
Optimal Scheduling of Information Extraction Algorithms

Henning WACHSMU T H1 Benno ST EIN 2

(1) UNIVERSITÄT PADERBORN, s-lab – Software Quality Lab, Paderborn, Germany
(2) BAUHAUS-UNIVERSITÄT WEIMAR, Web Technology and Information Systems, Weimar, Germany

hwachsmuth@s-lab.upb.de, benno.stein@uni-weimar.de

ABSTRACT
Most research on run-time efficiency in information extraction is of empirical nature. This
paper analyzes the efficiency of information extraction pipelines from a theoretical point of
view in order to explain empirical findings. We argue that information extraction can, at its
heart, be viewed as a relevance filtering task whose efficiency traces back to the run-times
and selectivities of the employed algorithms. To better understand the intricate behavior of
information extraction pipelines, we develop a sequence model for scheduling a pipeline’s
algorithms. In theory, the most efficient schedule corresponds to the Viterbi path through this
model and can hence be found by dynamic programming. For real-time applications, it might
be too expensive to compute all run-times and selectivities beforehand. However, our model
implies the benchmarks of filtering tasks and illustrates that the optimal schedule depends on
the distribution of relevant information in the input texts. We give formal and experimental
evidence where necessary.

TITLE AND ABSTRACT IN GERMAN

Optimales Scheduling von Information-Extraction-Verfahren

Nahezu alle Forschung zur Laufzeiteffizienz in der Information Extraction ist empirischer
Natur. Die vorliegende Arbeit analysiert die Effizienz von Information-Extraction-Pipelines aus
theoretischer Sicht, um empirische Erkenntnisse zu erklären. Wir sehen Information Extraction
im Kern als Relevanz-Filteraufgabe an, deren Effizienz auf die Laufzeiten und Selektivitäten der
eingesetzten Algorithmen zurückgeht. Zum besseren Verständnis des komplexen Verhaltens von
Information-Extraction-Pipelines entwickeln wir ein Sequenzmodell für das Scheduling der
Algorithmen einer Pipeline. Theoretisch entspricht der effizienteste Schedule dem Viterbi-Pfad
durch dieses Modell und lässt sich daher mittels dynamischer Programmierung finden. Für
Echtzeitanwendungen kann es zu teuer sein, alle Laufzeiten und Selektivitäten im Vorhinein
zu berechnen. Unser Modell impliziert jedoch die Benchmarks von Filteraufgaben und zeigt,
dass der optimale Schedule von der Verteilung relevanter Informationen in den Eingabetexten
abhängt. Wo nötig, führen wir sowohl formale als auch experimentelle Belege an.

KEYWORDS: information extraction, theory, efficiency, scheduling.

KEYWORDS IN GERMAN: Information Extraction, Theorie, Effizienz, Scheduling.

Martin Kay and Christian Boitet (Eds.): Proceedings of COLING 12
24th International Conference on Computational Linguistics, Mumbai, India, December 10-14, 2012
ISBN xxxx-y-xxxx-yyyy-x, pp. 1281-1290
c©2012 Association for Computational Linguistics

1 Introduction

Information extraction deals with the analysis of natural language text in order to find relevant
information about entities, relations, and events. Relations typically involve two named or
numeric entities, such as “Apple was founded in 1976”, whereas events model more complex
dependencies between a number of entities, as for example: “IBM ended Q1 2011 with $13.2
billion of cash on hand and free cash flow of $0.8 billion.” If event templates with three or more
arguments have to be filled, several analysis steps are performed. In terms of run-time efficiency,
it is reasonable to filter only those portions of text after each step that contain the information
sought for and, thus, may be relevant for one of the events in question. In this respect, a
conjunctive filtering task is to be solved for each event type. Consequently, the organization of
the analysis will have a noticeable impact on the efficiency of the extraction process.1

In information extraction, a conjunctive filtering task is addressed with an algorithm pipeline
Π = 〈A,π〉, comprised of a set of algorithms A and a schedule π that prescribes the order of
algorithm application. Each algorithm in A filters an argument of the event in question by
classifying a portion of its input text as relevant. In the first example above, both “Apple” and
“1976” are such arguments. The output of Π is given by the arguments in the intersection of the
filtered portions. In order to work properly, an algorithm may require as input a preprocessing
of the text by other algorithms. As in (Wachsmuth et al., 2011), we call a pipeline admissible if
its schedule ensures that the input constraints of all algorithms are fulfilled. Accordingly, all
admissible pipelines 〈A,π1〉, . . . , 〈A,πl〉 classify the same portion of text as relevant. I.e., they
entail the same effectiveness, e.g. quantified as F1-score, in solving an extraction task.

We observe an increasing demand to extract complex information structures in applications of
computational linguistics, e.g. the BioNLP Shared Task 2011 included event types where entities
of three types had to be related to an event in four roles (Kim et al., 2011). Our research
question refers to the outlined efficiency potential and can be stated as optimization problem:

Given an algorithm set A that solves an information extraction task. Determine a schedule π∗ such
that the pipeline 〈A,π∗〉 is run-time optimal under all admissible pipelines 〈A,π1〉, . . . , 〈A,πl〉.

While a few practical scheduling approaches exist, in this paper we discuss the problem’s nature.
We consider a text as an ordered set of atomic text units. The efficiency of a pipeline Π = 〈A,π〉
depends on the run-times and selectivities of the algorithms in A when being applied to the
text units. The selectivity defines the portion of text units classified as relevant by an algorithm
in A. Only this portion forms the input of the next algorithm in π. Hence, the optimization
problem consists in finding the schedule that minimizes the sum of the algorithms’ run-times.
An optimal solution requires a global analysis due to the recurrent structure of the run-times
and selectivities. We represent this structure in a sequence model and solve it with dynamic
programming. The optimization view raises an important question: To what extent does the
optimality of a schedule depend on the distribution of relevant information in input texts?

Contributions. We provide a theoretical approach and the theoretically optimal solution to
the construction of run-time efficient information extraction pipelines. First, we model the
scheduling of a set of extraction algorithms as a dynamic program, which yields the optimal
pipeline schedule (Section 3). Then, we offer formal and quantitative evidence that the
distribution of relevant information is decisive for the efficiency of a pipeline (Section 4).

1Different event types imply disjunctions of conjunctive filtering tasks. Filtering is common in information extraction
(Cowie and Lehnert, 1996; Agichtein, 2005), but until today most approaches rely only on heuristics (Sarawagi, 2008).

2 Related Work

One of the most recognized approaches to efficient information extraction refers to the open
domain system TEXTRUNNER (Banko et al., 2007). TEXTRUNNER employs special index structures
and fast extraction algorithms, but it is restricted to simple relations. In contrast, we target at
template filling tasks that relate several entities to events (Cunningham, 2006). We approach
such tasks with classic pipelines where each algorithm takes on one analysis, e.g. a certain
type of entity recognition (Grishman, 1997). The decisions within a pipeline can be viewed as
irreversible, which allows to perform filtering. Hence, an algorithm can never make up for false
classifications of its predecessors, as in iterative or probabilistic pipeline approaches (Finkel et
al., 2006; Hollingshead and Roark, 2007). Accordingly, we do not deal with joint extraction,
which often suffers from its computational cost (Poon and Domingos, 2007).

In (Wachsmuth et al., 2011), we introduced a generic method to construct efficient pipelines
that achieves run-time improvements of one order of magnitude without harming a pipeline’s
effectiveness. Similarly, Shen et al. (2007) and Doan et al. (2009) optimize schedules in a
declarative extraction framework. These works give only heuristic hints on the reasons behind
empirical results. While some algebraic foundations of scheduling are established for rule-based
approaches by Chiticariu et al. (2010), we explain the determinants of efficiency for any set of
extraction algorithms. To the best of our knowledge, we are the first to address scheduling in
information extraction with dynamic programming, which relies on dividing a problem into
smaller subproblems and solving recurring subproblems only once (Cormen et al., 2009).

In our research we analyze the impact of text types on the efficiency of information extraction
pipelines. Existing work on text types in information extraction mainly deals with the filtering
of promising documents, such as (Agichtein and Gravano, 2003). Instead, we identify the
properties of a text that influence run-time optimality. For optimizing rule-based pipelines,
samples from a text corpus are analyzed by Wang et al. (2011) in order to collect statistics
similar to the ones used for optimizing database queries.

In the database community, run-time optimization has a long tradition. While dynamic program-
ming is used for join operations since the pioneer SYSTEM R (Selinger et al., 1979), template
filling corresponds to processing And-conditioned queries that select those tuples of a database
table whose values fulfill a desired attribute conjunction. The optimal schedule for such a query
is obtained by ordering the involved attribute tests according to their increasing number of
expected matches, i.e., without having to solve a dynamic program (Ioannidis, 1997). The
filtering problem in information extraction looks pretty similar, but a simple ordering strategy
fails because the effort for extracting one type of information (which is the analog of an attribute
test) is not constant; it depends on the applied extraction algorithm.

3 Optimal Scheduling of Information Extraction Algorithms

We now develop a theoretical model for the efficiency of scheduling a fixed set of extraction
algorithms. In order to maintain effectiveness, we consider only admissible information ex-
traction pipelines, i.e., pipelines where the input constraints of all algorithms are fulfilled (cf.
Section 1). For an algorithm set A, different admissible pipelines can vary in efficiency if they
apply the algorithms in A to different numbers of text units. The run-time t(Π) of a pipeline
Π = 〈A,π〉 on an ordered set of text units U depends on the run-time t i and the filtered portion
of text units Ri of each algorithm Ai ∈ A within the schedule π. Assume that π schedules A as
(A1, . . . , Am). If Π analyzes only the filtered portions of text units, then A1 processes U , while A2

processes R1(U), A3 processes R1(U)∩ R2(U), and so on. Therefore, the run-time of Π is

t(Π) = t1(U) +
m
∑

i=2

t i(
i−1
⋂

k=1

Rk(U)). (3.1)

From (Wachsmuth et al., 2011) we infer that, in the optimal schedule of two independent
extraction algorithms A1 and A2, A1 precedes A2 on an ordered set of text units U if and only if

t1(U) + t2(R1(U)) < t2(U) + t1(R2(U)). (3.2)

Obviously, the run-time of an algorithm within a pipeline results from the portion of text units
filtered by its preceding algorithm. Hence, the run-time t(Π(m)) of a pipeline Π(m) = (A1, . . . , Am)
is the sum of the run-time t(Π(m−1)) of Π(m−1) = (A1, . . . , Am−1) and the run-time of Am on the
text units R(Π(m−1)) filtered by Π(m−1). This recursive definition resembles the one used by the
Viterbi algorithm (Viterbi, 1967), which operates on hidden Markov models to compute the
Viterbi path, i.e. the most likely sequence of states for a given sequence of observations. In the
following, we adapt the Viterbi algorithm to schedule an algorithm set A, such that the Viterbi
path corresponds to the run-time optimal schedule for an ordered set of text units U .

The Sequence Model. To represent scheduling, we define a sequence model similar to a hidden
Markov model. Each state ai in the model corresponds to having applied an algorithm Ai ∈ A,
i ∈ {1, . . . , m}. A transition to ai denotes the application of Ai with run-time t i . Instead of
observations, the model contains the positions p(1), . . . , p(m) of a schedule, and having applied
Ai at p(j) means having filtered a portion of text units Ri . In contrast to the state and emission
probabilities of a hidden Markov model, however, t i and Ri are not directly influenced by the
preceding state or the current position, but they depend on the currently filtered portion of
text units. For this reason, we include a running variable R(Π(j−1)

k) in the model that stores the
filtered portion of Ak at position p(j−1). Initially, the running variable is set to the ordered set of
text units U . Figure 1(a) illustrates the described sequence model.2

In classic information extraction pipelines, no algorithm is applied multiple times. This means
that each state must occur exactly once in a path through the model. Also, for admissibility, a
state may only be reached if all input constraints of the associated algorithm are fulfilled. Hence,
we define that an algorithm Ai ∈ A is applicable at position p(j) if Ai has not been applied at p(1)

to p(j−1), and if all input constraints of Ai are fulfilled by the algorithms at these positions.

The Pipeline Viterbi Algorithm. For an observation x j , the original Viterbi algorithm com-
putes the most likely path with state yi at x j in an iterative (dynamic programming) manner.
Accordingly, we store for each position p(j) the run-time optimal pipeline from p(1) to p(j) and
algorithm Ai at p(j). To this end, we iteratively compute the run-time of each Π(j)i based on the
set of run-time optimal pipelines Π(j−1) after which Ai is applicable. If Π(j−1) is empty, then Ai is
not applicable, denoted as ⊥. The recursive function of the Pipeline Viterbi algorithm can be
derived from Equation 3.1 and Inequality 3.2:

t(Π(j)i) = t i(U) if j = 1 t(Π(j)i) = min
Πl ∈ Π(j−1)

�

t(Πl) + t i(R(Πl))
�

else

To solve the problem of optimal scheduling with dynamic programming, we keep track of all val-
ues t(Π(j)i) and R(Π(j)i). Additionally, we store Π(j)i to finally obtain the optimal pipeline 〈A,π∗〉
for A= {A1, . . . , Am} and a set of text units U , as sketched in the following pseudocode.

2Notice that the sequence model does not have the Markov property (Manning and Schütze, 1999), but we define
the sequence model accordingly in order to make it viable for the Viterbi algorithm.

(a)

...

Π1
(j -1)

t (Πk
(j-1)) R(Πk

(j-1))
Πk

(j -1)

a1

ak

...

...

Πi
(j -1)

Π l
(j -1)

ai

al

...

...

...

al+1

am

...

⊥

⊥
...

t (Πi
(j) R(Πi

(j))
Πi

(j)

...

...

...

...

t(Π1
(j-1)) +

 ti (R(Π1
(j-1)))

t(Πk
(j-1)) +

 ti (R(Πk
(j-1)))

(b)

no
t y

et
ap

pl
ic

ab
le

al
re

ad
y

ap
pl

ie
d

)

∏
(j-

1)

t3(U)

t3(R(Π1
(j-1)))

R3(R(Πk
(j-1)))

t3(R(Π2
(j-1)))

p(1) p(3)

a1 a3a2

start

p(2)

Figure 1: (a) The sequence model for three algorithms. Transitions to a state ai are labeled with the
run-time t i of the algorithm Ai on its input. A dashed transition from ai to a position p(j) refers to the text
units filtered by Ai . (b) Determination of pipeline Π(j)i of the Pipeline Viterbi algorithm. For illustration,
a1, . . . , am are ordered by applicability of the respective algorithm Ai after the pipelines of length j−1.

Pseudocode Pipeline Viterbi algorithm (U , {A1, . . . , Am})
1: for each i ∈ {1, . . . , m} do . position p(1), state a1 to am
2: if Ai is applicable in position p(1) then
3: Π(1)i ← (Ai)

4: t(Π(1)i) ← t i(U)

5: R(Π(1)i) ← Ri(U)
6: for each j from 2 to m do . position p(2) to p(m)
7: for each i ∈ {1, . . . , m} do . state a1 to am

8: Π(j−1) ← {Π(j−1)
l | Ai is applicable after Π(j−1)

l }

9: Π(j−1)
k

← argmin
Πl ∈ Π(j−1)

�

t(Πl) + t i(R(Πl))
�

10: Π(j)i
← Π(j−1)

k ‖ (Ai)

11: t(Π(j)i) ← t(Π(j−1)
k) + t i(R(Π

(j−1)
k))

12: R(Π(j)i) ← Ri(R(Π
(j−1)
k))

13: return argmin
Π(m)i , i ∈ {1,...,m}

t(Π(m)i)

Lines 1 to 5 of the pseudocode initialize a pipeline Π(1)i for each applicable algorithm Ai . The
pipeline’s run-time and its filtered portion of text units are set to the according values of Ai .
The remaining lines compute Π(j)i , t(Π(j)i), and R(Π(j)i) for position p(2) to p(m). Here, the best

predecessor pipeline Π(j−1)
k is determined in lines 8 and 9. Π(j−1)

k is then used to update Π(j)i and
its values. Finally, the optimal pipeline is returned in line 13. A trellis diagram that visualizes
the operations of the Pipeline Viterbi algorithm is shown in Figure 1(b).

Correctness. The optimality of the returned pipeline follows from the optimal solutions to all
subproblems, i.e., all pipelines Π(j)i . We do not prove the correctness of the Pipeline Viterbi
algorithm formally here. The proof idea is that, by definition, the order of any two algorithms
A1, A2 ∈ A is only variable if neither A1 depends on A2 nor vice versa. In this case, applying A1

and A2 in sequence is a commutative operation. Thus, Π(j−1)
k will always be optimal for Ai at

position p(j), no matter what comes afterwards. Consequently, Π(j)i is optimal.

Computational Cost. The cost of running the developed algorithm for an algorithm set

A= {A1, . . . , Am} can be inferred from the pseudocode above: if both the run-times t i and the
filtered portions of text units Ri of all algorithms Ai ∈ A were given, the cost would follow from
the m2 loop iterations, where Π(j)i is determined based on at most m− 1 pipelines Π(j−1)

l . This
results in O(m3) operations. Practically, these values are not known beforehand but need to be
measured during execution. In the worst case, all algorithms have an equal run-time tmax(U)
on U and they filter the whole text, i.e., Ri(U) = U for each Ai . So, all algorithms must indeed
be applied to U , which leads to an overall upper bound of O(m3 · tmax(U)).3

4 The Impact of Text Types on the Efficiency of Pipelines

In this section, we first analyze the influence of text types on the optimality of schedules. Then,
we reveal that the efficiency of an information extraction pipeline is governed by the distribution
of relevant entities, relations, and events in the input texts. In all experiments, we evaluated
the following set-up on a 2 GHz Intel Core 2 Duo MacBook with 4 GB memory:

Data. We processed the training sets of two German text corpora: the Revenue corpus introduced
in (Wachsmuth et al., 2010) and the corpus of the CoNLL’03 shared task (Tjong Kim Sang and De
Meulder, 2003).4 The former contains 752 online business news articles with 21,586 sentences,
whereas 553 mixed classic newspaper articles with 12,713 sentences refer to the latter.

Task. The conjunctive filtering task that we consider emanates from the purpose of the Revenue
corpus, namely, we define a text unit to be classified as relevant as a sentence that represents a
forecast and that contains a money entity, a time entity, and an organization name.

Algorithms. We employed four algorithms that filter text units: regex-based money and time
entity recognizers AM and AT , the CRF-based STANFORD NER system AN (Finkel et al., 2005;
Faruqui and Padó, 2010) for organization names, and the SVM-based forecast event detector AF
from (Wachsmuth et al., 2011) that needs time entities as input. Further algorithms were used
only as preprocessors. In all experiments we executed each preprocessing algorithm right before
its output was needed. Hence, we simply speak of the algorithm set A1 = {AM , AT , AN , AF} in
the following without loss of generality. All algorithms in A1 operate on sentence-level.

Application of the Pipeline Viterbi Algorithm. On both corpora, we executed all applicable
pipelines Π(j)i for A1 to obtain the filtered portions R(Π(j)i) and to measure all run-times t(Π(j)i),
averaged over ten runs. All standard deviations were lower than 1.0s on the Revenue corpus
and 0.5s on the CoNLL’03 corpus, respectively. For clarity, we omitted them in Figure 2 and 3,
which visualize the Pipeline Viterbi algorithm as a trellis. Also, the two figures state only the
number of sentences of each filtered portion of text units instead of the portions themselves. In
the trellises the bold arrows denote the Viterbi paths. AT is scheduled first and AN is scheduled
last in both optimal cases, but only on the Revenue corpus it is more efficient to apply AF before
AM . So, the run-time optimality of schedules is corpus-dependent.

Seemingly, one reason lies in the text units classified as relevant by A1: 215 of the sentences in
the Revenue corpus are returned by each admissible pipeline, which is about 1%, as opposed
to 2 sentences of the CoNLL’03 corpus (0.01%). A closer look uncovers significant differences
between the trellises, e.g. the pipeline (AT , AM) filters 3818 sentences of the Revenue corpus
(17.7%), but only 82 CoNLL’03 sentences (0.6%). These values originate in the distribution

3Besides the unrealistic nature of the worst case, the value m3 ignores that an algorithm is applied only once and
only if its input constraints are fulfilled. Thus, the cost of the Pipeline Viterbi algorithm will be much lower in practice.

4In general, the evaluated determination of optimal schedules works on input texts of any language, of course.

aM

aF

aN

aT

(AM)
40.16s 6111snt.

(AT)
33.40s 8105snt.

(AN)
91.63s 4801snt.

(AT ,AM)
40.72s 3818snt.

(AT ,AF)
41.83s 2294snt.

(AM ,AT)
43.19s 3818snt.

(AM ,AN)
64.77s 1445snt.

(AT ,AF ,AN ,AM)
51.38s 215snt.

(AM ,AN ,AT ,AF)
66.37s 215snt.

(AM ,AN ,AT)
65.97s 953snt.

(AT ,AF ,AM)
44.00s 889snt.

(AT ,AM ,AF)
45.76s 889snt.

(AT ,AF ,AN)
49.60s 623snt.

⊥

(AT ,AF ,AM ,AN)
48.25s 215snt.

⊥

Revenue

Figure 2: Illustration of the Pipeline Viterbi algorithm for A1 on the training set of the Revenue corpus.
Below each pipeline Π(j)i , t(Π(j)i) is given in seconds next to the number of filtered sentences (snt.) in
R(Π(j)i). The bold arrows denote the Viterbi path resulting in the run-time optimal pipeline (AT , AF , AM , AN).

aM

aF

aN

aT

(AM)
18.54s 354snt.

(AT)
16.24s 1609snt.

(AN)
48.03s 1819snt.

(AT ,AF)
19.01s 555snt.

(AT ,AM)
17.76s 82snt.

(AM ,AT)
18.71s 82snt.

(AM ,AN)
20.32s 48snt.

(AT ,AM ,AN ,AF)
18.43s 2snt.

(AM ,AN ,AT)
20.32s 9snt.

(AT ,AM ,AF)
18.03s 33snt.

(AT ,AF ,AM)
19.53s 33snt.

(AT ,AM ,AN)
18.34s 9snt.

⊥

(AT ,AM ,AF ,AN)
18.17s 2snt.

⊥

⊥

CoNLL'03

Figure 3: Illustration of the Pipeline Viterbi algorithm for A1 on the training set of the CoNLL’03 corpus.

of entities in the two corpora. Additionally, the run-times of AN (Revenue: 91.63s, CoNLL’03:
48.03s) emphasize the general importance of optimizing the efficiency of pipelines.

The Distribution of Relevant Information. It seems reasonable to assume that the fraction of
text units, which are classified as relevant, influences the run-time optimality of a schedule. In
fact, it is not the relevant but the irrelevant text units that matter as follows from Theorem 1.

Theorem 1. Let Π∗ = 〈A,π∗〉 be run-time optimal on a set of text units U under all admissible
pipelines for a set of extraction algorithms A. Let R⊆ U be the set of text units classified as relevant
by Π∗. Now let R′ ⊆ U ′ be any other set of text units classified as relevant by Π∗. Then Π∗ is
run-time optimal on (U \ R)∪ R′.

Proof. Within the proof, we denote the run-time of an arbitrary pipeline Π on U as t(U)(Π) and
accordingly on other sets of text units. By hypothesis, Π∗ = 〈A,π∗〉 is run-time optimal on U ,
i.e., for any pipeline Π′ = 〈A,π′〉 with π′ 6= π∗, we have

t(U)(Π∗) ≤ t(U)(Π′). (4.1)

Now, for an algorithm set A, all admissible pipelines classify the same set of text units R⊆ U as
relevant. So, on each text unit in R, all algorithms must be applied irrespective of the schedule.
Hence, for any two admissible pipelines Π1 = 〈A,π1〉 and Π2 = 〈A,π2〉, we can expect

t(R)(Π1) = t(R)(Π2). (4.2)

Obviously, the same holds for R′. Thus, from Equation 4.1 and 4.2, Theorem 1 follows:

2.1 2
0.02 0.05 0.1 0.2

1.7
0.009 0.012 0.015 0.018 0.0210.02 0.05 0.1 0.2

Density of relevant text units

2.7

3.0

3.3

2.4

4

3

2.3

2.0

5

6

2.6

2.9
Pipeline Π1
Pipeline Π2

(a) Changing the number of relevant
 text units

(b) Randomly changing the number of
 irrelevant text units

(c) Changing the number of irrelevant
 text units that contain money entities

ru
n-

tim
e

in
 m

s
/ s

en
te

nc
e

Figure 4: Average run-time per sentence of Π1 and Π2 under different densities of relevant information in
the training set of the Revenue corpus. The densities were generated by duplicating or deleting sentences.

t((U\R) ∪ R′)(Π∗) = t(U)(Π∗)− t(R)(Π∗) + t(R
′)(Π∗)

(4.1)
≤ t(U)(Π′) − t(R)(Π∗) + t(R

′)(Π∗)
(4.2)
= t(U)(Π′) − t(R)(Π′) + t(R

′)(Π′) = t((U\R) ∪ R′)(Π′)

Consequently, two pipelines Π = 〈A,π〉 and Π′ = 〈A,π′〉 differ in efficiency if they apply the
algorithms in A to different numbers of the irrelevant text units in U \ R. To analyze this further,
we altered the density of relevant information (i.e., the fraction of relevant text units) of the
Revenue corpus by randomly duplicating or deleting sentences of one of three types: (a) relevant
sentences, (b) irrelevant sentences, and (c) irrelevant sentences with money entities. For (a)
and (b), we generated densities of 0.01, 0.02, 0.05, 0.1, and 0.2. In case of (c), the highest
possible density is about 0.021; under that density, no irrelevant sentence that contains money
entities is left in the Revenue corpus. Now, we executed the pipelines Π1 = (AM , AT , AF , AN)
and Π2 = (AT , AF , AM , AN), which are comparably efficient though employing very different
schedules, ten times on the generated text collections. As these collections differ strongly in
size, we computed the average run-times per sentence to make all results comparable.

Figure 4(a-c) plot the run-times for all densities. In Figure 4(a), the absolute gap between
Π1 and Π2 remains the same under changing density, which gives additional evidence for
Theorem 1. In contrast, the interpolated curves in Figure 4(b) increase proportionally, since the
two pipelines spend a proportional amount of time processing irrelevant text. Finally, Figure 4(c)
shows a change in optimality: Whereas Π2 is faster on densities lower than about 0.018, Π1
outperforms Π2 on higher densities.5 Π1 applies AM first, so it benefits from deleting irrelevant
sentences with money entities, which represents a shift in the distribution of information. While
other influencing factors exist, we cancelled out many of them by only reusing sentences from
the evaluated corpus. Hence, we conclude that the distribution of relevant entities, relations,
and events is decisive for the optimal scheduling of information extraction algorithms.

Conclusion

We provide a theoretical model to explain empirical findings when optimizing a pipeline’s
run-time efficiency at a given effectiveness. Based on this model, we propose a dynamic
programming algorithm to determine the optimal schedule of a fixed set of extraction algorithms
on input texts of any language. Together, the model and the algorithm give a comprehensive
insight into the scheduling problem of conjunctive filtering tasks, such as template filling. Also,
they represent a fast means to compute the theoretically optimal solution for benchmarks in

5The declining curves in Figure 4(c) seem counterintuitive. However, sentences with money entities often also
contained other relevant information such as time entities. So, the average time to process them was rather high.

future research and applications of computational linguistics. Our experiments showed that
different types of texts may lead to different optimal schedules. For homogeneous input texts,
a solution is to transform dynamic programming into an A∗ algorithm (Huang, 2008) with a
heuristic based on run-time estimations of the employed algorithms. A∗ can then be executed
on a sample of texts in order to find a near-optimal schedule. For more heterogeneous texts, a
schedule should be chosen in respect of a classification of the input text at hand.

References

Eugene Agichtein and Luis Gravano (2003). Querying Text Databases for Efficient Information
Extraction. In Proceedings of the 19th International Conference on Data Engineering, pages
113–124.

Eugene Agichtein (2005). Scaling Information Extraction to Large Document Collections.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 28:3–10.

Michele Banko, Michael J. Cafarella, Stephen Soderland, Matt Broadhead, and Oren Etzioni
(2007). Open Information Extraction from the Web. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pages 2670–2676.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan Frederick R. Reiss,
and Shivakumar Vaithyanathan (2010). SystemT: An Algebraic Approach to Declarative
Information Extraction. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 128–137.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2009). Intro-
duction to Algorithms, third edition, MIT Press, Cambridge, MA, USA.

Jim Cowie and Wendy Lehnert (1996). Information Extraction. Communications of the ACM,
39(1):80–91.

Hamish Cunningham (2006). Information Extraction, Automatic. Encyclopedia of Language &
Linguistics, 4:665–677.

AnHai Doan, Jeffrey F. Naughton, Raghu Ramakrishnan, Akanksha Baid, Xiaoyong Chai, Fei
Chen, Ting Chen, Eric Chu, Pedro DeRose, Byron Gao, Chaitanya Gokhale, Jiansheng Huang,
Warren Shen, and Ba-Quy Vuong (2009). Information Extraction Challenges in Managing
Unstructured Data. In SIGMOD Records, 37(4):14–20.

Jenny R. Finkel, Trond Grenager, and Christopher D. Manning (2005). Incorporating Non-local
Information into Information Extraction Systems by Gibbs Sampling. In Proceedings of the
43nd Annual Meeting of the Association for Computational Linguistics, pages 363–370.

Jenny R. Finkel, Christopher D. Manning, and Andrew Y. Ng (2006). Solving the Problem
of Cascading Errors: Approximate Bayesian Inference for Linguistic Annotation Pipelines. In
Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pages
618–626.

Manaal Faruqui and Sebastian Padó (2010). Training and Evaluating a German Named Entity
Recognizer with Semantic Generalization. In Proceedings of KONVENS 2010, pages 129–133.

Ralph Grishman (1997). Information Extraction: Techniques and Challenges, In Interna-
tional Summer School on Information Extraction: A Multidisciplinary Approach to an Emerging
Information Technology, pages 10–27.

Daniel Gruhl, Laurent Chavet, David Gibson, Jörg Meyer, Pradhan Pattanayak, Andrew
Tomkins, and Jason Y. Zien (2004). How to Build a WebFountain: An Architecture for
Very Large-scale Text Analytics. IBM Systems Journal, 43(1):64–77.

Kristy Hollingshead and Brian Roark (2007). Pipeline Iteration. In Proceedings of the 45th
Annual Meeting of the Association for Computational Linguistics, pages 952–959.

Lian Huang (2008). Advanced Dynamic Programming in Semiring and Hypergraph Frame-
works. In COLING 2008: Advanced Dynamic Programming in Computational Linguistics: Theory,
Algorithms and Applications – Tutorial notes, pages 1–18.

Yannis Ioannidis (1997). Query optimization. In Handbook for Computer Science, CRC Press.

Jin-Dong Kim, Yue Wang, Toshihisa Takagi, and Akinori Yonezawa (2011). Overview of
Genia event task in BioNLP Shared Task 2011. In Proceedings of the BioNLP Shared Task 2011
Workshop, pages 7–15.

Christopher D. Manning and Hinrich Schütze (1999). Foundations of Statistical Natural
Language Processing, MIT Press, Cambridge, MA, USA.

Hoifung Poon and Pedro Domingos (2007). Joint Inference in Information Extraction. In
Proceedings of the 22nd National Conference on Artificial Intelligence, pages 913–918.

Sunita Sarawagi (2008). Information Extraction. Foundations and Trends in Databases,
1(3):261–377.

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, and
Thomas G. Price (1979). Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data,
pages 23–34.

Warren Shen, AnHai Doan, Jeffrey F. Naughton, and Raghu Ramakrishnan (2007). Declarative
Information Extraction using Datalog with Embedded Extraction Predicates. In Proceedings of
the 33rd International Conference on Very Large Data Bases, pages 1033–1044.

Erik F. Tjong Kim Sang and Fien De Meulder (2003). Introduction to the CoNLL-2003 Shared
Task: Language-independent Named Entity Recognition In Proceedings of the Seventh Conference
on Natural Language Learning at HLT-NAACL 2003, pages 142–147.

Andrew J. Viterbi (1967). Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. IEEE Transactions on Information Theory, 13(2):260–267.

Henning Wachsmuth, Peter Prettenhofer, and Benno Stein (2010). Efficient Statement Identifi-
cation for Automatic Market Forecasting. In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 1128–1136.

Henning Wachsmuth, Benno Stein, and Gregor Engels (2011). Constructing Efficient Infor-
mation Extraction Pipelines. In Proceedings of the 20th ACM Conference on Information and
Knowledge Management, pages 2237–2240.

Daisy Z. Wang, Long Wei, Yunyao Li, Frederick R. Reiss, and Shivakumar Vaithyanathan (2011).
Selectivity Estimation for Extraction Operators over Text Data. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, pages 685–696.

	Introduction
	Related Work
	Optimal Scheduling of Information Extraction Algorithms
	The Impact of Text Types on the Efficiency of Pipelines

