
Retrieving Customary Web Language to Assist Writers

Benno Stein, Martin Potthast, and Martin Trenkmann

Bauhaus-Universität Weimar, Germany
<first name>.<last name>@uni-weimar.de

Abstract This paper introduces NETSPEAK, a Web service which assists writers
in finding adequate expressions. To provide statistically relevant suggestions, the
service indexes more than 1.8 billionn-grams,n ≤ 5, along with their occurrence
frequencies on the Web. If in doubt about a wording, a user canspecify a query
that has wildcards inserted at those positions where she feels uncertain.
Queries define patterns for which a ranked list of matchingn-grams along with
usage examples are retrieved. The ranking reflects the occurrence frequencies of
then-grams and informs about both absolute and relative usage. Given this choice
of customary wordings, one can easily select the most appropriate. Especially
second-language speakers can learn about style conventions and language usage.
To guarantee response times within milliseconds we have developed an index
that considers occurrence probabilities, allowing for a biased sampling during
retrieval. Our analysis shows that the extreme speedup obtained with this strategy
(factor 68) comes without significant loss in retrieval quality.

C. Gurrin et al (Eds.): Advances in Information Retrieval
Proceedings of the 32nd European Conference on InformationRetrieval, ECIR 2010
Milton Keynes, UK, pp. 631-635, ©Springer 2010.

1 Introduction

Writers who are in doubt about a certain expression often askthemselves:“What word-
ing would others use in a similar context?”This question can be answered statistically
when given a huge corpus of written text from which matching examples can be re-
trieved. In this paper we introduce NETSPEAK, which indexes a large portion of the
Web, presumably the most comprehensive text corpus today.1

Related Work Computer-aided writing has a long history dating back to thevery begin-
ning of personal computing, and so has research on this topic. This is why we can give
only a brief overview. The main topics in writing assistanceinclude spell checking,
grammar checking, choosing words, style checking, discourse organization, and text
structuring. Note that spell checkers and, to a certain extent, grammar checkers are cur-
rently the only technologies that reached a level of maturity to be shipped large-scale.

Search engines comparable to ours are for instance WEBCORP, WEBASCORPUS,
PHRASESINENGLISH, and LSE.2All of them target exclusively researchers of linguis-
tics. By contrast, our search engine targets the average writer, whose information needs
and prior knowledge differs from those of a linguist. Moreover, NETSPEAKoutperforms
existing tools in terms of both retrieval speed and the extent of the indexed language
resources. In [5] the authors propose an index data structure that supports linguistic
queries; a comparison with our approach is still missing.

Corpora ofn-grams are frequently used in natural language processing and informa-
tion retrieval for training purposes [7], e.g., for naturallanguage generation, language

1 NETSPEAKis available at http://www.netspeak.cc.
2 See http://www.webcorp.org.uk, http://webascorpus.org, http://phrasesinenglish.org, and [8].

632 Benno Stein, Martin Potthast, and Martin Trenkmann

modeling, and automatic translation. In particular, thereis research on automatic trans-
lation within a language in order to correct writing errors [4]. We want to point out
that our research is not directed at a complete writing automation since we expect a
semi-automatic, interactive writing aid to be more promising in the foreseeable future.

2 NETSPEAK Building Blocks

The three main building blocks of NETSPEAKare (i) an index of frequentn-grams on
the Web, (ii) a query language to formulaten-gram patterns, and (iii) a probabilistic
top-k retrieval strategy which findsn-grams that match a given query and which allows
to trade recall for time. The results are returned in a Web interface or as XML document.

Web Language Index To provide relevant suggestions, a wide cross-section of written
text on the Web is required which is why we resort to the Googlen-gram corpus [3].
This corpus is currently the largest of its kind; it has been compiled from approximately
1 trillion words extracted from the English portion of the Web, and for eachn-gram in
the corpus its occurrence frequency is given. Columns 2 and 3of Table 1 give a detailed
overview of the corpus. We applied two post-processing steps to the corpus at our site:
case reduction and vocabulary filtering. For the latter, a white list vocabularyV was
compiled and only thesen-grams whose words appear inV were retained.V consists
of the words found in the Wiktionary and various other dictionaries, as well as of these
words from the 1-gram portion of the Google corpus whose occurrence frequency is
above 11 000. See Table 1, Columns 4 and 5, for the size reductions after each post-
processing step with respect to the original corpus.

In NETSPEAK the n-gram corpus is implemented as an inverted index,µ, which
maps each wordw ∈ V onto a postlistπw. For this purpose we employ a minimal
perfect hash function based on the CHD algorithm [2].πw is a list of tuples〈d̂ , f(d)〉,
whered̂ refers to ann-gramd on the hard disk that containsw, and wheref(d) is the
occurrence frequency ofd reported in then-gram corpus. A tuple also stores informa-
tion aboutw’s position as well as other information omitted here for simplicity.

Query Language The query language of NETSPEAK is defined by the grammar shown
in Table 2. A query is a sequence of literal words and wildcardoperators, where the
literal words must occur in the expression sought after, while the wildcard operators al-
low to specify uncertainties. Currently four operators aresupported: the question mark,
which matches exactly one word, the asterisk, which matchesany sequence of words,
the tilde sign in front of a word, which matches any of the word’s synonyms, and the
multiset operator, which matches any ordering of the enumerated words. Of course other

Table 1. The Googlen-grams before and after post-processing.

Corpus Original Corpus Case Vocabulary
Subset # n-grams Size Reduction Filtering

1-gram 13 588 391 177.0 MB 81.34 % 3.75 %
2-gram 314 843 401 5.0 GB 75.12 % 43.26 %
3-gram 977 069 902 19.0 GB 83.24 % 48.65 %
4-gram 1 313 818 354 30.5 GB 90.27 % 49.54 %
5-gram 1 176 470 663 32.1 GB 94.13 % 47.16 %

Σ 3 354 253 200 77.9 GB 88.37 % 54.20 %

Table 2. EBNF grammar of the query language.

Production Rule

query = { word | wildcard}5

1

word = ([” ’ ”] (letter{ alpha})) | ” , ”
letter = ” a ” | ... | ” z ” | ” A ” | ... | ” Z ”
alpha = letter| ” 0 ” | ... | ” 9 ”
wildcard = ”? ” | ” * ” | synonyms| multiset
synonyms = ” ~ ” word
multiset = ”{ ” word { word} ” } ”

Retrieving Customary Web Language to Assist Writers 633

sensible operators are conceivable, which is part of our work in progress: constraints on
particular parts of speech, person names, places, dates, and times.

Probabilistic Retrieval Strategy Given then-gram indexµ and a queryq, the task
is to retrieve alln-gramsDq from µ that matchq according to the semantics defined
above. This is achieved within two steps: (i) computation of the intersection postlist
πq =

⋂
w∈q πw, and (ii) filtering of πq with a pattern matcher that is compiled at run-

time from the regular expression defined byq. Reaching perfect precision and recall is
no algorithmic challenge unless retrieval time is considered. Note in this respect that
the length of a postlist often amounts up to millions of entries, which is for instance the
case for stop words. If a query contains only stop words, the retrieval time forDq may
take tens of seconds up to a minute, depending on the size of the indexed corpus. From a
user perspective this is clearly unacceptable. In cases where a query also contains a rare
word w′, it is often more effective to apply the pattern matcher directly to πw′ , which
is possible sinceπq ⊆ πw holds for allw ∈ q. But altogether this and similar strategies
don’t solve the problem: the frequency distribution of the words used in queries will
resemble that of written text, simply because of the NETSPEAK use case. Note that
Web search engines typically get queries with (comparatively infrequent) topic words.

To allow for an adjustable retrieval time at the cost of recall we have devised a
probabilistic retrieval strategy, which incorporates rank-awareness within the postlists.
Our strategy hence is a special kind of a top-k query processing technique [1, 6]. The
strategy requires an offline pre-processing ofµ, so that (i) each postlist is sorted in
order of decreasing occurrence frequencies, and (ii) each postlist is enriched by quan-
tile entriesκ, which divide the word-specific frequency distribution into portions of
equal magnitude. Based on a pre-processedµ, the retrieval algorithm described above
is adapted to analyze postlists only up to a predefined quantile. As a consequence, the
portion of a postlist whose frequencies belong to the long tail of the distribution is
pruned from the search. Note that the retrieval precision remains unaffected by this.

An important property of our search strategy is what we callrank monotonicity:
given a pre-processed indexµ and a queryq, the search strategy will always retrieven-
grams in decreasing order of relevance, independently ofκ. This follows directly from
the postlist sorting and the intersection operation. Ann-gram that is relevant for a query
q is not considered if it is beyond theκ-quantile in someπw, w ∈ q. The probability for
this depends, among other things, on the co-occurrence probability betweenq’s words.
This fact opens up new possibilities for further research inorder to raise the recall, e.g.,
by adjustingκ in a query-specific manner.

3 Evaluation

To evaluate the retrieval quality of our query processing strategy, we report here on an
experiment in which the average recall is measured for a set of queriesQ, |Q| = 55 702,
with respect to different pruning quantiles. The queries originate from the query logs
of NETSPEAK; the service is in public use since 2008. We distinguish between macro-
averaged recall and micro-averaged recall:

recmacro(µ, q) =
|Dq ∩ D∗

q |

|D∗
q |

recmicro(µ, q) =

∑
〈d ,̂f(d)〉∈(πq∩π∗

q
) f(d)

∑
〈d ,̂f(d)〉∈π∗

q

f(d)

634 Benno Stein, Martin Potthast, and Martin Trenkmann

quantile

0

 0.2

 0.4

 0.6

 0.8

1

0
 0.2
 0.4
 0.6
 0.8

1

m
ac

ro
-a

ve
ra

ge
d

re
ca

ll

 0.1
 0.3
 0.5
 0.7
 0.9

1-word-queries

2-word-queries

3-word-queries

4-word-queries

average

Netspeak quantile

0

 0.2

 0.4

 0.6

 0.8

1

0
 0.2
 0.4
 0.6
 0.8

1

m
ic

ro
-a

ve
ra

ge
d

re
ca

ll

quantile

 0.1
 0.3
 0.5
 0.7
 0.9

1-word-queries

2-word-queries

3-word-queries

4-word-queries

average

Netspeak quantile

0
 0.0044
 0.021
 0.16
 0.36
 0.83
 1.86
 4.25
 10.03

retrieval time (seconds)

0
 0.01
 0.06
 0.21
 0.59
 1.47
 3.36
 7.37
 15.94
 34.88
 100

percentage of a postlist evaluated

0
 0.0044
 0.021
 0.16
 0.36
 0.83
 1.86
 4.25
 10.03

retrieval time (seconds)

0
 0.01
 0.06
 0.21
 0.59
 1.47
 3.36
 7.37
 15.94
 34.88
 100

percentage of a postlist evaluated

Figure 1. Macro-averaged recall (left) and micro-averaged recall (right) over quantiles. The ad-
ditional axes indicate how much of a postlist is evaluated and the required processing time.

As described above,Dq andπq are the results retrieved fromµ for queryq under a top-k
strategy, whileD∗

q andπ∗
q are the results if the postlists ofµ are evaluated completely.

While recmacro considers only the result list lengths,recmicro allots more weight to
n-grams with high occurrence frequencies, since they are more relevant to the user.
Figure 1 shows the obtained results for different query sizes.

Discussion and Conclusion The macro-averaged recall differs significantly from the
micro-averaged recall, which indicates that most of the relevantn-grams are retrieved
with our strategy. The current NETSPEAKquantile ofκ = 0.5 marks the best trade-off
between recall and retrieval time. At quantile 0.5 only 1.47% of a postlist is evaluated on
average, which translates into a retrieval speedup of factor 68. The average retrieval time
at this quantile seems to leave much room in terms of user patience to evaluate more
of a postlist, however, it does not include the time to generate and ship the result page.
Short queries are more difficult to answer because the size ofthe expected result set is
much larger on average than that of a long query. From an evaluation standpoint the
micro-averaged view appears to be more expressive. Altogether, our retrieval strategy
makes NETSPEAKa fast and reliable writing assistant.

Bibliography
[1] H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. IO-Top-k: Index-access

Optimized Top-k Query Processing.Proc. of VLDB’06.
[2] D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger. Hash, Displace, and Compress.

Proc. of ESA’09.
[3] T. Brants and A. Franz. Web 1T 5-gram Version 1. Linguistic Data Consortium, 2006.
[4] C. Brockett, W.B. Dolan, and M. Gamon. Correcting ESL Errors Using Phrasal SMT

Techniques.Proc. of ACL’06.
[5] M.J. Cafarella and O. Etzioni. A Search Engine for Natural Language Applications.

Proc. of WWW’05.
[6] I.F. Ilyas, G. Beskales, and M.A. Soliman. A Survey of Top-k Query Processing Techniques

in Relational Database Systems.ACM Comput. Surv., 40(4):1–58, 2008.
[7] C.D. Manning and H. Schütze.Foundations of Statistical Natural Language Processing.

MIT, 1999.
[8] P. Resnik and A. Elkiss. The Linguist’s Search Engine: AnOverview. InProc. of ACL’05.

