
Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-008-0068-z

SPECIAL SECTION SFB 614

Coping with large design spaces: design problem solving
in fluidic engineering

Benno Stein

© Springer-Verlag 2008

Abstract This paper is about tool support for knowledge-
intensive engineering tasks. In particular, it introduces soft-
ware technology to assist the design of complex technical
systems. There is a long tradition in automated design pro-
blem solving in the field of artificial intelligence, where,
especially in the early stages, the search paradigm dictated
many approaches. Later, in the so-called modern period, a
better problem understanding led to the development of more
adequate problem solving techniques. However, search still
constitutes an indispensable part in computer-based design
problem solving—albeit many human problem solvers get by
without (almost). We tried to learn lessons from this observa-
tion, and one is presented in this paper. We introduce design
problem solving by functional abstraction which follows the
motto: construct a poor solution with little search, which
then must be repaired. For the domain of fluidic engineering
we have operationalized the paradigm by the combination of
several high-level techniques. The red thread of this paper is
design automation, but the presented technology does also
contribute in the following respects: (a) productivity enhan-
cement by relieving experts from auxiliary and routine tasks;
(b) formulation, exchange, and documentation of knowledge
about design; (c) requirements engineering, feasibility ana-
lysis, and validation.

Keywords Design automation · Fluidic circuit design ·
Design graph grammars · Case-based reasoning ·
Expert critiquing

This research was supported by DFG grants Schw 120/56-3,
KL 529/10-3, KL 529/7-3, and KL 529/10-1.

B. Stein (B)
Faculty of Media, Media Systems, Bauhaus University Weimar,
99421 Weimar, Germany
e-mail: benno.stein@medien.uni-weimar.de

1 Introduction

Before delving into different paradigms for the modeling
and the design of a technical system, we recall two extremal
points in a range of possible settings:

1. A technical system is specified explicitly, i. e., there is a
clear understanding of the structure and the behavior of
the desired system.

2. A technical system is specified implicitly by a set of desi-
red demands or functions, D, and the task is to develop
the description of a system that fulfills D.

In the first setting the main concern is modeling. Research
on the modeling of technical systems aims at a comprehen-
sive system specification from different viewpoints and at
different levels of granularity. Modern CASE tools (based
on UML, SDL, or MSC) provide support for the modeling
process, which relates to model transformation, coupling of
tools, code generation, etc. By contrast, in the second set-
ting no explicit specification of the system is given—we
have a configuration or design problem that is characteri-
zed by a search space wherein an optimum solution is to be
found. Figure 1 illustrates the relation between both settings.
It shows the problem of configuration and design as search in
a model space atop the technical and software-based mode-
ling paradigms; the lower part of the figure is based on [19].

The contributions of this paper relate to the second set-
ting. Among others, we use graph grammars to describe and
to explore a space of models, and we apply case-based rea-
soning to find adequate behavior models. Moreover, uncau-
sal simulation is employed to analyze a synthesized model,
and a rule-based repair language is used to improve subop-
timum designs. The paper is organized into two parts. Part
one (Sect. 2) contrasts the knowledge-based approach and

123

B. Stein

Fig. 1 Solving a design
problem means to find a model
in the space of possible models
(upper part). The lower part of
the figure shows the classical
modeling process including
model coupling [19]

Compilation
Process

Code

Structure

i

Compilation
Process

Behavior

1
s

Code

Compilation
Process

Structure Behavior

UML, OOA/OODSignalflow diagram

Integration

Configuration,
Design

Modeling

Demands D

Search in model space

the search-plus-simulation approach for design problem sol-
ving and presents the functional abstraction paradigm as a
synthesis of both. Part two (Sect. 3) demonstrates how this
paradigm is put to work in the fluidic engineering domain.
Aside from motivating the ideas, this section also introduces
the employed technologies relating to design graph gram-
mars and cased-based reasoning.

2 Automating design tasks

Design problem solving is the transformation of an implicit
description of a non-existing system S, stated in the form of
demands D, into an explicit description, say, a model M of
the desired system. M may be a construction plan, a drawing,
a parts list, or some other document that defines how S is
constructed.

The complexity of design tasks varies in an extremely
wide range, and one of the first and still useful classification
schemes can be found in [2,12,44], illustrated in Fig. 2. They
distinguish three classes: (1) The class of creative design,
which can be viewed as open-ended; all kinds of inventions
belong to this class. Even if the design goals are well-defined,
there is no, or only a rough idea of how they can be achieved.
(2) The class of innovative designs comprises problems for
which powerful decomposition knowledge exists, but design

Class 3: state space of routine designs
Class 2: state space of innovative designs
Class 1: creative design

Fig. 2 A coarse taxonomy of design problems, oriented at the size of
the underlying state space [12]. Elements of Class 3 are also called
configuration problems

plans for some of the component problems may need a sub-
stantial modification. (3) The class of routine designs com-
prises problems for which knowledge about decomposition
and synthesis is completely known. What makes problems
of Class 3 tractable is that the structure of the system being
designed as well as the parameter ranges are given. Problems
of this class are often called configuration problems.

A theory of design that shall cover all kinds of design
problems must resort to a generic constraint representation.
Reiter [33] has introduced the axiomatic description level
of predicate logics as a means to describe generic diagnosis
problems. Here we extend his formalism to design problems
in order to discuss them in a domain-independent way:

αCPT = D ∧ COMPS ∧ SD
︸ ︷︷ ︸

configuration

∧ PARAM
︸ ︷︷ ︸

+ parameterization

∧ TOP
︸ ︷︷ ︸

+ structure finding

αCPT is a formula in propositional logics or predicate
logics where D is a set of demands, COMPS denotes the
available components, SD is a logic-based formulation of
the components’ behavior, PARAMS defines their paramete-
rization, and TOP their topology, i. e., how components are
connected to each other. A fulfilling interpretation of αCPT

establishes a solution of the design problem.
The complexity to determine a fulfilling interpretation

for αCPT depends on the degrees of freedom in the design
process. Within a configuration problem (Class 3) merely
the truth values in COMPS are to be determined, whereas
in a behavior-based design problem (Class 2) the compo-
nents need to be parameterized. If yet the system structure
is to be found, the design problem entails creative aspects.
Though an axiomatic formulation of a design problem is
always possible, it is uncommon to do so: the encoding
of a design problem as a satisfiability problem disguises

123

Coping with large design spaces

valuable domain knowledge that is necessary for an efficient
operationalization. Later on, when dealing with a concrete
problem in a particular domain, we will resort to problem-
specific formulations.

How can the design of complex technical systems be auto-
mated? A commonly accepted answer is: “By operationali-
zing expert knowledge.”—Experts, say, engineers need little
search during problem solving, and computer programs that
operationalize engineering knowledge have been proven suc-
cessful in various complex design tasks. A second, also com-
monly accepted answer to the above question is: “By means
of search.” This answer reflects the way of thinking of an AI
pragmatist, who believes in deep models and the coupling of
search and simulation. Deep models, or, models that rely on
first principles have been considered the worthy successor of
the simple associative models [4,7]; they opened the age of
the so-called Second Generation Expert Systems [6,41]. In
this sense, Sect. 2.2 formulates design problems as instances
of particular search-plus-simulation problems.

Though the search-plus-simulation paradigm can be iden-
tified behind state-of-the-art problem solving methodologies
[1,11], many systems deployed in the real world are realized
accordingtosimplerassociativeparadigms[2,3,22,30,36,38],
to mention only a few. As a source for this discrepancy we
discover the following connection: the coupling of search and
simulation is willingly used to make up for missing problem
solving knowledge but, as a “side effect”, often leads to intrac-
table problems.

Drawing the conclusion “knowledge over search” is
obvious on the one hand, but too simple on the other: what can
be done if the resource “design knowledge” is not available
or cannot be elicited, or is too expensive, or must tediously
be experienced? we can learn from human problem solvers
where to spend search effort deliberately in order to gain the
maximum impact for automated problem solving. The paper
in hand gives such an example: in Sect. 2.3 we introduce
the paradigm of functional abstraction to address behavior-
based design problems. It develops from the search-plus-
simulation paradigm by untwining the roles of search and
simulation; in this way it forms a synthesis of the aforemen-
tioned approaches.

2.1 Thesis: knowledge is power1

Human problem solving expertise is highly effective but of
heuristic nature; moreover, it is hard to elicit but pretty easy
to process [17]. Successful implementations of knowledge-
based design algorithms do not search in a gigantic space
of behavior models but operate in a well defined structure

1 This famous phrase is often attributed to Edward A. Feigenbaum,
though he did not originate the saying.

space instead, which is spanned by compositional (left) and
taxonomic relations (right):

c → c1 ∧ · · · ∧ ck c → c1 ∨ · · · ∨ ck

The ci denote components, and together both types of rules
prescribe a decomposition hierarchy in the form of an And-
Or-graph. Another class of design algorithms employ the
case-based reasoning paradigm retrieve-and-adapt, an advan-
cement of the classical AI paradigm generate-and-test [20,
34,35]:

SIM(D1, D2) → USABLE(M1, D2),

which claims that the known solution M1 for a demand set
D1 can be used (adapted) to satisfy a demand set D2, if D1

and D2 are similar.

2.2 Antithesis: search does all the job

A search problem is characterized by a search space consis-
ting of states and operators. The states are possible com-
plete or partial solutions of the search problem, the opera-
tors define the transformations from one state into another.
Here, in connection with behavior-based design problems,
the search space is a set S of possible systems. Solving a
design problem means to find a system S∗ ∈ S that ful-
fills the given set D of demands. Typically, S∗ is not found
by experimenting in the real world but by operationalizing
a search process after having mapped the system space, S,
onto a model space, M. The set M comprises all models
that could be visited during the search.2 It is the job of a
design algorithm to efficiently find a model M∗ ∈ M whose
simulation produces a behavior that complies with D and
that optimizes a possible goal criterion. Figure 3 illustrates
the connections.

Model
behavior

Transfer +
comparison

Model
space Model M

Model
formation

Selection

System
space System S

Design Experiment
Demands D

Simulation

Search

Fig. 3 Generic scheme of design problem solving: given is a space S
of possible design solutions and a set of demands D. On a computer, S
is represented as a model space, M, wherein a model M∗ is searched
whose behavior fulfills D

2 In accordance with Minsky [24] we call M a model of a system S, if M
can be used to answer questions about S. M may establish a structural,
a functional, an associative, or a behavioral model.

123

B. Stein

This design scheme is inviting: giving a mapping from
systems S to models M—which can be stated straightfor-
wardly in engineering domains—the related synthesis pro-
blem can be solved by the search-plus-simulation paradigm.3

As already mentioned, several implementations of success-
ful design systems do not follow this paradigm. They contain
an explicit representation of an engineer’s problem solving
knowledge instead, say, his or her model of expertise. A pro-
blem solver that has such knowledge-based models at its
disposal spends little effort in search—a fact which makes
these models appearing superior to the deep models used
in the search-plus-simulation paradigm. On the other hand,
several arguments speak for the latter; a compelling one has
to do with knowledge acquisition: in many situations it is not
feasible for technical or economical reasons to acquire the
necessary problem solving knowledge for tailored models of
expertise.4

2.3 A synthesis: untwine search and simulation

Applying just search-plus-simulation renders most real-
world design tasks intractable because of the mere size of
the related model space M. If search cannot be avoided,
search effort must be spent deliberately. In this situation we
can learn from the problem solving behavior of engineers:

1. Engineers solve a design problem at the level of function
rather than at the level of behavior, accepting to miss the
optimum.

2. Engineers adapt a suboptimum solution rather than trying
to develop a solution from scratch, accepting to miss the
optimum.

3. Engineers can formulate repair and adaptation know-
ledge easier than a synthesis theory.

When we combine these observations we obtain the para-
digm design problem solving by functional abstraction,
which is illustrated in Fig. 4. Put it overstated, the paradigm
says: “At first, we construct a poor solution of a design pro-
blem, which then must be repaired.” Note that the first three
steps of this method resemble syntax and semantics (the hor-
seshoe principle) of the problem solving method “Heuris-
tic Classification”, which became popular as the diagnosis
approach underlying Mycin [5].

3 Gero [12], for example, proposes a cycle that consists of the steps
synthesis, analysis, and evaluation. Sinha et al. [40] present a frame-
work to implement simulation-based design processes for mechatronic
systems [28].
4 Other advantages bound up with this paradigm are: the possibility to
explain, to verify, or to document a reasoning process, the possibility
to reuse the same models in different contexts, the extendibility to new
device topologies, or the independence of human experts.

Demands D

Structure
model MS

Raw
design M'

Solution
M*

Search

Simulation + repair

Functions F

1

4

3

2

Level of function

Level of behavior

Fig. 4 The paradigm of functional abstraction in design problem sol-
ving. Observe that discrete reasoning (search) has been decoupled from
approximation-based reasoning (simulation + repair): The former is
used to find a structure model MS , the latter is used to repair a subop-
timum raw design

Design problem
solving

Hybrid

Case-based

Rule-based
Associative

Functional abstraction

Domain-specific models

Simplified models
Model-based

Fig. 5 A general taxonomy of principles and techniques for design
problem solving. Model-based design problem solving is successful if
it based on simplified models or if it is restricted to a narrow part of the
domain in question

Key idea of design by functional abstraction is to construct
candidate solutions within a simplified design space, which
typically is some structure model space. A candidate solu-
tion, MS , is transformed into a preliminary raw design, M ′,
by locally attaching behavior model parts to MS . The hope
is that M ′ can be repaired with reasonable effort, yielding
an acceptable design M∗. Design by functional abstraction
makes heuristic simplifications at two places: The original
demand set, D, is abstracted toward a functional specifica-
tion F (Step 1 in Fig. 4), and, MS is transformed locally into
M ′ (Step 3).

A characteristic of the functional abstraction paradigm
is the combination of associative techniques, which restrict
the search space toward a tractable size, with model-based
techniques, which are responsible for the modeling fidelity.
Figure 5 organizes principles and techniques for design pro-
blem solving. The next section presents an application of this
paradigm in the fluidic engineering domain.

3 Design problem solving in fluidic engineering

Even for an experienced engineer the design of a hydraulic
(fluidic) system is a complex and time-consuming task, that,

123

Coping with large design spaces

at the moment, cannot be automated completely.5 The effort
for acquiring the necessary design knowledge exceeds by far
the expected payback. Moreover, the synthesis search space
is extremely large and hardly to control—despite the use of
knowledge-based techniques.

Two possibilities to counter this situation are “competence
partitioning” and “expert critiquing”. The idea of competence
partitioning is to separate the creative parts of a design pro-
cess from the routine jobs, and to provide a high level of
automation regarding the latter [42]. Expert critiquing, on
the other hand, employs expert system technology to assist
the human expert rather than to automate a design problem in
its entirety [10,16]. In this respect, design by functional abs-
traction can be understood as a particular expert critiquing
technique.

3.1 The hydraulic domain

Hydrostatic drives provide advantageous dynamic properties
and are an important driving concept for industrial applica-
tions. A hydrostatic drive (a hydraulic circuit) consists of
various components that provide and distribute pressure p
and flow Q. The components can be distinguished with res-
pect to their basic function:

(a) Working elements This class contains all kinds of cylin-
ders and motors; they transform hydraulic energy into
mechanical energy. Example:

The symbol shows a differential cylinder, the equation
models the balance of forces.

(b) Control elements This class contains directional valves
used for the control of a working element. Example:

The symbol shows an electrically actuated proportional
valve, the equation defines the pressure drop between
two of the connections, assuming a turbulent flow.

(c) Supply elements Pumps (left symbol) and tanks (right
symbol) are the important elements in this class.

(d) Auxiliary elements All elements which do not fall in
one of the above classes belong to this class. Examples
include pipes, t-connections, pressure relief valves, and
throttles.

5 The presented concepts have been applied and evaluated in the
hydraulic domain; however, they can be used in the pneumatic domain
in a similar way, suggesting us to use the terms “hydraulic” and “fluidic”
interchangeably.

x2(t), F(t)x1(t)

Demands D

Axis 1 Axis 2

Circuit model M*

x2(t)

x1(t)

t51 2 3 4

F(t) Hold pressure

f2

f1

Phases

Fig. 6 Hydraulic design is the translation of a demand specification
(left) to a circuit model (right). The light area in the demand speci-
fication is operationalized by the left Axis 1; the dark area is operatio-
nalized by the right Axis 2. The coordinated interplay is realized by the
coupling of the axes

The above classification does not follow engineering
conventions in every respect since it disregards a component’s
usage within a circuit. For example, a directional valve that
does not control a working element is an auxiliary element.
Note that the behavior models are more complex than shown,
defining state-dependent, stationary and dynamic behavior.
Similarly, the specification of the demands D can be mani-
fold and pretty complex: D may prescribe driving profiles,
force profiles, key numbers of extreme values of physical
quantities, parameter constraints, and the like. In this connec-
tion the term “fluidic axis” comes into play: a fluidic axis is
a dedicated subcircuit that fulfills a single function f of a
fluidic system; it defines the connections and the interplay
among the components that realize f . A fluidic function f is
determined by its driving profile or force profile, whereas a
profile is composed of 2–5 phases that define certain opera-
tion modes such as accelerating, holding, or constant drive,
for example.

The left-hand side of Fig. 6 shows a demand specifica-
tion D with two position profiles, x1(t), x2(t), and a force
profile, F(t). The right-hand side shows the design solution
M∗, comprised of two hydraulic axes that are coupled by a
sequential coupling. The coloring of D and M∗ associates
the profiles with the respective axes operationalizing them.

3.2 Applying the functional abstraction paradigm

The starting point for a design process is a task that shall be
operationalized by hydraulics: a lifting problem, the actua-
tion of a press, or the realization of a robot’s kinematics. The
result of the design process is a system consisting of hydrau-
lic components. Taken the view of configuration, the desi-
gner of a fluidic system selects, parameterizes, and connects

123

B. Stein

A1 A2

C

Demands D Solution M*

p1 p2

p1 p2f2

f1

Functional
specification F

Structure
model MS

2

1 3

4

Raw
design M'

Axis 1 Axis 2

x2(t)

x1(t)

t51 2 3 4

F(t) Hold pressure

f2

f1

Phases

Fig. 7 The functional abstraction paradigm applied to fluidic circuit design: demand abstraction (1), search of a solution MS in the structure model
space (2), transformation of MS into a preliminary raw design M ′ (3), simulation of the raw design M ′ and repair of M ′ towards the final design
solution M∗ (4) [43]

components like pumps, valves, and cylinders such that the
demands D are fulfilled by the emerging circuit. However,
solving a fluidic design problem at the component level is
pretty hopeless. Hence the idea is to perform a configura-
tion process at the level of functions instead, which in turn
requires that fluidic functions possess constructional equiva-
lents that can be treated in a building-block-manner. In the
fluidic engineering domain this requirement is fairly good
fulfilled; the respective building blocks are the fluidic axes.

To automate design processes of the kind shown in
Figure 6, so to speak, to automate the mapping D −→ M∗,
we apply the paradigm of functional abstraction (see Fig. 7
and recall Fig. 4):

1. The demand specification, D, is abstracted towards a
functional specification F = { f1, . . . , fk}. A function
f ∈ F in turn is decomposed into its phases, and all
phases implied by F are analyzed with respect to their
dependencies and arranged in a schedule.

2. At this functional level a structure model MS according
to the coupling of the fluidic functions in F is generated.

3. MS is completed towards a tentative behavior model
M ′, by plugging together locally optimized fluidic axes.
Here, this step is realized by a case-based reasoning
approach.

4. The tentative behavior model M ′ is repaired, adapted,
and optimized globally.

Design by functional abstraction rigorously simplifies the
underlying domain theory. The tacit assumptions are as fol-
lows: (a) each set of demands, D, can be translated into a set
of fluidic functions, F , (b) each function f ∈ F can be map-
ped one to one onto a fluidic axis A that operationalizes f ,

(c) D can be realized by coupling the respective axes for the
functions in F , whereas the necessary coupling information
can be derived from D, and (d) fluidic axes are only coupled
in a standardized manner.

While the first point goes in accordance with reality, the
Points (b) and (c) imply that a function f is neither realized
by a combination of several axes nor by constructional side
effects. This assumption, as well as the assumption made
in Point (d) represent considerable simplifications: actually
the structure of a fluidic systems adds to its overall function.
Nevertheless, at the fluidic axes level a human designer treats
structure and function also more independent of each other
than at the component level.

Note that a human designer is capable of working at the
component level, implicitly creating and combining fluidic
axes towards an entire system. His ability to derive func-
tion from structure—and vice versa: structure for function—
allows him to construct a fluidic system without the idea of
high-level building blocks.

The following subsections describe the basic elements of
our design approach, i. e., Steps 2, 3, and 4.

3.3 Step 2: topology generation

If the synthesis of fluidic systems is performed at the level of
function, the size of the synthesis space is drastically redu-
ced. To be specific, we allow only structure models that can
be realized by a recursive application of the three coupling
rules shown in Fig. 8. The search within this synthesis space is
operationalized by means of a design graph grammar, which
generates reasonable topologies with respect to the functio-
nal specification F . The result of this step is a structure model
MS ; MS defines a graph whose nodes correspond to fluidic

123

Coping with large design spaces

Axis building block
Control building block

A:
C:

A3

A1 A2

C1 C2

Parallel coupling

A2A1

C

C

A3

Sequential coupling

A3

C

A1 A2

Series coupling

Fig. 8 The three coupling types that are allowed to realize a circuit’s
topology. The axis building block A3 shown below each rule shall indi-
cate the rules’ recursive applicability

functions and coupling types.

Design graph grammars The systematics of design
graph grammars was introduced in Schulz et al. [39]. An
important issue was to simplify and to enhance the use of
grammars as a tool to define design knowledge in technical
domains. Design graph grammars are closely related to node
replacement graph grammars. Among others, they allow for
a straightforward specification of contexts, which is indis-
pensable to describe the various kinds of manipulations at
technical systems.

A graph grammar is a collection of graph transformation
rules each of which is equipped with a set of embedding
instructions. What happens during a graph transformation is
that a node t or a subgraph T in the original graph G, called
the host graph, is replaced by a graph R. Say, R is embed-
ded into G. The subsequent definition stems from Schulz
et al. [39].

Definition 1 (design graph grammar, DGG). A context-
sensitive design graph grammar is a tuple G = 〈�, P, s〉
where

• � is the label alphabet used for nodes and edges,
• P is the finite set of graph transformation rules, and
• s is the initial symbol.

The graph transformation rules in P are of the form
〈T, C〉 → 〈R, I 〉 where

• T = 〈VT , ET , σT 〉 is the target graph to be replaced,
• C is a supergraph of T , called the context,
• R = 〈VR, ER, σR〉 is the possibly empty replacement

graph, and
• I is a set of embedding instructions that prescribe how R

is connected to G.

Semantics of the embedding process: first, a matching of
the context C is searched within the host graph G. Second,
an occurrence of T within the matching of C along with all
incident edges is deleted. Thirdly, an isomorphic copy of R
is connected to the host graph according to the embedding
instructions ((h, t, e), (h, r, f)) ∈ I where

• h ∈ � is a label of a node v in G\T ,
• t ∈ � is a label of a node w in T ,
• e ∈ � is the edge label of {v,w},
• f ∈ � is another edge label not necessarily different

from e, and
• r ∈ VR is a node in R.

If there is an edge labeled e connecting a node labeled h in
G\T with a node labeled t in T , then a new edge with label
f is created, connecting the node labeled h with the node r .

Remarks (1) Each graph is defined as a triple consisting of a
node set V , an edge set E , and a labeling function σ that maps
from the alphabet � onto V ∪E . (2) Labels in� can be used to
specify node types, edge types, and variables. By convention
the type labels are noted in lower case, while variable labels
are noted in upper case. (3) The syntax of the rules in P
and the instructions in I facilitate a uniform specification of
different grammars types, such as node-based, graph-based,
context-free, or context-dependent. In particular, a context-
free rule is written as T → 〈R, I 〉, and embedding instruction
without edge labels can be abbreviated as ((h, t), (h, r)).

A grammar for circuit topologies Below we give a
design graph grammar that generates the class of circuit topo-
logies motivated in Fig. 8. The rigor of structural simplifica-
tions that are implied by the functional abstraction paradigm
is reflected by the small size of the design graph grammar
G = 〈�, P, ?〉 that defines the synthesis space L(G). The
label alphabet � is {b, t, f, s, c,w, A, B}, designating bicon-
nections, triconnections, fluidic functions, supply elements,
control elements, working elements, and two variables. P
contains seven rules of the form T → 〈R, I 〉 presented
below; apart from rule (1b) only the graphical form is shown.
(1a) Initial rule:

? f bb

s

(1b) Function-to-axis conversion:

123

B. Stein

w w

c

c

s

Fig. 9 The circuit diagram of Fig. 6 and its related building block
structure (right)

(1c) Biconnection deletion:
b BA A B

The following rules (2a)–(2c) encode the introduction of
a particular coupling type.
(2a) Series coupling:

f bb f bb f b

(2b) Parallel coupling:
fb b fb b

ft tb b

(2c) Sequential coupling:

wb b

w

w

bb

ttb b

c

The following four display rules change the appearance of
a labeled graph according to the syntax of the building block
structure in Fig. 8:

w
w

s
s

t c
c

Figure 9 shows the circuit from Fig. 6 and its building
block structure. The building block structure corresponds to
the derivation (1a) −→ (1b) −→ (2c) −→ (1c), followed
by the application of matching display rules.

3.4 Step 3: case-based design of fluidic axes

A structure model MS is completed towards a behavior model
by individually mapping its nodes onto appropriate subcir-
cuits that represent fluidic axes or coupling networks.
Figure 10 shows four subcircuits each of which representing
a particular fluidic axis. The mapping of a fluidic function
f onto an axis can be accomplished ideally with case-based
reasoning: domain experts were able to compile a case base
C of about seventy axes that can be used to cover a wide
spectrum of fluidic functions.

Diagrams as shown in Fig. 10 can be considered as case
representations at the mental model level. A case is a contai-

Fig. 10 Four fluidic (hydraulic) axes for different functions and of
different complexity. Each axis represents a highly configurable case;
the case base C contains about seventy of such prototypes

ner for three types of objects: a specification of the fluidic
function in form of operation modes or so-called phases, a
list of parameters and their ranges, and rules that encode
adaptation knowledge:

Phase 1 Parameters

Type Constant drive Max. pressure 60 Bar
Precision 0.3 Max. flow 200 l/min
Force – Operation range Medium pressure
Distance 2,000 mm Piston area 120 cm2

Duration 2.5 s Ring area 100 cm2

… …

Scaling rules

Name Force-scaling-rule-1
Actions (SETQ A_K (/ (* A_K (- F))

(* 0.9 10 A_R P_MAX@Q)))
Qualifiers ((<= F 0) (< (* 0.9 10 P_MAX@Q A_K) (- F)))
…

The heart of the case-based reasoning approach is the mea-
sure ϕ(f, g), which evaluates two fluidic functions, f, g, res-
pecting their similarity. ϕ maps from the Cartesian product of
the domain of fluidic functions onto the interval [0; 1]. The
basic characteristic of a fluidic function is defined by both
the sequence and type of its phases. Valuating two fluidic
functions respecting their similarity thus means to compare
their phases. Phases in turn are characterized by their type,
precision, force, distance, and duration, and for each charac-
teristic a special phase similarity measure is defined. Table 1
gives the definition for φpType, the similarity for two single
phase types. Given two fluidic functions, f , g, the similari-
ties of their phase type sequences, ϕpType(f, g), computes as
follows:

ϕpType(f, g) = 1

max{m, n}
min{m,n}

∑

i=1

φpT ype(p(f)
i , p(g)

i),

where p(f)
i and p(g)

i denote the type of phase i for the fluidic
function f and g respectively. Four measures of this kind
are combined within ϕ(f, g) and used to rank the cases in C
with respect to the fluidic functions in F . This comparison
considers also case adaptability, which depends on the qua-
lifiers and actions encoded in the scaling rules. The scaling
rules operationalize engineering know-how according to dif-

123

Coping with large design spaces

Table 1 The similarity measure
φpType, which quantifies the
similarity between two phase
types

Phase type Position Constant Accelerate Hold-Pos Hold-Press Press Fast

Position 1 0.3 0.5 0 0 0.3 0.7

Constant 1 0 0 0 0.7 0.7

Accelerate 1 0 0 0.2 0.4

Hold-Pos 1 0.6 0.3 0

Hold-Press 1 0.8 0

Press 1 0

Fast 1

ferent adaptation schemes and have been developed in close
cooperation with domain experts [15].

The result of Step 3, i. e., the composition of adapted flui-
dic axes according to MS , yields a preliminary design solu-
tion, the raw design M ′. It is important to note that both case
retrieval and case adaption do not employ simulation; they
must be understood as a heuristic assessment whether a cer-
tain combination of fluidic axes is able to fulfill the demands.
Simulation comes into play in the next step, which is Step 4
under the functional abstraction paradigm.

3.5 Step 4: a design language for repair

This step starts with a simulation of the raw design M ′.6
The gained insights point to—presumably existing—deficits
in the raw design. There is a good chance that M ′ has the
potential to fulfill D, say, that a sequence of repair steps can
be found to transform an unsatisfactory raw design M ′ into
a solution M∗. An example for such a repair measure is the
following piece of design knowledge:

“An insufficient damping can be improved by
installing a by-pass throttle.”

The measure contains several forms of implicit enginee-
ring know-how, among others: (a) a by-pass throttle is
connected in parallel, (b) the component to which it is connec-
ted is a cylinder, (c) if there are several cylinders in the sys-
tem, an engineer knows the best-suited one, and, (d) a by-pass
throttle is a valve. Figure 11 illustrates the repair rule.

What is more, engineers use design knowledge in a flexible
way; i. e., a particular piece of knowledge can be applied
within different contexts in a variety of circuits. Flexibility is
a major reason which makes it difficult to encode the expres-
siveness of the above example on a computer. If we were
confronted only with systems of the same topological set-up,
then measures like the above (“Install a by-pass throttle.”)
could be hard-wired. To formulate modification knowledge

6 Simulation as well as the evaluation of simulation results poses a
bunch of challenges which are not discussed in this place.

Fig. 11 Illustration of the repair rule “An insufficient damping can be
improved by installing a by-pass throttle.”: interpret context (cylinder),
choose the best context among several candidates (left cylinder), apply
repair action to the context (connect throttle in parallel)

like above we have developed a scripting language tailored
to fluidic circuit design. Its key concepts are outlined below.

• Design graph grammar The descriptive means of design
graph grammars is used to precisely formulate the seman-
tics of location and action that is encoded in an engineer’s
repair knowledge. The following graph transformation
rule 〈T, C〉 → 〈R, I 〉 operationalizes the repair know-
ledge of the preceding example, the insertion of a by-pass
throttle tv (cf. Fig. 12).

T = 〈VT , ET , σT 〉 = 〈 {1, 2}, {{}}, {(1, p), (2, p)}〉
C = 〈VC , EC , σC 〉 = 〈 {3, 4, 5, 6},

{{3, 4}, {3, 5}, {4, 6}, {5, 6}},
{(3, w), (4, p), (5, p), (6, cv)}〉

R = 〈VR, ER, σR〉 = 〈 {7, 8, 9, 10, 11, 12, 13},
{{7, 9}, {8, 11}, {9, 10}, {10, 11},
{9, 12}, {11, 13}} {(7, pw),

(8, pw), (9, tr i), (10, tv),

(11, tr i), (12, p), (13, p)}〉
I = {((w, p), (w, pw)), ((cv, p), (cv, p))}

• Modification schemes Actions can be organized within
so-called modification schemes, which provide certain
macro facilities with local variables, loops, and bran-
ching.

• Meta knowledge To control the application of different
adaptation measures, they are characterized by values
from [0; 1], indicating the effectiveness of a measure,

123

B. Stein

w

pw pw

cv

pp

s s

tritri

p p

tvR
w

p p

cv

pp

s s

C T

Fig. 12 Application of the graph grammar rule from above, which
defines the insertion of a by-pass throttle in parallel to a cylinder

undesired side effects (called repercussion), and reali-
zation cost. From these values an overall confidence κ

is computed that relies on application requirements and
the designer’s preferences κeff , κrep, and κcost . Table 2
shows an expert’s evaluation of measurements to increase
a cylinder’s damping factor.
In the example the installation of a throttle in by-pass to
the cylinder is ranked first option; the resulting drain flow
through the by-pass moves the eigenvalues of the rela-
ted transfer function to a higher damping. An extensive
theory on the analysis, the assessment, and the adaptation
of hydrostatic drives can be found in Vier [45].

Connections to CBR research Case-based reasoning has
been a very active research field, and many systems and
technologies have been developed to apply the CBR para-
digm to knowledge-intensive tasks. In the field of design
only few systems have been developed that are concerned
with deep, behavior-based models. The most relevant work
related to our research is Schemebuilder [27], a system
that also deals with fluid engineering design, but which nei-
ther applies a simulation-based analysis nor a sophistica-
ted repair technology. Case combination and adaptation for
engineering design has been specifically treated in [14,18,
21,31,32]. However, these approaches stop short of genera-
ting models that can directly be analyzed at the behavior
level and understood at the mental model level—both of
which can be realized with the functional abstraction para-
digm and has been implemented within ArtDeco (see the
next subsection).

Fig. 13 A design query (bottom left), the functional description of a
solution (bottom right), and the automatically generated drawing of the
design solution

3.6 Realization: design automation with ArtDeco

The outlined concepts have been implemented within the
design assistant ArtDeco , which is linked to the Fluidsim
drawing and simulation environment for fluidic systems [15].
The design assistant enables a user to formulate his design
requirements as a set of fluidic functions F . For an f ∈ F a
sequence of phases can be defined, and several characteristic
parameters such as duration, precision, or maximum values
can be stated for each.

Given some F , the retrieval mechanism of the design assis-
tant searches the case base for axes fitting best the specified
functions, according to the measure ϕ. Afterward, these buil-
ding blocks are scaled and composed towards a new system
which then is simulated and further improved. Finally, a dra-
wing is generated which can directly be analyzed and evalua-
ted by a human designer. Figure 13 shows a query (top left),
the functional description of the generated design (below),
and the related drawing.

The key question is “How good are the designs of Art-
Deco?” A direct evaluation of the generated models is res-
tricted: an absolute measure that captures the design quality
does not exist, and the number of properties that characterizes
a design is large and hardly to quantify. On the other hand, the
quality of a generated design can be rated indirectly, by mea-
suring its “distance” to a design solution created by a human

123

Coping with large design spaces

Table 2 Possible remedies to
increase a cylinder’s damping
factor that has been judged
being too low

The computation of κ relies on
the preferences κeff = 0.5, κrep =
0.15, and κcost = 0.35, which
have been proposed by experts

Modification measure Effectiveness Repercussion Cost κ

Throttle in mainstream 0.1 0.4 0.8 0.39

Throttle in side stream 0.4 0.4 0.5 0.44

Throttle in by-pass 0.8 0.4 0.5 0.64

Damping network 0.9 0.8 0.1 0.61

Velocity feedback 0.6 0.8 0.3 0.52

Acceleration feedback 0.8 0.8 0.3 0.63

Table 3 Runtime and quality results of automatically generated designs

Number of axes Time for retrieval (s) Time for reuse (s) OK (at ϕ̄ > 0.9) (%) Quality %

1
1 0.10 80 60(+) 35(o) 5(–)

2
1 0.63 75 50(+) 45(o) 5(–)

3
1 0.91 70 40(+) 50(o) 10(–)

4
1 1.43 60 20(+) 65(o) 15(–)

5
1 2.00 20 5(+) 80(o) 15(–)

The column “OK” shows the portion of design solution whose simulation fulfills D with A high similarity value (ϕ̄ > 0.9). The column “Quality”
shows the expert evaluation: (+), (o), and (–) indicate a small, an acceptable, and a large modification effort to transform the computer solution into
a solution accepted by the human expert. The underlying computing platform was a standard PC

expert. The experimental results presented in Table 3 report
on such a competition. ϕ̄ defines the averaged similarities of
ϕ with respect to F . An automatically generated design is
computer-accepted if ϕ̄ ∈ [0.9; 1]. The computer-accepted
designs where analyzed by human experts with respect to
their “quality”, expressed as the real modification effort that
is necessary to transform them into a human-acceptable solu-
tion. As expected, the more complex F becomes, the weaker
develops the quality of the computer solutions: for small and
medium-sized circuits the computer solution needs marginal
rework. On the other hand, the computer solution for com-
plex demand sets can still be repaired with acceptable effort
by a human expert.

Simulation The automation of design problem solving in
the described manner, including nearly arbitrary axes compo-
sition, circuit topology modification, and component parame-
terization, requires excellent simulation capabilities. From
the simulation standpoint the key challenge pertains to model
formation, i. e., the automatic transformation of a high-level
circuit description in the form of a diagram down to an
algorithmic model [42]. The simulation engine in Fluidsim
comes along with the necessary technology: (a) an uncausal
simulation language,7 (b) recent algorithms for the analysis
of so-called stiff systems [8,13], and (c) a knowledge-based

7 Fluidsim implements the Modelica™ language for the modeling of
physical systems (http://www.modelica.org). Modelica is an open and
standardized specification, following the state of the art modeling para-
digms [25,26].

interplay between the compilation of model equations and
the application of an integrator’s solution equations. This
way it can resemble the famous DASSL algorithm [29], but
also apply an inline integration strategy to several integration
procedures [9].

Another strong point is the tight integration of computer
algebra at simulation runtime, which provides a high level
of flexibility for behavior analysis. Nonetheless simulation
performance is not compromised since the simulation engine
has a just-in-time compiler built in. Meyer zu Eißen and Stein
[23] discuss how this simulation engine is provided as a Web
service.

Conclusion

The success of a design approach depends on the under-
lying model space—say, its size, and the way it is explored.
A tractable model space is in first place the result of ade-
quate models, which in turn are the result of a skillful selec-
tion, combination, and customization of existing construction
principles. Human designers need little search because they
use adequate models.

This paper introduces the functional abstraction paradigm
as such a modeling principle and shows how it is applied to
the field of fluidic engineering. Its key idea is to construct
suboptimum candidate solutions within a simplified synthe-
sis space, which then must be repaired. But even with such a
simplification the automated design of fluidic circuits remains
a challenge. This is reflected by the combined use of several

123

B. Stein

powerful design technologies like design graph grammars,
case-based reasoning, or uncausal simulation.

Our operationalization of the design approach is
promising: the experiments show for medium-sized circuit
acceptable design results. Note that even a design of medium
quality can be used by a human expert as starting point;
moreover, the presented design approach is not a dead end: it
can be improved by enlarging the case base or by extending
the repair language.

References

1. Antonsson, E., Cagan, J.: Formal Engineering Design Synthe-
sis. Cambridge University Press, Cambridge (2001) ISBN 0-521-
79247-9

2. Brown, D., Chandrasekaran, B.: Design Problem Solving. Mor-
gan Kaufmann, CA (1989)

3. Buchanan, B., Shortliffe, E.: Rule-Based Expert Systems. The
MYCIN Experiments of the Stanford Heuristic Programming Pro-
ject. Addison-Wesley, Massachusetts (1984)

4. Chandrasekaran, B., Mittal, S.: Deep versus compiled knowledge
approaches to diagnostic problem-solving. In: Waltz, D. (ed.) Pro-
ceedings of the National Conference on Artificial Intelligence,
Pittsburgh, PA, pp. 349–354. AAAI Press, Cambridge (1982).
ISBN 0-86576-043-8

5. Clancey, W.: Heuristic classification. Artif. Intell. 27, 289–
350 (1985)

6. David, J., Krivine, J., Simmons, R. (eds.) Second Generation
Expert Systems. Springer, New York (1992) ISBN 0-387-56192-7

7. Davis, R.: Expert systems: where are we? And where do we go
from here? AI Mag. 3(2), 3–22 (1982)

8. Dormand, J.: Numerical Methods for Differential Equations. CRC
Press, New York: London, Tokyo (1996)

9. Elmqvist, H., Otter, M., Cellier, F.: Inline integration: a new mixed
symbolic/numeric approach for solving differential-algebraic
equation systems. In: Proceedings of the European Simulation
Multiconference, ESM’95, Prague, Czech Republic, June 1995,
pp. xxiii–xxxiv

10. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G.: Embedding critics
in design environments. Knowl. Eng. Rev. 8(4), 285–307 (1993)

11. Forbus, K., de Kleer, J.: Building Problem Solvers. MIT Press,
Cambridge (1993). ISBN 0-262-06157-0

12. Gero, J.: Design prototypes: a knowledge representation scheme
for design.. AI Mag. 11, 26–36 (1990)

13. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations
II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer,
New York (1996)

14. Hinrichs, T., Kolodner, J.: The roles of adaptation in case-based
design. In Proceedings of Cambridge AAAI Press / MIT Press,
AAAI (1991)

15. Hoffmann, M.: Zur Automatisierung des Designprozesses fluidi-
scher Systeme. Dissertation, University of Paderborn, Department
of Mathematics and Computer Science (2000)

16. Hägglund, S.: Introducing expert critiquing systems. Knowl. Eng.
Rev. 8(4), 281–284 (1993)

17. Karbach, W., Linster, M.: Wissensakquisition für Expertensys-
teme. Carl Hanser Verlag Munich. (1990) ISBN 3-446-15979-7

18. Kumar, H., Krishnamoorthy, C.: A framework for case-based
reasoning in engineering design. Artif. Intell. Eng. Des. Anal.
Manuf. 9(3), 161–182 (1995)

19. Kühl, M., Reichmann, C., Spitzer, B., Müller-Glaser, K.: Eine
durchgehende Entwurfsmethodik für das Rapid Prototyping von

eingebetteten Systemen. In: Workshop Modelltransformation und
Werkzeugkopplung (2001)

20. Leake, D.: Case-Based Reasoning: Issues, Methods, and Techno-
logy (1995)

21. Maher, M., de Silva Garza, A.: Case-based reasoning in design.
IEEE Expert 12(2) (1997)

22. McDermott, J.: R1: a rule-based configurer of computer sys-
tems. Artif. Intell. 19, 39–88 (1982)

23. Meyer zu Eißen, S., Stein, B.: Realization of web-based simulation
services. Comput. Ind. Spec. Issue Adv. Comput. Support. Eng.
Serv. Processes Virtual Enterp. 57(3), 261–271 (2006)

24. Minsky, M.: Models, minds, machines. In: Proceedings of the IFIP
Congress, pp. 45–49 (1965)

25. Modelica Association: Modelica—A Unified Object-Oriented
Language for Physical Systems Modeling: Tutorial. Modelica
Association, Linköping, Sweden (2000a)

26. Modelica Association: The Modelica Specification, version 2.0.
Modelica Association, Linköping, Sweden (2000b)

27. Oh, V., Langdon, P., Sharpe, J.: Schemebuilder: an integrated
computer environment for product design. In: Computer Aided
Conceptual Design. Lancaster International Workshop on Engi-
neering Design (1994)

28. Paredis, C., Diaz-Calderon, A., Sinha, R., Khosla, P.: Composable
models for simulation-based design. Eng. Comput. 17(2), 112–
128 (2001)

29. Petzold, L.: A description of DASSL, a differential-algebraic sys-
tem solver. In: Scientific Computing, pp. 65–68 (1983)

30. Puppe, F.: Systematic Introduction to Expert Systems, Knowledge
Representations and Problem-Solving Methods. Springer, New
York (1993)

31. Purvis, L., Pu, P.: An approach to case combination. In: Pro-
ceedings of the Workshop on Adaptation in Case Based Reaso-
ning, European Conference on Artificial Intelligence (ECAI 96).
Budapest, Hungary (1996)

32. Raphael, B., Kumar, B.: Indexing and retrieval of cases in a case-
based design system. Artif. Intell. Eng. Des. Anal. Manuf. 10, 47–
63 (1996)

33. Reiter, R.: A theory of diagnosis from first principles. Artif.
Intell. 32(1), 57–95 (1987)

34. Richter, M.: The knowledge contained in similarity measures,
October 1995. Some remarks on the invited talk given at
ICCBR’95 in Sesimbra, Portugal (1995)

35. Richter, M.: Introduction to CBR. In: Lenz, M., Bartsch-Spörl, B.,
Burkhard, H.-D., Weß, S. (eds.) Case-Based Reasoning Techno-
logy. From Foundations to Applications. Lecture Notes in Artifi-
cial Intelligence 1400, pp. 1–15. Springer, Berlin (1998)

36. Rychener, M.: Expert Systems for Engineering Design. Academic
Press, Dublin (1988) ISBN 0-12-605110-0

37. Schlotmann, T.: Formulierung und Verarbeitung von Ingenieur-
wissen zur Verbesserung hydraulischer Systeme. Diploma thesis,
University of Paderborn, Institute of Computer Science (1998)

38. Schmidt, L., Cagan, J.: Configuration design: an integra-
ted approach using grammars. ASME J. Mech. Des. 120(1),
2–9 (1998)

39. Schulz, A., Stein, B., Kurzok, A.: On the automated design of
technical systems. Technical Report tr-ri-00-218, University of
Paderborn, Department of Mathematics and Computer Science
(2001)

40. Sinha, R., Paredis, C., Khosla, P.: Behavioral model com-
position in simulation-based design. In: Proceedings of the
35th Annual Simulation Symposium, pp. 309–315. San Diego,
California, (2002)

41. Steels, L.: Components of expertise. AI Mag. 11(2), 28–49 (1990)
42. Stein, B.: Functional Models in Configuration Systems. Disser-

tation, University of Paderborn, Institute of Computer Science
(1995)

123

Coping with large design spaces

43. Stein, B.: Model Construction in Analysis and Synthesis Tasks.
Habilitation, Department of Computer Science, University of
Paderborn, Germany (2001)

44. Tong, C.: Towards an engineering science of knowledge-based
design. Artif. Intell. Eng. 2(3), 133–166 (1987)

45. Vier, E.: Automatisierter Entwurf geregelter Hydrostatischer
Systeme, vol. 795 of Fortschritt-Berichte VDI. Reihe 8. VDI,
Düsseldorf (1999)

123

	Coping with large design spaces: design problem solvingin fluidic engineering
	Abstract
	Introduction
	Automating design tasks
	Thesis: knowledge is power
	Antithesis: search does all the job
	A synthesis: untwine search and simulation
	Design problem solving in fluidic engineering
	The hydraulic domain
	Applying the functional abstraction paradigm
	Step 2: topology generation
	Step 3: case-based design of fluidic axes
	Step 4: a design language for repair
	Realization: design automation with ArtDeco

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

