

Volume: 600

Vessel: std.

Height: 1.5m

Diameter: 1m

Input1

Input2

Input3

Output

Viscosity: 1.2 mPas

Temperature: 20˚C

State: liquid

Viscosity: 3.0 mPas

Temperature: 25˚C

State: liquid

Viscosity: ---

Temperature: 20˚C

State: solid

Viscosity: 60 mPas

Temperature: 50˚C

State: liquid

Input1

Viscosity: 1.2 mPas

Temperature: 20˚C

State: liquid

Heat cap.: 2.3 kJ/kgK

Input2

Viscosity: 3.0 mPas

Temperature: 25˚C

State: liquid

Heat cap.: 1.7 kJ/kgK

Agitator MIG

Type: disc

Blades: 4

Volume: 600

Vessel: std.

Height: 1.5m

Diameter: 1m

Input1

Input2

Input3

Output

Viscosity: 1.2 mPas

Temperature: 20˚C

State: liquid

Viscosity: 3.0 mPas

Temperature: 25˚C

State: liquid

Viscosity: ---

Temperature: 20˚C

State: solid

Viscosity: 60 mPas

Temperature: 50˚C

State: liquid

i1

i2

i3

o

slth

sltl

sltl

ssth

Demands D
 Solution
Raw design M

^

Abstracted demands D

^
 Structure model MS

^

1

2

3

4

Figure 5:The Functional Abstraction paradigm applied to the design of food processing plants.

References
[1] Axel Brinkop, Norbert Laudwein, and Rüdiger Maassen.

Routine Design for Mechanical Engineering. InProceedings
of the Sixth Annual Conference on Innovative Applications of
AI (IAAI 94), Seattle, August 1994.

[2] François E. Cellier.Continuous System Simulation. Springer,
Berlin Heidelberg New York, 1991.

[3] William J. Clancey. Heuristic Classification.Artificial
Intelligence, 27:289–350, 1985.

[4] Gerhard Fischer, Kumiyo Nakakoji, Jonathan Ostwald, and
Gerry Stahl. Embedding Critics in Design Environments.
The Knowledge Engineering Review, 8(4):285–307,
December 1993.

[5] Brian Gaines. General Systems Research: Quo Vadis. In
General Systems Yearbook, volume 24, pages 1–9, 1994.

[6] Sture Hägglund. Introducing Expert Critiquing Systems. The
Knowledge Engineering Review, 8(4):281–284, December
1993.

[7] Marcus Hoffmann.Zur Automatisierung des
Designprozesses fluidischer Systeme. Dissertation,
Department of Mathematics and Computer Science,
University of Paderborn, Germany, 1999.

[8] Achim Knoch and Michael Bottlinger. Expertensysteme in
der Verfahrenstechnik – Konfiguration von Rührapparaten.
Chem.-Ing.-Tech., 65(7):802–809, 1993.

[9] Annett Kurzok, Manfred H. Pahl, and André Schulz.
Software zur wissensbasierten Prozeßmodellierung – WIP.
Chemie Ingenieur Technik, 73(9), 2001.

[10] Mary Lou Maher and Andres Gomez de Silva Garza. The
Adaptation of Structural System Designs Using Genetic
Algorithms. InProceedings of the International Conference
on Information Technology in Civil and Structural
Engineering Design: Taking Stock and Future Directions,
Glasgow, Scotland, August 1996.

[11] Marvin Minsky. Models, Minds, Machines. InProceedings
of the IFIP Congress, pages 45–49, 1965.

[12] Judea Pearl.Heuristics. Addison-Wesley, Massachusetts,
1984.

[13] P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W.
Westerberg. ASCEND: An Object-Oriented Computer
Environment for Modeling and Analysis: The Modeling
Language.Computers Chemical Engineering, 15(1):53–72,
1991.

[14] André Schulz and Benno Stein. On Automated Design of
Technical Systems. Notes in Computer Science tr-ri-00-218,
Department of Mathematics and Computer Science,
University of Paderborn, Germany, December 2000.

[15] Benno Stein.Functional Models in Configuration Systems.
Dissertation, Department of Mathematics and Computer
Science, University of Paderborn, Germany, June 1995.

[16] Benno Stein.Model Construction in Analysis and Synthesis
Tasks. Habilitation thesis, University of Paderborn,
Department of Mathematics and Computer Science, 2001.

[17] Benno Stein, Daniel Curatolo, and Marcus Hoffmann.
Simulation in FLUIDSIM . In Helena Szczerbicka, editor,
Workshop on Simulation in Knowledge-Based Systems
(SIWIS 98), number 61 in ASIM Notes, Bremen, Germany,
April 1998. Technical committee 4.5 ASIM of the GI.

5

