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Abstract Cluster analysis is the art of detecting groups of similar objects in large data sets—
without having specified these groups by means of explicit features. Among the various cluster
algorithms that have been developed so far the density-based algorithms count to the most ad-
vanced and robust approaches.

However, this paper shows that density-based cluster analysis embodies no principle with clearly
defined algorithmic properties. We contrast the density-based cluster algorithms DBSCAN and
MajorClust, which have been developed having different clustering tasks in mind, and whose
strengths and weaknesses can be explained against the background of the dimensionality of the
data to be clustered.

Our motivation for this analysis comes from the field of information retrieval, where cluster anal-
ysis plays a key role in solving the document categorization problem. The paper is organized as
follows: Section 1 recapitulates the important principles of cluster algorithms, Section 2 discusses
the density-based algorithms DBSCAN and MajorClust, and Section 3 illustrates the strengths
and weaknesses of both algorithms on the basis of geometric data analysis and document catego-
rization problems.
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1 Cluster Algorithms

This section gives a short introduction to the problem of cluster analysis and outlines existing cluster
approaches along the classical taxonomy. Moreover, it presents an alternative view to cluster algo-
rithms, which is suited to explain different characteristics of their behavior.

1.1 The Classical Taxonomy of Cluster Algorithms

Definition 1 (Clustering). Let D be a set of objects. A clustering C ⊆ {C | C ⊆ D} of D is a
division of D into sets for which the following conditions hold:

⋃
Ci∈C Ci = D, and ∀Ci, Cj ∈ C :

Ci ∩ Cj 6=i = ∅. The sets Ci are called clusters.

With respect to the set of objects D the following shall be stipulated:

– |D| = n

– The objects in D represent points in the Euclidean space of dimension m.
– Based on a metric d : D × D → R, the similarity or the dissimilarity between any two points in

D can be stated.
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Figure 1. The classical taxonomy of cluster algorithms.

A cluster algorithm takes a set D of objects as input and operationalizes a strategy to generate a
clustering C. Informally stated, the overall objective of a cluster algorithm is to maximize the inner-
cluster similarity and to minimize the intra-cluster similarity. The fulfillment of this objective can be
quantified by a statistical measure like the Dunn index, the Davies-Bouldin index, or the Λ-measure
[3, 5, 34].

Various cluster algorithms have been devised so far; usually they are classified with respect to their
underlying algorithmic principle, as shown in Figure 1. Note that among these principles only the
meta-search-controlled algorithms pursue a strategy of global optimization; hierarchical, iterative, as
well as density-based algorithms are efficient implementations of particular heuristics. In the following
we shortly outline the working principles.
Hierarchical Algorithms. Hierarchical algorithms create a tree of node subsets by successively subdi-
viding or merging the objects in D. In order to obtain a unique clustering, a second step is necessary
that prunes this tree at adequate places. Agglomerative hierarchical algorithms start with each ver-
tex being its own cluster and union clusters iteratively. For divisive algorithms on the other hand, the
entire graph initially forms one single cluster which is successively subdivided. Representatives are k-
nearest-neighbor, linkage, Ward, minimum-spanning-tree,or min-cut methods . Usually, these methods
construct a complete similarity matrix, which results in O(n2) runtime [8, 10, 32, 17, 25, 38, 40].
Iterative Algorithms. Iterative algorithms strive for a successive improvement of an existing cluster-
ing and can be further classified into exemplar-based and commutation-based approaches. The former
assume for each cluster a representative, i. e. a centroid (for interval-scaled features) or a medoid (oth-
erwise), to which the objects become assigned according to their similarity. Iterative algorithms need
information with regard to the expected cluster number, k. Well-known representatives are k-Means,
k-Medoid, Kohonen, Fuzzy-k-Means. The runtime of these methods is O(nkl), where l designates the
number of iterations to achieve convergence [16, 27, 20, 23, 39, 13, 14, 24, 15, 36].

Commutation-based approaches take a random clustering or the outcome of another cluster algo-
rithm as starting point and successively exchange nodes between the clusters until some cluster quality
criterion is fulfilled [9, 21, 19].
Density-based Algorithms. Density-based algorithms try to separate the set D into subsets of similar
densities. In the ideal case they can determine the cluster number k automatically and detect clusters
of arbitrary shape and size. Representatives are DBSCAN, MajorClust, or Chameleon. The runtime
of these algorithms is in magnitude of hierarchical algorithms, i, e., O(n2), or even O(n log(n)) for
low-dimensional data if efficient data structures are employed [35, 7, 18].
Meta-Search Algorithms. Meta-search algorithms treat clustering as an optimization problem where
a global goal criterion is to be minimized or maximized. Though this approach offers maximum
flexibility, there runtime is typically unacceptably high. Meta-search driven cluster detection may
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Table 1. Characterization of cluster algorithms with respect to the number of investigated items (points, clusters)
and their ability to recover from suboptimum decisions.

be operationalized by genetic algorithms, simulated annealing, or a two-phase greedy strategy
[2, 30, 31, 30, 29, 11, 22, 41].

1.2 An Alternative View to Cluster Algorithms

Experience has shown that—with respect to the clustering quality—density-based cluster algorithms
outperform hierarchical as well as iterative approaches.3 By definition, globally optimizing cluster
algorithms will produce better clustering results; however, they play only an inferior role in practice:

(1) their runtime performance is usually unacceptable compared to the other approaches,
(2) for most clustering problems it is difficult to formally specify a global goal criterion.

Hierarchical cluster algorithms are well suited to detect complex structures in the data; however,
they are susceptible to noise. Both properties result from the fact that—based on a pairwise similarity
comparison of any two items—nearest neighbors are always fusioned. Iterative algorithms behave
robustly with respect to noise but preferably detect spherical clusters. Density-based cluster algorithms
provide a high flexibility with respect to cluster forms and address the problem of noise detection by
simultaneously examining several items. Table 1 summarizes the properties.

The following section presents two density-based cluster algorithms in greater detail and discusses
their properties.

2 Density-based Cluster Analysis with DBSCAN and MajorClust

A density-based cluster algorithm operationalizes two mechanisms:

(1) one to define a region R ⊆ D, which forms the basis for density analyses;
(2) another to propagate density information (the provisional cluster label) of R.

In DBSCAN a region is defined as the set of points that lie in the ε-neighborhood of some point
p. Cluster label propagation from p to the other points in R happens if |R| exceeds a given M inP ts-
threshold (cf. Figure 2). The following advantages (+) and disadvantages (–) are bound up with this
concept:

+ good clustering results for geometrical and low dimensional data, if cluster distances can be in-
ferred unambiguously from the density information in D,

3 With respect to runtime performance density-based algorithms can be considered being in between hierarchical
and iterative approaches.
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Figure 2. Illustration of DBSCAN’s cluster process; to obtain the shown clustering result a MinPts-value from
{3, 4, 5} is required.

+ efficient runtime behavior of O(n log(n)), if the R-tree data structure is employed to answer region
queries for D,

– parameters that characterize the density (ε, M inP ts) are problem-specific and must be chosen
manually,

– if great variations in the point density or unreliable similarity values require a large ε-neighbor-
hood, the density analysis becomes questionable: DBSCAN implements no intra-region-distance
concept, and all points in the ε-neighborhood of some point are treated equally.

– in high dimensions (> 10-20), the underlying R-tree data structure degenerates to a linear search
and makes an MDS-embedding of D necessary, which affects both runtime and classification
performance.

In MajorClust a region is not of a fixed size but implicitly defined by the current clustering C. While
DBSCAN uses the point concentration in ε-neighborhoods to estimate densities, MajorClust derives
its density information from the attraction a cluster C exerts on some point q, which is computed as
the sum of all similarity values ϕ(q, p), p ∈ C. Cluster label propagation from C to q happens if
the attraction of C with respect to q is maximum among the attraction values of all clusters in C (cf.
Figure 3). Observe that the “true” density values for some data set D evolve during the clustering
process. The following advantages (+) and disadvantages (–) are bound up with this concept:

+ robust for narrow data sets, for high-dimensional data, and for unreliable similarity values since
the density computation does not rely on a fixed number of points and does consider distance
information as well,

+ adapts automatically to different problems: no parameters must chosen manually,
– with respect to runtime not so efficient as DBSCAN, since points are re-labeled several times,
– clusters that are extended in one dimension are not reliably identified, since during re-labeling a

tie-situation may occur (“tie-effect”).

Ü Ü*

point under investigation with
illustrated cluster attractions:

Figure 3. Illustration of MajorClust’s clustering process; each cluster C exerts attraction to some point q depend-
ing on both its size, |C|, and distance to q.
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The above discussion reveals the strong and weak points of both algorithms, and the experiments
presented in Section 3 will illustrate this behavior at realistic cluster problems. The next two subsec-
tions give a pseudo-code specification of both algorithms.

2.1 DBSCAN

DBSCAN operationalizes density propagation according to the principle “accessibility from a core
point”: Each point whose ε-neighborhood contains more points than MinPts is called a core point.
Each point which lies in an ε-neighborhood of a core points p adopts the same cluster label as p.
The DBSCAN-algorithm propagates this relation through the set D. The algorithm terminates if each
points is either assigned to a certain cluster or classified as noise.

Algorithm DBSCAN.
Input: object set D, region radius ε, density threshold MinPts.
Output: function γ : D → N, which assigns a cluster label to each point.

(01) Label := 1
(02) ∀p ∈ D do γ(p) := ′UNCLASSIFIED ′ enddo
(03) ∀p ∈ D do
(04) if γ(p) = ′UNCLASSIFIED ′ then
(05) if ExpandCluster(D,p,Label , ε,MinPts) = true then Label := Label + 1
(06) endif
(07) enddo

Function ExpandCluster.
Input: object set D, CurrentPoint , Label , ε, MinPts.
Output: true or false.

(01) seeds := regionQuery(D, CurrentPoint , ε)
(02) if |seeds | < MinPts then
(03) γ(CurrentPoint) := ′NOISE ′

(04) return false
(05) else
(06) ∀p ∈ P do γ(p) := Label enddo
(07) seeds := seeds \ {CurrentPoint}
(08) while seeds 6= ∅ do
(09) p := seeds .first()
(10) result := regionQuery(D, p, ε)
(11) if |result| ≥ MinPts then
(12) ∀ResPoint ∈ P do
(13) if γ(ResPoint) ∈ {′UNCLASSIFIED ′, ′NOISE ′} then
(14) if γ(ResPoint) = ′UNCLASSIFIED ′ then seeds := seeds ∪ {ResPoint}
(15) γ(ResPoint) := Label
(16) endif
(17) enddo
(18) endif
(19) seeds := seeds \ {p}
(20) enddo
(21) return true
(22) endif

Remarks. The function regionQuery(D, p, ε) returns all points in the ε-neighborhood of some point p.
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2.2 MajorClust

MajorClust operationalizes density propagation according to the principle “maximum attraction wins”:
The algorithm starts by assigning each point in D its own cluster. Within the following re-labeling
steps, a point adopts the same cluster label as the majority of its weighted neighbors. If several such
clusters exist, one of them is chosen randomly. The algorithm terminates if no point changes its cluster
membership.

Algorithm MajorClust.
Input: object set D, similarity measure ϕ : D × D → [0; 1], similarity threshold t.
Output: function γ : D → N, which assigns a cluster label to each point.

(01) i := 0, ready := false
(02) ∀p ∈ D do i := i + 1, γ(p) := i enddo
(03) while ready = false do
(04) ready := true
(05) ∀q ∈ D do
(06) γ∗ := i if

∑
{ϕ(p, q) | ϕ(p, q) ≥ t and γ(p) = i} is maximum.

(07) if γ(q) 6= γ∗ then γ(q) := γ∗, ready := false
(08) enddo
(09) enddo

Remarks. The similarity thershold t is not a problem-specific parameter but a constant that serves for
noise filtering purposes. Its typical value is 0.3.

3 Illustrative Analysis

This section presents selected results from an experimental analyses of the algorithms DBSCAN and
MajorClust. Further details and additional background information can be found in [4].

3.1 A Low-Dimensional Application: Analysis of Geometrical Data

The left-hand side of Figure 4 shows a map of the Caribbean Islands, the right-hand side shows a
monochrome and dithered version (approx. 20,000 points) of this map, which forms the basis of the
following cluster experiments.

A cluster analysis with DBSCAN requires useful settings for ε and MinPts . Figure 5 shows the
clustering results with selected values for these parameters. Note that in this application the quality of
the resulting clustering was more sensitive with respect to ε than to MinPts .4

4 Ester et al. propose a heuristic to determine adequate settings for ε and MinPts; however, the heuristic is
feasible only for two-dimensional data [7].

Figure 4. Map of the Carribean Islands (left) and its dithered version (right).



Density-based Clustering 51

ε = 5.0, MinPts = 4 ε = 10.0, MinPts = 5ε = 3.0, MinPts = 3

Figure 5. DBSCAN-clusterings of the Caribbean Islands for selected parameter settings.

A cluster analysis with MajorClust does not require the adjustment of special parameters. However,
to alleviate noise effects the algorithm should apply a similarity threshold of (about) 0.3, i. e., discard
all similarity values that are below this threshold. Figure 6 shows an intermediate clustering (left) and
the resulting final clustering (right); obviously not all islands where correctly identified—a fact for
which the formerly explained “tie-effect” is responsible.

3.2 A High-Dimensional Application: Document Categorization

Cluster technology has come into focus in recent years, because it forms the backbone of most docu-
ment categorization applications [33]. At the moment it is hard to say which of the approaches shown
in Figure 1 will do this job best: k-means and bisecting k-means are used because oft their robustness,
the group-average approach produces similar or even better clustering results but is much less effi-
cient, and from the density-based approaches the MajorClust-algorithm has repeatedly proved is high
classification performance especially for short documents [1].

In this place we will report on experiments that rely on the Reuters-21578 corpus, which comprises
texts from politics, economics, culture, etc. that have been carefully assigned to approx. 100 (sub-)
categories by human editors [26]. For our experiments we constructed sub-corpora with 10 categories,
each consisting of 100 documents that belong exclusively to a single category. The selected documents
were transfered into the vector space model (VSM); the necessary pre-processing includes stop-word
filtering, stemming, and the computation of term weights according to the tf -idf -scheme. Note that
the resulting word vectors represent points in a space with more than 10,000 dimensions.

Since DBSCAN relies on the R-tree data structure it cannot process high-dimensional data (see
Subsection 3.3), and multi dimensional scaling (MDS) had to be employed to embed the data into a

Figure 6. Left: Clustering after the first iterations of MajorClust; right: the resulting clustering.
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Figure 7. Classification performance of the algorithms in the document categorization task.

low-dimensional space. To account for effects that result from embedding distortions, MajorClust was
applied to both the high-dimensional and the embedded data. The quality of the generated clusterings
was quantified by the F -measure, which combines the achieved precision- and recall-values relative to
the 10 classes.5

Figure 7 shows the achieved classification performance: The x-axis indicates the number of di-
mensions of the embedding space (from 2 to 13), the y-axis indicates the F -measure value. The hori-
zontal line with an F -measure value of 0.72 belongs to MajorClust when applied to the original, high-
dimensional data; with respect to the embedded data MajorClust dominates DBSCAN—independent
of the dimension. In particular, it should be noted that the shown (high) F -measure values for DB-
SCAN are the result of extensive experimenting with various parameter settings.

Observe in Figure 7 that embedding can actually improve classification performance: If the num-
ber of dimensions in the embedding space equals the cluster number or is slightly higher, the noise-
reduction effect compensates for the information loss due to the embedding error.6 Put another way:
Each dimension models a particular, hidden concept. This effect can be utilized for retrieval purposes
and became known as Latent Semantic Indexing [6].

3.3 A Note on Runtime Performance

Both algorithms implement a density propagation heuristic that analyzes a region R with k contiguous
points (recall Table 1). Based on R, DBSCAN performs a simple point count, while MajorClust eval-
uates the similarities between all points in R and some point q. Given an efficient means to construct
the region R as ε-neighborhood of a point p, the runtime of both algorithms is in the same order of
magnitude (cf. Figure 8).

To answer region queries, the R-tree data structure was employed in the above experiments [12].
For low-dimensional data, say, m < 10, this data structure finds the ε-neighborhood for some p in
O(log(n)), with n = |D|. As a consequence, the runtime of both algorithms is in O(n log(n)). Since

5 An F -measure value of 1 indicates a perfect match; however, F -measure values > 0.7 must be considered as
certainly good since we are given a multi-class assignment situation where 10 classes are to be matched.

6 The embedding error is called “stress” in the literature on the subject.
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Figure 8. Runtime-behavior of the algorithms on two-dimensional data.

MajorClust evaluates the attraction of each point several times, its runtime is a factor above the runtime
of DBSCAN.

Note that the R-tree data structure degenerates for higher dimensions (m > 100) and definitely
fails to handle the high-dimensional vector space model.7 I. e., a high-dimensional cluster analysis task
like document categorization cannot directly be tackled with DBSCAN but requires a preceding data
embedding step. At the moment the fastest embedding technology is the MDS-variant described in
[28], which has not been tested for high-dimensional document models yet.

Summary and Current Work

This paper presented the classical and a new view to cluster technology and then delved into a com-
parison of the density-based cluster algorithms DBSCAN and MajorClust. This comparison is the first
of its kind and our discussion as well as the experiments are interesting for the following reasons:
(1) Density-based cluster analysis should be considered as a collective term for (heuristic) approaches

that quantify and propagate density information. In particular, no uniform statements regarding
runtime-behavior or suited problem classes can be made.

(2) Since strengths and weaknesses of (density-based) cluster algorithms can be explained with the
dimensionality of the data, a better mapping from algorithms to cluster problems may be devel-
oped.

Our current work concentrates on runtime issues of density-based cluster analysis for high-
dimensional data: We investigate how the technology of Fuzzy fingerprints can be utilized to speed
up the region query task; the key challenge in this connection is to handle the inherent incompleteness
of this retrieval technology.
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