
Principles of Hash-based Text Retrieval

Benno Stein
Faculty of Media, Media Systems

Bauhaus University Weimar
99421 Weimar, Germany

benno.stein@medien.uni-weimar.de

ABSTRACT
Hash-based similarity search reduces a continuous similarity rela-
tion to the binary concept “similar or not similar”: two feature vec-
tors are considered as similar if they are mapped on the same hash
key. From its runtime performance this principle is unequaled—
while being unaffected by dimensionality concerns at the same
time. Similarity hashing is applied with great success for near sim-
ilarity search in large document collections, and it is considered as
a key technology for near-duplicate detection and plagiarism anal-
ysis.

This papers reveals the design principles behind hash-based
search methods and presents them in a unified way. We introduce
new stress statistics that are suited to analyze the performance of
hash-based search methods, and we explain the rationale of their
effectiveness. Based on these insights, we show how optimum hash
functions for similarity search can be derived. We also present new
results of a comparative study between different hash-based search
methods.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIEVAL]: Con-
tent Analysis and Indexing; H.3.3 [INFORMATION STOR-
AGE AND RETRIEVAL]: Information Search and Retrieval; F
[Theory of Computation]: MISCELLANEOUS

General Terms
Theory, Performance

Keywords
hash-based similarity search, locality-sensitive hashing, dimension
reduction

1. INTRODUCTION AND BACKGROUND
This paper contributes to an aspect of similarity search that re-

ceives increasing attention in information retrieval: The use of
hashing to significantly speed up similarity search. The hash-based
search paradigm has been applied with great success for the follow-
ing tasks:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
Copyright 2007 ACM 978-1-59593-597-7/07/0007 ...$5.00.

• Near-Duplicate Detection. Given a (very large) corpus D,
find all documents whose pairwise similarity is close to 1
[29, 13].

• Plagiarism Analysis. Given a candidate document d and a
(very large) corpus D, find all documents in D that contain
nearly identical passages from d [27].

From the retrieval viewpoint hash-based text retrieval is an in-
complete technology. Identical hash keys do not imply high sim-
ilarity but indicate a high probability of high similarity. This fact
suggests the solution strategy for the aforementioned tasks: In a
first step a candidate set Dq ⊂ D, |Dq | � |D|, is constructed
by a hash-based retrieval method; in a second step Dq is further
investigated by a complete method.

The entire retrieval setting can be formalized as follows. Given
are (i) a set D = {d1, . . . , dn} of documents each of which is de-
scribed by an m-dimensional feature vector, x ∈ Rm, and (ii) a
similarity measure, ϕ : Rm × Rm → [0; 1], with 0 and 1 indi-
cating no and maximum similarity respectively. ϕ may rely on the
l2 norm or on the angle between two feature vectors. For a query
document dq, represented by feature vector xdq , and a similarity
threshold θ ∈ [0; 1], we are interested in the documents of the θ-
neighborhood Dq ⊆ D of dq, which is defined by the following
condition:

d ∈ Dq ⇔ ϕ(xdq ,xd) > θ,

where xd denotes the feature vector of d. Within informa-
tion retrieval applications the documents are represented as high-
dimensional term vectors with m > 104, typically under the vector
space model. We distinguish between the real documents, d ∈ D,
and their representations as feature vectors, since one and the same
document may be analyzed under different models, different repre-
sentations, and different similarity measures, as will be the case in
this paper.

In low-dimensional applications, say, m < 10, the retrieval
problem can be efficiently solved with space-partitioning meth-
ods like grid-files, KD-trees, or quad-trees, as well as with data-
partitioning index trees such as R-trees, Rf-trees, or X-trees. For
significantly larger m the construction of Dq cannot be done better
than by a linear scan in O(|D|) [28]. However, if one accepts a
decrease in recall, the search can be dramatically accelerated with
similarity hashing. As will be discussed later on, the effectiveness
of similarity hashing results from the fact that the recall is con-
trolled in terms of the similarity threshold θ for a given similarity
measure ϕ.

To motivate the underlying ideas consider an m-dimensional
document representation under the vector space model with a tf -
weighting scheme. An—admittedly—very simple similarity hash

function hϕ, hϕ : {x1, . . . ,xn} → N, could map each term vec-
tor x on a single number hϕ(x) that totals the number of those
terms in x starting with the letter “a”. If hϕ(xd1) = hϕ(xd2) it is
assumed that d1 and d2 are similar.

Though this example is simple, it illustrates the principle and the
problems of hash-based similarity search:

• If hϕ is too generic it will allegedly claim very dissimilar
documents as similar, say, it will return a large number of
false positives.

• If hϕ is too specific the understanding of similarity will be-
come too narrow. Take MD5-hashing as an example, which
can only be used to model the similarity threshold θ = 1.

If hϕ is purposefully designed and captures the gist of the feature
vectors, search queries can be answered in virtually constant time,
independent of the dimension of x.

1.1 Perfect Similarity Sensitive Hashing
First, we want to point out that hash-based similarity search is a

space partitioning method. Second, it is interesting to note that, at
least in theory, for a document set D and a similarity threshold θ
a perfect space partitioning for hash-based search can be stated.
To make this plausible we have formulated hash-based similarity
search as a set covering problem. This generic view differs from the
computation-centric descriptions found in the relevant literature.

Consider for this purpose the Rm being partitioned into over-
lapping regions such that the similarity of any two points of the
same region is above θ, where each region is characterized by a
unique key κ ∈ N. Moreover, consider a multivalued hash func-
tion, h∗

ϕ : Rm → P(N), which is “perfectly similarity sensitive”
with regard to threshold θ.1 ∀d1, d2 ∈ D :`

h∗
ϕ(xd1) ∩ h∗

ϕ(xd2)
´ 	= ∅| {z }

α

⇔ ϕ(xd1 ,xd2) > θ| {z }
β

(1)

Rationale and Utilization. h∗
ϕ assigns each feature vector xd a

membership set Nd ∈ P(N) of region keys, whereas two sets,
Nd1 , Nd2 , share a key iff xd1 and xd2 have a region in common.
Figure 1, which is used later on in a different connection, serves as
an illustration.

Based on h∗
ϕ we can organize the mapping between all region

keys K, K :=
S

d∈D Nd, and documents with the same region key
as a hash table h, h : K → P(D). Based on h the θ-neighborhood
Dq of dq can be constructed in O(|Dq |) runtime: 2

Dq =
[

κ∈h∗
ϕ(xdq)

h(κ) (2)

Observe that h∗
ϕ operationalizes both perfect precision and per-

fect recall. For a set D that is completely known and time-invariant
such a function may be found. However, in most cases the equiva-
lence relation of Equation (1), α ⇔ β, cannot be guaranteed:

	⇒ If β is not a conclusion of α, Dq contains documents that do
not belong to the θ-neighborhood of dq: the precision is < 1.

	⇐ If α is not a conclusion of β, Dq does not contain all docu-
ments from the θ-neighborhood of dq: the recall is < 1.

1For the time being only the existence of such a partitioning along
with a hash function is assumed, not its construction.
2In most practical applications O(|Dq |) is bound by a small con-
stant since |Dq | � |D|. The cost of a hash table access h(κ) is
assessed with O(1); experience shows that for a given application
hash functions with this property can always be stated [7].

Current research is concerned with the development of similarity
hash functions that are robust in their behavior, efficient to be com-
puted, and, most importantly, that provide an adjustable trade-off
between precision and recall.

1.2 Contributions of the Paper
Our contributions relate to retrieval technology in general; they

have been developed and analyzed with focus on text retrieval tasks
under arbitrary classes of vector space models. In detail:

• The construction principles that form the basis of most hash-
based search methods are revealed, exemplified, and related
to the statistical concepts of precision and recall (Section 2).

• The relation between hash-based search methods and op-
timum embeddings is analyzed. New stress statistics are
presented that give both qualitative and quantitative insights
into the effectiveness of similarity hashing (Subsection 3.1
and 3.2).

• Based on a manipulation of the original similarity matrix it
is shown how optimum methods for hash-based similarity
search can be derived in closed retrieval situations (Subsec-
tion 3.3).

• New results of a comparative study between different hash-
based search methods are presented (Section 4). This analy-
sis supports the theoretical considerations and the usefulness
of the new stress statistics developed in Section 3.

2. HASH-BASED SEARCH METHODS
Despite the use of sophisticated data structures nearest neigh-

bor search in D degrades to a linear search if the dimension of the
feature vectors is around 10 or higher. If one sacrifices exactness,
that is to say, if one accepts values below 1 for precision and re-
call, the runtime bottleneck can be avoided by using hash-based
search methods. These are specifically designed techniques to ap-
proximate near(est) neighbor search within sublinear runtime in the
collection size |D|.
2.1 Related Work

Only few hash-based search methods have been developed so
far, in particular random projection, locality-sensitive hashing, and
fuzzy-fingerprinting [20, 18, 11, 26]; they are discussed in greater
detail in Subsection 2.3 and 2.4.

As will be argued in Subsection 2.2, hash-based search meth-
ods operationalize—apparently or hidden—a means for embedding
high-dimensional vectors into a low-dimensional space. The in-
tended purpose is dimension reduction while retaining as much as
possible of the similarity information. In information retrieval em-
bedding technology has been developed for the discovery of hid-
den semantic structures: a high-dimensional term representation
of a document is embedded into a low-dimensional concept space.
Known transformation techniques include latent semantic index-
ing and its variants, probabilistic latent semantic analysis, iterative
residual rescaling, or principal component analysis. The concept
representation shall provide a better recall in terms of the semantic
expansion of queries projected into the concept space.

Embedding is a vital step within the construction of a similar-
ity hash function hϕ. Unfortunately, the mentioned semantic em-
bedding technology cannot be applied in this connection, which is
rooted in the nature of the use case. Hash-based search focuses
on what is called here ”open” retrieval situations, while semantic
embedding implies a “closed” or “semi-closed” retrieval situation.

Un-
biased

Biased

Open retrieval situation (Semi-)closed retrieval

Locality sensitive hashing [11] MDS with cosine similarity [9]
(latent semantic indexing)

p-stable LSH [8] Non-metric MDS [21]

LSH forest [3] PCA [19]

Fuzzy-fingerprinting [26] Probabilistic LSI [16]

Vector approximation [28] Autoencoder NN [15]

Shingling [4] Iterative residual rescaling [1]

Locality preserv. ind., LPI [12]

Orthogonal LPI [5]

Table 1: Classification of embedding paradigms used for index-
ing in information retrieval.

This distinction pertains to the knowledge that is compiled into the
retrieval function ρ : Q × D → R, where Q and D designate
the computer representations of the sets Q and D of queries and
documents respectively.

• Open Retrieval Situation. Q and D are unknown in advance.
ρ relies on generic language concepts such as term distribu-
tion, term frequency, or sentence length. An example is the
vector space model along with the cosine similarity measure.

• Closed Retrieval Situation. Q and D, and hence Q and D are
known in advance. ρ models semantic dependencies found in
D with respect to Q. An example is an autoencoder neural
network applied for category identification in D [15].

• Semi-Closed Retrieval Situation. Q is unknown and D is
known in advance. ρ models semantic dependencies of D
and expands a query q ∈ Q with respect to the found struc-
ture. An example is PLSI.

We propose the scheme in Table 1 to classify embedding meth-
ods used in information retrieval. The scheme distinguishes also
whether or not domain knowledge is exploited within the embed-
ding procedure (unbiased versus biased). E. g., locality sensitive
hashing works on arbitrary data, while fuzzy-fingerprinting as well
as shingling exploit the fact that the embedded data is text. A simi-
lar argumentation applies to MDS and probabilistic LSI.

Aside from their restriction to (semi-)closed retrieval most of the
embedding methods in the right column of Table 1 cannot be scaled
up for large collections: they employ some form of spectral decom-
position, which is computationally expensive.

2.2 Generic Construction Principle of hϕ

We developed a unified view on hash-based search methods by
interpreting them as instances of a generic construction principle,
which comprises following steps:

1. Embedding. The m-dimensional feature vectors of the docu-
ments in D are embedded in a low-dimensional space, striv-
ing for minimum distortion. The resulting k-dimensional
feature vectors shall resemble the distance ratios, at least the
order of the pairwise inter-document distances, as close as
possible.3

2. Quantization. The real-valued components of the embedded
feature vectors are mapped onto a small number of values.

3. Encoding. From the k quantized components a single num-
ber is computed, which serves as hash code.

3Against the analysis presented in Section 3, the concept of opti-
mality implied here must be seen more differentiated.

Some or all of these steps may be repeated for one and the same
original feature vector x in order to obtain a set of hash codes for x.
The next subsection exemplifies this construction principle for two
hash-based search methods: locality-sensitive hashing and fuzzy-
fingerprinting. Subsection 2.4 explains the properties of hash-based
search methods in terms of the precision and recall semantics.

2.3 A Unified View to Locality-Sensitive
Hashing and Fuzzy-Fingerprinting

Locality-sensitive hashing (LSH) is a generic framework for the
construction of hash-based search methods. To realize the embed-
ding, a locality-sensitive hash function hϕ employs a family Hϕ

of simple hash functions h, h : Rm → N. From Hϕ a set of
k functions is chosen by an independent and uniformly distributed
random choice, where each function is used to compute one com-
ponent of the embedding y of an original vector x. Several hash
families Hϕ that are applicable for text-based information retrieval
have been proposed [6, 8, 3]. Our focus is on the approach of Datar
et. al. [8], which maps a feature vector x to a real number by com-
puting the dot product aT · x. a is a random vector whose compo-
nents are chosen from an α-stable probability distribution.4

Quantization is achieved by dividing the real number line into
equidistant intervals of width r each of which having assigned a
unique natural number. The result of the dot product is identified
with the number of its enclosing interval.

Encoding can happen in different ways and is typically done by
summation; the computation of h

(ρ)
ϕ for a set ρ of random vectors

a1, . . . ,ak reads as follows:

h(ρ)
ϕ (x) =

kX
i=1

—
aT

i · x + c

r

�
,

where c ∈ [0, r] is a randomly chosen offset of the real number line.
A multivalued hash function repeats the outlined steps for different
sets ρ1, . . . , ρl of random vectors.

Fuzzy-fingerprinting (FF) is a hash-based search method specif-
ically designed for text-based information retrieval. Its under-
lying embedding procedure can be understood as an abstraction
of the vector space model and happens by “condensing” an m-
dimensional term vector x toward k prefix classes. A prefix class
comprises all terms with the same prefix; the components of the
embedded feature vector y quantify the normalized expected devi-
ations of the k chosen prefix classes.5

Quantization is achieved by applying a fuzzification scheme, ρ,
which projects the exact deviations y1, . . . , yk on r deviation inter-
vals: ρ : R → {0, . . . , r − 1}

Encoding is done by computing the smallest number in radix r

notation from the fuzzified deviations; the computation of h
(ρ)
ϕ for

a particular fuzzification scheme ρ reads as follows:

h(ρ)
ϕ (x) =

kX
i=1

ρ(yi) · ri−1,

where yi is the normalized expected deviation of the i-th prefix
class in the original term vector x. Similar to LSH, a multivalued
hash function repeats the quantization and encoding steps for dif-
ferent fuzzification schemes, ρ1, . . . , ρl.
4α-stability guarantees locality sensitivity [17, 23]. An example
for an α-stable distribution is the Gaussian distribution.
5For the normalization the British National Corpus is used as ref-
erence. The BNC is a 100 million word collection of written and
spoken language from a wide range of sources, designed to repre-
sent a wide cross-section of current British English [2].

15

16

14

12

1713

...

18

24

26

23

22

27

...

...

hϕ(xd1) = {13, 24}

hϕ(xd2) = {14, 24}

hϕ(xd3) = {16, 24}

hϕ(xd4) = {16, 26}xd1 xd4xd3xd2

hϕ
(1)

hϕ
(2)

Figure 1: A space partitioned into overlapping regions, hinted as two grids of shaded and outlined hexagons. Each region is charac-
terized by a unique key; points in the same region have a similarity of at least θ. A similarity hash function hϕ at level θ assigns a set
of region keys to a feature vector xd, implying the following semantics: If and only if two feature vectors share a region key they are
considered having a similarity of at least θ. In the example hϕ(x) = {h(1)

ϕ (x), h
(2)
ϕ (x)} operationalizes both a precision and a recall

of 1. For readability purposes the keys of the shaded regions are shown underlined.

2.4 Controlling Retrieval Properties
The most salient property of hash-based search is the simplifi-

cation of a continuous similarity function ϕ to the binary concept
“similar or not similar”: two feature vectors are considered as simi-
lar if their hash keys are equal; otherwise they are considered as not
similar. This implication is generalized in Equation (1) at the out-
set; the generalization pertains to two aspects: (i) the equivalence
relation refers to a similarity threshold θ, and (ii) the hash function
hϕ is multivalued.

With the background of the presented hash-based search meth-
ods we now continue the discussion of precision and recall from
Subsection 1.1. Observe that the probability of a hash collision
for two vectors xd1 , xd2 decreases if the number k of simple hash
functions (LSH) or prefix classes (FF) is increased. Each hash func-
tion or each prefix class captures additional knowledge of x and
hence raises the similarity threshold θ. This can be broken down to
the following formula, termed Property 1:

“Code length controls precision.”

Being multivalued is a necessary condition for hϕ to achieve a
recall of 1. A scalar-valued hash function computes one key for
one feature vector x at a time, and hence it defines a rigorous par-
titioning of the feature vector space. Figure 1 illustrates this con-
nection: The scalar-valued hash function h

(1)
ϕ responsible for the

shaded partitioning assigns different keys to the vectors xd1 and
xd2 , despite their high similarity (low distance). With the multi-
valued hash function, hϕ = {h(1)

ϕ , h
(2)
ϕ }, which also considers the

outlined partitioning, the intersection hϕ(xd1) ∩ hϕ(xd2) is not
empty, giving raise to infer that ϕ(xd1 ,xd2) > θ. In fact, there
is a monotonic relationship between the number of hash codes and
the achieved recall, which can be broken down to the following
formula, termed Property 2:

“Code multiplicity controls recall”.

However, there is no free lunch, the improved recall is bought
with a decrease in precision.

3. OPTIMALITY AND EMBEDDING
The embedding of the vector space model into a low-dimensional

space is inevitably bound up with information loss. The smaller the
embedding error is, the better are precision and recall of the con-
structed hash function, because the affine transformation in Step 2

and 3 (cf. Subsection 2.2), which maps an embedded vector onto a
hash code, is distance-preserving.

The section starts with a derivation of the globally optimum em-
bedding under the cosine similarity measure, and then uncovers the
inferiority of this embedding compared to the prefix class embed-
ding of fuzzy-fingerprinting (Subsection 3.2). This observation is
explained by the idea of threshold-centered embeddings, for which
we introduce the formal underpinning in the form of new error
statistics, called precision stress and recall stress at a given similar-
ity threshold θ. By extending the idea toward thresholded similarity
matrices we show how optimum embeddings for similarity hashing
in closed retrieval situations can be developed (Subsection 3.3).

3.1 Globally Optimum Embeddings
Multidimensional scaling (MDS) designates a class of tech-

niques for embedding a set of objects into a low-dimensional real-
valued space, called embedding space here. The embedding error,
also called “stress”, is computed from the deviations between the
original inter-object similarities and the new inter-object similari-
ties in the embedding space.

Given n objects, the related similarity matrix, S, is a symmetric
n × n matrix of positive real numbers, whose (i, j)-th entry quan-
tifies the similarity between object i and object j. Let each object
be described by an m-dimensional feature vector x ∈ Rm, and let
X be the m × n matrix comprised of these vectors. 6

Without loss of generality we assume each feature vector x being
normalized according to the l2-norm, i. e., ||x||2 = 1. Then, under
the cosine similarity measure, S is defined by the identity S =
XT X, where XT designates the matrix transpose of X.

An important property of the cosine similarity measure is that
under the Frobenius norm an optimum embedding of X can be
directly constructed from its singular value decomposition (SVD).
With SVD an arbitrary matrix X can be uniquely represented as the
product of three matrices:7

X = UΣVT

U is a column orthonormal m×r matrix, Σ is an r×r diagonal
matrix with the singular values of X, and V is an n×r matrix. I. e.,
6In IR applications X is the term-document-matrix. For applying
an MDS only S must be given.
7Unique up to rearrangement of columns and subspace rotations.

Similarities in high-dimensional original space Similarities in low-dimensional embedding space

Similarities primarily responsible for recall stress Similarities primarily responsible for precision stress

Rθ ∩ Rθ
^

Rθ ∩ Rθ
^

Rθ ≈ ϕ(xi, xj) > θ

Rθ ≈ ϕ(yi, yj) > θ
^ ^

Embedding

Figure 2: If the original document representations, X, are embedded into a low-dimensional space, the resulting document represen-
tations Y resemble the original similarities only imperfectly. Given a particular threshold θ, similarities of the original space may be
shifted from above θ to below θ (hatched area left), from below θ to above θ (hatched area right), or still remain in the interval [θ; 1]
(green area). The similarities in the hatched areas are responsible for the major part of the embedding stress.

UT U = I and VVT = I where I designates the identity matrix.
Using these properties the matrix S can be rewritten under both the
viewpoint of its singular value decomposition and the viewpoint of
similarity computation:

S = XT X = (UΣVT)T UΣVT

= VΣ2VT| {z }
SVD

= (ΣVT)T (ΣVT)| {z }
Similarity computation

ΣVT represents a set of points with the same inter-object simi-
larities as the original vectors X. The nature of the cosine similar-
ity measure implies the direct construction of S and, in particular,
the identities rank(S) = rank(X) = rank (ΣVT). Conversely,
if we restrict the dimensionality of the embedding space to k, the
resulting similarity matrix Ŝ is also of rank k. According to the
Eckart-Young Theorem the optimum rank-k approximation Ŝ∗ of
S under the Frobenius norm can be obtained from the SVD of S, by
restricting the matrix product to the k largest singular values [10]:

Ŝ∗ = VkΣ
2
kV

T
k = (ΣkV

T
k)T (ΣkV

T
k)

⇒ ΣkV
T
k = argmin

{Y| columns(Y)=n,
rank(Y)=k

}
||S − YT Y||F

In the information retrieval community the embedding YSVD :=
ΣkV

T
k of document vectors X is known as representation in the

so-called latent semantic space, spanned by k concepts. The em-
bedding process became popular under the name of latent semantic
indexing (LSI) [9].
Remark 1. A common misconception is that LSI projects the docu-
ment vectors into a subspace in order to represent semantic similar-
ity. Rather, LSI constructs new features to approximate the original
document representations. And, if the dimension of the embed-
ding space is properly chosen then, due to the reduction of noise
and the elimination of weak dependencies, this embedding is able
to address retrieval problems deriving from the use of synonymous
words. As a consequence the retrieval performance may be im-
proved in semi-closed retrieval applications. Hofmann argues sim-
ilarly [16]: the superposition principle underlying LSI is unable to
handle polysemy.

3.2 The Rationale of Hash-Based Search:
Threshold-Centered Embeddings

Though the embedding YSVD minimizes the embedding error
of X, it is not the best starting point for constructing similarity-
sensitive hash codes. The main reason is that an MDS strives for a

global stress minimization, while hash-based search methods con-
centrate on the high similarities in S in first place.8 The nature of
this property is captured by the following definition, which relates
the threshold-specific stress of an embedding to the statistical con-
cepts of precision and recall. Figure 2 illustrates the definition.

Definition 1 (precision stress, recall stress) Let D be a set of ob-
jects and let X and Y be their representations in the n-dimensional
and the k-dimensional space respectively, k < n. Moreover, let
ϕ : X × X → [0; 1] and ϕ̂ : Y × Y → [0; 1] be two similarity
measures, and let θ ∈ [0; 1] be a similarity threshold.

θ defines two result sets, Rθ and R̂θ , which are comprised of
those pairs {xi, xj}, xi, xj ∈ D, whose respective representations
in X and Y are above the similarity threshold θ:

{xi, xj} ∈ Rθ ⇔ ϕ(xi,xj) > θ,

and likewise: {xi, xj} ∈ R̂θ ⇔ ϕ̂(yi,yj) > θ

Then the set of returned pairs from the embedding space, R̂θ ,
defines the precision stress at similarity threshold θ, epθ :

epθ =

X
{xi,xj}∈R̂θ

`
ϕ(xi,xj) − ϕ̂(yi,yj)

´2

X
{xi,xj}∈R̂θ

`
ϕ(xi,xj)

´2

Likewise, the set of similar pairs in the original space, Rθ , de-
fines the recall stress at similarity threshold θ, erθ :

erθ =

X
{xi,xj}∈Rθ

`
ϕ(xi, xj) − ϕ̂(yi,yj)

´2

X
{xi,xj}∈Rθ

`
ϕ(xi,xj)

´2

Remark 2. The precision stress and the recall stress of an em-
bedding Y are statistics that tell us something about the maxi-
mum precision and recall that can be achieved with similarity hash
codes constructed from Y. The larger the precision stress is the
higher is the probability that two embedded vectors, yi,yj , are
claimed being similar though their similarity in the original space,
8“The similarity threshold controls the effective embedding error.”
This property complements the two properties of hash-based search
methods stated in Subsection 2.4.

Optimum MDS
Fuzzy-fingerprinting

Locality-sensitive hashing

YSVD
YFF
YLSH

P
re

ci
si

on
 s

tr
es

s

Similarity threshold θ
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

R
ec

al
l s

tr
es

s

Similarity threshold θ
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Optimum MDS
Fuzzy-fingerprinting

Locality-sensitive hashing

YSVD
YFF
YLSH

Figure 3: Evolution of the embedding stress against the similarity threshold θ (lower stress is better). The left plot takes the embedded
vectors as basis, the right plot the original vectors, corresponding to the precision stress, ep, and the recall stress, er, respectively. At
some threshold the embedding of fuzzy-fingerprinting, YFF , outperforms the optimum MDS embedding, YSVD .

sij = ϕ(xi,xj), is low. Likewise, the larger the recall stress is
the higher is the probability that two vectors in the original space,
xi,xj , are mapped onto different codes though their similarity, sij ,
is high.

For the three embeddings, YSVD , YFF , and YLSH , obtained
from optimum MDS, fuzzy-fingerprinting, and LSH respectively,
we have analyzed the precision stress and the recall stress at various
similarity thresholds and with different corpora. The results reflect
the predicted behavior:

1. Because of its generality (domain independence) the LSH
embedding is consistently worse than the prefix class em-
bedding of fuzzy-fingerprinting.

2. At some break-even point the retrieval performance of prefix
class embedding outperforms the optimum MDS embedding.

Figure 3 illustrates this behavior for a sample of 2000 docu-
ments drawn from the Reuters Corpus Volume 1 (RCV1) [24].
With other corpora and other parameter settings for the hash-based
search methods this characteristic is observed as well. We analyzed
in this connection also specifically compiled corpora whose simi-
larity distribution is significantly skewed towards high similarities:
Figure 4 contrasts the similarity distribution in the original Reuters
Corpus (hatched light) and in the special corpora (solid dark).
Remark 3. For most retrieval tasks an—even high—precision stress
can be accepted, since the necessary subsequent exact similar-
ity analysis needs to be performed only for a very small fraction
|Dq |/|D| of all documents. Remember that the construction meth-
ods for the hash-based search methods provide sufficient means to
fine-tune the trade-off between the precision stress, ep, and the re-
call stress, er .

0 0.2 0.4 0.6 0.8 1

Similarity Intervals

 0.0001

 0.001

 0.01

 0.1

1

P
er

ce
nt

ag
e

of
 S

im
ila

rit
ie

s

Reuters (special)
Reuters (original)

Figure 4: Similarity distribution in the original Reuters Corpus
and in the special compilations with increased high similarities.

3.3 Threshold-Optimum Embeddings
in Closed Retrieval Situations

Threshold-centered embeddings are tailored document models
for special retrieval tasks such as near duplicate detection or high
similarity search. They tolerate a large embedding error in the low
similarity interval [0, θ] and strive for a high fidelity of similarities
from the interval [θ, 1]. This principle forms the rationale of hash-
based search.

With YSVD , obtained by optimally solving an MDS, an embed-
ding that minimizes the accumulated error over all similarities is
at hand. We now introduce a threshold-optimum embedding, Y∗,
which minimizes the accumulated error with respect to the inter-
val [θ, 1]. The presented ideas address the closed retrieval situ-
ation in first place—for open retrieval situations the construction
of an optimum embedding requires a-priori knowledge about the
term distribution in the collection D.9 Though the typical use case
for hash-based search are open retrieval situations, the derivation
is useful because (i) it provides additional theoretical insights and
(ii) it forms a basis to reason about performance bounds.

The θ-specific retrieval analysis of the preceding subsection sug-
gests the construction principle of Y∗. Instead of approximating
the original similarity matrix S a “thresholded” similarity matrix
Sθ is taken as basis, introducing this way the binary nature of simi-
larity hashing into the approximation process. For a given threshold
θ the matrix Sθ is defined as follows:

Sθ :=

0
B@

fθ(s11) fθ(s12) . . . fθ(s1n)
...

...
. . .

...
fθ(sn1) fθ(sn2) . . . fθ(snn)

1
CA ,

where fθ(s) is a combination of two sigmoidal functions that de-
fine an upper threshold θ and a lower threshold ϑ respectively. Sim-
ilarity values from [θ; 1] are amplified toward 1, similarity values
from [0; θ) are moved toward ϑ. The following rationale reveals
the underlying trade-off: with increasing difference θ − ϑ the am-
plification above θ improves the robustness in the encoding step
(cf. Subsection 2.2), with increasing ϑ the contraction toward ϑ re-
duces the error in the embedding step and hence allows for shorter
codes. fθ can be realized in different ways; within our analyses
two consecutive tanh-approximations with the thresholds ϑ = 0.1

9Remember that YFF is a domain-specific embedding which ex-
ploits knowledge about document models and term distributions.

Precision
Embedding Dim. (0.8; 0.9] (0.85; 1.0] (0.9; 1.0] (0.95; 1.0]

Y∗ 50 0.58 0.71 0.84 0.95
YFF 50 0.17 0.45 0.69 0.85
YSVD 50 0.35 0.45 0.57 0.73

Y∗ 25 0.29 0.38 0.51 0.74
YFF 25 0.01 0.02 0.09 0.59
YSVD 25 0.16 0.22 0.34 0.56

Table 2: Results of a near-duplicate retrieval analysis, based on
RCV1 and the experimental setup like before. The precision
achieved with Y∗ outperforms even the YFF embedding.

and θ = 0.8 were employed.
Since Sθ is a symmetric matrix it is normal, and hence its Schur

decomposition yields a spectral decomposition:

Sθ = ZΛZT

Z is an orthogonal matrix comprising the eigenvectors of Sθ , and
Λ is a diagonal matrix with the eigenvalues of Sθ . If Sθ is positive
definite its unique Cholesky decomposition exists:

Sθ = ZZT

X := ZT can directly be interpreted as matrix of thresholded
document representations. As was shown in Subsection 3.1, the
dimension of the embedding space, k, prescribes the rank of the
approximation Ŝθ of Sθ . Its optimum rank-k-approximation, Ŝ∗

θ ,
is obtained by an SVD of Sθ , which can be expressed in the factors
of the rank-k-approximated SVD of X. Let O∆QT be the SVD
of X and hence OT

k Ok = I. Then holds:

Ŝ∗
θ = X

T
k Xk = (Ok∆kQ

T
k)T Ok∆kQ

T
k

= (∆kQ
T
k)T ∆kQ

T
k = Y∗T Y∗

Remark 4. Y∗ := ∆kQ
T
k is an embedding of X optimized for

similarity hashing. Due to construction, Y∗ is primarily suited to
answer binary similarity questions at the a-priori chosen thresh-
old θ. Since Sθ is derived from S by sigmoidal thresholding, the
document representations in Y are insusceptible with respect to a
rank-k-approximation. This renders Y∗ robust for similarity com-
parisons under the following interpretation of similarity:

If 〈y∗
i ,y∗

j 〉 > 0.5 assume 〈xi,xj〉 > θ

If 〈y∗
i ,y∗

j 〉 ≤ 0.5 assume 〈xi,xj〉 ≤ θ

where 〈 , 〉 denotes the scalar product. Table 2 illustrates the supe-
riority of Y∗: For the interesting similarity interval [θ, 1] it outper-
forms the classical embedding as well as the embedding strategies
of sophisticated hash-based search methods.

Remark 5. To obtain for a new n-dimensional vector x its optimum
k-dimensional representation y∗ at similarity threshold θ, a k × n
projection matrix P can be stated:

y∗ = Px, where P is computed from XT PT = Y∗T

Remark 6. The transformations imply the thresholded similarity
matrix Sθ being positive definite. An efficient and robust test for
positive definiteness was recently proposed by Rumb [25]. If Sθ is
not positive definite it can be approximated by a positive definite
matrix Sθ+ , which should be the nearest symmetric positive defi-
nite matrix under the Frobenius norm. As shown by Higham, Sθ+

is given by following identity [14]:

Sθ+ =
G + H

2
with G =

Sθ + ST
θ

2
,

where H is the symmetric polar factor of G.

4. HASH-BASED RETRIEVAL AT WORK
Finally, this section demonstrates the efficiency of locality-

sensitive hashing, fuzzy-fingerprinting, and hash-based search in
general. We report results from a large-scale experiment on near-
duplicate detection and plagiarism analysis, using a collection of
100, 000 documents compiled with Yahoo, Google, and AltaVista
by performing a focused search on specific topics. To compile the
collection a small number of seed documents about a topic was cho-
sen from which 100 keywords were extracted with a co-occurrence
analysis [22]. Afterward, search engine queries were generated by
choosing up to five keywords, and the highest ranked search results
were downloaded and their text content extracted.

To render retrieval results comparable the two hash functions
were parameterized in such a way that, on average, small and
equally-sized document sets were returned for a query. As de-
scribed in Section 2.4, this relates to adjusting the recall of the
hash functions, which is done with the number of fuzzification
schemes and random vector sets respectively: two or three differ-
ent fuzzification schemes were employed for fuzzy-fingerprinting;
between 10 and 20 different random vector sets were employed for
locality-sensitive hashing. The precision of fuzzy-fingerprinting is
controlled by the number k of prefix classes and the number r of
deviation intervals per fuzzification scheme. To improve the preci-
sion performance either of them or both can be raised. Note that
k is application-dependent; typical values for r range from 2 to
4. The precision of locality-sensitive hashing is controlled by the
number k of combined hash functions. For instance, when using
the hash family proposed by Datar et al., k corresponds to the num-
ber of random vectors per hash function [8]; typical values for k
range from 20 to 100.

The plots in Figure 5 contrasts performance results. With respect
to recall either approach is excellent at high similarity thresholds
(> 0.8) compared to a linear search using a cosine measure. How-
ever, high recall values at low similarity thresholds are achieved by
chance only. With respect to precision fuzzy-fingerprinting is sig-
nificantly better than locality-sensitive hashing—a fact which di-
rectly affects the runtime performance. With respect to runtime
performance both hashing approaches perform orders of magni-
tude faster than a linear search. For reasonably high thresholds θ
the similarity distribution (Figure 4) along with the precision stress
(Figure 3, left) determine a sublinear increase of the result set size
|Dq | for a document query dq (Equation 2).

Remark 7. The computation of the baseline relies on a non-reduced
vector space, defined by the dictionary underlying D. Note that a
pruned document representation or a cluster-based preprocessing
of D, for example, may have exhibited a slower—but yet linear
growth. Moreover, the use of such specialized retrieval models
makes the analysis results difficult to interpreted.

5. CONCLUSION AND CURRENT WORK
The paper analyzed the retrieval performance and explained the

retrieval rationale of hash-based search methods. The starting point
was the development of a unified view on these methods, along
with the formulation of three properties that capture their design
principles. We pointed out the selective nature of hash-based search
and introduced new stress statistics to quantify this characteristic.

The concept of tolerating a large embedding error for small sim-
ilarities while striving for a high fidelity at high similarities can be
used to reformulate the original similarity matrix and thus to derive
tailored embeddings in closed retrieval situations.

The presented ideas open new possibilities to derive theoret-
ical bounds for the performance of hash-based search methods.

Fuzzy-fingerpr.
Locality-sens. h.

YFF
YLSH

Sample size

0

 0.4

 0.8

0 104 105 5*104

 1.2

R
un

tim
e

[s
]

Linear search
Fuzzy-fingerpr.

Locality-sens. h.
YFF
YLSH

Similarity
0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

0

 0.2

 0.4

 0.6

 0.8

 1

Similarity
0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Fuzzy-fingerpr.
Locality-sens. h.

YFF
YLSH

Figure 5: Near-duplicate detection and plagiarism analysis with hash-based search technology. The plots shows recall-at-similarity,
precision-at-similarity, and runtime-at-sample-sizes, using fuzzy-fingerprinting (FF) and locality-sensitive hashing (LSH).

Whether they can be used to develop better search methods is sub-
ject of our research: by construction, Y∗ outperforms other em-
beddings. It is unclear to which extent this property can be utilized
in similarity search methods designed for open retrieval situations.
The theoretical analysis of the trade-off between θ and ϑ as well as
the Remarks 5 and 6 provide interesting links to follow.

6. REFERENCES
[1] R. Ando and L. Lee. Iterative Residual Rescaling: An

Analysis and Generalization of LSI. In Proc. 24th conference
on research and development in IR, 2001.

[2] G. Aston and L. Burnard. The BNC Handbook.
http://www.natcorp.ox.ac.uk/what/, 1998.

[3] M. Bawa, T. Condie, and P. Ganesan. LSH Forest:
Self-Tuning Indexes for Similarity Search. In WWW’05:
Proc. of the 14th int. conference on World Wide Web, 2005.

[4] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic Clustering of the Web. In Selected papers from the
sixth int. conference on World Wide Web, 1997.

[5] D. Cai and X. Hee. Orthogonal Locality Preserving
Indexing. In Proc. of the 28th conference on Research and
development in IR, 2005.

[6] M. S. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In STOC’02: Proc. of the
thirty-fourth ACM symposium on theory of computing, 2002.

[7] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, Cambridge. 1990.

[8] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-Sensitive Hashing Scheme Based on p-Stable
Distributions. In SCG’04: Proc. of the twentieth symposium
on computational geometry, 2004.

[9] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and
R. Harshman. Indexing by Latent Semantic Analysis.
Journal of the American Society of Information Science,
41(6):391–407, 1990.

[10] C. Eckart and G. Young. The Approximation of one Matrix
by Another of Lower Rank. Psychometrika, 1:211–218,
1936.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity Search in
High Dimensions via Hashing. In The VLDB Journal, 1999.

[12] X. He, D. Cai, H. Liu, and W.-Y. Ma. Locality Preserving
Indexing for Document Representation. In Proc. of the 27th
conference on research and development in IR, 2001.

[13] M. Henzinger. Finding Near-Duplicate Web Pages: a
Large-Scale Evaluation of Algorithms. In Proc. of the 29th
conference on research and development in IR, 2006.

[14] N. Higham. Computing a Nearest Symmetric Positive
Semidefinite Matrix. Linear Algebra and its App., 1988.

[15] G. Hinton and R. Salakhutdinov. Reducing the
Dimensionality of Data with Neural Networks. Science,
313:504–507, 2006.

[16] T. Hofmann. Unsupervised Learning by Probabilistic Latent
Semantic Analysis. Machine Learning, 42:177–196, 2001.

[17] P. Indyk. Stable Distributions, Pseudorandom Generators,
Embeddings and Data Stream Computation. In FOCS’00:
Proc. of the 41st symposium on foundations of computer
science, 2000. IEEE Computer Society.

[18] P. Indyk and R. Motwani. Approximate Nearest Neighbor –
Towards Removing the Curse of Dimensionality. In Proc. of
the 30th symposium on theory of computing, 1998.

[19] I. Jolliffe. Principal Component Analysis. Springer, 1996.
[20] J. Kleinberg. Two Algorithms for Nearest-Neighbor Search

in High Dimensions. In STOC’97: Proc. of the twenty-ninth
ACM symposium on theory of computing, 1997.

[21] J. Kruskal. Multidimensional Scaling by Optimizing
Goodness of Fit to a Nonmetric Hypothesis. Psychometrika,
29(1), 1964.

[22] Y. Matsuo and M. Ishizuka. Keyword Extraction from a
Single Document using Word Co-ocurrence Statistical
Information. Int. Journal on Artificial Intelligence Tools,
13(1):157–169, 2004.

[23] J. Nolan. Stable Distributions—Models for Heavy Tailed
Data. http://academic2.american.edu/~jpnolan/stable/, 2005.

[24] T. Rose, M. Stevenson, and M. Whitehead. The Reuters
Corpus Volume 1. From Yesterday’s News to Tomorrow’s
Language Resources. In Proc. of the third int. conference on
language resources and evaluation, 2002.

[25] S. Rump. Verification of Positive Definiteness. BIT
Numerical Mathematics, 46:433–452, 2006.

[26] B. Stein. Fuzzy-Fingerprints for Text-Based IR. In Proc. of
the 5th Int. Conference on Knowledge Management, Graz,
Journal of Universal Computer Science, 2005.

[27] B. Stein and S. Meyer zu Eißen. Near Similarity Search and
Plagiarism Analysis. In From Data and Information Analysis
to Knowledge Engineering. Springer, 2006.

[28] R. Weber, H. Schek, and S. Blott. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in
High-dimensional Spaces. In Proc. of the 24th VLDB
conference, 1998.

[29] H. Yang and J. Callan. Near-Duplicate Detection by
Instance-level Constrained Clustering. In Proc. of the 29th
conference on research and development in IR, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

