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Abstract. Automatic category formation plays a key role in the development of future interfaces for Web-
based search. We introduce the meta search engine AISEARCH that implements state-of-the-art technology for
a category search in huge document collections. AISEARCH combines algorithms for query analysis, category
formation, category labeling, and category visualization. Among the mentioned tasks the category formation
step is the most crucial one: A smart grouping of a large number of documents that is returned by a standard
query search is extremely useful—but difficult to derive.

Clustering algorithms are considered as a technology that is capable to master this “ad-hoc” categorization
task. However, it is hard to say which of the existing clustering approaches is suited best. A major part of this
article is devoted to this question and presents results of a comprehensive analysis of clustering algorithms
in connection with category formation. The contributions relate to exemplar-based, hierarchical, and density-
based clustering algorithms. In particular, we contrast ideal and real clustering settings and present runtime
results that are based on efficient implementations of the investigated algorithms.

Keywords: Category Formation, Document Clustering, Meta Search, Information Retrieval

1. Web-based Search and Clustering

The World Wide Web provides a huge collection of documents, and its use as a source of
information is obvious and became very popular. As pointed out in [7] there is a plethora of
Web search technology, which can broadly be classified into four categories:

1. Unassisted Keyword Search. One or more search terms are entered and the search
engine returns a ranked list of document summaries. Representatives: Google
(www.google.com)or AltaVista (www.altavista.com).

2. Assisted Keyword Search. The search engine produces suggestions based on the user’s
initial query. Representative: AskJeeves (www.ask jeeves.com).

3. Directory-based Search. Here, the information space is divided into a hierarchy of cate-
gories, where the user navigates from broad to specific classes. Representative: Yahoo!
(www.yahoo.com).

4. Query-by-Example. The user selects an interesting document snippet, which is then
used as the basis of a new query.

We think that the ideal search interface should model the search process within three
phases: (a) An initialization phase according to the plain unassisted keyword search
paradigm, (b) a categorization phase similar to the directory-based search paradigm, and
(c) a refinement phase that may combine aspects from assisted keyword search and the
query-by-example paradigm. Our realization of this process pursues a meta search strategy
similar to that of Vivisimo [49]; i.e., it employs existing search technology within the
initialization phase.

This idea of an ideal search process grounds on the following observations:



2 Stein, Meyer zu Eissen

Existing search engines do an excellent and convenient job. They organize up to billions
of documents which can be searched quickly for keywords, and, the plain keyword search
forms the starting point for the majority of users. However, while this strategy works fine
for the experienced human information miner, many users are faced either with an empty
result list or with a list containing thousands of hits. The former situation is the result of
misspelling or contradictory Boolean query formulation; it can be addressed with a syntactic
analysis. The latter situation lacks a meaningful specification of context—it requires a se-
mantic analysis, which can be provided by means of category narrowing. In this connection
some search engines use a human-maintained predefined topic hierarchy with about 20 top-
level categories like sports, art, music etc. Such static hierarchies are unsatisfactory within
two respects: They require a considerable human maintenance effort, and, for special topics
(example: “sound card driver”) the categories constitute an unnecessary browsing overhead
which defers the search process. A powerful focusing assistance must be based onto a
query-specific—say: ad-hoc—categorization of the delivered documents.

Ad-hoc categorization comes along with two major challenges: Efficiency and ne-
science. Efficiency means that category formation must be performed at minimum deten-
tion, while nescience means that the category formation process is unsupervised: Except
for experimental evaluation purposes, no predefined categorization scheme is given from
which classification knowledge can be acquainted.

1.1. ORGANIZATION OF THIS ARTICLE

The next section gives a brief overview of the AISEARCH system. AISEARCH offers a con-
venient interface for Web-based search and combines algorithms for the formation, labeling,
and visualization of categories as well as a smart spelling analysis. Since category formation
plays a key role in the search process, the remaining Sections, 3 and 4, concentrate on this
aspect.

Section 3 introduces background knowledge on document representation models, differ-
ent types of clustering algorithms, and clustering quality measures. Section 4 reports several
results from our experimental analyses and provides insights with respect to the following
points:

— computational effort of essential data processing steps,
— separability of categories in terms of supervised classification tasks, and

— performance of new and well-known clustering algorithms and document models
concerning cluster quality and runtime.

2. The AISEARCH Meta Search Engine

A search process with the AISEARCH Web interface starts as usual: A query in the form of
interesting search terms is entered within a dialog field. The query is sent to several search
engines and—for a syntactic analysis—to a SMARTSPELL server. The query results, i.e.,
the HTML document snippets, are collected and analyzed with respect to the similarity of
their contents. Based on this analysis, adequate categories are formed and labeled, and a
tree of the categories, which shows related categories at a closer distance than unrelated
categories, is drawn in the hyperbolic plane. Figure 1 shows a snapshot of the AISEARCH
Web interface for the query “tea flavour”.

Aside from the hyperbolic category tree, the returned document snippets can also be
browsed in a list format. The list groups all snippets of the same category together, and,
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Figure 1. The AISEARCH Web interface. The query field (top) contains two search terms along with
two list-boxes containing SMARTSPELL proposals with similar terms. Below the query field the
category tree for the current query is displayed; its nodes correspond to categories each of which
comprising 5-20 documents that belong thematically together.

immediate access to each sublist is possible by simply clicking the leafs in the category
tree.

2.1. QUERY ANALYSIS

During the meta search, within another background process, the terms of the query are
checked with respect to both correct spelling and similar terms. For this job the powerful
SMARTSPELL algorithm [1] is used. SMARTSPELL analyzes spelling errors with regard
to the editing distance, the Levinshtein distance, and the phonological distance against a
dictionary [15].

Especially the analysis that grounds on a phonological interpretation is a demanding
task; it depends on a language’s level of phonemicity and is realized with a sophis-
ticated, phoneme-dependent word similarity measure. To efficiently find syntactic and
phonetic similar words for a search term, SMARTSPELL operationalizes several paradigms
of heuristic search: nogood-lemma generation, search space pruning based on over- and
underestimation, iterative deepening search, and memorization [33, 32]. Table I shows
some examples of misspelled words along with SMARTSPELL’s proposals and similarity
estimations.

SMARTSPELL’s proposals of similar search terms are directly integrated in the query
field; they enable the reformulation, extension, or correction of a query by the press of a
button.
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2.2. CATEGORY FORMATION

To assure user acceptance, the category formation process must be efficient with respect
to both category quality and response time. That AISEARCH is able to fulfill these perfor-
mance requirements can be seen in Section 3, which gives a snapshot of our comprehensive
analysis based on document collections that were categorized by human editors.

The performance requirements are also reflected in the implemented software tech-
nology: To compare different clusterings of search results, AISEARCH employs strategy
patterns to make term weighting schemes, similarity measures, clustering algorithms, and
cluster validity measures interchangeable at runtime. For efficient text handling, the sym-
bol processing algorithms for text parsing, text compression, and text comparison utilize
specialized flyweight patterns [13].

2.3. CATEGORY VISUALIZATION

Data visualization is a research topic for decades, and a large number of methods for the
visualization of document collections is available[5, 6, 10, 14, 18, 23, 29, 31, 37, 40, 43,
45]. AISEARCH uses a two-dimensional, navigable, hyperbolic layout (see Figure 1) for
the following reasons. Firstly, it is reported that three-dimensional, navigable layouts often
confuse users [30]. Secondly, only a small part of the found categories is interesting for
the user. A distortion-based view that scales up interesting parts around the center of the
screen and scales down the non-relevant parts at the border of the screen addresses this
point. Furthermore, the interesting categories can be focused at the center of the screen
with one mouse click. Thirdly, using a two-dimensional layout, related categories can be
shown at a closer distance than unrelated categories; a category list cannot take this aspect
into account.

As mentioned above, this tree view is combined with a list view, which organizes the
documents and corresponding links according to the categories.

2.4. SOFTWARE ARCHITECTURE AND DEPLOYMENT CONCEPTS

Figure 2 shows how the AISEARCH components are deployed to machines. When a user
enters the AISEARCH URL in his browser, a Java Applet that contains the AISEARCH
user interface is delivered from the Web server, which in turn communicates with the load
balancing module. All requests from the client, such as a request for spelling or a request
for search, are coded in a proprietary protocol that contains several commands. Whenever
a command reaches the load balancing module, one of the AISEARCH engines is chosen to
perform the associated task. All commands are processed asynchronously.

All computationally expensive tasks are performed as threads, which allows us to run
several commands simultaneously on a single AISEARCH engine. Moreover, the thread-

Table I. Examples for misspelled words (left column) and
the SMARTSPELL proposals with similarity estimations
(right column).

Misspelled word ~ SMARTSPELL proposal (similarity)

aksekjushon execution (81%)
angenearing engineering (92%)
blu blue (93%), blew (92%)

buysikel physical (85%), bicycle (82%)
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Figure 2. AISEARCH deployment diagram. The AISEARCH Web server delivers Java Applet code to
the client browser (1), which in turn sends a request to the AISEARCH load balancer, which selects
an AISEARCH engine to process the query (2). When the dedicated engine has queried Internet

search engines (3) and completed the category formation task, the results are transfered back to the
Java Applet.

ing model supports multiprocessor machines ideally, and, combined with a load balancing
concept, assures a simple scalability of the architecture.

3. Background: Document Representation, Clustering, and
Quality Measures

The statistical method of variance analysis is used to verify whether a classification of
objects by means of nominal features is reflected in significant differences of depending
metric features. Clustering can be considered as some kind of inverse operation: It tries to
identify groups within an object set such that elements of different groups show significant
differences with respect to their metric features.

Clustering algorithms operate on object similarities, which, in turn, are computed from
abstract descriptions of the objects. Each such description is a vector d of numbers com-
prising values of essential object features. This section outlines the necessary concepts in
connection with text documents: A suited object description, a related similarity measure,
an overview of clustering algorithms, and—in particular, clustering quality measures for
the analysis of an algorithm’s categorization performance.
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3.1. DOCUMENT REPRESENTATION

A common representation model for documents is the vector space model, where each
document is represented in the term space, which roughly corresponds to the union of the
m words that occur in a document collection [36, 24]. In this term space, common words are
filtered out by means of a stop word list, words that are unique in the collection are omitted,
and stemming is applied to reduce words towards a canonical form. Each document d; in a
document collection D can then be described by means of a vector d; = (w1, ..., Wm;),
where w;; designates the weight of term ¢; in d;. Widely accepted variants for the choice of
wj; are the following.

1. The term frequency tf(¢;,d;) denotes the frequency of term 4 in document j. Defining
the weights w;; as tf (t;,d;) implies that terms that are used more frequently are rated
as more important.

2. The inverse document frequency is defined as idf (t;) := 1og(%), where n is the

total number of documents in the collection and df (¢;) is the number of documents
which contain the term ¢;. The hypothesis is that terms that occur rarely in a document
collection are of highly discriminative power. Defining w;; := tf (¢;,d;) - idf (t;) com-
bines the hypothesis with Point (1) and has shown to improve the retrieval performance
[41]. Note that the representation of a single document requires knowledge of the whole
collection if the #df-concept is used.

3.2. DOCUMENT SIMILARITY

Clustering exploits knowledge about the similarity among the objects to be clustered. The
similarity ¢ of two documents, d;, d;, is computed as a function of the distance between
the corresponding term vectors d; and d;. There exist various measures for similarity com-
putation, from which the cosine-measure proved to be the most successful for document
comparison. It is defined as follows.

di,d;) = 75—,

PG = a Tiag]

where (d;,d;) = d'd; denotes the scalar product, and ||d|| the Euclidean length. It com-
putes the cosine of the angle between two documents in R™. Note that a distance measure
can easily be derived from ¢ by subtracting the similarity value from 1.

3.3. CLUSTERING ALGORITHMS

Definition 1 (Clustering) Let D be a set of objects. A clustering C = {C | C C D} of D
is a division of D into sets for which the following conditions hold: ¢, cc Ci = D, and
VC;,Cj € C: C; N Cjz = 0. The sets C; are called clusters.

Remarks. Here, the set of objects, D, corresponds to a document collection. Moreover, it
is useful to consider the elements in D as nodes of a weighted graph G. GG is completely
connected, and the weight of the edge that connects two documents, d;, d;, corresponds to
their similarity p(d;, d;).

Clustering algorithms, which generate a clustering C, are distinguished with respect
to their algorithmic properties. The following overview cannot be complete but outlines
the most important classes along with the worst-case runtime behavior of prominent
representatives. Again, n designates the number of documents in a given collection.
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Iterative Algorithms. Iterative algorithms strive for a successive improvement of an exist-
ing clustering and can be further classified into exemplar-based and commutation-based
approaches. The former assume for each cluster a representative, i.e. a centroid (for
interval-scaled features) or a medoid (otherwise), to which the objects become assigned
according to their similarity. Iterative algorithms need information with regard to the ex-
pected cluster number, k. Representatives: k-Means, k-Medoid, Kohonen, Fuzzy-k-Means
[16, 28, 20, 22, 47]. The runtime of these methods is O(nkl), where [ designates the number
of iterations to achieve convergence.

Hierarchical Algorithms. Hierarchical algorithms create a tree of node subsets by succes-
sively subdividing or merging the graph’s nodes. In order to obtain a unique clustering, a
second step is necessary that prunes this tree at adequate places. Agglomerative hierarchi-
cal algorithms start with each vertex being its own cluster and union clusters iteratively.
For divisive algorithms on the other hand, the entire graph initially forms one single clus-
ter which is successively subdivided. Representatives: k-nearest-neighbor, linkage, Ward,
minimum-spanning-tree, or min-cut methods [9, 11, 42, 17, 26, 46, 48]. Usually, these
methods construct a complete similarity graph, which results in O(n?) runtime.

Density-based Algorithms. Density-based algorithms try to separate a similarity graph into
subgraphs of high connectivity values. In the ideal case they can determine the cluster
number k£ automatically and detect clusters of arbitrary shape and size. Representatives:
DBSCAN, MAJORCLUST (see Appendix A), CHAMELEON [44, 8, 19]. The runtime of these
algorithms cannot be stated uniquely since it depends on diverse constraints. Typically, it is
in magnitude of hierarchical algorithms, (’)(nz), or higher.

Meta-Search Algorithms. Meta-search algorithms treat clustering as an optimization prob-
lem where a given goal criterion is to be minimized or maximized [2, 38, 39, 38]. Though
this approach offers maximum flexibility, only less can be stated respecting its runtime.
Representatives: Meta-search driven cluster detection may be realized by genetic algorithms
[35, 12], simulated annealing [21], or a two-phase greedy strategy [50].

3.4. CLUSTERING QUALITY MEASURES

Many clustering algorithms do not return a definite clustering but a set of clusterings from
which the best one has to be chosen. In particular, uniqueness within exemplar-based
algorithms requires information about the cluster number, uniqueness within hierarchi-
cal algorithms requires an agglomeration threshold, or, within density-based algorithms,
uniqueness requires a threshold for interpreting the neighborhood graph. If we had a mea-
sure to assess the quality of a clustering, the ambiguity could be mastered by simply
computing several candidate clusterings and choosing the best one with respect to that
measure. Note, however, that this is not a runtime problem in first place, but a problem
of defining a suited quality measure.

Clustering quality measures evaluate the validity of a clustering and can be grouped into
two categories: external and internal'. The following paragraphs introduce two clustering
quality measures that are used within our experiments.

External Measures. External clustering quality measures use statistical tests to quantify
how well a clustering matches the underlying structure of the data. In our context, the
underlying structure is the known categorization of a document collection D as provided by
a human editor. A broadly accepted external measure is the F'-Measure, which combines
the precision and recall ideas from information retrieval [25].

! Several authors also define relative clustering qualtity measures, which can be derived from internal
measures by evaluating different clusterings and comparing their scores [20].
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Let D represent the set of documents and let C = {C1,...,C}} be a clustering of
D. Moreover, let C* = {Cf,...,C[} designate the human reference classification. Then
the recall of cluster j with respect to class 7, rec(i, j), is defined as |C; N C}|/|C;|. The
precision of cluster j with respect to class i, prec(i, j), is defined as |C; N C}|/|C}|. The
F'-Measure combines both values as follows:

\V)

Fi; = 1

1
prec(i,j) + rec(s,j)

Based on this formula, the overall F'-Measure of a clustering is:

l
_ e
e

i=1

F. .
Imax k{ i}

A perfect clustering matches the given categories exactly and leads to an F'-Measure value
of 1.

Internal Measures. In absence of an external judgment, internal clustering quality measures
must be used to quantify the validity of a clustering. Bezdek presents a thorough analysis
of several internal measures, and, in this paper we rely on a measure from the Dunn Index
family, which came off well in Bezdek’s experiments [4, 3].

LetC = {C1,...,Cy} be aclustering, § : C x C — R{ be a cluster-to-cluster distance
measure, and A : C — Ry be a cluster diameter measure. Then all measures d : C — R
of the form
ming; {6(Ci, Cj) }
max; <1<, {A(Ch)}

are called Dunn Indices. Of course there are numerous choices for § and A, and Bezdek
experienced that the combination of

d(C) =

1

5(Ci. Ci) =
(%) = @1

Z Y(x,y) and

:BECi,yGCj

ey =2 =)

gave reliable results for several data sets from different domains. Here, ) denotes a distance
measure between the objects to be clustered, and c¢; is the centroid of cluster C;. Since we
use the cosine similarity ¢ as similarity measure, we set ¢ = 1 — .

Remarks. As mentioned at the outset, the use of external and internal measures corresponds
to an idealized and realistic experimental scenario respectively: During ad-hoc catego-
rization, only very little is known a-priori about the underlying structure of a document
collection.

4. Experimental Setting and Results

This section reports results of our analysis of clustering algorithms for automatic category
formation. The first two subsections, 4.1 and 4.2, provide interesting information related
to document preprocessing tasks and category separability. The main contribution can be
found in Subsection 4.3, which describes the clustering experiments.
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Table II. Runtime and impact of selected preprocessing steps, depending on the sample
size (1. column). Hardware: Pentium IV 1.7GHz.

#Documents Indexing Compression Compression #Terms # Terms Term
in sample time time ratio (raw)  (reduced) reduction

400 1.80s 0.23s 98.6% 6010 4153 31%

800 2.88s 0.64s 99.0% 8370 5725 32%

1000 3.40s 0.89s 99.1% 9192 6277 32%

For all experiments samples were drawn from the Reuters-21578 text document database
[27]. Note that in this database a considerable part of the documents is assigned to more
than one category. To uniquely measure the classification performance, only single-topic
documents have been considered here. The sample sizes vary between 400, 800, and 1000
documents, and each sample contains documents from exactly 10 different classes. To ac-
count for the biased a-priory probabilities in the class distribution of Reuters-21578, all
samples have been constructed as uniformly distributed.

4.1. PREPROCESSING

The generation of a term vector d for a document d in a sample requires certain preprocess-
ing effort that must not be underestimated. Note that AISEARCH affords these computations
for the results of each query.

Preprocessing includes the reading and parsing of the documents, the elimination of stop
words according to standard stop word lists, the application of Porter’s stemming algorithm
[34], the computation of term frequencies, the creation of compressed index vectors, etc.
Table II shows the runtime of important preprocessing steps, compression ratios, and term
reduction ratios for different sample sizes.

4.2. SUPERVISED LEARNING: CLASSIFICATION PERFORMANCE

Though our main objective is unsupervised text categorization, we performed classification
experiments as well to get an idea the difficulty of the learning problem. For this purpose a
linear classifier in the form of a neural network was employed, which forced us to substan-
tially reduce the dimension of the feature space. In this connection, the LSI-reduction with
the target dimensions of 40, 20, and 10 was applied.

The LSI-reduction did not include the test documents; in fact, they were projected into
the reduced feature space. Note that if LSI were performed on a matrix which contained
both the test and the training documents, knowledge of the test data would be compiled into
the LSI-reduced training data. As a consequence, the resulting classifier would be biased
towards an increased classification performance.

Aside from the LSI-transformed features we also made experiments with randomly
chosen indices of the document vectors. Table III comprises the results.

4.3. UNSUPERVISED LEARNING: CLUSTERING PERFORMANCE

This subsection reports the categorization performance and the runtime of the follow-
ing clustering algorithms: k-Means (exemplar-based), Single-Link (hierarchical), Group-
Average (hierarchical), and MAJORCLUST (density-based). The algorithms are tested
within an idealized and a realistic scenario (explained below) and under both the t¢f-
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Table III. Classification performance of the linear classifier, depending on the sample
size (1. column), the number of features (3. column), and the feature reduction method
(4. column).

#Documents in sample ~ #Classes  #Features Feature reduction  correctly

(training/test) in sample method classified
400/100 10 40 LSI 0.92
400/100 10 40 Random 0.16
800/200 10 40 LSI 0.86
800/200 10 40 Random 0.23
800/200 10 20 LSI 0.83
800/200 10 20 Random 0.11
800/200 10 10 LSI 0.75
800/200 10 10 Random 0.11

Table IV. Categorization performance of the clustering algorithms under the ¢f-document
model. The maximum F'-Measure (4. column) corresponds to the ideal scenario, the 5. and
the 6. column correspond to the realistic scenario.

Clustering #Documents #Classes [F'-Measure F-Measure  [F'-Measure
algorithm insample  insample maximum DunnIndex elbow criterion
k-Means 1000 10 0.75 0.35 0.69
Single-Link 1000 10 0.18 0.18 0.18
Group-Average 1000 10 0.63 0.18 0.18
MAJORCLUST 1000 10 0.63 0.51 0.57

document model and the ¢f-idf-document model. Table IV and Table V comprise the
experiments for the former and the latter document model respectively.

Each clustering algorithm is applied within a wide range of its respective variable pa-
rameter p while paying attention to special algorithmic properties and strengths. From the

resulting set of clusterings C,C = {C(p1), . .., C(pn)}, the optimum clustering with respect
to a given quality measure Q, Q : C — R is chosen:
q = argmax,, ,—p,....pn Q(C) (1

In our setting, the variations of p relate to the following parameters: For k-Means, vari-
ations in the cluster number k, k = 1,...,20 and three random restarts for each k are
considered. For Single-Link and Group-Average, all clusterings of the last 20 agglomera-
tion levels are analyzed. For MAJORCLUST, the threshold for edge weights is successively
advanced within 20 steps, and three random restarts for each threshold are performed.

A matter of particular interest is the distinction between an idealized and a realistic
scenario. Within the idealized scenario, the best clustering of an algorithm is determined
by means of the F-Measure. This gives us information about the quality that could be
achieved by the algorithm and is reported in the 4. column in Table IV and Table V.
Note, however, that the computation of the F'-Measure requires knowledge about the true
document classification—which, of course, is unknown when categorizing query results.

Within the realistic scenario, the quality of a clustering is assessed by means of internal
measures. Put another way, the optimum parameters for the cluster number, the agglomer-
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ation level, and the edge weight threshold must be estimated. From the various number of
internal measures we have chosen the approved Dunn Index and the variance drop (elbow
criterion) to evaluate the clustering quality, say, to compute Equation (1). To get an idea of
the reliability of these measures, we did also compute the F'-Measure of that clustering that
maximizes the respective internal measure (see the 5. and the 6. column in the tables).

All clustering experiments were performed on a Pentium IV 1.7GHz; Table VI shows
selected numbers of the averaged runtime of the investigated algorithms. It should be noted
that our text processing and classification environment is implemented in Java—but has
been developed in the face of efficiency. Among others, we developed tailored classes for
symbol processing, efficient vector updating, and compressed term vectors.

Note that the standard versions of Single-Link, Group-Average, and MAJORCLUST op-
erate on a completely connected distance or similarity graph. Figure 3 shows how the edge
weights are distributed in our samples. Of course, the creation of the graph imposes a severe
performance burden, which can also be observed in the 4. column of Table VI.

1e+06

100000 r

10000 |

1000

100

10

0 0.2 0.4 0.6 0.8 1
Edge weight (similarity)

Figure 3. Distribution of edge weights under the ¢f-document model in a completely connected graph
with thousand nodes; nodes correspond to documents, and edge weights correspond to similarities.
Observe the logarithmic scale.

5. Summary

This article introduced AISEARCH, a Web search interface that combines state-of-the-
art technology for query analysis, category formation, category labeling, and category
visualization. Because of its great importance, a major part of this article is devoted

Table V. Categorization performance of the clustering algorithms under the
tf-idf-document model. The maximum F'-Measure (4. column) corresponds to the
ideal scenario, the 5. and the 6. column correspond to the realistic scenario.

Clustering #Documents #Classes F-Measure F-Measure  [F'-Measure
algorithm insample  insample maximum DunnIndex elbow criterion
k-Means 1000 10 0.75 0.75 0.56
Single-Link 1000 10 0.18 0.18 0.18
Group-Average 1000 10 0.30 0.18 0.30

MAJORCLUST 1000 10 0.80 0.73 0.70
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Table VI. Runtime of the clustering algorithms. Hardware: Pentium IV 1.7GHz.

Clustering #Documents  Preprocessing ~ Graph creation  Clustering
algorithm in sample time time time
k-Means 1000 4.29s - 2.33s
Single-Link 1000 4.29s 5.78s 1.58s
Group-Average 1000 4.29s 5.78s 1.58s
MAJORCLUST 1000 4.29s 5.78s 2.38s

to the category formation step. To automate this step two key problems must be ad-
dressed: Efficiency—category formation must be performed at minimum detention, and
nescience—no predefined categorization scheme is given.

Clustering algorithms are considered as a technology that is capable of mastering these
challenges, and this paper provides selected results of a comprehensive analysis. We com-
pared the categorization performance of exemplar-based, hierarchical, and density-based
clustering algorithms within an idealized and a realistic scenario and under two document
models. The main result of the experiments can be summarized as follows.

Aside from the Single-Link algorithm, the categorization performance for samples
drawn from the Reuters-21578 text database achieves acceptable values—especially in an
ideal scenario, where an external clustering quality measure is given. Moreover, our analysis
shows that even in a realistic scenario reasonable F'-Measure values can be achieved. Here,
a crucial role comes up to the internal clustering quality measure, which can completely ruin
smart clustering technology. The presented figures give an example: The well-known Dunn
Index performs not better than a simple variance-based elbow criterion—or, put another
way, a quality measure must be chosen with respect to the document model, the similarity
measure, and the clustering algorithm.

The AISEARCH system provides efficient implementations of several clustering algo-
rithms and quality measures. Its response time is about 2s for a query on a Pentium IV
1.7Ghz; this time includes the query analysis and the preprocessing, categorization, label-
ing, and visualization of 200 results. AISEARCH has left its prototype stage and shall be
deployed in a productive environment in the near future.

Appendix

A. The MAJORCLUST Algorithm

MAJORCLUST is a new clustering algorithm presented in [44]. It strives at a maximization
of a graph’s weighted partial connectivity A, which is defined as follows.

Definition 2 (A) LetC = {C1,...,C}} be a clustering of a weighted graph G = (V, E, ).

k
A(C) = Z ’Cz’ . )\i7
=1

where \; designates the weighted edge connectivity of G(C;). The weighted edge connec-
tivity, A, of a graph G = (V, E, ) is defined as min 3y, ,yepr ¢(u, v) where E' C E and
G' = (V,E \ E') is not connected. \ is also designated as the capacity of a minimum cut
of G.
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Initially, MAJORCLUST assigns each node n of a graph its own cluster ¢(n). Within
the following re-clustering steps, a node adopts the same cluster as the majority of its
weighted neighbors. If several such clusters exist, one of them is chosen randomly. If
re-clustering comes to an end, the algorithm terminates. Figure 4 shows the different
assignment situations pictorially.

MAJORCLUST.

Input. A graph G = (V, E, ).
Output. A function ¢ : V' — N, which assigns a cluster number to each node.

(1) n=0,t=false

(2) YveVdon=n+1,c(v) =nend
(3) while t = false do

@ t = true

B) WYweVdo

(©) " = argmax; i:l,...,n< Z @(Uav)>

{'lh'z)})ef
7 if c(v) # c* then c(v) = ¢*,t = false
(8) end
(9) end

-5

@%?

@ ~
Figure 4. Tlustration of Step 6+7 in MAJORCLUST: A definite majority decision (left top), and an indefinite

decision (left bottom) when assigning a single node to a cluster. The right-hand side shows a situation where a
node changes its cluster.

‘.
©

The runtime complexity of MAJORCLUST is O(|E| - |Cinaz|), Wwhere Cpyar €V des-
ignates a maximum cluster. Note that choosing a node v € V in Step (5) and choosing
between clusters with the same attraction in Step (6) must happen randomly.

MAJORCLUST can be classified as non-hierarchical, exclusive cluster algorithm; it op-
erationalizes an implicit density criterion and has the salient property that it automatically
determines the number of clusters. MAJORCLUST finds a fast, but possibly suboptimal
solution for the problem of A-maximization.
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