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Summary. The construction of adequate models to solve engineerings tasks is a field of
paramount interest. The starting point for an engineering task is a given system, S, or a set of
systems, S , along with a shortcoming of information, often formulated as a question:

• Which component is broken in S? (diagnosis ∼ analysis)
• How does S react on the input u? (simulation ∼ analysis)
• Does a system with the desired functionality exist in S? (design ∼ synthesis)

If such an analysis or synthesis question shall be answered automatically, both adequate
algorithmic models along with the problem solving expertise of a human problem solver must
be operationalized on a computer. Often, the construction of an adequate model turns out to
be the key challenge when tackling the engineering task. Model construction—also known as
model creation, model formation, model finding, or model building—is an artistic discipline
that highly depends on the reasoning job in question.

Model construction can be supported by means of a computer, and in this chapter we
present a comprehensive view on model construction, characterize both existing and new
paradigms, and give examples for the state of the art of the realization technology. Our contri-
butions are as follows:

• In Section 2 we classify existing model construction approaches with respect to their
position in the model hierarchy. Nearly all of the existing methods support a top-down
procedure of the human modeler; they can be characterized as being either structure-
defining (top), structure-filling (middle), or structure propagating (down).

• Domain experts and knowledge engineers rarely start from scratch when constructing a
new model; instead, they develop an appropriate model by modifying an existing one.
Following this observation we analyzed various projects and classified the found model
construction principles as model simplification, model compilation, and model reformu-
lation. In Section 3 we introduce these principles as horizontal modeling construction and
provide a generic characterization of each.

• Section 4 presents real-world case studies to show horizontal model construction princi-
ples at work. The underlying technology includes, among others, hybrid knowledge rep-
resentations, case-based as well as rule-based reasoning, and machine learning.
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1 Introduction

“To an observer B, an object A∗ is a model of an object A to the extent that B can
use A∗ to answer questions that interest him about A.” [Minsky, 1965, pg. 45]

In this chapter, the interesting objects, A, are technical systems. The observer, B,
is a domain expert who works on an engineering task, such as a diagnosis or design
problem. The questions are embedded in a ternary way: they relate to the technical
system, to the engineering task, and to the domain expert.

A system, S, can be considered as a clipping of the real world and has, as its
salient property, a boundary. On account of this boundary, it can be stated for each
object of the world whether or not it is part of S. The process of developing a model
for a system is called model formation, model creation, or modeling.

If we are given a system S along with a question about S, an answer can be found
by performing tailored experiments with S. Experiments are purposeful excitations
of S while observing its reactions or modifications, which are called behavior. Note
that experimenting with a system is not possible if a question is of hypothetical nature
and relates to an, up to now, non-existing system. And, even if S exists, various
reasons can forbid experimenting with S: the system’s reactions may be too slow or
too fast to be observed, the experiment is too expensive or too risky to be executed,
or the experiment’s influence onto the system cannot be accepted. A common a way
out is the creation of a model M from the system S and to execute the experiment on
M (see Figure 1). Performing an experiment on a model is called simulation [21].

As shown in Figure 1, a model does not depend on the system as the only source
of information but is formed purposefully, in close relation to the interesting question
and/or the experiment to be performed on it. Under the problem-solving view of
Artificial Intelligence this is common practice: the interesting questions (diagnosis
or planning problems) prescribe the problem representation (the model) and yet the
problem-solving method (the “simulation” algorithm) [31].

Model

System Question+

Model
formation

AnswerSimulation Behavior Interpretation

AnswerExperiment InterpretationBehavior

Fig. 1. Simulation as a concept to eliminate information deficits with respect to a system.

2 Top-Down Model Construction

Creating a model of a technical system S means to shape its underlying concept or
idea—a process that is first of all mental, and that always involves three major steps:
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1. Identification of the system’s boundary ⇒ black-box model.
This step relates to the modeling focus and serves two main purposes: com-
plexity reduction and behavior isolation. In the field of engineering, focusing is
realized among others by the well-known Method of Sections, typically used to
cut out a part of a truss [17].

2. Identification of the subsystems and relations of S ⇒ structure model.
This step relates to the structural granularity and defines all subsystems of S
that can be identified in the model as such, and, at which level of detail the
interplay between subsystems is represented. For this purpose the system’s and
subsystems’ parameters along with input, output, and state variables are defined.

3. Characterization of constraints between variables ⇒ behavior model.
This step relates to the modeling accuracy or modeling fidelity and determines
the complexity of the mathematical relations that define the constraints between
a model’s state variables and algebraic variables. Both structural granularity and
modeling fidelity define the modeling deepness.

The outlined modeling steps happen in our mind, and, a model at this stage is
called a mental model. To communicate a mental model it must be given a repre-
sentation. A mental model becomes representational as a physical or material model
by craftsmanship. A mental model becomes representational as a symbolic or for-
mal model by developing a prescription for the constraints that are stated in the third
model formation step.

We use the term model construction as a collective term for all kinds of pro-
cesses where a given model is transformed into another model. Model construction
takes very different forms. The most common situation where one encounters model
construction is the transformation of an abstract model, which is close to the hu-
man understanding, into a computer model, that is to say, a program. The execution
of this program is an experiment at a symbolic model and hence a simulation. We

Mental model

Structure model

Algorithmic model

Computer model

Behavior model

System Question+

Interpretation of the 
concrete model in terms
of the abstract model.

High abstraction

Low abstraction

Fig. 2. A hierarchy of models. Top-down model construction means to map abstract models
onto less abstract models. Final objective is the operationalization of the mental model in the
form of a computer program.
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call a model construction process that maps a model M onto a less abstract model
top-down model construction; it is closely related to system analysis [20].

The transformation of a mental model into a computer model usually happens
in several steps wherein intermediate models are constructed: a structure model, a
behavior model, and an algorithmic model (see Figure 2, which shows a modified
version from [47]). Typically, the human designer materializes his mental model as
a textual or graphical structure model, for instance as a drawing or a diagram of the
system S. The structure model, which defines subsystems and relations of S, be-
comes a behavior model of S by specifying a state prescription function for each
subsystem. Behavior models are also designated as mathematical models [47]. Usu-
ally, the behavior model must be prepared with respect to the simulation algorithms
employed. This step includes the introduction of a causal order for the behavior equa-
tions, the normalization of behavior equations, or other algebraic operations. Finally,
the specification of an algorithmic model within a computer language or a simulation
language yields a computer model.

Moving down the model hierarchy means going in structure-to-behavior direc-
tion and is a process of increasing concretization. Model construction processes of
this type resemble so-called association mappings [51]. As already mentioned, model
construction needs not to be a vertical process; in Section 3 we consider model con-
struction as a mapping between models at the same level.

Top-Down Model Construction Support: a Classification Scheme

To support model construction many approaches have been developed. Most of them
are top-down; they aim at a reduction of the distance between abstract models and
less abstract models. Ideally, a mental model should be translated automatically into
a computer program. We relate top-down approaches for model construction to the
three areas shown in Figure 3, for which we state an abstract description, the known
representatives, and a running example from the field of fluidic engineering.

1. System + Question → Mental Model → Structure Model. Support at this place
relates to the model construction steps 1 and 2. Creating a mental model includes
the problem of phenomena selection, which in turn is closely connected to the
problem of identifying adequate system boundaries. Note that no sharp line can
be drawn between mental models and graphical structure models.
Known representatives: the model fragment idea for the organization of phe-
nomena [29], the reasoning on hypothetical scenarios for the determination of
system boundaries by [35], the CFRL paradigm that maps from function to be-
havior [18], the approaches to ontological reasoning [37], the case-based design
approaches that map from demand specifications to technical devices [24].
Example: For a hydraulic lifting platform the fail-save behavior for overload
operation shall be investigated. This requires the analysis of maximum pressures
and the functioning of relief valves. Hence, the system structure should represent
the basic hydraulic building blocks such as pumps, pipes, cylinders, or valves.



Model Construction for Knowledge-Intensive Engineering Tasks 143

2. Structure Model → Behavior Model. Support at this place relates to the model
construction steps 2 and 3. Creating a behavior model means to select and com-
pose local behavior models from a given domain theory according to a structural
description of a system.
Known representatives: the model composition approach and its variants [5],
the graphs of models paradigm [2], the use of model hierarchies in the field of
diagnosis [45], the selection of local behavior models with respect to the desired
accuracy for predefined phenomena [46].
Example: For the given question the hydraulic components need only to be de-
scribed by their stationary behavior, which includes continuity conditions, pres-
sure drops according to Bernoulli, and the balance of forces.

3. Behavior Model → Algorithmic Model + Computer Model. Support at this place
relates to one of the following tasks: synthesis of an algorithmic model from
a given set of local behavior models, generation of normal forms required for
numerical algorithms, behavior model processing.
Known representatives: continuity and compatibility constraint introduction as
realized in FLUIDSIM and standardized in MODELICA [10], task-oriented selec-
tion of efficient numerical procedures, symbolic manipulation of equation sys-
tems such as BLT-partitioning or automatic tearing [23], minimum coordinate
determination in kinematics computations, coherent synthesis of local behavior
models [22], automation of Jordain’s principle as realized in AUTOLEV [1].
Example: The mathematical equations of the hydraulic components are col-
lected, variables are unified according to the circuit structure, and a causal or-
dering is determined.

Remarks. The operationalization of model construction knowledge at the mental
model level does not hit the mark in many modeling problems. Especially when

(3)
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Fig. 3. The shaded areas indicate the three major places where top-down model construction
is supported (from left to right): system boundaries and relevant phenomena, model deepness
and model coherence, model synthesis and model processing.
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diagnosing or configuring a system, one is rather concerned with aspects of ade-
quacy and efficiency. Phenomena selection is a worthwhile objective though, but it
is usually too challenging to be tackled by a computer at present.

Recall the three main places where top-down model construction can be sup-
ported, shown in Figure 3. According to this view we distinguish top-down model
construction methods as follows.

1. Structure-defining methods derive necessary phenomena from the interesting
question, structural information from necessary phenomena, or structural infor-
mation from the desired function.

2. Structure-filling methods derive behavioral information from necessary phenom-
ena, behavioral information from functional requirements, or behavioral infor-
mation from structural information.

3. Structure-propagating methods derive algorithmic information from behavioral
information.

This classification tells us a lot about how these methods work. Structure-
propagating methods is a collective term for mathematical procedures that form a
global algorithmic model by “propagating” the implications of the local behavior
models along a given structure. Since structure-propagating methods operate on the
mathematical model level, the largest part of them is domain-independent and task-
independent. Structure-defining methods, as well as structure-filling methods, are
based on libraries of device models, component models, or model fragments. The
models in the libraries describe systems, building blocks, or phenomena from a par-
ticular domain.
Example. A model of an analog low-pass filter is a device model from the electrical
engineering domain. A resistor of this filter is a component, and one of its model
fragments is given by Ohm’s law, v(t) = R · i(t); another model fragment may take
the resistivity depending on the temperature, T , into account. In this case the model
fragment consists of two additional equations, R = ρ · l/A and ρ = ρ0(1 + α(T −

T0)), where l, A, ρ0, and α designate the resistor length, the cross-sectional area, the
resistivity at T0, and the coefficient of the resistivity respectively.

The models in the libraries are tagged by qualifiers that encode knowledge about
their applicability. Generally speaking, the job of structure-defining and structure-
filling methods is the selection of models from libraries by processing the qualifier
constraints of the chosen models. The qualifiers take different forms:

• In case-based design the qualifiers encode an abstract functional description of
devices. The job of a case-based reasoning system is to find for a given func-
tional demand the best fitting case from the device model library [32]. Qualifier
processing here relates to the computation of similarity measures and to case
retrieval [34].

• Model fragment qualifiers as used by [29] encode relations among phenomena,
typically formulated within propositional logics. Given two model fragments,
m1, m2, the contradictory relation states whether m1 and m2 go along with
each other; the approximation relation, on the other hand, states whether m1
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is a more approximate description of some phenomena compared to m2. Ad-
ditionally, coherence constraints and precondition constraints are used to define
domain-dependent modeling restrictions. Qualifier processing here aims at the
synthesis of device models that are causal, coherent, and minimum. This synthe-
sis problem is NP-complete.

• Model fragment qualifiers are also employed to encode mathematical properties
or hints respecting behavior processing. This includes knowledge about signal
ranges, model linearity, model stiffness, system orders, numerical conditioning,
steady states, oscillation behavior, damping, processing difficulty, and processing
performance. Qualifier processing here means assumption management.

Remarks. (1) The largest group of commercial tools that support model construction
concentrate on structure filling; moreover, they are restricted to situations where the
model deepness has been predefined by the human designer. (2) An important role
for the effectiveness of such tools comes up to the user interface. It can provide
powerful graphical support and be close to the mental model of the human designer,
for example as realized within FLUIDSIM: based on CAD drawings of even large
and complex electro-fluidic systems, FLUIDSIM generates the related algorithmic
models without human support [44]. AUTOLEV [38] and the IMECH toolbox [3] are
tools for textually describing mechanical multibody systems. Models in AUTOLEV
are formulated within a proprietary mathematical language, models in the IMECH
toolbox are formulated by instantiating C++ objects. A comparison of these tools
can be found in [16]. (3) Because of its popularity the SIMULINK toolbox is worth
to be noted here. Although SIMULINK comes along with a fully-fletched graphical
interface, it does not provide model construction support at one of the mentioned
places. Working with SIMULINK means to specify algorithmic models manually, by
drawing block diagrams.

3 Horizontal Model Construction

We now describe in which ways from a given model M , called the source model,
a new model M ′ can be constructed, which is particularly suited to solve a given
analysis or synthesis problem (see Figure 4). For instance, structure information ex-
tracted from a behavior model can form the base when tackling a related configura-
tion problem, or, by evaluating a complex behavior model at selected points in time a
heuristic model for diagnosis or control purposes can be derived. Our text deals with
the following horizontal model construction principles:

• Model Simplification. Coarsening a model by stripping off unused parts.
• Model Compilation. Making a model more efficient by introducing shortcuts.
• Model Reformulation. Switching to another modeling paradigm.

These principles are applied to overcome computational intractability, to improve
runtime performance, to simplify model maintenance, and the like. At the end of the
next paragraphs, the passage ”Formal description” provides details about the pros
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and cons of each principle, while Table 2 provides for a short characterization. Note
that these principles are not complete, but they are—often subconsciously—applied
in engineering practice. Moreover, both the compilation principle as well as the re-
formulation principle have not been described in an abstract or formal way so far.
Other horizontal model construction methods include model refinement or model
envisioning.

While model construction support as depicted in Figure 3 means moving down
the model abstraction hierarchy, model construction that is based on source mod-
els operationalizes a horizontal mapping. A source model, M , which guides the
model construction, establishes the primary knowledge source when building the
new model M ′. However, additional knowledge sources, which give answers to the
following questions, are inevitable:

• Model Simplification. Which parts shall be stripped off?
• Model Compilation. Where is a hidden shortcut?
• Model Reformulation. How do the migration rules look like?

The nature of the additional knowledge sources unveils that instances of these
model construction approaches are much more specialized with respect to the do-
main and the interesting question then the top-down approaches of the previous sec-
tion. This in turn means that we cannot expect recipes for horizontal model construc-
tion: model compilation, for instance, designates a construction principle rather than
a construction method. The case studies presented in Section 4 contain new ideas
for model construction, which pertain either to conceptual aspects or to the realized
algorithms.

Methods for model construction based on source models transform a structure
model, MS , into another structure model, M ′

S , and a behavior model, MB , into an-
other behavior model, M ′

B :

Mental model

Algorithmic model

Computer model

System Question+

Question'
Structure model

Behavior model
+

Structure model'

Algorithmic model'

Behavior model'

M'M

Fig. 4. Horizontal model construction uses a given source model to construct an adequate
model regarding some question. Question’ designates an analysis or synthesis task; the shaded
area indicates the underlying knowledge source.
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MS
γS

−→ M ′

S , MB
γB

−→ M ′

B

As opposed to structure-defining and structure-filling methods, the functions γS

and γB cannot be classified in a uniform way. This is in the nature of things: the
effects of a structure model mapping, γS , and a behavior model mapping, γB , may
range from a superficial variation up to an entire reformulation of the source model.
Both functions address deficits of the source model or its utilization—deficits that
are quantifiable by means of one or more of the following properties: time, place,
handling, maintenance, intricateness, comprehensibility, algorithms, representation.
To render horizontal model construction approaches comparable to each other they
are characterized according to the properties listed in Table 1.

Property Semantics

Characteristics Modification of the structure model and the behavior model.
Modeling effects Effects of a modification from the modeling perspective.
Processing effects Effects of a modification with respect to model processing:

1. processing efficiency, typically the runtime complexity,
2. processing difficulty, which describes how intricate the

employed algorithms are, and
3. model handling, which relates to the maintenance effort of

the modified model.
Area of application Problem classes, where the model construction approach is used.
Techniques Techniques, algorithms, and strategies to implement the model

construction approach; say, the functions γS and γB .

Table 1. Properties to characterize the model construction approaches.

Remarks. The functions γS and γB can be compared to the “system morphism” idea
[49, 51]. System (homo-, iso-) morphisms are a concept to transform one system
description into another. The main contribution in [49, 51] is the development of
a generic framework for system description, system design, and system analysis.
Nevertheless, their work is less concerned with the identification and characterization
of special instances of morphisms.

Model Simplification

Model simplification aims at a reduction of a model’s analytic complexity, a model’s
constraint complexity, or both. A reduction of the search space complexity may be
an additional consequence but is not top priority. While analytic complexity and
constraint complexity are crucial for analytical problem solving tasks, the search
space complexity is of paramount importance within synthesis tasks: it is a measure
for the number of models that have to be synthesized and analyzed in order to solve
a design problem. The concept of model simplification has been discussed by several
researches before [12]. Formal description:
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1. Characteristics. Simplification of behavior models usually happens within two
respects. First, the set of functionalities is restricted to a subset, which leads to a
simpler structure model (cf. Figure 5). Second, the complexity of the functions
in the state prescription function are reduced. The former establishes an aggre-
gation of function and directly leads to a structure simplification [14]; the latter
falls into the class of behavior aggregation.

2. Modeling Effects. The lessened interaction between submodels results in a dis-
regard of physical effects. The simplification results in a coarsening of physical
phenomena or in physically wrong connections. The behavior is rendered inac-
curately up to certain degree, but easier to understand [12].

3. Processing Effects. Both structure model and behavior model can be processed
more efficiently; the processing difficulty is reduced; model handling is simpli-
fied.

4. Area of Application. Analysis of large or numerically demanding behavior mod-
els; synthesis of behavior models without knowledge about the model structure.

5. Techniques. γS : elimination of feedback loops; equalization of the node degree
in the structure model; elimination of edges to create a causal ordering, i. e., a
unique computation sequence when determining unknown functionalities [28].
γB : fuzzification of equations the state prescription; piecewise linear reasoning
[36]; linearization of higher order polynomials; balancing of dominant terms
in complex equations [50]; state combination by aggregating similar states; nu-
merical coarsening by means of scaling down numerical precision of the func-
tionalities; order of magnitude reasoning [33]; reduction to a structure model
by omitting behavior descriptions, which is called “representational abstraction”
[12].
Model simplification represents a more or less serious intervention in the physical

underpinning of the source model. Hence, model simplification is always bound up
with model evaluation: it must be ensured that the simplified model is able to answer
the interesting question in connection with the intended experiment.

Model Compilation

Model compilation is the anticipation of model processing effort: processing effort
is shifted from the model utilization phase to the model construction phase. Model

Simplification

a

k

i

j

gf h

e

dcb

ml

Source model Simplified model

a

j

f

k

ig h

e

dcb

ml

Fig. 5. Illustration of the source structure model (left) and a simplified structure model (right).
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compilation is a powerful principle to address a model’s analytic complexity, its
constraint complexity, or the search space complexity. A compiled model is created
by introducing either (1) computational short cuts within long-winded calculations
that are caused by a complex behavior model, or (2) exploratory short cuts within a
large search space that results from problem-inherent combinatorics. The idea is to
break global connections within the source model down to local connections, which
are encoded within the compiled model in the form of special hints. These hints can
take one or more of the following forms.

• Hints that use memorization to short-circuit involved state prescription con-
straints between functionalities of different submodels (see Figure 6). Cause ef-
fect chains are shortened, possibly to simple associations.

• Hints that suppose an order within a sequence of tentative search space decisions.
These hints are introduced as tags at the respective choice points in the search
space and control the search.

• Hints that restrict the search space by introducing additional state prescription
constraints.

Model compilation methods can also be characterized by their scalability. Using
a scalable method, there is a trade-off between the effort for model preprocessing
and model processing at runtime. The scalable character of a compilation method
is bound up with the depth of the analyzed search space, or the precision at which
simulations are performed. However, a compilation method that analyzes a model
with respect to special structures is usually not scalable. Formal description:

1. Characteristics. The set of functionalities remains unchanged. The behavior
model is enriched with additional constraints that encode numerical or search-
specific hints.

2. Modeling Effects. The modeling accuracy and the level of detail is not reduced,
although the ways of computing model behavior may be completely altered.

3. Processing Efficiency. The model can be processed much faster. However, the
implementation of the necessary inference (simulation) algorithms may be more
challenging than before compilation. Moreover, model handling gets more com-
plicated since modifications of the model require a renewed preprocessing.
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Fig. 6. Computational short cuts: hints in the compiled behavior model short-circuit the com-
putation of constraints between functionalities of different submodels. For example, the input
parameters could directly be mapped onto the output parameters.
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4. Area of Application. Whenever processing efficiency is highest bid and process-
ing hints can be computed at all, model compilation is expedient. Given this sit-
uation, further prerequisites must be fulfilled: (a) The problem solving task can
be split into two phases: a model construction or preprocessing phase, where
computing power and/or computing time are given on a large scale, and a model
utilization or problem solving phase. (b) The number of problem instances that
require a recompilation is small.

5. Techniques. γS : topological analyses from which computational constraints or
search constraints are derived; determination of candidates for a dependency-
directed or knowledge-based backtracking; identification of spheres of influ-
ence of both revision and trashing [25]; decomposition of equation models into
(a) involved subproblems, which must be processed by a global method, and
(b) feedback-free subproblems, which can be tackled by a local inference ap-
proach; model decomposition by causal analysis [8].
γB (computational short cuts): pre-computation of typical simulation situations
and encoding of input/output associations in the form of look-up tables; compi-
lation of rules into a rete-network [13]; utilization of an assumption-based truth
maintenance system (ATMS) in order to organize results of computational ex-
pensive inference problems [19]; sharing of computation results by identifying
and replacing instances of similar submodels, a concept that can be realized alge-
braically; case-based learning of characteristic features to select suited inference
methods for simulation [43].
γB (exploratory short cuts): behavior aggregation by a precedent detection of
repeating cycles [48]; coalescing a system by methods from the field of induc-
tive inference [4]; extensive or even exhaustive search in order to analyze the
search space or to develop a decision strategy at choice points; ordering of value
assignments in constraint-satisfaction problems with finite domains [9].

Remarks. We call a compilation method that is not specially keyed to models of
technical systems a knowledge compilation method. Knowledge compilation meth-
ods presuppose a determined knowledge representation form, but no problem solving
task, no domain, and no model. The rete-algorithm mentioned above is such a knowl-
edge compilation method; its prescribed knowledge representation form is the rule
form. While the rete-algorithm has been developed for rule languages whose inter-
pretation is defined on the recognize-and-act cycle, the compilation method in [52]
exploits the fixed-point convergence of the rule language to be compiled.

The following examples give an idea of the spectrum of knowledge forms where
compilation methods can be applied: (1) The syntactic analysis and substitution of al-
gebraic terms. (2) A still more basic knowledge compilation method is based on Horn
approximations [40]; its prescribed knowledge representation form are formulas in
propositional form. (3) If graphs are the interesting knowledge form, knowledge in-
ference means graph matching or isomorphism analysis. For the latter problem a
compilation method with scalable preprocessing effort is presented in [26].
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Model Reformulation

In a literal sense, every construction of a new model from a source model could be
entitled a reformulation. This not the intention here; rather, the term model reformu-
lation is used as a collective term for model constructions that are indifferent with
respect to both modeling effects and processing efficiency.

Model reformulation aims at issues from one or more of the following fields:
knowledge representation, knowledge acquisition, model maintenance, available in-
ference methods, user acceptance. After a model reformulation, the resulting model
is in a form ready to become used for the problem solving task in question. Model
reformulation does not target on complexity issues. Formal Description:
1. Characteristics. The set of functionalities may or may not be altered. Typically,

the state prescription function is reformulated, leading to a paradigm shift in
model processing.

2. Modeling Effects. Ideally, there are no effects on the model’s accuracy or its
level of granularity.

3. Processing Effects. Ideally, the processing efficiency is not affected. Nothing can
be said regarding processing difficulty. The model handling may be simplified.

4. Area of Application. There is no specific area of application. Model reformula-
tion comes into play if a model that has been developed with respect to a special
processing approach shall be transformed for another processing approach.

5. Techniques. There is no specific reformulation technique.
As opposed to model simplification or model compilation, there is no pool of

techniques by which a model reformulation is to be realized. This is in the nature
of things; model reformulation takes a model that has been used successfully with
processing paradigm A and tries to transform this model such that it can be used
within processing paradigm B.

At first sight model reformulation appears to be a close relative of model compi-
lation. This, however, is not the case. The maxim of model compilation is processing
efficiency, and the problem solving task could be done without a compilation—at
a lower processing efficiency, of course. We speak about model reformulation, if
a model must be transformed into another representation in order to be processed
within the problem solving task.
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Fig. 7. Model reformulation is usually bound up with a paradigm shift in model processing,
entailing both a new structure model and behavior model.
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Modeling Processing Processing Handling
Approach quality efficiency difficulty difficulty
Simplification ↓ ↓ ↑ ↓ ↓
Compilation – ↑ ↑ ↑ ↑
Reformulation – – ↓ ↓ ↓

Table 2. Short characterization of three horizontal model construction principles.

Discussion and Related Work

Table 2 contrasts the presented model construction approaches. The used symbols
are interpreted as follows: ↑ ↑ (↑) means strong (low) positive impact, while ↓ ↓
(↓) means strong (low) negative impact, the dash stands for no impact. The table
shows the dependencies in an oversimplified way and should only be used as a road
map.

The three horizontal model construction principles are process-centered: model
simplification as well as model compilation relate to the difference between the pro-
vided and the required computing power when going to solve a problem with the
source model. A model is simplified if the interesting problem solving task cannot
be handled with this model—a situation that occurs if, for instance, a design task is
addressed with a model conceived for an analysis task. In fact, model compilation
can provide a way out in such a situation as well. The essentials for a compilation
strategy are twofold: the task in question can be tackled with acceptable comput-
ing power, and, the employment of the necessary computing power can be alloted a
model construction and a model utilization phase.

Figure 8 shows the model transformation theory from Zeigler et al. [51]. The
vertical arrows in the diagram connect a behavior model at different levels of explic-
itness. At the lowermost level, behavior is specified by input/output relations; when
going up in the hierarchy the models get supplemented: by a global state prescrip-
tion function, by initial states, by local behavior relations, and, finally, on the topmost
level, by a component influence structure. The horizontal arrows represent mappings
between two models; they are called morphisms here and correspond to our con-
struction functions γS and γB . We can use this diagram to point up the effects of a
model compilation that introduces computational short cuts: it is a mapping from a

I/O relation

I/O function

I/O system

Structured system

I/O relation'

I/O function'

I/O system'

Structured system'

Fig. 8. Hierarchy of system specifications according to Zeigler et al. [51]. The horizontal lines
represent mappings for model construction, called morphisms here.
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Fig. 9. Integrating the idea of model compilation into Zeigler et al.’s hierarchy of system
specifications: a high-level system description, e. g. an equation model, is broken down to
plain I/O relations by means of model compilation.

model on the left-hand side onto the I/O-relation model at the lowermost level on the
right-hand side (see Figure 9).

4 Case Studies

This section presents three case studies where the horizontal model construction
paradigm is applied. Note that the section cannot serve with detailed introductions
and discussions of algorithmic, technical, or problem-specific background; for this
purpose we refer to the respective literature. The case studies have illustrative char-
acter and shall sensitize the interested reader to identify the use of horizontal model
construction principles in other situations. Nevertheless, they describe non-trivial,
knowledge-intensive real-world applications that were tackled in the outlined way.

4.1 Case Study 1: Plant Design in Chemical Engineering1

A chemical plant can be viewed as a graph whose nodes represent devices or unit-
operations, while the edges correspond to pipes responsible for the material flow.
Typical unit-operations are mixing (homogenization, emulsification, suspension, aer-
ation), heat transfer, and flow transport. The task of designing a chemical plant is
defined by a demand set D, in the form of properties of various input substances
along with the desired output substance. The goal is to mix or to transform the input
substances in such a way that the resulting output substance meets the requirements.

The design happens by passing through (and possibly repeating) the following
five steps: preliminary examination, choice of unit operations, structure definition,
component configuration, and optimization. An automation of the steps at a behav-
ioral level would be very expensive—if possible at all. Present systems limit design
support to isolated subtasks; they relieve the human designer from special simulation
or configuration tasks, and the effort involved there is high enough.

Instead of deriving a concrete solution for supplied demands at the modeling
level, the physical model is simplified to an abstract model. On this abstract level,
1 Supported by DFG grants PA 276/23-1 and KL 529/10-1



154 Benno Stein

a solution can be efficiently calculated and transferred back to the physical level,
although some adjustments may be necessary at this point. See Figure 10 for an
illustration.

Model Simplification

The following model simplification steps include structure model simplifications
(S1-S4) and behavior model simplifications (B1-B6), resulting in a tractable design
problem. They are oriented at the taxonomy of model abstraction techniques listed
in [14].

(S1) Single Task Assumption. It is general practice to combine different chemical
processes in order to share by-products or partial process chains. A combined
design corresponds to the solution of different tasks simultaneously—a proce-
dure which belongs to optimization. Here, design is restricted to the n:1-case,
and overlapping plant structures are split and dealt with separately as shown in
Figure 11.

(S2) Model Context. The way how models are embedded into a context is clearly de-
fined. Pumps, for example, have a strict structural relationship; they have single
input and output, and the predecessor of a pump must be another device.

(S3) Limited Input Space. During the design process, decisions are taken based on
the abstract values of a small set of substance properties, such as temperature,
viscosity, density, mass and state. Properties such as heat capacity, heat conduc-
tivity or critical temperature and pressure are neglected at this point.

(S4) Approximation. Instead of using different functions and formulas that apply
under different conditions, only one function or formula covering the widest
range of restrictions is used. For example, there are more than 50 different for-
mulas to calculate the viscosity of a mixture most of which are very special-
ized versions and only applicable under very rare circumstances. The formula
ln(η) =

∑
i ϕi · ln(ηi), however, is very often applicable and yields a good

approximation, even in the complicated cases.2

2 The symbols ϕi and ηi designate the volume portion and the viscosity of input i.
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Fig. 10. The behavior model is abstracted to a structure model where physical quantities are
represented as linguistic variables. The synthesis space is restricted to a set of labeled graphs.
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Fig. 11. Single task: overlapping plant structures are split and treated separately.

(B1) Causal Decomposition. To prevent components from exerting influence on them-
selves, feedback loops are not allowed.

(B2) Numeric Representation. Although the use of crisp values leads to exact results,
fuzzy sets are used to represent essential value ranges. This simplification di-
minishes the combinatorial impact on our graph grammar approach.

(B3) State Aggregation. In general, the material being processed within a device is in
different states. This behavior is simplified by assuming that, inside a device, a
material will be in one single state.

(B4) Temporal Aggregation. Time is neglected, rendering statements about continu-
ous changes to material properties impossible; changes to material properties are
connected to entry and exit points within the plant structure.

(B5) Entity Aggregation by Structure. Devices usually consist of different parts that
can be configured separately. For instance, a plate heat transfer device is com-
posed of a vessel and a variable number of plates. The arrangement of the plates
within the vessel is a configuration task.

(B6) Function Aggregation. In contrast to entity aggregation by function, where de-
vices are represented by a special device, we aggregate functions. For instance,
mixers are capable of performing different functions, such as homogenization,
emulsification, aeration, or suspension.

The DIMOD Workbench

Rationale of the aforementioned model simplifications is to automate the generation
of adequate structure models for a given set of demands. We developed tools to auto-
mate this synthesis step with graph grammars: they allow for knowledge modeling,
manipulation, and systematic exploration of the search space, which are essential re-
quirements for a successful synthesis of structure models [39]. Graph grammars gen-
erate graphs by applying transformation rules on, initially, some start graph. Here,
the start graph represents the unknown chemical plant where the abstracted demands
in the form of input and output substance properties are connected to. The successive
application of transformation rules corresponds to the application of domain knowl-
edge with the goal to transform the start graph into a design fulfilling all demands.

Figure 12 illustrates the use of graph grammars in chemical engineering design;
it shows graphical representations of a small fraction of the transformation rules
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Fig. 12. Top: synthesis rules for the splitting of mixing jobs (left) and the insertion of a heating
chain to improve dissolution (right). Bottom: refinement of a generic mixer as propeller mixer
(left) and refinement of a generic mixer as propeller mixer with trailing heating chain (right).

in the design knowledge base of DIMOD. The rules, which have been developed
in close cooperation with domain experts, are used for synthesis, refinement, and
optimization purposes when designing plants for food processing.

Graph grammars can be seen as a collection of rules that define some search
space. Note, however, that they provide no means to navigate within this search
space; each domain requires a dedicated search method exploiting domain knowl-
edge. Figure 13 shows a snapshot of the DIMOD workbench that has been developed
to support human designers when solving synthesis tasks in chemical engineering.
The core of the system consists of a generic graph grammar engine, used for mod-
eling and application of knowledge, and a domain-specific module used to guide
the search process. A generated structure model is completed towards a tentative
behavior model by attaching behavior model descriptions to the components of the

Fig. 13. The DIMOD workbench. The upper left window represents the abstracted demands,
the windows to the right and center show two generated structure models.
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Fig. 14. Partitioning the resource-based configuration process.

structure model. Tentative behavior models are validated by simulation, for which
the ASCEND IV simulator is employed [30].

4.2 Case Study 2: Generating Control Knowledge for Configuration Tasks

Configuration is the process of composing a model of a technical system from a
predefined set of components. The result of such a process is called configuration too
and has to fulfill a set of constraints. Aside from technical restrictions a customer’s
demands form a larger part of these constraints [6, 15]. A configuration process can
rely on a structure model or on a behavior model. If emphasis is on the former the
configuration approach is called skeleton configuration; if emphasis is on the latter
the configuration task can be solved with a so-called resource-based configuration
approach.

Within resource-based configuration the involved components are characterized
by simplified functional dependencies, the resources. E. g. when configuring a small
technical device such as a computer, one functionality of a power supply unit may
be its power output, f1, and one functionality of a plug-in card may be its power
consumption, f2. Both functionalities are elements of the resource “power”: a power
supply unit supplies some power value f1 = a1, while each plug-in card demands
some power value f2 = a2. In its simplest form, demanded values are represented
by negative numbers, which are balanced with the supplied positive numbers. Within
a technically sound model the balance of each resource must be zero or positive.

Resource-based modeling provides powerful and user-friendly mechanisms to
formulate configuration tasks. However, the solution of resource-based configuration
problems is NP-complete, which means that no efficient algorithms exist to solve a
generic instance of the problem [41]. When given a real-world configuration task
formulated within a resource-based description, the search for an optimum configu-
ration is often realized efficiently with heuristics that are provided by human experts.
Put another way, a resource-based system description can be enriched with control
knowledge, and model compilation is the idea to generate control knowledge auto-
matically. Consequently, the configuration process is divided into a preprocessing
phase, where heuristics are generated, and in a configuration phase, typically at the
customer’s site, where a concrete configuration problem is solved. Figure 14 illus-
trates this view.
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Fig. 15. Resource model representation of a telecommunication system in PREAKON.

The Bosch Telecommunication Application

The configuration of telecommunication systems requires technical know-how since
the right boxes, plug-in cards, cable adapters, etc. have to be selected and put together
according to spatial and technical constraints. Customer demands, which form the
starting point of each configuration process, include various telephone extensions,
digital and analog services, or software specifications. Typically, there exist a lot of
alternative systems that fulfill a customer’s demands from which—with respect to
some objective—the optimum has to be selected. For this kind of domain and con-
figuration problem the resource-based component model establishes the right level of
abstraction: constraints can be considered as a finite set of functionality-value-pairs,
which are supplied or demanded from the components.

To cope with their huge and increasing number of telecommunication system
variants and to reduce the settling-in period for their sales personnel, Bosch Te-
lenorma, Frankfurt, started the development of the resource-based configuration sys-
tem PREAKON. Figure 15 shows a part of the knowledge base in PREAKON’s ac-
quisition mode. The field tests showed the necessity of a heuristic search space ex-
ploration if optimum configurations should be found in an acceptable time. For the
following reasons we refrained from a manual integration of control knowledge:

1. Control knowledge of domain experts is often contradictory or incomplete.
2. The additional effort bound up with maintenance of heuristic knowledge com-

plicates the configuration system’s introduction.
3. Each modification of the knowledge base (e. g. new components) can potentially

invalidate existing heuristics.

Instead, the model compilation paradigm was pursued—the automatic generation
of control knowledge by means of preprocessing.
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Model Compilation

Basically, resource-based configuration works as follows. First, the demand set of
a virtual balance is initialized with all demanded functionalities. Second, with re-
spect to some unsatisfied resources a component is selected and its functionalities
are added to the corresponding resources of the balance. Third, it is checked whether
all resources are satisfied. If so, the selected components form a solution of the con-
figuration problem; otherwise, the configuration process is continued with the sec-
ond step. Without powerful heuristics that control the functionality and component
selection steps, only toy problems can be tackled by resource-based configuration.
Resource selection is related to the search space’s total depth in first place; compo-
nent selection affects the effort necessary for backtracking.

Heuristics for resource selection are derived from graph-theoretical considera-
tions which base on the analysis of the strong components in the dependency graph.
Heuristics for component selection are derived from a best first search analysis,where
for particular demand values the recursive follow-up cost of component alternatives
are estimated. These sampling points are used to interpolate for each component and
each demanded resource a function. The result of the analysis is a family of func-
tions, which can be evaluated at configuration runtime.

The control knowledge must be recomputed each time the knowledge base is
modified; this preprocessing phase takes several minutes on a standard PC. Alto-
gether, the model compilation led to a significant speed-up for realistic instances of
the configuration problem: PREAKON was the first configuration system at Bosch
Telenorma that provided realistic means for being used at the customer site.

4.3 Case Study 3: Synthesis of Wave Digital Structures3

Wave digital structures have their origins in the field of filter design, where they are
designated more specifically as wave digital filters [11]. They can be considered as
a particular class of signal flow graphs whose signals are linear combinations of the
electric current and flow, so-called a/b-waves. The translation of an electrical circuit
from the electrical v/i-domain into the a/b-wave-domain establishes a paradigm
shift with respect to model processing; it is bound up with considerable numerical
advantages. However, since neither the modeling accuracy nor its granularity is af-
fected, the translation into a wave digital structure establishes a model reformulation.

When migrating from a voltage/current description of an electrical circuit S to-
wards a wave digital structure, the model is completely changed: the structure model
of S is interpreted as a series-parallel graph with closely connected components and
transformed into an adaptor structure (cf. Figure 16). This reformulation aims at the
analysis, say, simulation of S, as illustrated at Gero’s design cycle in Figure 17.

The construction of a wave digital structure is a design task, namely the design
of a sophisticated algorithmic model. Since this design task is not trivial and needs
3 Supported by DFG grant KL 529/10-1
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Fig. 16. Reformulation of an electrical circuit model as wave digital structure for model pro-
cessing reasons.

experience, its automation is a worthwhile undertaking. In [42], the necessary con-
cepts and algorithms for a WDS design automation are explained in detail. At the
same place an algorithm is presented which computes for a given electrical circuit
the optimum wave digital structure in linear time—a result which cannot be further
improved. In the following we outline the reformulation procedure.

Model Reformulation

As already noted, a wave digital structure is a special kind of signal flow graph. Its
topology is realized with series and parallel connectors; the signals that are processed
when traveling along the signal flow graph are wave quantities. The reformulation of
an electrical circuit as a wave digital structure involves three principal steps:

1. Topology reformulation of the Kirchhoff interconnecting network.
2. Description of component behavior in the a/b-wave domain.
3. Discretization by numerically approximating the differential equations.

These reformulation steps divide into local operations (Step 2 and 3), which per-
tain to components of the electrical circuit in an isolated manner, and into the global
topology reformulation in Step 1. Note that Step 2 and Step 3 are orthogonal to each
other, say, their order of application can be interchanged.
Topology Reformulation. Let S be an electrical circuit. The reformulation of the
Kirchhoff interconnecting network of S starts with the identification of subsystems
in S that are connected in series or in parallel. Both series connections and parallel
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Reformulation
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circuit model
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Fig. 17. Left: Gero’s widely-accepted model of the human design process [15]. The automatic
synthesis of WDS provides a numerically attractive alternative to operationalize the analysis
step (right, shown gray).
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structure (right). The shaded areas in the circuit indicate the decomposition into three ports.

connections are specializations of a concept called “port”, as much as each com-
ponent with two terminals establishes a (one-)port as well. A port fulfills the port
condition, which claims that the currents at terminal 1 and terminal 2, i1 and i2,
fulfill the constraint i1 = −i2 at any point in time.

Objective of the topology reformulation is the replacement of series and parallel
subgraphs by respective connectors, which guarantee that Kirchhoff’s laws are ful-
filled and which permit a special network analysis approach. Common network anal-
ysis approaches are based on mesh equations, node equations, or state equations [7].
Following a common approach means to set up and transform matrices, such as the
mesh-incidence matrix, the branch-impedance matrix, the node-incidence matrix, the
branch-admittance matrix, or the state space matrix. Computations on matrices are
global computations in the sense that a system of equations must be treated at the
same time to find the equations’ solutions. By contrast, a computation is local if a
single equation at a time is sufficient to compute a solution of that equation, and if
this solution is coded explicitly in the equation.

For the part of S that is realized with series and parallel connections model pro-
cessing effort can be significantly decreased: computational effort can be made up
front—during model construction time—resulting in a new behavior model whose
equations can be processed locally. Note that a behavior model where all equations
can be processed by local propagation, forms a causal behavior model. Such a be-
havior model is the most efficient algorithmic model possible.
Transfer to the a/b-Wave Domain. The electrical quantities voltage, v, and current,
i, can be expressed by so-called wave quantities, a, b, which are linear combinations
of v and i. Common is a transformation into voltage waves,

a = v + Ri, b = v − Ri,

where a and b represent the incident and reflected wave respectively; R is called the
port resistance. When applying these relations in the above topology reformulation
step, the connectors that are used to model series and parallel subgraphs get a spe-
cial name—they are called series adaptor and parallel adaptor respectively. Adaptors
have ports where the a/b-equivalents of electrical components or other adaptors can
be connected. An adaptor can be understood as a mathematical building block that
introduces constraints on the a/b-waves of its connected elements such that in the
original circuit Kirchhoff’s voltage and current law are fulfilled. Figure 18 shows an
electrical circuit and its related wave digital structure containing one series adaptor.
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Note that, aside from performance reasons, the reformulated counterpart of cir-
cuit S in the a/b-wave domain comes along with superior numerical properties,
which simplify the operationalization of S in the form of an integrated circuit.

5 Summary

Model construction is an artistic discipline whose overall objective is to find the right
model in order to give an answer to an open question. Our research discussed the
classical top-down model construction approach and introduced the idea of horizon-
tal model construction. Horizontal model construction starts with an already devel-
oped model, which then is improved in different respects, be it efficiency, handling,
complexity, or others. Hence, horizontal model construction does not follow a fixed
scheme but takes very different forms from which we introduced three important
principles: model simplification, model compilation, and model reformulation. For
each of these principles we introduced its basic characteristics and exemplified its
application within a knowledge-intensive engineering task.

Among experienced engineers and problem solvers horizontal model construc-
tion is common practice and may often be applied subconsciously. In this connection
our research shall contribute to both a better understanding and a formal theory of
model construction within complex and knowledge-intensive tasks.
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